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ON TWO PROBLEMS CONCERNING TOPOLOGICAL CENTERS

ELI GLASNER

Abstract. Let Γ be an infinite discrete group and βΓ its Čech-Stone compactification.
Using the well known fact that a free ultrafilter on an infinite set is nonmeasurable, we show
that for each element p of the remainder βΓ \ Γ, left multiplication Lp : βΓ → βΓ is not
Borel measurable. Next assume that Γ is abelian. Let D ⊂ ℓ∞(Γ) denote the subalgebra
of distal functions on Γ and let D = ΓD = |D| denote the corresponding universal distal
(right topological group) compactification of Γ. Our second result is that the topological
center of D (i.e. the set of p ∈ D for which Lp : D → D is a continuous map) is the same
as the algebraic center and that for Γ = Z, this center coincides with the canonical image
of Γ in D.

1. Introduction

This short note is a direct outcome of the topology conference held in Castellón in the
summer of 2007. I was presented during the conference with two problems relating to the
topological center of certain right topological semigroups. (A compact semigroup A such
that for each p ∈ A the corresponding right multiplication Rp : q 7→ qp is continuous is called
a right topological semigroup. The collection of elements p ∈ A for which the corresponding
left multiplication Lp : q 7→ pq is continuous is called the topological center of A.) The
first was a question of Michael Megrelishvili: Given an infinite discrete group Γ, which are
the elements of βΓ for which Lp : βΓ → βΓ is a Baire class 1 map? (It is known that the
topological center of βΓ is exactly Γ itself, considered as a subset of βΓ, see e.g. [3].) The
second problem is due to Mahmoud Filali: If D = D(Γ) is the universal distal Ellis group
of Γ, identify the topological center of D.

I present here a complete answer to Megrelishvili’s problem, based on the well known
result that a free ultrafilter on an infinite set is nonmeasurable, and an answer to Filali’s
problem in the case Γ = Z, the group of integers.

The interested reader is referred to [1, chapter 1] and the bibliography list thereof, for
more information on the abstract theory of topological dynamics, and to [3] for information
concerning βΓ.

I thank both Megrelishvili and Filali for addressing to me these nice problems. I also
thank the organizers of the Castellón meeting for the formidable effort they put into the
details of the conference and for their warm hospitality.

2. On the center of βΓ

Theorem 2.1. Let Γ be an infinite discrete group and βΓ its Čech-Stone compactification.
For each element p of the remainder βΓ \ Γ, left multiplication Lp : βΓ → βΓ is not Borel
measurable.
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Key words and phrases. Topological center, Čech-Stone compactification, Ellis group, distal systems.
Research supported by ISF grant # 1333/07.
2000 Mathematical Subject Classification: Primary 54H20, Secondary 22A15.

1

http://arxiv.org/abs/0710.2625v2


2 ELI GLASNER

Proof. Let P(Γ) denote the collection of all subsets of Γ. Let Ω = {0, 1}Γ and let χ : P(Γ) →
Ω denote the canonical map χ(A) = 1A for A ⊂ Γ. We regard Ω as a compact space and let
B denote its Borel σ-algebra. Let µ = (1

2
(δ0+ δ1))

Γ denote the product probability measure
on Ω and let Bµ denote the completion of B with respect to µ.

A well known and easy fact, which for completeness we will reproduce below (Lemma 2.3),
is that a free ultrafilter on an infinite set is nonmeasurable: Viewing an element p ∈ βΓ \ Γ
as an ultrafilter on Γ, the collection {χ(A) : A ∈ p} ⊂ Ω, is not µ-measurable; i.e. not an
element of Bµ. In particular it is not a Borel subset of Ω. (In fact, it is not even Baire
measurable, [4] and [5].)

The compact space Ω becomes a dynamical system when we let Γ act on it by permuting
the coordinates:

γω(γ′) = ω(γ−1γ′).

Of course the measure µ is Γ-invariant, but we will not need this fact. The action of Γ on
Ω extends to an action of βΓ in the natural way and we write pω for the image of ω ∈ Ω
under p ∈ βΓ. (In fact via this “action” βΓ is identified with the enveloping semigroup of
the system (Ω,Γ), see [1, chapter 1].)

For A ⊂ Γ and p ∈ βΓ set

p ⋆ A = {γ ∈ Γ : γA−1 ∈ p}

and check that γ1A = 1γA and pχ(A) = p1A = 1p⋆A = χ(p ⋆ A). Moreover if q ∈ βΓ then

pq ⋆ A = p ⋆ (q ⋆ A).

For convenience I sometimes identify a subset A ⊂ Γ with the corresponding element 1A =
χ(A) in Ω.

Let πe : Ω → {0, 1} denote the projection on the e-component of Ω. Here e is the neutral
element of Γ. Let ω0 = 1D be some fixed element of Ω whose Γ orbit is dense in Ω. Let
ψ : γ 7→ γω0 be the orbit map and let ψ̂ denote its unique extension to βΓ. Thus ψ̂(q) = qω0

for q ∈ βΓ. Finally recall that the semigroup product on βΓ is defined by

A ∈ pq ⇐⇒ {γ ∈ Γ : γ−1A ∈ q} ∈ p.

Consider the map Lp : βΓ → βΓ and write φ : βΓ → {0, 1} for the map φ = π0 ◦ ψ̂ ◦ Lp.
(Thus φ(q) = (pqω0)(e).) We define J : Ω → Ω by (J(ω))(γ) = ω(γ−1)

We have

Q := φ−1(1) = {q ∈ βΓ : pqω0(e) = 1}.

Now pqω0(e) = 1 iff e ∈ χ−1(pqω0) hence

Q = {q ∈ βΓ : pqω0(e) = 1}

= {q ∈ βΓ : e ∈ p ⋆ qω0}

= {q ∈ βΓ : e ∈ p ⋆ q ⋆ D}

= {q ∈ βΓ : e ∈ {γ ∈ Γ : γ(q ⋆ D)−1 ∈ p}}

= {q ∈ βΓ : (q ⋆ D)−1 ∈ p}

= {q ∈ βΓ : J(qω0) ∈ p}.

Thus (J ◦ ψ̂)(Q) = p and since also (ψ̂−1 ◦J−1)(p) = Q we conclude that Q = φ−1(1) is not
Borel measurable in βΓ. Finally, since also Q = L−1

p ({q ∈ βΓ : (qω0)(e) = 1}) we see that
Lp is not Borel measurable. �

In the next two lemmas let Ω = {0, 1}N. As above, we identify subsets A of N with their
characteristic functions 1A ∈ Ω = {0, 1}N and, accordingly, filters on N with subsets of Ω.
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Let φ : Ω → Ω denote the “flip” function defined by φ(ω)n = 1 − ωn. We consider the
measure space (Ω,Σλ, λ), where Ω = {0, 1}N, λ is the Bernoulli measure λ = (1

2
(δ0 + δ1))

N,
and Σλ denotes the completion of the Borel σ-algebra with respect to λ. As usual we use
the notation λ∗ and λ∗ for the induced inner and outer measures.

The assertions of the next lemma are easily verified.

Lemma 2.2. 1. The involution φ is measurable and it preserves λ.
2. For A ⊂ N we have φ(1A) = 1Ac .
3. If F is a filter on N then φF ∩ F = ∅.
4. If F is a free filter on N (i.e.

⋂
F = ∅) then, considered as a collection of subsets

of {0, 1}N it is a “tail event”, that is, for every m ∈ N, F = {0, 1}m × F ′, with
F ′ ⊂ {0, 1}N.

5. A filter F on N is an ultrafilter iff φ(F) ∪ F = Ω.

Lemma 2.3. Let F be a free filter on N. Then

1. λ∗(F) = 0.
2. λ∗(F) ∈ {0, 1}.
3. λ∗(F) = 1 if F is an ultrafilter.
4. A free filter F is measurable iff λ∗(F) = 0, and nonmeasurable iff λ∗(F) = 1. In

particular, every free ultrafilter is nonmeasurable.

Proof. If F is a free filter on N and G ⊂ F is a measurable tail event then it has measure
either 0 or 1. Thus λ∗(F) ∈ {0, 1}. This proves part 2. We also have λ∗(F) ∈ {0, 1} and
since φ(F) ∩ F = ∅ it follows that

1 = λ(Ω) ≥ λ∗(φF) + λ∗(F) = 2λ∗(F).

We conclude that λ∗(F) = 0, proving part 1. If F is an ultrafilter then F ∪ φF = {0, 1}N

and we conclude that

1 = λ(Ω) ≤ λ∗(φF) + λ∗(F) = 2λ∗(F),

whence λ∗(F) = 1. This proves part 3. Part 4 is now clear. �

3. On the center of ΓD, the universal distal Ellis group of Γ

Let Γ be a discrete abelian group. Let D denote the closed Γ-invariant subalgebra of
(complex valued) distal functions in ℓ∞(Γ). Let D = ΓD = |D| denote the corresponding
Gelfand space. It is well known thatD is the largest right topological group compactification
of Γ.

Theorem 3.1. Let Γ be an infinite discrete abelian group. The topological center of D = ΓD

is the same as the algebraic center and, when Γ = Z, it also coincides with the canonical
image of Γ in D.

Proof. In order to simplify our notation we will identify elements of Γ with their images
in D. The coincidence of the topological and algebraic centers of D is easy: Suppose first
that p ∈ D is in the algebraic center of this group. Then, as right multiplication is always
continuous, we have for any convergent net qα → q in D

pq = qp = lim qαp = lim pqα,

i.e. Lp : D → D is continuous.
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Conversely, assume that p is in the topological center; i.e. Lp : D → D is continuous.
We note that if q is an element of D then γq = qγ for every γ ∈ G. In fact choosing a
convergent net Γ ∋ γα → q, by the commutativity of Γ,

γq = γ lim γα = lim γγα = lim γαγ = qγ.

Now, with this in mind, we have

pq = p lim γα = lim pγα = lim γαp = qp,

so that p is indeed an element of the center.
Now to the more delicate task of showing that this center coincides with Γ. Let p ∈ D

be a central element. If p 6∈ Γ then there exists a metric minimal distal dynamical system
(Y,Γ) and a point y0 ∈ Y such that

(3.1) py0 6∈ Γy0.

By assumption the map Lp : D → D is continuous (in fact a homeomorphism) and as we
have seen it also commutes with every element of Γ. In other words, Lp is an automorphism
of the system (D,Γ). Now the dynamical system (D,Γ) is the universal distal system and

therefore, it admits a unique homomorphism of dynamical systems φ̂ : (D,Γ) → (E(Y,Γ),Γ)
onto the enveloping semigroup E = E(Y,Γ) (which by a theorem of Ellis is in fact a group)

such that φ̂(eD) = eE . Now the map φ : p 7→ φ̂(p)y0 (which we write simply as p 7→ py0) is
a homomorphism φ : (D,Γ) → (Y,Γ) with φ(e) = y0. If yα → y is a convergent net in Y
then there are qα ∈ D with yα = qαy0. With no loss of generality we have qα → q in D, so
that in particular y = lim yα = lim qαy0 = qy0. Now we see that

py = pqy0 = (p lim qα)y0

= (lim pqα)y0 = lim p(qαy0)

= lim pyα.

Thus p acts continuously on Y . Since also pγ = γp for every γ ∈ Γ we conclude that p is
an automorphism of the system (Y,Γ).

Note that this argument shows that p acts as an automorphism of every factor of (D,Γ).
Therefore, our proof will be complete when we find a minimal distal dynamical system
(X,Γ) extending (Y,Γ), say π : (X,Γ) → (Y,Γ), where p is not an automorphism.

At this stage, in order to be able to use a method of construction developed by Glasner
and Weiss in [2], we specialize to the case Γ = Z. In particular the system (Y,Γ) which
was singled out in the above discussion has now the form (Y, T ) where T : Y → Y is a self
homeomorphism of Y determined by the element 1 ∈ Z. Of course we can assume that Y
is non-periodic (i.e. infinite).

The following construction is a special case of a general setup designed in [2] for providing
minimal extensions of a given non-periodic minimal Z-system (Y, T ). We refer the reader
to [2] for more details.

Set X = Y ×K where K denotes the circle group K = S1 = {z ∈ C : |z| = 1}. Let Θ
be the family of continuous maps θ : Y → K. For each θ ∈ Θ let Gθ : X → X be the map
Gθ(y, z) = (y, zθ(y)) and Sθ = G−1

θ ◦ (T × id) ◦Gθ. Thus

(3.2) Sθ : X → X, Sθ(y, z) = (Ty, zθ(y)θ(Ty)−1).

Form the collection

S(T ) = {G−1

θ ◦ (T × id) ◦Gθ : θ ∈ Θ}.

Theorem 1 of [2] ensures that in the set S(T ) (closure with respect to the uniform
convergence topology in Homeo (X)) there is a dense Gδ subsetR such that for every R ∈ R
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the system (X,R) is minimal, distal, and the projection map π : X → Y is a homomorphism

of dynamical systems (πR(y, z) = Tπ(y, z) = Ty). Note that every R ∈ S(T ) has the form

R = Tφ : X → X, where Tφ(y, z) = (Ty, zφ(y)),

for some continuous map φ : Y → K. We will often use the fact that for n ∈ N the n-th
iteration of Tφ has the form

(3.3) T n
φ (y, z) = (T ny, zφn(y)), where φn(y) = φ(T n−1y) · · ·φ(Ty)φ(y).

Note that when φ has the very special form φ(y) = θ(Ty)−1θ(y) for some continuous
θ : Y → K, the equation (3.3) collapses:

(3.4) φn(y) = θ(T ny)−1θ(y), hence Sn
θ (y, z) = (T ny, zθ(T ny)−1θ(y)).

We temporarily fix an element R = Tφ ∈ R. As observed above, the element p ∈ D
defines an automorphism of the system (X,Tφ); moreover we have for every x = (y, z) ∈ X:

π(px) = pπ(x) = py.

This last observation implies that p : X → X has the form p(y, z) = (py, ω(y, z)) for some
continuous map ω : Y ×K → K.

Lemma 3.2. The function ω has the form ω(y, z) = zψ(y) for some continuous map
ψ : Y → K, whence

p(y, z) = (py, zψ(y))

Proof. There exists a net {nν}ν∈I in Z such that p = limnν in D. Thus, for every (y, z) ∈ X

p(y, z) = lim T nν

φ (y, z) = lim(T nν

φ y, zφnν (y)) = (py, zψ(y)),

where the point-wise limit ψ(y) := lim φnν (y) is necessarily a continuous function. �

The commutation relation pTφ = Tφp now reads:

pTφ(y, z) = p(Ty, zφ(y)) = (pTy, zφ(y)ψ(Ty))

= Tφp(y, z) = Tφ(py, zψ(y))

= (Tpy, zψ(y)φ(py)).

In turn this implies:

(3.5) φ(y)ψ(Ty) = ψ(y)φ(py).

Similarly the commutation relations pT n
φ = T n

φ p yield:

(3.6) φn(y)ψ(T
ny) = ψ(y)φn(py).

Next consider any sequence ni ր ∞ such that

• limT niy0 = y0,
• limφni

(y0) = z′, and
• limφni

(py0) = z′′.

Applying (3.6) and taking the limit as i → ∞ we get ψ(y0)z
′′ = z′ψ(y0), whence neces-

sarily also z′ = z′′.
The proof of Theorem 3.1 will be complete when we next show that for a residual subset

R1 of S(T ), we have limφni
(y0) = z′ 6= z′′ = lim φni

(py0), whenever R = Tφ ∈ R1. Then
for any element Tφ ∈ R ∩R1, (X,Tφ) will serve as a minimal distal system where p is not
an automorphism.
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Proposition 3.3. For a given sequence ni ր ∞ with limT niy0 = y0, the set

R1 = {Tφ ∈ S(T ) : ∀i ∃j > i, |φnj
(y0)− φnj

(py0)| > 1}

is a residual subset of S(T ).

Proof. For i ∈ N and η > 0 set

Ei,η = {Tφ ∈ S(T ) : ∃j > i, |φnj
(y0)− φnj

(py0)| > 1 + η}.

Clearly Ei,η is an open subset of S(T ) and for i < k we have Ek,η ⊂ Ei,η.

Lemma 3.4. Given i and η > 0, for every θ0 ∈ Θ there exists an i0 > i such that

G−1

θ0
Ei0,ηGθ0 ⊂ Ei0,η/2.

Proof. Fix θ0 ∈ Θ. For sufficiently large i0, for all j > i0 the distances d(T njy0, y0) and
d(T njpy0, py0) are so small that

|θ(T njy0)
−1θ(y0)φnj

(y0)− θ(T njpy0)
−1θ(y0)φnj

(py0)| > 1 + η/2

holds whenever
|φnj

(y0)− φnj
(py0)| > 1 + η.

�

We will show that Ei,η is also dense in S(T ). For this it suffices to show that G−1

θ ◦ (T ×

id) ◦Gθ ∈ Ei,η for every θ ∈ Θ, i.e. T × id ∈ GθEi,ηG
−1

θ .

Now for a fixed θ0 there is by Lemma 3.4, an i0 > i with G−1

θ0
Ei0,2ηGθ0 ⊂ Ei0,η, hence it

suffices to show that T × id ∈ Ei0,2η, since then

T × id ∈ Ei0,2η ⊂ Gθ0Ei0,ηG
−1

θ0
⊂ Gθ0Ei,ηG

−1

θ0
.

Finally the next lemma will prove this last assertion and therefore also the density of Ei,η

for every i and 0 < η < 1.

Lemma 3.5. Given i ∈ N, 0 < η < 1 and ε > 0 there exists θ ∈ Θ such that

1. d(T × id, G−1

θ ◦ (T × id) ◦Gθ) < ε.

2. G−1

θ ◦ (T × id) ◦Gθ ∈ Ei,η.

Proof. Let I = [0, 1] and set h(0) = h(1/3) = h(2/3) = 1, h(1) = −1 and extend this
function in an arbitrary way to a continuous h : I → S1. Choose δ > 0 such that |t− s| <
δ implies |h(t)−1h(s) − 1| < ε. Let m ∈ N be such that 2/m < δ. Let U1 and U2

be open neighborhoods of y0 and py0, respectively, in Y such that for s = 1, 2, the sets
Us, TUs, . . . , T

m−1Us are mutually disjoint. (Here we use the facts that Y is infinite and
that py0 6∈ {T jy0 : j ∈ Z} (3.1).) Choose k > i so that T nky0 ∈ U1 and T nkpy0 ∈ U2. Let
Ks ⊂ Us, s = 1, 2, be Cantor sets such that y0, T

nky0 ∈ K1 and py0, T
nkpy0 ∈ K2.

Next define:

g(y0) = 0, g(T nky0) = 1/3, g(py0) = 2/3, g(T nkpy0) = 1

and extend this function in an arbitrary way to a continuous function g : K1∪K2 → S1. We
now extend g to the set ∪m−1

j=0
T j(K1 ∪K2) by setting g(y) = g(T−jy) for y ∈ T j(K1 ∪K2).

Extend g continuously over all of Y in an arbitrary way.
Set

g̃(y) =
1

m

m−1∑

j=0

g(T jy).

Clearly g̃ ↾ (K1 ∪K2) = g ↾ (K1 ∪K2), so that

g̃(y0) = 0, g̃(T nky0) = 1/3, g̃(py0) = 2/3, g̃(T nkpy0) = 1.



ON TWO PROBLEMS CONCERNING TOPOLOGICAL CENTERS 7

Finally define θ : Y → S1 by θ(y) = h(g̃(y)). Note that

(3.7) θ(y0) = θ(T nky0) = θ(py0) = 1, and θ(T nkpy0) = −1.

Now

G−1

θ ◦ (T × id) ◦Gθ(y, z) = (Ty, zθ(Ty)−1θ(y)) = (Ty, zh(g̃(Ty))−1h(g̃(y))).

But
|g̃(Ty)− g̃(y)| < 2/m < δ,

hence |h(g̃(Ty))−1h(g̃(y))− 1| < ε and therefore also

d(T × id, G−1

θ ◦ (T × id) ◦Gθ) < ε.

This proves part (1) of the lemma and we now proceed to prove part (2). We have to
show that G−1

θ ◦ (T × id) ◦Gθ ∈ Ei. But this map has the form

Sθ : X → X, Sθ(y, z) = G−1

θ ◦ (T × id) ◦Gθ = (Ty, zθ(Ty)−1θ(y)),

so that, by (3.4), we have to show that there exists j > i with

|θ(T njy0)
−1θ(y0)− θ(T njpy0)

−1θ(py0)| > 1 + η.

Since, by the choice of θ (3.7), we have

|θ(T nky0)
−1θ(y0)− θ(T nkpy0)

−1θ(py0)| = |1− (−1)| = 2 > 1 + η,

this completes the proof of the lemma. �

To conclude the proof of Proposition 3.3 observe that, for instance, the dense Gδ set⋂
∞

i=1
Ei,1/2 is contained in R1. �

This also concludes the proof of Theorem 3.1.
�

4. Addendum: On the image of Borel sets

I am indebted to Professors Neil Hindman and Dona Strauss who pointed out to me a
gap in the proof of Theorem 2.1. Since the compact Hausdorff space βΓ is not Polish, in
order to justify the claim (in the last sentence of the proof):

Finally, since also Q = L−1
p ({q ∈ βΓ : (qω0)(e) = 1}) we see that Lp is not

Borel measurable,

one needs an additional lemma, which I provide below.

Lemma 4.1. Let X be a compact Hausdorff space. Let B ⊂ X be a Borel set (i.e. a
member of the smallest σ-algebra containing the open sets). Let f : X → C be a continuous
surjection, where C denotes the Cantor set. Suppose also that B = {x ∈ X : f(x) ∈
f(B)} = f−1(f(B)). Then, f(B) is universally measurable.

Proof. Let µ be a probability measure on C. Denote by µ∗ the corresponding outer-measure
on C and recall that the restriction of µ∗ to Bµ, the completion of the σ-algebra of Borel
sets with respect to µ, is a measure.

As X is a compact Hausdorff space there exists a regular probability measure ν on X
which extends µ in the sense that ν(f−1(A)) = µ(A) for every Borel set A ⊂ C. (Here
we use the Hahn-Banach and the Riesz representation theorems, see e.g. Rudin’s Real and
complex analysis, Theorem 2.14.)

Write Bc = X \B and note that f(Bc) = f(B)c = C \ f(B).
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If either µ∗(f(B)) = 0 or µ∗(f(Bc)) = 0 then f(B) is µ∗-measurable and we are done.
So we assume that both outer measures are positive.

Given ε > 0, there is a compact set K ⊂ B with ν(B \K) < ε. Let K̃ = f(K) ⊂ f(B),

a compact subset of f(B) with K ⊂ f−1(K̃) ⊂ B.

Also, there is a compact set L ⊂ Bc with ν(Bc \ L) < ε. Let L̃ = f(L) ⊂ f(Bc), a

compact subset of f(Bc) with L ⊂ f−1(L̃) ⊂ Bc.
Now we have

µ(K̃ ∪ L̃) = µ(K ∪ L) > 1− 2ε.

As ε is arbitrary this implies that f(B) is µ∗-measurable. �
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