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GEOMETRY OF MULTIPLICATIVE PREPROJECTIVE ALGEBRA

DAISUKE YAMAKAWA

Abstract. Crawley-Boevey and Shaw recently introduced a certain multiplicative analogue of the

deformed preprojective algebra, which they called the multiplicative preprojective algebra. In this

paper we study the moduli space of (semi)stable representations of such an algebra (the multiplicative

quiver variety), which in fact has many similarities to the quiver variety. We show that there exists

a complex analytic isomorphism between the nilpotent subvariety of the quiver variety and that of

the multiplicative quiver variety (which can be extended to a symplectomorphism between these

tubular neighborhoods). We also show that when the quiver is star-shaped, the multiplicative quiver

variety parametrizes Simpson’s (poly)stable filtered local systems on a punctured Riemann sphere

with prescribed filtration type, weight and associated graded local system around each puncture.
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1. Introduction

In this paper we study the geometry of multiplicative preprojective relation.

First let us recall the notion of (deformed) preprojective relation. Let Q = (I,Ω) be a finite quiver

with vertex set I and arrow set Ω, and let (I,H) be its “double”; that is obtained by adding a reverse

arrow h to Ω for each h ∈ Ω. For h ∈ H, we denote by out(h), in(h) ∈ I the outgoing, incoming vertex

of h, respectively. A representation of (I,H) is given by a pair (V, x) of an I-graded vector space

V =
⊕
Vi and a family x = (xh)h∈H of linear maps xh : Vout(h) → Vin(h). Then for ζ = (ζi) ∈ CI , the

equation

(µV )i(x) :=
∑

h∈H;in(h)=i

ǫ(h)xhxh = ζi1Vi
(i ∈ I)

is called the (deformed) preprojective relation. Here ǫ(h) = 1 if h ∈ Ω and ǫ(h) = −1 otherwise. One

of the most important properties of this relation is that for a fixed V , the map

µV : M(V ) :=
⊕

h∈H
Hom(Vout(h), Vin(h))→

⊕

i∈I
End(Vi)

satisfies the defining property of moment map for the natural action of GV :=
∏

i GL(Vi). Thus taking

a stability condition on M(V ) in the sense of geometric invariant theory, the quotient µ−1
V (ζ)s/GV

of the stable locus carries naturally a symplectic structure. Such a quotient is so-called the quiver

variety. Strictly speaking, there are various choices of stability condition parametrized by θ ∈ QI

(θ-stability), and the quiver variety Mζ,θ(V ) = µ−1
V (ζ)θ−ss//GV is defined as the quotient of the

θ-semistable locus. In general its stable locus Ms
ζ,θ(V ) does not coincide with the whole space.

An importance of quiver variety in geometry was firstly found by Kronheimer [22]. He described

the minimal resolution C̃2/Γ of the Kleinnian singularity as the quiver variety associated to a quiver

of the extended Dynkin type corresponding to Γ ⊂ SL2(C) via the McKay correspondence. Motivated

by this fact and the ADHM description of moduli spaces of instantons on such spaces by Kronheimer

and him [23], Nakajima introduced the notion of quiver variety in his celebrated paper [29]. In the

same paper, developing Lusztig’s idea he constructed geometrically all irreducible highest weight

representations of Kac-Moody Lie algebras. For further developments in this direction, see [30, 31].

On the other hand, Crawley-Boevey and Shaw recently introduced a certain “multiplicative” ana-

logue of the preprojective relation, called the multiplicative preprojective relation [11]; that is

(ΦV )i(x) :=
∏

h∈H;in(h)=i

(1 + xhxh)
ǫ(h) = qi1Vi

(i ∈ I),
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where we have fixed q = (qi) ∈ (C×)I and an ordering for taking product, and have assumed that

det(1 + xhxh) 6= 0 for all h ∈ H. They considered such a relation motivated by the Deligne-

Simpson problem. Fix a number of conjugacy classes C1, . . . , Cn in GL(r,C). Then the problem asks

if irreducible solutions of the equation

A1A2 · · ·An = 1 (Ai ∈ Ci)

exist. Here the word “irreducible” means that Ai’s have no common invariant non-zero proper

subspace. There is also an additive version of it; replace conjugacy classes Ci by coadjoint orbits

Oi ⊂ gl(r,C), and replace the above equation by

A1 +A2 + · · · +An = 0 (Ai ∈ Oi).

It is well-known that the closure of any coadjoint orbit in gl(r,C) can be described as the quiver

variety associated to a quiver of type A, where the stability is nothing so that the resulting quiver

variety is the affine quotient µ−1
V (ζ)//GV . Based on this fact, Crawley-Boevey observed that the

quiver variety associated to a star-shaped quiver:

⋆

with no stability and an appropriate parameters V and ζ, is isomorphic to the variety

Q := { (A1, A2, . . . , An) ∈ O1 × · · · × On | A1 + · · ·+An = 0 }//GL(r,C).

Here the equation
∑

iAi = 0 arises as the preprojective relation at the vertex ⋆. He solved the

additive version [9] using this idea, and in [11], he and Shaw observed that the “multiplicative quiver

variety” Φ−1
V (q)//GV describes the multiplicative analogue of the above variety:

R := { (A1, A2, . . . , An) ∈ C1 × · · · × Cn | A1 · · ·An = 1 }//GL(r,C).

Note that fixing distinct n points p1, . . . , pn in the Riemann sphere P1, this variety can be considered

as the moduli space of representations of the fundamental group (the character variety) of P1 \ {pi}
whose local monodromy around each pi belongs to Ci.

We have mentioned that the preprojective relation can be understood as a moment map. In fact,

the multiplicative preprojective relation can be also understood as a “multiplicative analogue” of

moment map, called the group-valued moment map. The notion of group-valued moment map was

introduced by Alekseev-Malkin-Meinrenken [1], and Van den Bergh [36, 37] observed that the map

ΦV together with an appropriate 2-form satisfies the defining properties of group-valued moment

map. A general theory of group-valued moment map allows us to take the “quotient” like as moment

map; the quotient spaceMs
q,θ(V ) := Φ−1

V (q)θ−s/GV of the θ-stable locus has naturally a symplectic

structure. We call the quotientMq,θ(V ) := Φ−1
V (q)θ−ss//GV of the semistable locus the multiplicative

quiver variety, which and its stable locus are the main objects in this paper.
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Note that if we consider ΦV (x) as a formal series in xh, then it can be written as

ΦV (x) = 1 + µV (x) + (higher order terms in xh).

Thus we may expect a certain direct relation between the quiver variety and the multiplicative quiver

variety. In fact, in the case of star-shaped quivers there is a monodromy map between them. If each

Oi is semi-simple and eigenvalues are generic, then the variety Q becomes smooth and there is a map

from Q to the variety R with Ci := expOi given by:

(A1, · · · , An) 7−→ the monodromy representation of the connection

d− 1

2π
√
−1

∑

i

Ai

z − pi
dz on P1 \ {pi}.

Such a map was considered by Hitchin [16] and Hausel [14] (Boalch [3, 4] considered its generalization

to the case of irregular singularity). Hitchin showed that the monodromy map is a local analytic

isomorphism and interchanges the symplectic structures. Hausel conjectured that under this map,

the cohomology of Q is isomorphic to the pure part of one of R. In this direction, he and Rodriguez-

Villegas [15] suggested several interesting conjectures for the mixed Hodge polynomial of twisted

character varieties of compact Riemann surfaces.

In this paper, using a property of group-valued moment map we show that:

Theorem 1.1 (Corollary 3.11). There exist an open neighborhood U (resp. U ′) of [0] ∈ M1,0(V )

(resp. [0] ∈M0,0(V )) and a commutative diagram

M1,θ(V ) ⊃π−1(U)
f̃−−−−→ π−1(U ′)⊂M0,θ(V )

π

y π

y

U
f−−−−→ U ′

such that f([0]) = [0] and both f̃ and f are complex analytic isomorphisms. Moreover f̃ maps the

stable locus symplectomorphically onto the stable locus.

Let us consider a star-shaped quiver again. Then the associatedMq,0(V ) with appropriate q, V and

θ = 0 gives the variety R. Now by definition there is a natural projective morphism π :Mq,θ(V ) →
Mq,0(V ) = Φ−1

V (q)//GV . We show that:

Theorem 1.2 (Theorem 4.7). Suppose that θi > 0 for any i 6= ⋆. Then the variety Mq,θ(V )

parametrizes Simpson’s polystable filtered local systems on (P1, {pi}) of which the filtration type, weight

and the monodromy of the graded local systems are prescribed by V, θ and q, respectively. Moreover π

can be understood as the map taking the monodromy representation of the underlying local system.

For the notion of filtered local system, see [34] or §4 in this paper. This notion naturally arises as

an object which should correspond to a parabolic connection by the Riemann-Hilbert correspondence.

In fact Simpson constructed such a correspondence. On the other hand, the moduli space of parabolic

connections on a compact Riemann surface with marked points was constructed by Inaba-Iwasaki-

Saito [18] in the case of genus 0 and rank 2, and by Inaba [17] in the case of general genus, rank and
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full filtrations. We show that under certain conditions on a stability parameter, Simpson’s Riemann-

Hilbert correspondence gives a complex analytic symplectomorphism between such a moduli space

and a star-shaped multiplicative quiver variety (see Theorem 4.13).

The paper is organized as follows:

• In §2, we give a quick review of some basic facts about quiver variety and group-valued

moment map.

• In §3, we define the multiplicative quiver variety, and give some properties of it.

• §4 is devoted to the study in the case of star-shaped quivers.

Results in the rest two sections are little bit modifications of the known results.

• In §5, we show that a functor introduced by Crawley-Boevey and Shaw induces an isomor-

phism between two multiplicative quiver varieties whose parameters relate by certain reflec-

tions. This is a multiplicative version of Maffei’s result [27].

• In §6, by the same method as Nakajima [29], we construct all irreducible highest weight

representations of a Kac-Moody Lie algebra using the vector spaces of constructible functions

on subvarieties of the multiplicative quiver varieties.

Acknowledgments. The author is extremely grateful to Professor Hiraku Nakajima for prompting

his interest in the geometry of multiplicative preprojective algebra, and for valuable advice and

discussions. Also, the author is much obliged to Professor Masa-Hiko Saito for answering his questions

about moduli space of parabolic connections.

2. Preliminaries

2.1. Notation and convention. Throughout this paper we use the following:

• (I,Ω) — a finite quiver whose vertex set is I and arrow set is Ω.

• (I,Ω) — the quiver obtained by reversing all arrows in Ω. We set H := Ω ⊔ Ω.

• h ∈ H (h ∈ H) — the reverse arrow of h.

• ǫ : H → {−1, 1} — the map defined by ǫ(h) = 1 = −ǫ(h) for h ∈ Ω.

• in(h), out(h) ∈ I — the incoming, outgoing vertex of h ∈ H, respectively.

• Hi (i ∈ I) — the subset of H consisting of all h with in(h) = i.

• α · β — the standard inner product on ZI ; α · β =
∑

i∈I αiβi.

• (α, β) := 2α · β −∑
h∈H αout(h)βin(h).

• ei (i ∈ I) — the i-th coordinate vector in ZI .

A variety is a complex algebraic variety, not required to be irreducible or reduced. We always work

over C, and use the Zariski topology unless otherwise specified.

On a smooth variety, we will treat symplectic structures both in the algebraic sense and in the

complex analytic sense. We call the former “algebraic symplectic structures”, and the latter “holo-

morphic symplectic structures”. We use the word “algebraic symplectic manifold” as a smooth variety

endowed with an algebraic symplectic structure. A morphism or a holomorphic map f : X → Y be-

tween algebraic symplectic manifolds is symplectic if the pull-back f∗ωY of the symplectic form ωY

coincides with ωX .

I-graded vector spaces are always finite dimensional, and whose subspaces are always I-graded.
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2.2. Preliminaries to quiver variety. Take a non-zero I-graded vector space V =
⊕

i∈I Vi. We

denote by dimV ∈ ZI
≥0 its dimension vector, i.e., dimV := (dimVi)i∈I .

Set

M(V ) :=
⊕

h∈H
Hom(Vout(h), Vin(h)).

The reductive group GV :=
∏

i∈I GL(Vi) acts on M(V ) by

g · x :=
(
gin(h)xhg

−1
out(h)

)
for g = (gi) ∈ GV , x = (xh) ∈M(V ).

We consider C× as a subgroup of GV by

C× ∋ λ 7−→ (λ1Vi
)i∈I ∈ GV .

Clearly this subgroup acts trivially on M(V ).

Here we recall the notion of θ-stability introduced by King [20].

Take and fix θ = (θi) ∈ QI such that θ · dimV = 0. For x ∈M(V ), we say a subspace S ⊂ V is

x-invariant if xh(Sout(h)) ⊂ Sin(h) for all h ∈ H.

Definition 2.1. We say that a point x ∈ M(V ) is θ-semistable if any subspace S ⊂ V satisfies

θ · dimS ≤ 0. A point x is θ-stable if the strict inequality holds unless S = 0 or S = V .

Here we have changed the sign convention from [20] (this agrees with [32]). King showed that

the above stability condition is equivalent to Mumford’s stability condition with respect to the

linearization given by the trivial bundle with the GV -action determined by the character χ(g) :=
∏

i det(gi)
−mθi (see below), where m is any positive integer such that mθ ∈ ZI (note that the condi-

tion for θ-(semi)stability and the one for mθ-(semi)stability are identical).

Set

Mss
θ (V ) := { x ∈M(V ) | x is θ-semistable } ,

Ms
θ(V ) := { x ∈M(V ) | x is θ-stable } .

Both subsets are GV -invariant and open.

Let Aθ(V ) be the set consisting of regular functions f ∈ C[M(V )] on M(V ) such that

f(g · x) = χ(g)f(x) for any (g, x) ∈ GV ×M(V ),

and set Rθ(V ) :=
⊕

n∈Z≥0
Anθ(V ). Then the variety ProjRθ(V ) gives a good quotient of Mss

θ (V );

namely, there is a surjective affine G-invariant morphism ϕ : Mss
θ (V ) → ProjRθ(V ) such that the

induced map ϕ∗ : C[U ]→ C[ϕ−1(U)]G is an isomorphism for any affine open subset U ⊂ ProjRθ(V ).

Moreover, a point x ∈Mss
θ (V ) is θ-stable if and only if the fiber ϕ−1(ϕ(x)) consists of a single GV -

orbit and its dimension is equal to dimGV /C
×. In particular ϕ(Ms

θ(V )) can be identified with the

set-theoretical orbit space Ms
θ(V )/GV . By the last statement of the proposition below, ̟(Ms

θ(V )) is

an open subset of ProjRθ(V ).

Remark 2.2. Both θ-stability and θ-semistability are purely topological conditions. Indeed, let GV

act on M(V )×C by g · (x, z) := (g · x, χ(g)−1z). Then fixing a non-zero z ∈ C, a point x ∈M(V ) is

θ-semistable if and only if

GV · (x, z) ∩M(V )× {0} = ∅,
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and x is θ-stable if and only if GV · (x, z) is closed and its dimension is equal to dimGV /C
× (see [20]).

Thus if f : M(V ) →M(V ) is a GV -equivariant homeomorphism in the sense of usual topology, f

preserves both θ-stability and θ-semistability.

We use a standard notation // for good quotient spaces, e.g.,

Mss
θ (V )//GV = ProjRθ(V ).

A good quotient ϕ : X → Y of a G-variety X is called a geometric quotient if the induced map

X/G→ Y is bijective. Ms
θ(V ) has a geometric quotient Ms

θ(V )/GV by restricting ϕ.

Here we introduce several properties of good quotients (see e.g. [33]).

Proposition 2.3. Let X be a variety acted on by a reductive group G. Suppose that a good quotient

ϕ : X → Y = X//G exists.

(i) A good quotient (Y, ϕ) is a categorical quotient; namely, (Y, ϕ) has the following universal

property: if Z is a G-variety and f : X → Z is a G-invariant morphism, then there exists a unique

morphism ψ : Y → Z such that f = ψ ◦ ϕ. In particular Y is unique up to isomorphism.

(ii) Two points x, x′ ∈ X have the same image ϕ(x) = ϕ(x′) if and only if the closures of the two

orbits intersect; G · x ∩G · x′ 6= ∅.
(iii) If Z ⊂ X is a closed G-invariant subset, then ϕ(Z) ⊂ Y is closed and the restriction ϕ : Z →

ϕ(Z) is a good quotient.

(iv) If U ⊂ X is open and ϕ-saturated (namely, ϕ−1(ϕ(U)) = U), then ϕ(U) ⊂ Y is open and the

restriction ϕ : U → ϕ(U) is a good quotient.

By the above proposition, two points x, x′ ∈Mss
θ (V ) have the same image under ϕ if and only if

GV · x ∩GV · x′ ∩Mss
θ (V ) 6= ∅.

Since any orbit has a unique closed orbit in its closure (see e.g. [6]), the space Mss
θ (V )//GV param-

eterizes all closed GV -orbits in Mss
θ (V ), where “closed” means “closed in Mss

θ (V )”. A θ-semistable

point x ∈Mss
θ (V ) whose orbit is closed in Mss

θ (V ) is said to be θ-polystable.

Proposition 2.4 ([20, Proposition 3.2]). (i) A point x ∈Mss
θ (V ) is θ-polystable if and only if there

is a direct sum decomposition

V = V 1 ⊕ V 2 ⊕ · · · ⊕ V n where θ · dimV i = 0,

and a θ-stable point xi ∈ Ms
θ(V

i) for each i such that x = x1 ⊕ x2 ⊕ · · · ⊕ xn, i.e., xh is the direct

sum of xih’s as a linear map for any h ∈ H.

(ii) Every point x ∈Mss
θ (V ) has a filtration

V = V 0 ⊃ V 1 ⊃ · · · ⊃ V N = 0

such that each V i is x-invariant, θ · dimV i = 0 and each point gri x ∈ M(V i/V i+1) induced from

x is θ-stable. Let us set grV :=
⊕

i V
i/V i+1 and grx :=

⊕
i gr

i x ∈ M(grV ). Then under an

identification V ≃ gr V , the orbit GV · grx is a unique closed orbit contained in GV · x ∩Mss
θ (V ).

Here “closed” means “closed in Mss
θ (V )”.
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We will often write a point in Mss
θ (V ) like as [x], where x ∈Mss

θ (V ) is its representative.

Note that clearly Mss
0 (V ) = M(V ) and hence the quotient Mss

0 (V )//GV must be equal to the affine

quotient of M(V );

M(V )//GV = SpecC[M(V )]GV .

This space parameterizes all closed GV -orbits in M(V ). By C[M(V )]GV = A0(V ), there is a natural

projective morphism

π : Mss
θ (V )//GV →M(V )//GV .

Set-theoretically, π sends a point [x] to a unique closed orbit in the closure of GV · x.

Proposition 2.5. The restriction π : π−1(Ms
0(V )/GV )→Ms

0(V )/GV is an isomorphism.

Proof. By definition we have Ms
0(V ) ⊂Ms

θ(V ). Thus the following diagram is commutative:

Ms
θ(V )

inclusion←−−−−− Ms
0(V )

y
y

Mss
θ (V )//GV

π−−−−→ M(V )//GV

Both of the vertical arrows are the geometric quotients. Hence the assertion follows. �

The following fact is also well-known.

Proposition 2.6. The stabilizer of any θ-stable point x ∈Ms
θ(V ) is equal to C×.

Proof. Suppose that g = (gi) ∈ GV stabilizes x ∈Ms
θ(V ). Then both

⊕
Im(gi−λ1Vi

) and
⊕

Ker(gi−
λ1Vi

) are x-invariant subspaces of V for any λ ∈ C×. Take λ to be an eigenvalue of gi for some i ∈ I.
By the stability condition, we have

(1)
∑

i∈I
θi dim Im(gi − λ1Vi

) ≤ 0,
∑

i∈I
θi dimKer(gi − λ1Vi

) ≤ 0.

On the other hand, we have

∑

i∈I
θi(dim Im(gi − λ1Vi

) + dimKer(gi − λ1Vi
)) = θ · dimV = 0.

Thus the previous two inequalities must be equalities. By the stability condition and the choice of λ,

we must have g = λ. �

For each subspace S ⊂ V , the natural inclusion M(S) →֒M(V ) induces a morphism

M(S)//GS →M(V )//GV .

It is a closed immersion. This follows immediately from the following fact.

Proposition 2.7 ([25, Theorem 1.3]). The invariant subring C[M(V )]GV is generated by functions

of the form Tr (xh1
xh2
· · · xhn

), where (h1, h2, . . . , hn) is a cycle in H; namely, a sequence in H such

that

out(h1) = in(h2), out(h2) = in(h3), . . . , out(hn−1) = in(hn), out(hn) = in(h1).
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2.3. Quiver variety. Let us define the quiver variety. First we define a map µV : M(V )→ LieGV :=
⊕

gl(Vi) by

µV (x) :=


∑

h∈Hi

ǫ(h)xhxh




i∈I

.

It is equivariant with respect to the action of GV . Thus for a central element ζ ∈ CI of LieGV , the

subset µ(ζ) is a GV -invariant closed subvariety of M(V ).

Definition 2.8. For a given (ζ, θ) ∈ CI × QI with θ · dimV = 0, the quiver variety is the good

quotient

Mζ,θ(V ) := Mss
θ (V ) ∩ µ−1

V (ζ)//GV .

It is well-defined by Proposition 2.3. The equation µV (x) = ζ is called the (deformed) preprojective

relation.

The map µV has a remarkable property which we explain from now.

Let M be a smooth variety acted on by a reductive algebraic group G. For ξ ∈ LieG, we denote

by ξ∗ the vector field induced from the infinitesimal action of ξ; namely,

ξ∗x :=
d

dt
exp(tξ) · x

∣∣∣∣
t=0

for x ∈M.

Definition 2.9. A Hamiltonian G-structure on M is a pair consisting of a G-invariant 2-form ω on

M and a morphism µ : M → (LieG)∗, which is equivariant with respect to the coadjoint action on

(LieG)∗, such that:

(H1) dω = 0;

(H2) ι(ξ∗)ω = d〈µ, ξ〉 for any ξ ∈ LieG;

(H3) Kerωx = 0 for each x ∈M.

Here Kerωx := { v ∈ TxM | ι(v)ωx = 0 }. The triple (M,ω, µ) is called a Hamiltonian G-space and µ

is called the moment map.

We define an algebraic symplectic form ω on M(V ) by

ω :=
∑

h∈Ω
Tr dxh ∧ dxh +

∑

i∈I
Tr dai ∧ dbi.

Note that LieGV can be identified with its dual by the trace. It is easy to see that, under this

identification, the triple (M(V ), ω, µ) is a Hamiltonian GV -space.

Thus the open subvariety

Ms
ζ,θ(V ) := Ms

θ(V ) ∩ µ−1
V (ζ)/GV

of Mζ,θ(V ) is an algebraic symplectic manifold by the following well-known fact.

Theorem 2.10. Let (M,ω, µ) be a Hamiltonian G-space and ζ ∈ (LieG)∗ be a fixed point with respect

to the coadjoint action. Suppose that the stabilizer of each point in µ−1(ζ) is trivial. Then µ−1(ζ) is

smooth. Moreover if a geometric quotient µ−1(ζ)/G exists, then it becomes an algebraic symplectic

manifold, and for each point x ∈ µ−1(ζ), the tangent space of µ−1(ζ)/G at the point represented by x

can be naturally identified with the quotient space Ker dxµ/Tx(G · x).

In the case ζ = 0, we will denote Mθ(V ) = M0,θ(V ), Ms
θ(V ) = Ms

0,θ(V ).
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2.4. Quasi-Hamiltonian structure. A notion of quasi-Hamiltonian structure, which was intro-

duced by Alekseev-Malkin-Meinrenken [1] for C∞-manifolds with a compact Lie group action, is a

“multiplicative” analogue of Hamiltonian structure. This subsection is a quick review of its complex

algebraic version which was already treated by Boalch [5] and Van den Bergh [36, 37].

Let G be a reductive algebraic group and LieG be its Lie algebra. For simplicity, we assume that

G is a closed subgroup of GL(N,C) for some N , and that the symmetric form Tr: LieG⊗LieG→ C

induced from the trace is non-degenerate.

We define

χ :=
1

6
Tr (g−1dg ∧ g−1dg ∧ g−1dg) =

1

6
Tr (dg g−1 ∧ dg g−1 ∧ dg g−1),

where g−1dg (resp. dg g−1) is the left-invariant (resp. right-invariant) Maurer-Cartan form on G.

Definition 2.11. A quasi-Hamiltonian G-space is a smooth G-variety M together with a G-invariant

2-form ̟ on M and a G-equivariant morphism Φ: M → G (where we have let G act on itself by the

conjugation) such that:

(QH1) d̟ = −Φ∗χ;

(QH2) ι(ξ∗)̟ = 1
2 Tr ξ(Φ

−1dΦ+ dΦΦ−1) for any ξ ∈ LieG;

(QH3) Ker̟x = { ξ∗x | ξ ∈ Ker(AdΦ(x)+1) } for each x ∈M.

Φ is called the group-valued moment map.

There are two typical examples of quasi-Hamiltonian G-space.

Example 2.12 ([1, Proposition 3.1]). Let C ⊂ G be a conjugacy class with the conjugation action of

G. Then there is a quasi-Hamiltonian G-structure on C whose group-valued moment map is just the

inclusion C → G. Indeed the 2-form is uniquely determined by the condition (QH2) since the action

is transitive, and one can easily check that it actually exists.

Example 2.13 ([1, Proposition 3.2]). Consider the direct product G × G. Let G × G act on itself

by (g, h) · (a, b) := (gah−1, hbg−1). Define a 2-form ̟ on G×G by

̟ =
1

2
Tr

(
a−1da ∧ db b−1

)
− 1

2
Tr

(
b−1db ∧ da a−1

)
.

Then ̟ together with the map

G×G→ G×G; (a, b) 7→ (ab, a−1b−1)

gives a quasi-Hamiltonian G×G-structure on G×G.

Recall that for a Hamiltonian G-space and a closed subgroup K ⊂ G, the induced K-action is also

Hamiltonian in a natural way. Unfortunately, this is not true for a quasi-Hamiltonian G-space in

general. However, if G = K ×K and K ⊂ G is the diagonal subgroup, then an analogous statement

holds.

Theorem 2.14 ([1, §6]). Let (M,̟,Φ = (Φ1,Φ2,Ψ)) be a quasi-Hamiltonian G×G×K-space. Let

G×K act by the diagonal embedding (g, k) 7→ (g, g, k).
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(1) M with a 2-form

̟12 := ̟ +
1

2
Tr (Φ−1

1 dΦ1 ∧ dΦ2 Φ
−1
2 )

and a morphism

(Φ12,Ψ) := (Φ1 · Φ2,Ψ): M → G×K
is a quasi-Hamiltonian G×K-space (This space is called the (internal) fusion).

(2) If we define

̟21 := ̟ +
1

2
Tr (Φ−1

2 dΦ2 ∧ dΦ1Φ
−1
1 ),

Φ21 := Φ2 · Φ1 : M → G,

then (̟21,Φ21) also defines a quasi-Hamiltonian G×K-structure on M . Moreover it is isomorphic

to (M,̟12, (Φ12,Ψ)).

(3) Let (M,̟,Φ) be a quasi-Hamiltonian G×G×G×K-space. Let (̟(12)3,Φ(12)3) be the quasi-

Hamiltonian G×K-structure obtained by first fusioning the first two G-factors, and let (̟1(23),Φ1(23))

be that obtained by first fusioning the last two G-factors. Then the two structures coincide.

The following theorem is a quasi-Hamiltonian version of Theorem 2.10, which provides a new

method to construct algebraic symplectic manifolds.

Theorem 2.15 (cf. [1, Theorem 5.1]). Let (M,̟, (Φ1,Φ2)) be a quasi-Hamiltonian G1 × G2-space

and f be a central element of G1. Suppose that the stabilizer of each point in Φ−1
1 (f) is trivial.

Then Φ−1
1 (f) is a smooth subvariety of M . Moreover if a geometric quotient Φ−1

1 (f)/G1 exists,

then Φ−1
1 (f)/G1 becomes a quasi-Hamiltonian G2-space, and for each point x ∈ Φ−1

1 (f), the tangent

space of Φ−1
1 (f) at the point represented by x can be naturally identified with the quotient space

Ker dxΦ1/Tx(G1 · x).

Note that if G2 is trivial, then the resulting quotient space carries a quasi-Hamiltonian {1}-
structure, which is nothing but an algebraic symplectic structure.

We will use the following example in the next section.

Example 2.16 ([36, 37]). Let V,W be two C-vector spaces. Set

M = Hom(W,V )⊕Hom(V,W ),

M◦ = { (a, b) ∈M | det(1 + ab) 6= 0 }.

We define a 2-form ̟ on M◦ by

̟ =
1

2
Tr (1 + ab)−1da ∧ db− 1

2
Tr (1 + ba)−1db ∧ da,

and we define a map (φ,ψ) : M◦ → GL(V )×GL(W ) by

φ(a, b) = 1 + ab, ψ(a, b) = (1 + ba)−1.

Then (M◦,̟,Φ = (φ,ψ)) is a quasi-Hamiltonian GL(V ) × GL(W )-space. The proof needs a long

calculation (see [36]). We remark that this quasi-Hamiltonian structure is invertible; the map ι : M◦ →
M◦ defined by ι(a, b) := (−(1+ab)−1a, b) satisfies ι∗̟ = −̟ and ι∗(φ,ψ) = (φ−1, ψ−1). It was given

by Crawley-Boevey and Shaw [11].
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3. Multiplicative quiver variety

3.1. Definition. Let us define the main objects in this paper. It is motivated by the paper [11] of

Crawley-Boevey and Shaw, who considered a “multiplicative” analogue of the preprojective relation.

We require the stability condition for solutions of this equation to obtain a new variety.

Set

M◦(V ) := {x ∈M(V ) | det(1 + xhxh) 6= 0 for all h ∈ H }.

Since the function x 7→ ∏
h∈H det(1 + xhxh) is constant along each GV -orbit, it is a GV -invariant

open subset of M(V ), and the intersection M◦(V ) ∩Mss
θ (V ) is ϕ-saturated.

Fix a total order < on H. We define a map Φ = (Φi)i∈I : M◦(V )→ GV by

Φi(x) :=

<∏

h∈Hi

(1 + xhxh)
ǫ(h).

We sometimes write Φ = ΦV to emphasize the vector space V . ΦV is GV -equivariant with respect

to the conjugation. Hence, for any q ∈ (C×)I ⊂ GV , Φ
−1
V (q) is a GV -invariant closed subvariety

of M◦(V ). Thus by Proposition 2.3, the subvariety Mss
θ (V ) ∩ Φ−1

V (q) has a good quotient, and the

subvariety Ms
θ(V ) ∩ Φ−1

V (q) has a geometric quotient.

Definition 3.1. We define

Mq,θ(V ) :=
(
Mss

θ (V ) ∩Φ−1
V (q)

)
//GV ,

which we call the multiplicative quiver variety.

We also define

Ms
q,θ(V ) :=

(
Ms

θ(V ) ∩ Φ−1
V (q)

)
/GV .

The equation Φ(x) = q is called the multiplicative preprojective relation. We also use the following

notation:

Mθ(V ) =M1,θ(V ), Ms
θ(V ) =Ms

1,θ(V ).

M◦(V ) has a quasi-Hamiltonian GV -structure.

Proposition 3.2 ([36, 37]). We define a 2-form ̟ on M◦(V ) by

̟ :=
1

2

∑

h∈H
ǫ(h)Tr (1 + xhxh)

−1dxh ∧ dxh

+
1

2

∑

h∈H
Tr Φ−1

h dΦh ∧ d(1 + xhxh)
ǫ(h)(1 + xhxh)

−ǫ(h),

where

Φh :=

<∏

h′∈Hi;h′<h

(1 + xh′xh′)
ǫ(h′) for h ∈ Hi.

Then (M◦(V ),̟,Φ) is a quasi-Hamiltonian GV -space.

This proposition was proved by Van den Bergh as the following.
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Proof. Set

Mh := Hom(Vout(h), Vin(h))⊕Hom(Vin(h), Vout(h)) for h ∈ Ω,

and define M◦
h as in Example 2.16. Then M◦

h has a quasi-Hamiltonian GL(Vin(h)) × GL(Vout(h))-

structure whose group-valued moment map is

(xh, xh) 7→
(
1 + xhxh, (1 + xhxh)

−1
)
.

Taking a direct product, we obtain a quasi-Hamiltonian G-structure on M◦(V ), where G is given by

G = GV ×
∏

h∈Ω
GL(Vin(h))×

∏

h∈Ω
GL(Vout(h))

= GV ×
∏

h∈H
GL(Vin(h)).

Take the internal fusion among the GL(Vin(h))-factors inductively on the total order <. Then we

get a quasi-Hamiltonian GV ×GV -structure on M◦(V ). Fusioning further the GV -factors, we obtain

finally the desired structure. �

Note that the above construction of a quasi-Hamiltonian structure depends both on the total order

< on H and on the orientation ǫ. (Here an orientation is a function ǫ′ : H → {−1, 1} satisfying

ǫ′(h) = −ǫ′(h) for all h ∈ H.) However the following holds.

Proposition 3.3. A quasi-Hamiltonian structure obtained by the method in Proposition 3.2 does not

depend on the total order or the orientation up to isomorphism.

Proof. The assertion follows immediately from Theorem 2.14 and the invertible property of M◦

mentioned in Example 2.16. �

It is easy to see that any quasi-Hamiltonian GV -structure (̟,Φ) on M◦(V ) naturally descends

to a quasi-Hamiltonian GV /C
×-structure whose group-valued moment map Φ is obtained by the

composition of Φ with the projection GV → GV /C
×. Notice that for any x ∈M◦(V ), we have

∏

i

detΦi(x) =
∏

h∈Hi∩Ω
det(1 + xhxh)

∏

h∈Hi∩Ω

det(1 + xhxh)
−1 = 1.

Hence if Φ−1
V (q) 6= ∅, q must satisfies the equality

qdimV :=
∏

i∈I
qdimVi

i = 1.

Moreover if qdimV = 1 then the level set Φ−1
V (q) coincides with Φ

−1
V (q mod C×)). Thus Theorem 2.15

and dimension count implies the following theorem.

Theorem 3.4. Ms
q,θ(V ) is a pure-dimensional algebraic symplectic manifold, and its dimension is

2− (dimV,dimV ).

Proof. Since a quasi-Hamiltonian {1}-structure is nothing but an algebraic symplectic structure, the

first assertion follows from Proposition 2.6. To compute the dimension ofMs
q,θ(V ), note that

(dimV,dimV ) = 2
∑

i

(dimVi)
2 −

∑

h∈H

(
dimVout(h)

) (
dimVin(h)

)
.

Since dimMs
q,θ(V ) = dimM(V )− 2 dimGV /C

×, the assertion follows immediately. �
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Finally we introduce a criterion for the smoothness ofMq,θ(V ).

Set v := dimV and

R+ := {α ∈ ZI
≥0 | (α,α) ≤ 2 } \ {0},

R+(v) := {α ∈ R+ | v − α ∈ ZI
≥0 },

Dα := {θ ∈ QI | θ · α = 0 },
Eα := {z ∈ (C×)I | zα = 1 } for α ∈ R+.

Proposition 3.5. (1) Ms
q,θ(V ) is empty unless v ∈ R+ and (q, θ) ∈ Ev ×Dv.

(2) If

(q, θ) ∈ Ev ×Dv \
⋃

α∈R+(v)\{v}
Eα ×Dα,

then Ms
q,θ(V ) =Mq,θ(V ).

Proof. We have already proved the first assertion. Suppose that there exists a point x ∈ Φ−1
V (q) which

is θ-semistable but not θ-stable. Then we can find a non-zero proper x-invariant subspace S ⊂ V

such that θ · dimS = 0. We may assume that S is minimal amongst all non-zero subspaces satisfying

such conditions. Set α := (dimSi). Then θ ∈ Dα. Let x′ ∈ M(S) be the element obtained by the

restriction of x to S. Then ΦS(x) = q and hence q ∈ Eα. If T ⊂ S is x′-invariant, then θ · dimT ≤ 0

by the θ-semistability of x, and moreover if θ · dimT = 0, then T = 0 or T = S by the choice of S.

Thus x′ is θ-stable. In particularMs
q,θ(S) is non-empty, so

0 ≤ dimMs
q,θ(S) = 2− (α,α).

Thus α ∈ R+(v). �

3.2. Some properties. By Proposition 3.3, we may assume the following:

The total order < satisfies h < h′ for any h ∈ Ω and h′ ∈ Ω.

Then we can decompose Φi = Φ+
i (Φ

−
i )

−1, where

Φ+
i (x) :=

<∏

h∈Hi∩Ω
(1 + xhxh),

Φ−
i (x) :=

>∏

h∈Hi∩Ω

(1 + xhxh).

Thus the multiplicative preprojective relation Φi(x) = qi at i ∈ I is equivalent to

(2) Φ+
i (x)− qiΦ−

i (x) = 0.

Here Φ±
i is expanded as

Φ+
i = 1 +

∑

h∈Hi∩Ω
Φ+
h xhxh,

Φ−
i = 1 +

∑

h∈Hi∩Ω

xhxhΦ
−
h ,
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where

Φ+
h (x) :=

<∏

h′∈Hi∩Ω;
h′<h

(1 + xh′xh′),

Φ−
h (x) :=

>∏

h′∈Hi∩Ω;
h′<h

(1 + xh′x
h′) for h ∈ Hi.

Thus (2) is equivalent to

(3)
∑

h∈Hi∩Ω
Φ+
h xhxh − qi

∑

h∈Hi∩Ω

xhxhΦ
−
h = qi − 1.

Set V̂i :=
⊕

h∈Hi
Vout(h). For h ∈ Hi, let ιh : Vout(h) → V̂i be the natural inclusion and πh : V̂i →

Vout(h) be the projection. We define

σi(x) :=
∑

h∈Hi∩Ω
ιhxh +

∑

h∈Hi∩Ω

ιhxhΦ
−
h : Vi → V̂i,

τi(x) :=
∑

h∈Hi∩Ω
Φ+
h xhπh − qi

∑

h∈Hi∩Ω

xhπh : V̂i → Vi.

Then by (3), the multiplicative preprojective relation at i ∈ I is equivalent to τiσi = qi − 1. In

particular, the sequence

Vi
σi−−−−→ V̂i

τi−−−−→ Vi

is a complex if Φi(x) = 1.

Lemma 3.6. Take x ∈M◦(V ) and i ∈ I. Suppose that a subspace S ⊂ V satisfies:

(i) σi(Si) ⊂ Ŝi; and
(ii) τi(Ŝi) ⊂ Si.

Then xh(Sout(h)) ⊂ Sin(h) for h ∈ Hi ∪Hi.

Proof. Suppose that S ⊂ V satisfies the conditions (i) and (ii). The condition (i) means

xh(Si) ⊂ Sout(h) for h ∈ Hi ∩Ω,(4)

xhΦ
−
h (Si) ⊂ Sout(h) for h ∈ Hi ∩ Ω,(5)

and the condition (ii) means

Φ+
h xh(Sout(h)) ⊂ Si for h ∈ Hi ∩ Ω,(6)

xh(Sout(h)) ⊂ Si for h ∈ Hi ∩Ω.(7)

Let h ∈ Hi ∩ Ω be the minimum element in Hi ∩ Ω with respect to <. Then Φ+
h = 1 and hence

xh(Sout(h)) ⊂ Si by (6). Thus (1 + xhxh)(Si) ⊂ Si by (4), and hence one can use induction on < to

obtain xh(Sout(h)) ⊂ Sin(h) for all h ∈ Hi ∩ Ω.

Similarly, if we denote by h′ ∈ Hi ∩ Ω the minimum element in Hi ∩ Ω, then Φ−
h′ = 1 and hence

x
h′(Si) ⊂ Sout(h′) by (5). Thus (1 + xh′x

h′)(Si) ⊂ Si by (7), and hence one can use induction again

to obtain xh(Si) ⊂ Sout(h) for all h ∈ Hi ∩Ω. �
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Proposition 3.7. Take x ∈M◦(V ) ∩Ms
θ(V ) and i ∈ I. Suppose that dimV 6= ei.

(i) If θi ≥ 0, then σi is injective.

(ii) If θi ≤ 0, then τi is surjective.

Proof. Suppose that θi ≥ 0. Set

Sj =




0 if j 6= i,

Kerσi if j = i.

By Lemma 3.6, S is x-invariant. Hence we have θ · dimS ≤ 0 by the stability condition. However

θ · dimS = θi dimKerσi ≥ 0,

so we must have θ · dimS = 0. Thus S = 0 or S = V by the stability condition again. If S = 0 we

are done. So assume that S = V . Then Vj = 0 for all j 6= i, and hence x = 0. Thus any subspace of

V is x-invariant, and hence Vi = C by the stability condition again. This contradicts.

Next suppose that θi ≤ 0. Set

Tj =




Vj if j 6= i,

Im τi if j = i.

By Lemma 3.6, T is x-invariant. Hence we have θ · dimT ≤ 0 by the stability condition. However we

have also

θ · dimT = θ · dimV − θi dimCoker τi ≥ θ · dimV = 0.

Thus θ · dimT = 0, which implies that T = 0 or T = V . If T = V we are done. If T = 0 one can

deduce a contradiction as above. �

3.3. Singularity at the origin; relation to the quiver variety. In this subsection we work in

the complex analytic category. The following proposition implies that the singularity at the origin of

Φ−1
V (1) and that of µ−1

V (0) are the same. Recall that we let ϕ : M(V )→M(V )//GV be the quotient

morphism.

Proposition 3.8. There are ϕ-saturated open neighborhoods U , U ′ of 0 ∈ M(V ), and a GV -

equivariant biholomorphic map f : U → U ′ such that

f(0) = 0, f(Φ−1
V (1) ∩ U) = µ−1

V (0) ∩ U ′, (f∗ω −̟)|Ker dΦV
= 0.

Proof. We use the following result of Alekseev-Malkin-Meinrenken (they proved it in the case that G

is a compact Lie group, but the proof can be extended immediately to the case of complex reductive

group).

Lemma 3.9 ([1, Lemma 3.3]). Let G ⊂ GL(N,C) be a complex reductive Lie group. For s ∈ [0, 1],

let exps : LieG → G denote a map given by exps(ξ) := exp(sξ). Define a holomorphic 2-form ρ on

G by

ρ :=
1

2

∫ 1

0
ds Tr

[
exp∗s(dg g

−1) ∧ ∂

∂s
exp∗s(dg g

−1)

]
.

Then ρ is G-invariant and satisfies

dρ = − exp∗ χ, ι(ξ∗)ρ = −dTr(ξ ·) + 1

2
exp∗ Tr ξ(g−1dg + dg g−1).
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Using this, they observed that if (M,̟,Φ) is a quasi-Hamiltonian G-space and Φ(M) is contained

in an open subset of G on which an G-equivariant right-inverse log of exp exists, then the triple

(M,̟ − Φ∗ log∗ ρ, log ◦Φ) satisfies the conditions (H1) and (H2) [1, Remark 3.2] as follows:

d(̟ − Φ∗ log∗ ρ) = −Φ∗χ+Φ∗ log∗ exp∗ χ = 0,

ι(ξ∗)(̟ − Φ∗ log∗ ρ) =
1

2
Φ∗Tr ξ(g−1dg + dg g−1) + Φ∗ log∗ dTr(ξ ·)

− 1

2
Φ∗ log∗ exp∗Tr ξ(g−1dg + dg g−1)

= Tr(d(log Φ)(·) ξ).

In fact, we can always find a G-invariant open neighborhood O of 0 in LieG such that the restriction

exp: O → exp(O) has the inverse log := (exp)−1. Clearly we can take O to be saturated with respect

to the quotient map LieG→ (LieG)//G. Then we can apply the above fact to (Φ−1(O),̟,Φ).

Let us back to our situation. First take a ϕ-saturated open subset U to be such that for any

x ∈ U and h ∈ H, 1 + xhxh ∈ exp(O), where O ⊂ LieGL(Vin(h)) is the subset taken as above. Then

(U ,̟−Φ∗
V log∗ ρ, log ◦ΦV ) satisfies (H1) and (H2). Since xhxh = 0 and d(1+xhxh) = 0 at the origin,

we have (Φ∗
V log∗ ρ)0 = 0 and

̟0 =
1

2

∑

h∈H
ǫ(h)Tr dxh ∧ dxh +

1

2

∑

h∈H
Tr dΦh ∧ d(1 + xhxh)

ǫ(h)

=
1

2

∑

h∈H
ǫ(h)Tr dxh ∧ dxh = ω0.

Thus the 2-form ̟−Φ∗
V log∗ ρ coincides with the symplectic form ω at the origin. By the equivariant

Darboux theorem (see Remark 3.10 below), taking U to be small enough if necessary, there is a

GV -equivariant biholomorphic map f : U → U ′ to some ϕ-saturated open neighborhood U ′ such that

f(0) = 0, f∗ω = ̟ − Φ∗
V log∗ ρ, µV ◦ f = log ◦ΦV .

This gives the desired map since the form Φ∗
V log∗ ρ vanishes on Ker dΦV . �

Remark 3.10. The equivariant Darboux theorem asserts for C∞-manifolds with a compact Lie

group action. However we can generalize this theorem to our case as the following (This is due to

Nakajima. See [31]).

It is easy to see that the equivariant Darboux theorem can be generalized for complex manifolds

with a compact Lie group action. Thus, in order to show our claim, we first apply the theorem for the

maximal compact subgroup UV :=
∏

U(Vi) ⊂ GV . Then there is an open ball B ∈ M(V ) centered

at the origin and a UV -equivariant open embedding f : B → M(V ) such that f(0) = 0. By [35,

Proposition 1.4, Lemma 1.14], we can extend uniquely this map to a GV -equivariant open embedding

f : GV · B → M(V ). We claim that GV · B is ϕ-saturated. This can be proved using the map

F∞ : M(V )→M(V ) introduced in [35], which is UV -equivariant and has the following property: for

any point x ∈M(V ), F∞ maps GV ·x onto UV ·y, where y is a point whose GV -orbit is a unique closed

orbit in GV · x. Moreover F∞(GV ·B) ⊂ B and there is a continuous family {Ft} of diffeomorphisms

whose limit is F∞ and the differential dFt(x)/dt|t=0 at any x is tangent to the orbit GV · x. Thus if
x, x′ ∈ M(V ) have the same image under ϕ and x ∈ GV · B, then F∞(x′) ∈ UV · F∞(x) ⊂ B, and

hence Ft(x
′) ∈ B for sufficiently large t. Thus x′ ∈ GV · B. Hence GV ·B is ϕ-saturated.
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We take some open ball B′ in f(GV · B) centered at the origin, and set U := f−1(GV · B′). Then

U is also ϕ-saturated. To see this, suppose x′ ∈M(V ) is in the orbit closure GV · x of some x ∈ U .
Then x′ ∈ GV ·B by the above argument, and f(x′) ∈ GV · f(x) since f is continuous. Since GV ·B′

is ϕ-saturated and f(x) ∈ GV ·B′, we see that f(x′) ∈ GV ·B′. Thus x′ ∈ U .
Setting U ′ := GV ·B′, we obtain a desired map f : U → U ′.

Recall the projective morphisms π :Mθ(V )→M0(V ) and π : Mθ(V )→M0(V ).

Corollary 3.11. There exist an open neighborhood U (resp. U ′) of [0] ∈M0(V ) (resp. [0] ∈M0(V ))

and a commutative diagram

Mθ(V ) ⊃π−1(U)
f̃−−−−→ π−1(U ′)⊂Mθ(V )

π

y π

y

U
f−−−−→ U ′

such that:

(i) f([0]) = [0];

(ii) both f̃ and f are complex analytic isomorphisms;

(iii) f̃ maps π−1(U) ∩Ms
θ(V ) onto π−1(U ′) ∩Ms

θ(V ) as a symplectic biholomorphic map; and

(iv) if x ∈ ϕ−1(U) and y ∈ ϕ−1(U ′) have closed orbits and f([x]) = [y], then the stabilizers of the

two are conjugate. Thus f preserves the orbit-type.

Proof. Since both U and U ′ are ϕ-saturated and f : U → U ′ is a biholomorphic map, f sends a closed

orbit to a closed orbit and a stable/semistable point to a stable/semistable point (see Remark 2.2).

So the result follows. �

The fiber π−1([0]) ⊂ Mθ(V ) is called the nilpotent subvariety. The above corollary implies that

the nilpotent subvarieties of the quiver variety and the multiplicative quiver variety are complex

analytically isomorphic.

4. Moduli of filtered local systems and star-shaped quiver

This section is devoted to the study in the case of star-shaped quivers. In particular, we prove

Theorem 1.2.

4.1. Star-shaped quiver. Suppose that conjugacy classes C1, . . . Cn in gl(r,C) for a fixed r > 0 are

given. Choose Ai ∈ Ci and take ξi,j ∈ C× which satisfies

(Ai − ξi,0)(Ai − ξi,1) · · · (Ai − ξi,r) = 0.

Set

vi,j = rank(Ai − ξi,0) · · · (Ai − ξi,j−1), li = min{j; vi,j > 0}.

Note that each vi,j does not depend on a choice of Ai.

Following Crawley-Boevey, we associate to C1, . . . Cn the following quiver (I,Ω):



GEOMETRY OF MULTIPLICATIVE PREPROJECTIVE ALGEBRA 19

[1, 1] [1, 2] [1, l1]

[2, 1] [2, 2] [2, l2]

[n, 1] [n, 2] [n, ln]

0

Such a quiver is called a star-shaped quiver. We denote the vertex set by I = {0} ∪ {[i, j]} as in the

picture, and set I0 := I \ {0}. We define an I-graded vector space V by

V0 := Cr, Vi,j := Cvi,j for [i, j] ∈ I0,

and use the convention Vi,0 = V0 and Vi,li+1 = 0. For an element x ∈ M(V ) we will denote its

components by ai,j ∈ Hom(Vi,j+1, Vi,j), bi,j ∈ Hom(Vi,j, Vi,j+1) and write simply as x = (a, b).

The following proposition was proved by Crawley-Boevey (and Shaw).

Proposition 4.1. (i) Define

ζ0 := −
n∑

i=1

ξi,0, ζi,j := ξi,j−1 − ξi,j for [i, j] ∈ I0.

Then the morphism

Mζ,0(V )→ { (B1, . . . , Bn) ∈ C1 × · · · × Cn | B1 + · · ·+Bn = 0 }//GL(r,C),

x = (a, b) 7→ Bi = ξi,0 + ai,0bi,0

is an isomorphism. Moreover, the variety of the right hand side includes

Q := { (B1, . . . , Bn) ∈ (C1 × · · · × Cn)irr | B1 + · · ·+Bn = 0 }/GL(r,C)

as the image of Ms
ζ,0(V ) under the above map. Here, (C1×· · ·×Cn)irr denotes the set consisting of all

(B1, . . . , Bn) ∈ C1×· · ·×Cn such that there is no non-zero proper subspace S ⊂ Cr which is preserved

by Bi for any i.

(ii) Suppose that each ξi,j is non-zero. Define q ∈ (C×)I by

q0 :=
∏

i

ξ−1
i,0 , qi,j :=

ξi,j−1

ξi,j
for [i, j] ∈ I0.

Then the morphism

Mq,0(V )→ { (B1, . . . , Bn) ∈ C1 × · · · × Cn | B1 · · ·Bn = 1 }//GL(r,C),

x = (a, b) 7→ Bi = ξi,0(1 + ai,0bi,0)

is an isomorphism. Moreover, the variety of the right hand side includes

R := { (B1, . . . , Bn) ∈ (C1 × · · · × Cn)irr | B1 · · ·Bn = 1 }/GL(r,C)

as the image ofMs
q,0(V ) under the above map.

Proof. For a proof of (i), see [8, 9]. (ii) also can be proved similarly, using [10, Theorem 2.1] and the

method of Kraft-Procesi [21]. �
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Remark 4.2. Recall that every coadjoint orbit has a canonical symplectic structure. Thus identifying

gl(r,C) with its dual via the trace, each Ci carries naturally an algebraic symplectic structure. The

product of these symplectic forms defines an algebraic symplectic structure on
∏n

i=1 Ci, and it has a

moment map for the GL(r,C)-action given by (B1, . . . , Bn) 7→
∑
Bi. Thus Q also carries naturally

an algebraic symplectic structure by Theorem 2.10. Then one can prove that the restriction of the

map defined in (i) is a symplectic isomorphism between Ms
ζ,0(V ) and Q.

Recall further that every conjugacy class C ⊂ G of a complex reductive group has a canonical

quasi-Hamiltonian G-structure (see [1]). So under the same assumption as in (ii), the product
∏

i Ci
carries a quasi-Hamiltonian GL(r,C)-structure by Theorem 2.14. Its group-valued moment map is

(B1, . . . , Bn) 7→
∏
Bi, and hence the variety R carries an algebraic symplectic structure by Theo-

rem 2.15. One can also prove that the map defined in (ii) induces a symplectic isomorphism between

Ms
q,0(V ) and R.

From now on, we assume that ξi,j 6= 0 for all i, j. Take n distinct points p1, . . . , pn in the Riemann

sphere P1, and set D = {p1, . . . , pn}. Choose a base point ∗ ∈ P1 \D and consider the fundamental

group π1(P
1 \D, ∗). It has a presentation 〈γ1, γ2, . . . , γn | γ1 · · · γn = 1〉, where γi represents a loop

going from ∗ toward near pi, once around counterclockwise and back to ∗. Hence the map

Hom(π1(P
1 \D, ∗),GL(r,C))→ { (A1, . . . , An) ∈ GL(r,C)n | A1 · · ·An = 1 },

ρ 7→ Ai = ρ(γi)

is bijective. If we consider Hom(π1(P
1\D, ∗),GL(r,C)) as an affine algebraic variety via this bijection,

then the spaceMq,0(V ) can be described as

{ ρ ∈ Hom(π1(P
1 \D, ∗),GL(r,C)) | ρ(γi) ∈ Ci }//GL(r,C).

In fact, the multiplicative quiver varietyMq,θ(V ) with θi,j > 0 can be also described as a moduli space

of local systems on P1 \D equipped with a certain additional structure, called a filtered structure.

4.2. Filtered local system. Suppose that the stability parameter θ ∈ QI satisfies

θi,j > 0, and θ · dimV = 0, i.e., θ0 = −
∑

[i,j]∈I0 θi,j dimVi,j

dimV0
.

Let x = (a, b) ∈ Φ−1
V (q) be a θ-semistable point. For i = 1, . . . , n, define a filtration Fi = (F j

i ) of V0

by

F 0
i (V0) := V0, F j

i (V0) := Im ai,0 · · · ai,j−1 for j = 1, 2, . . . , li + 1,

and set Ai := ξi,0(1 + ai,0bi,0) ∈ GL(V0).

Lemma 4.3. For each [i, j] ∈ I0, we have:

(i) (Ai − ξi,j)(F j
i ) ⊂ F

j+1
i ; and

(ii) dimF j
i = vi,j.

Proof. Using induction on j, we first prove the following formula which implies (i):

(Ai − ξi,j)ai,0 · · · ai,j−1 = ξi,jai,0 · · · ai,j−1ai,jbi,j .
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If j = 0, by definition we have Ai − ξi,0 = ξi,0ai,0bi,0. If j > 0, using the hypothesis of induction we

have

(Ai − ξi,j)ai,0 · · · ai,j−1 = (Ai − ξi,j−1)ai,0 · · · ai,j−2ai,j−1 + (ξi,j−1 − ξi,j)ai,0 · · · ai,j−1

= ξi,j−1ai,0 · · · ai,j−1bi,j−1ai,j−1 + (ξi,j−1 − ξi,j)ai,0 · · · ai,j−1

= ξi,j−1ai,0 · · · ai,j−1(1 + bi,j−1ai,j−1)− ξi,jai,0 · · · ai,j−1.

By the multiplicative preprojective relation at [i, j], we have 1 + bi,j−1ai,j−1 = q−1
i,j (1 + ai,jbi,j). Thus

we obtain the desired formula as the following:

(Ai − ξi,j)ai,0 · · · ai,j−1 = q−1
i,j ξi,j−1ai,0 · · · ai,j−1(1 + ai,jbi,j)− ξi,jai,0 · · · ai,j−1

= ξi,jai,0 · · · ai,j−1(1 + ai,jbi,j)− ξi,jai,0 · · · ai,j−1

= ξi,jai,0 · · · ai,j−1ai,jbi,j.

To prove (ii), it is enough to show that each ai,j−1 is injective. Fix [i, j] ∈ I0 and define a subspace

S ⊂ V by

S0 := 0, Sk,m :=





0 if k 6= i or m < j,

Ker ai,j−1 if [k,m] = [i, j],

bi,m−1bi,m−2 · · · bi,j(Ker ai,j−1) if k = i and m > j.

As above one can easily prove the following formula:

ξi,jai,m−1bi,m−1bi,m−2 · · · bi,j = ξi,m−2bi,m−2 · · · bi,jbi,j−1ai,j−1 + (ξi,m−2 − ξi,j)bi,m−2 · · · bi,j.

This implies that S is (a, b)-invariant. By the stability condition we have
∑

[k,m]∈I0
θk,m dimSk,m = θ · dimS ≤ 0.

Since θk,m > 0 we must have Sk,m = 0 for each [k,m]. Thus ai,j−1 is injective. �

The multiplicative preprojective relation at 0 implies
∏
Ai = 1. Thus setting ρ(γi) = Ai (i =

1, . . . n), we get a representation ρ of π1(P
1 \D, ∗) on V0. Let L be the corresponding local system on

P1 \D. For i = 1, . . . , n, let Ui be a simply connected open neighborhood of pi which contains γi, and

we set U∗
i = Ui \ {pi}. Note that π1(U

∗
i , ∗) is a free group generated by γi. Thus ρ(γi) determines a

representation of π1(U
∗
i , ∗) on V0 which corresponds to the restriction of L on U∗

i . Since each F
j
i ⊂ V0

is preserved by ρ(γi), it induces a local subsystem Fj
i (L) of L|U∗

i
. So we get a filtration

Fi : L|U∗
i
= F0

i (L) ⊃ F1
i (L) ⊃ · · · ⊃ Fli+1

i (L) = 0

by local subsystems of L|U∗
i
. Note that the local monodromy of Fj

i (L)/F
j+1
i (L) (j = 0, 1, . . . , li)

around pi is given by the scalar multiplication by ξi,j.

Lemma 4.4. (L,F) satisfies the following property:

(†) For any non-zero proper local subsystem M ⊂ L, the following inequality holds:

∑
[i,j]∈I0 θi,j rank

(
M ∩ Fj

i (L)
)

rankM
≤

∑
[i,j]∈I0 θi,j rankF

j
i (L)

rankL
.

If (a, b) is θ-stable, then the strict inequality holds.
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Proof. For a non-zero proper local subsystem M ⊂ L, define a subspace S ⊂ V by

S0 =M∗ ⊂ V0, Si,j = (ai,0 · · · ai,j−1)
−1(M∗ ∩ Fj

i (L)∗),

where M∗,F
j
i (L)∗ mean the stalks at ∗. Then S is (a, b)-invariant and non-zero proper by the as-

sumption. On the other hand, θ · dimV = 0 implies

θ · dimS = θ0 rankM +
∑

i,j

θi,j rank(M ∩ Fj
i (L))

= −
∑

i,j θi,j rankF
j
i (L)

rankL
rankM +

∑

i,j

θi,j rank(M ∩ Fj
i (L)).

Thus θ · dimS ≤ 0 (resp. < 0) if and only if the inequality (resp. the strict inequality) in (†) holds.

So the assertion follows. �

Motivated on the above argument, we introduce the following notion.

Definition 4.5. Let X be a compact Riemann surface and let D ⊂ X be a finite subset. Let L be a

local system on X \D. For a tuple of non-negative integers l = (lp)p∈D, a filtered structure on L of

filtration type l is a tuple (Up,Fp)p∈D, where for each p ∈ D:

(i) Up is a neighborhood of p in X (we set U∗
p := Up \ {p}); and

(ii) Fp is a filtration

L|U∗
p
= F0

p(L) ⊃ F1
p(L) ⊃ · · · ⊃ F

lp
p (L) ⊃ F

lp+1
p (L) = 0

by local subsystems of L|U∗
p
.

Two filtered structures (Up,Fp)p∈D, (U ′
p,F

′
p)p∈D of the same filtration type are equivalent if for each

p ∈ D, there exists a neighborhood Vp ⊂ Up ∩ U ′
p of p such that Fp and F′

p coincide on V ∗
p . A local

system L together with an equivalence class of filtered structures F = [(Up,Fp)p∈D] is called a filtered

local system on (X,D) of filtration type l.

Definition 4.6. Let (L,F) be a filtered local system on (X,D) of filtration type l. Let β = (βjp | p ∈
D, j = 0, . . . , lp) be a tuple of rational numbers satisfying βip < βjp for any p and i < j (Such a tuple

is called a weight).

(L,F) on (X,D) is said to be β-semistable if for any non-zero proper local subsystem M ⊂ L the

following inequality holds:

∑

p∈D

∑

j

βjp

rank
(
M ∩ Fj

p(L)
)
/
(
M ∩ Fj+1

p (L)
)

rankM
≤

∑

p∈D

∑

j

βjp

rank
(
Fj
p(L)/F

j+1
p (L)

)

rankL
.

(L,F) is β-stable if the strict inequality always holds.

Clearly, (L,F) constructed from a θ-semistable point x = (a, b) ∈ Φ−1
V (q)∩Mss

θ (V ) defines a filtered

local system on (P1, {pi}), where the filtration type l is given by lpi := li. Moreover this filtered local

system satisfies the stability condition. Fix arbitrary β0i ∈ Q for each i and set βjpi := β0i +
∑j

s=1 θi,s.

Then we have
n∑

i=1

∑

j≥0

βjpi
rankFj

pi(L)/F
j+1
pi (L)

rankL
=

n∑

i=1

βi,0 +
∑

[i,j]∈I0
θi,j

rankFj
pi(L)

rankL
,
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so the β-semistability condition for filtered local systems on (P1, {pi}) is equivalent to the property

(†), and the β-stability condition is equivalent to that the strict inequality always holds in (†). In

particular our (L,F) is β-semistable, and if x is θ-stable then (L,F) is β-stable.

It is easy to see that the above construction sends a GV -orbit in Φ−1
V (q)∩Mss

θ (V ) to an isomorphism

class of filtered local systems, and preserves the direct sum operation, where the direct sum of two

filtered local systems of the same filtration type means the direct sum of local systems with filtrations

induced from those of the two. In particular, this map sends a θ-polystable point x = x1⊕x2⊕· · ·⊕xN
to a direct sum of β-stable filtered local systems (L,F) = (L1,F1)⊕ (L2,F2)⊕ · · · ⊕ (LN ,FN ). Note

that each (Li,Fi) satisfies

∑

p∈D

∑

j

βjp

rank
(
(Fi)

j
p(Li)/(Fi)

j+1
p (Li)

)

rankLi

=
∑

p∈D

∑

j

βjp

rank
(
Fj
p(L)/F

j+1
p (L)

)

rankL
,

since θ · dimV i = 0 (see Proposition 2.4). Such a filtered local system is said to be β-polystable.

Conversely, suppose that a β-semistable filtered local system (L,F) of filtration type l with rankL =

r, rankL = vi,j is given. Suppose that the local monodromy of Fj
pi(L)/F

j+1
pi around pi is given by the

scalar multiplication ξi,j for all i, j. We define an I-graded vector space V by V0 := L∗, Vi,j := Fj
pi(L)∗,

and define a point (a, b) ∈M(V ) by

bi,j := (ξ−1
i,j ρ(γi)− 1)|Vi,j

: Vi,j → Vi,j+1, ai,j : Vi,j+1 →֒ Vi,j the inclusion.

Then (a, b) ∈M(V ) satisfies the multiplicative preprojective relation. To check the stability condition,

suppose that a non-zero proper (a, b)-invariant subspace S ⊂ V is given. Then there is a local

subsystem M ⊂ L whose stalk at ∗ is S0. By the property (†), we have

∑
[i,j]∈I0 θi,j rank

(
M ∩ Fj

pi(L)
)

rankM
≤

∑
[i,j]∈I0 θi,j rankF

j
pi(L)

rankL
.

Since ai,j’s are injective, we have dimSi,j ≤ rank(M ∩ Fj
pi(L)), and hence

∑
[i,j]∈I0 θi,j dimSi,j

dimS0
≤

∑
[i,j]∈I0 θi,j dimVi,j

dimV0
,

which implies θ · dimS ≤ 0. Thus (a, b) is θ-semistable. Clearly, if (L,F) is β-stable then (a, b) is

θ-stable. It is also easy to see that this construction sends an isomorphism class of filtered local

systems to a GV -orbit, and preserves the polystability.

We have obtained maps of both directions betweenMq,θ(V ) and the set of isomorphism classes of

β-polystable filtered local systems (L,F) of filtration type l satisfying rankL = r, rankFj
pi(L) = vi,j

and that the local monodromy of Fpi(L)/F
j+1
pi (L) is given by the scalar ξi,j for all i, j. Clearly each

one is the inverse of the other. So we get the following result.

Theorem 4.7. Let D = {p1, . . . , pn} be a finite subset of P1 with cardinality n. Take an arbitrary

l ∈ ZD
≥0, and let ξ = (ξjp | p ∈ D, j = 0, . . . , lp) be a tuple of non-zero complex numbers, β = (βjp |

p ∈ D, j = 0, . . . , lp) be a tuple of rational numbers satisfying βip < βjp for any p and i < j. Take a

star-shaped quiver (I,Ω) with n arms such that the length li of the i-th arm is equal to lpi. Then for



24 DAISUKE YAMAKAWA

any I-graded vector space V , setting (q, θ) ∈ (C×)I ×QI by

θi,j := βjpi − βj−1
pi

, θ0 := −
∑

[i,j]∈I0 θi,j dimVi,j

dimV0
,

qi,j := ξj−1
pi

/ξjpi , q0 :=
∏

i

(ξ0pi)
−1,

there is a natural bijection between the multiplicative quiver variety Mq,θ(V ) and the set of isomor-

phism classes of β-polystable filtered local systems (L,F) on (P1,D) satisfying:

• rankL = dimV0, rankFj
pi(L) = dimVi,j;

• the local monodromy of Fj
pi(L)/F

j+1
pi (L) around pi is given by the scalar multiplication by ξjpi

for all i, j.

Under this map, a point in Ms
q,θ(V ) corresponds to an isomorphism class of β-stable filtered local

systems.

Remark 4.8. The word “filtered local system” is originally due to Simpson [34]. Simpson’s filtered

local system (L,F) is a pair of a local system L on X \D and a tuple F = (Fp)p∈D, where for each

p ∈ D, Fp = (Fβ
p )β∈R is a filtration of the restriction L|U∗

p
of L on some punctured neighborhood U∗

p

of p indexed by real number β ∈ R. Fβ
p is required to be left continuous, i.e., Fβ−ε

p = Fβ
p for small

ε > 0. Filtered local systems in the sense of Simpson form a category on which direct sum, tensor

product, dual, etc. are defined. Moreover the notion of “degree” for a filtered local system in the

sense of Simpson is naturally defined and provides a slope stability condition. Our notion of filtered

local system (L,F) together with a weight β can be considered as Simpson’s filtered local system as

follows: for each β ∈ R, define Fβ
p (L) ⊂ L|U∗

p
by

Fβ
p(L) :=





L|U∗
p

when β ≤ β0p ,
Fj
p(L) when β ∈ (βj−1

p , βjp],

0 when β > β
lp
p .

Then (L, {Fβ
p}) is a filtered local system in the sense of Simpson. Moreover one can easily check

that if our (L,F) is β-stable/semistable/polystable, then (L, {Fβ
p}) is stable/semistable/polystable.

Note that in the previous theorem, the star-shaped multiplicative quiver varieties parametrize only

polystable filtered local systems (L, {Fβ
p}) such that the local monodromy of Fβ

p/F
>β
p around p is

scalar for each p, β. This is because we have considered only the case that all θi,j’s are positive. In

fact, if we allow θi,j = 0 for some i, j, then a point in the multiplicative quiver variety represents a

polystable filtered local system (L, {Fβ
p}) such that the local monodromy of Fβ

p/F
>β
p is in the closure

of some fixed conjugacy class, which may not be a scalar.

4.3. Riemann-Hilbert correspondence.

Definition 4.9. LetX be a compact Riemann surface and let D ⊂ X be a finite subset. A logarithmic

connection (E,∇) on (X,D) is a pair of a holomorphic vector bundle E on X and a morphism of

sheaves ∇ : E → E ⊗ Ω1
X(logD) satisfying the Leibniz rule:

∇(fs) = df ⊗ s+ f∇(s) for f ∈ OX , s ∈ E,
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where we have used the same symbol E for the sheaf of holomorphic sections of E, Ω1
X(logD) is the

sheaf of meromorphic 1-forms on X with logarithmic poles on D and no poles on X \D, and OX is

the sheaf of holomorphic functions on X.

For each p ∈ D, a logarithmic connection (E,∇) induces canonically an endomorphism

Resp∇ : E|p → E|p

of the fiber E|p of E at p. Such an endomorphism is called the residue of (E,∇) at p. Using a

trivialization E|Up ≃ Up × Cr on a neighborhood of p and a local coordinate z centered at p, the

logarithmic connection ∇ is written as ∇ = d+A(z)dz/z for some holomorphic function A(z). Then

Resp∇ = A(0).

One can also define the notion of logarithmic connection in the algebro-geometric sense. However

by GAGA, it is equivalent to the above notion.

By Deligne’s Riemann-Hilbert correspondence [12], there is a natural equivalence between the

category of local systems L on X \D and the category of logarithmic connections (E,∇) on (X,D)

such that the real parts of eigenvalues of the residue Resp∇ are in [0, 1) for any p ∈ D. A “filtered”

version of it was proved by Simpson [34]. To explain it, we introduce a “filtered” structure on a

logarithmic connection, so-called a parabolic structure.

Definition 4.10. Let X be a compact Riemann surface and let D ⊂ X be a finite subset. Let (E,∇)
be a logarithmic connection on (X,D).

For l = (lp)p∈D ∈ ZD
≥0, a parabolic structure on (E,∇) of filtration type l is a tuple F = (Fp)p∈D,

where for each p ∈ D, Fp is a filtration

E|p = F0
p (E) ⊃ F1

p (E) ⊃ · · · ⊃ F lp
p (E) ⊃ F lp+1

p (E) = 0

by vector subspaces of the fiber E|p at p.

A logarithmic connection (E,∇) together with a parabolic structure F = (Fp)p∈D is called a

parabolic connection on (X,D).

Definition 4.11. Let α = (αj
p | p ∈ D, j = 0, . . . , lp) be a tuple of rational numbers in [0, 1) such

that αi
p < αj

p for any p and i < j. A parabolic connection (E,∇,F) is said to be α-semistable if for

any non-zero proper subbundle F ⊂ E preserved by ∇, the following inequality holds:

∑

p∈D

∑

j

αj
p

dim
(
F |p ∩ F j

p(E)
)
/
(
F |p ∩ F j+1

p (E)
)

rankF
≤

∑

p∈D

∑

j

αj
p

dim
(
F j
p(E)/F j+1

p (E)
)

rankE
.

(E,∇,F) is α-stable if the strict inequality always holds. A direct sum (E,∇,F) =
⊕

i(Ei,∇i,Fi)

of α-stable parabolic connections satisfying

∑

p∈D

∑

j

αj
p

dim
(
(Fi)

j
p(Ei)/(Fi)

j+1
p (Ei)

)

rankEi

=
∑

p∈D

∑

j

αj
p

dim
(
F j
p(E)/F j+1

p (E)
)

rankE

for all i is said to be α-polystable.

We now introduce the filtered version of Deligne’s Riemann-Hilbert correspondence.
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Theorem 4.12 ([34, Lemma 3.2]). Let X be a compact Riemann surface and D ⊂ X be a finite

subset. Then there is a natural bijective correspondence between:

(i) isomorphism classes of filtered local systems (L,F) on (X,D) together with a weight β; and

(ii) isomorphism classes of parabolic connections (E,F) on (X,D) together with a weight α.

For each p ∈ D, this correspondence induces a bijection between:

{
(λ, αj

p) ∈ C× [0, 1)
∣∣ the action of Resp∇ on F j

p(E)/F j+1
p (E) has an eigenvalue λ

}
; and

{
(ξ, βkp ) ∈ C× × R

∣∣∣∣∣
the monodromy of Fk

p(L)/F
k+1
p (L)

along a simple loop around p (counterclockwise) has an eigenvalue ξ

}
,

which is explicitly given by (λ, α) 7→ (ξ, β), where

β := α− Reλ, ξ := exp(−2π
√
−1λ).

Furthermore, if (λ, αj
p) corresponds to (ξ, βkp ) under this bijection, then the generalized λ-eigen space

of F j
p(E)/F j+1

p (E) and the generalized ξ-eigen space of Fk
p(L)/F

k+1
p (L) have the same dimension.

Recently, Inaba constructed the moduli space of α-semistable λ-parabolic connections (E,∇,F) on
(X,D) [17] of rank r > 0 for a given tuple λ = (λjp | p ∈ D, j = 0, . . . , r − 1), where λ-parabolic

connection means a parabolic connection of full filtration type (i.e., lp = r−1 and dimF j
p(E) = r−j)

and (Resp∇ − λjp)(F j
p (E)) ⊂ F j+1

p (E) for each p, j. (We will use the word “ξ-filtered local system”

by a similar manner.) We denote this moduli space byMλ,α(X,D; r). Its stable locusMs
λ,α(X,D; r)

has naturally an algebraic symplectic structure.

Now consider the case of X = P1. We can take α to be generic so that

Mλ,α(P
1,D; r) =Ms

λ,α(P
1,D; r).

Inaba showed that if rn− 2r− 2 > 0 and r ≥ 2 (n is the cardinality of D), thenMλ,α(P
1,D; r) is an

irreducible variety of dimension (r − 1)(rn − 2r − 2) [17, Proposition 4.3]. We assume further that

αi
p −Reλip 6= αj

p − Reλjp for i 6= j so that one can take a permutation σp ∈ Slp+1 such that

i < j =⇒ α
σp(i)
p − Reλ

σp(i)
p < α

σp(j)
p − Reλ

σp(j)
p .

Then under Simpson’s Riemann-Hilbert correspondence, an α-semistable λ-parabolic connection cor-

respond to a β-semistable ξ-filtered local system, where β and λ are given by

βjp := α
σp(j)
p − Reλ

σp(j)
p and ξjp := exp(−2π

√
−1λσp(j)

p ).

Assume Reλkp ∈ Q so that βjp ∈ Q.

Theorem 4.13. Under the above notation and assumptions, let (I,Ω) be a star-shaped quiver with

n arms such that the length li of the i-th arm is equal to r − 1 for any i. Set q, θ as in Theorem 4.7,

and take an I-graded vector space V with dimV0 = r, dimVi,j = r − j. Then Simpson’s Riemann-

Hilbert correspondence gives a symplectic biholomorphic map betweenMλ,α(P
1,D; r) andMs

q,θ(V ) =

Mq,θ(V ).

Proof. First of all we recall Simpson’s Riemann-Hilbert correspondence. This correspondence can

be constructed locally, so we may replace X = P1 with the unit open disk { z ∈ C | |z| < 1 } and

assume D = {0}. Also, for simplicity we assume that the permutation σp for p = 0 is an identity. Let
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(L,F) be a ξ-filtered local system on (X,D). L corresponds to a holomorphic bundle with connection

(E′,∇) on X \D. Take multi-valued flat sections u0, u1, . . . , ur−1 of E
′ such that uj ∈ Fj(L)\Fj+1(L)

(we omit the subscript 0 ∈ D). Let M ∈ EndE′ be the monodromy operator and let R be a unique

operator such that e−2π
√
−1R =M and the eigenvalues of R are λ0, . . . , λr−1. Then

vj(z) := eR log zuj(z)

becomes a single-valued holomorphic section of E′, since when z moves along a simple loop around p

once counterclockwise, vj goes to

eR log ze2π
√
−1RMuj = vj.

If we denote by Ẽ′ the sheaf of meromorphic section of the Deligne extension of E′ having pole only at

D, then vj can be considered as a section of Ẽ′. Let E be the subsheaf of Ẽ′ generated by v0, . . . , vr−1.

Then E is locally free of rank r, and ∇ defines a logarithmic connection on E since ∇vj = Rvjdz/z

(Note that since eR log z commutes with R, the representation matrix of R with respect to the framing

(v0, . . . , vr−1) is the same as the one with respect to (u0, . . . , ur−1), and so it is a constant matrix).

Moreover since uj ∈ Fj \ Fj+1, if we let N be the nilpotent part of R then Rvj = (λj +N)vj . Thus

vj(0) ∈ E|0 lies in the generalized eigenspace for Res0∇ with eigenvalue λj. Hence setting

F j(E) :=
⊕

k≥j

Cvk(0) ⊂ E|0,

we get a λ-parabolic connection (E,∇,F) on (X,D).

This construction gives a bijection from the set of isomorphism classes of β-stable ξ-filtered local

systems on (P1,D) to the set of isomorphism classes of α-stable λ-parabolic connections on (P1,D)

(see [34]). Using this fact, let us consider the inverse map.

Assume again that X is the unit open disk in C and D = {0}. Let (E,∇,F) be a λ-parabolic

connection on (X,D). Let L be the corresponding local system on X \D, and let M,R,N be as in

the previous paragraph. Take a basis (e0, e1, . . . , er−1) of E|0 compatible with the filtration F . By

the above fact, we can take a framing (v0, . . . , vr−1) of E such that

∇vj = Rvjdz/z, vj(0) = ej .

Then setting uj := e−R log zvj, we get multi-valued flat sections of L. Since (Rvj)(0) = (Res0∇)ej , we
have (R−λj)uj ∈

∑
k>j Cuk. Thus if we set F

j(L) ⊂ L by the subsheaf generated by uj , . . . , ur−1, then

(L,F) is a ξ-filtered local system on (X,D). Note that vj is uniquely determined by the differential

equation ∇vj = Rvjdz/z and the condition vj(0) = ej . Now recall that if a differential equation has

complex analytic parameters then a solution of it also depends complex analytically on the parameters.

Thus if (E,∇,F) varies complex analytically, then the corresponding local system L, the monodromy

operator M and the filtration on L which determined by vj also vary complex analytically. This

implies that the map RH:Mλ,α(P
1,D; r)→Mq,θ(V ) given by Simpson’s correspondence is complex

analytic.

Next we prove that the map RH is symplectic. First note that since the claim is a closed condition,

we may assume that λ is generic so that the morphism π ◦ RH: Mλ,α(P
1,D; r) → Mq,0(V ) is a

complex analytic isomorphism (see [17, Theorem 2.2]), where π :Mq,θ(V )→Mq,0(V ) is the canonical

projective morphism. This implies thatMs
q,0(V ) =Mq,0(V ), that π is a symplectic isomorphism, and
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that RH = π−1 ◦ (π ◦ RH) is biholomorphic. Now take an arbitrary [ρ] ∈ Mq,0(V ) and let Ci denote
the conjugacy class of ρ(γi). Then we can writeMq,0(V ) =Ms

q,0(V ) as the variety R associated to Ci
by Proposition 4.1. We have remarked that R has naturally an algebraic symplectic structure, and it

is isomorphic toMq,0(V ) as an algebraic symplectic manifold via this identification (see Remark 4.2).

Thus the remaining task is to compare the symplectic structure on R and that on Mλ,α(P
1,D; r).

To do this, we use the following fact proved by Alekseev-Malkin-Meinrenken. Let Σ be the compact

Riemann surface with boundary obtained by cutting out an open disk Up centered at p for each

p ∈ D. Then we have π1(P
1 \D, ∗) ≃ π1(Σ, ∗) canonically, and hence we can identify the variety R

with the moduli space of irreducible flat C∞-connections on Σ with the holonomy along ∂Upi lying

in Ci for each i. This moduli space is actually smooth, and by the method of Atiyah-Bott we can

construct naturally a symplectic structure on it. Alekseev-Malkin-Meinrenken [1] showed that this

symplectic structure coincides with the one on R. On the other hand, Biquard [2] constructed a

natural isomorphism between the Zariski tangent space ofMλ,α(P
1,D; r) at a point [(E,∇,F)] and

the degree 1 L2-cohomology of the complex Ω•(X \D,EndE) of the spaces of C∞-forms on X \D
with coefficients in EndE, with the differential given by the flat C∞-connection D = ∇ + ∂. One

can easily check that Inaba’s symplectic form onMλ,α(P
1,D; r) goes to the form on L2-cohomology

induced from (u, v) 7→
∫
X
Tr (u∧v), and this pairing comes from the Atiyah-Bott symplectic structure

on R via the mapMλ,α(P
1,D; r)→R. Hence RH is symplectic.

Since the determinant of the Jacobian of a symplectic map is everywhere non-vanishing, RH is

biholomorphic. �

4.4. Higher genus case. In this subsection let us consider the higher genus case. In this case, we

cannot describe the moduli space of filtered local systems as some multiplicative quiver variety, but

the quasi-Hamiltonian method still goes through.

First of all let us consider any quiver (I,Ω). Let Hℓ be the subset of H which consists of all loops

in H; Hℓ := {h ∈ H | in(h) = out(h) }, and set Ωℓ := Hℓ ∩ Ω. For an I-graded vector space V , we

define an open subset Mℓ(V ) ⊂M(V ) by

Mℓ(V ) := {x ∈M(V ) | detxh 6= 0 for h ∈ Hℓ, and det(1 + xhxh) 6= 0 for h ∈ H \Hℓ }.

This is a ϕ-saturated open subset of M(V ), where ϕ : M(V )→M(V )//GV is the quotient morphism.

For any i ∈ I, the variety GL(Vi) × GL(Vi) has a quasi-Hamiltonian GL(Vi) × GL(Vi)-structure

whose group-valued moment map is (a, b) 7→ (ab, a−1b−1) (see Example 2.13). Thus by fusioning,

we can construct a quasi-Hamiltonian GV -structure on Mℓ(V ) whose group-valued moment map

ΨV : Mℓ(V )→ GV is given by

(ΨV )i(x) :=
<∏

h∈Hi∩Ωℓ

[xh, xh]
m

<∏

h∈Hi\Hℓ

(1 + xhxh)
ǫ(h),

where [xh, xh]
m := xhxhx

−1
h x−1

h
and we have fixed a total order < on Ωℓ and that on H \Hℓ. Thus

for each (q, θ) ∈ (C×)I ×QI , we get a variety

Mℓ
q,θ(V ) =

(
Ψ−1

V (q) ∩Mss(V )
)
//GV ,

and its open subset

Mℓ s
q,θ(V ) =

(
Ψ−1

V (q) ∩Ms(V )
)
/GV
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which carries an algebraic symplectic structure.

Now consider a star-shaped quiver with g loops (I,Ω) as the following picture:

[1, 1] [1, 2] [1, l1]

[2, 1] [2, 2] [2, l2]

[n, 1] [n, 2] [n, ln]

0

Theorem 4.14. Let X be a compact Riemann surface with genus g > 0, and let D = {p1, . . . , pn} be a
finite subset of X with cardinality n. Take an arbitrary l ∈ ZD

≥0, and let ξ = (ξjp | p ∈ D, j = 0, . . . , lp)

be a tuple of non-zero complex numbers, β = (βjp | p ∈ D, j = 0, . . . , lp) be a tuple of rational numbers

such that βip < βjp for any p and i < j. Take a star-shaped quiver (I,Ω) with g loops as above, such

that the number of arms is n and the length of the i-th arm is lpi. Then for any I-graded vector space

V , setting (q, θ) ∈ (C×)I ×QI by

θi,j := βjpi − βj−1
pi

, θ0 := −
∑

[i,j]∈I0 θi,j dimVi,j

dimV0
,

qi,j := ξj−1
pi

/ξjpi , q0 :=
∏

i

(ξ0pi)
−1,

there is a natural bijection betweenMℓ
q,θ(V ) and the set of isomorphism classes of β-polystable filtered

local systems (L,F) on (X,D) satisfying:

• rankL = dimV0, rankFj
pi(L) = dimVi,j;

• the local monodromy of Fj
pi(L)/F

j+1
pi (L) around pi is given by the scalar multiplication by ξjpi

for all i, j.

Under this map, a point in Mℓ s
q,θ(V ) corresponds to an isomorphism class of β-stable filtered local

systems.

Theorem 4.15. Let X be a compact Riemann surface with genus g > 0, and let D = {p1, . . . , pn} be
a finite subset of X with cardinality n. Under the same notation and assumptions as in Theorem 4.12,

assume further that n > 1 if g = 1, lp = r − 1 for all p and fixed r > 0, and that α is generic so that

Ms
λ,α(X,D; r) =Mλ,α(X,D; r). Let (I,Ω) be a star-shaped quiver with g loops such that the number

of arms is n and the length of each arm is r − 1, and set q, θ as in Theorem 4.14. Then Simpson’s

Riemann-Hilbert correspondence gives a symplectic biholomorphic map between Mλ,α(X,D; r) and

Mℓ s
q,θ(V ) =Mℓ

q,θ(V ), where V is given by V0 = Cr, Vi,j = Cr−j.

We omit proofs of the above two theorem, since they are almost the same as in the previous two

subsections. Notice only that the fundamental group of a punctured Riemann surface X \D of genus

g > 0 has a presentation

〈α1, β1, . . . , αg, βg, γ1, . . . , γn | α1β1α
−1
1 β−1

1 α2β2α
−1
2 β−1

2 · · ·αgβgα
−1
g β−1

g γ1 · · · γn = 1〉.
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Let us back to the case of an arbitrary quiver and consider similarities betweenMℓ and M. Similar

to Proposition 3.8 we can show the following.

Proposition 4.16. Let 0ℓ ∈ M(V ) denote the point whose component xh is given by xh = 1 for

h ∈ Hℓ and xh = 0 for h ∈ H \Hℓ. Then there are ϕ-saturated open neighborhoods U , U ′ of 0ℓ in

M(V ) and a GV -equivariant biholomorphic map f : U → U ′ such that

f(0ℓ) = 0ℓ, f(Ψ−1
V (1) ∩ U) = µ−1

V (0) ∩ U ′, (f∗ω −̟ℓ)|Ker dΨV
= 0,

where ̟ℓ is the 2-form associated to the quasi-Hamiltonian GV -structure on Mℓ(V ).

Proof. First notice that 0ℓ ∈ Ψ−1
V (1) ∩ µ−1

V (0). The 2-form ̟ℓ on Mℓ(M) is given by

̟ℓ :=
1

2

∑

h∈H\Hℓ

ǫ(h)Tr (1 + xhxh)
−1dxh ∧ dxh

+
1

2

∑

h∈Hℓ

ǫ(h)Tr x−1
h dxh ∧ dxh x−1

h

+
1

2

∑

h∈Ωℓ

Tr [xh, xh]
md(xhxh) ∧ d(x−1

h x−1
h

)

+
1

2

∑

h∈Ωℓ

Tr Ψ−1
h dΨh ∧ d[xh, xh]m [xh, xh]

m

+
1

2

∑

h∈H\Hℓ

Tr Ψ−1
h dΨh ∧ d(1 + xhxh)

ǫ(h)(1 + xhxh)
−ǫ(h),

where

Ψh :=





∏<
h∈Hi∩Ωℓ [xh, xh]

m if h ∈ Ωℓ,
∏<

h∈Hi∩Ωℓ [xh, xh]
m
∏<

h′∈Hi;h′<h(1 + xh′xh′)ǫ(h
′) if h ∈ Hi \Hℓ.

For a loop h ∈ Ωℓ, we have d(xhxh)0ℓ = dxh + dxh = −d(x−1
h x−1

h
)0ℓ . Thus we get

̟ℓ
0ℓ =

1

2

∑

h∈H\Hℓ

ǫ(h)Tr dxh ∧ dxh +
1

2

∑

h∈Hℓ

ǫ(h)Tr dxh ∧ dxh = ω0ℓ .

Moreover we have (dΨV )0ℓ = 0. Hence Lemma 3.9 and the equivariant Darboux theorem imply the

assertion. �

Since 0ℓ is a fixed point for the GV -action and µV (0
ℓ) = 0, applying the equivariant Darboux

theorem again one can find a ϕ-saturated open neighborhood U ′′ of 0 ∈M(V ) and a GV -equivariant

biholomorphic map F : U ′ → U ′′ such that

F (0ℓ) = 0, F ∗ω = ω, µV ◦ F = µV .

Together with the above proposition, we get:

Corollary 4.17. Let Mℓ
θ(V ) = Mℓ

1,θ(V ) and π : Mℓ
θ(V ) → Mℓ

0(V ) denote the natural projective

morphism. Then there exist an open neighborhood U (resp. U ′) of [0ℓ] ∈ Mℓ
0(V ) (resp. [0] ∈M0(V ))
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and a commutative diagram

Mℓ
θ(V ) ⊃π−1(U)

f̃−−−−→ π−1(U ′)⊂Mθ(V )

π

y π

y

U
f−−−−→ U ′

such that:

(i) f([0ℓ]) = [0];

(ii) both f̃ and f are complex analytic isomorphisms;

(iii) f̃ maps π−1(U) ∩Mℓ s
θ (V ) onto π−1(U ′) ∩Ms

θ(V ) as a symplectic biholomorphic map; and

(iv) if x ∈ ϕ−1(U) and y ∈ ϕ−1(U ′) have closed orbits and f([x]) = [y], then the stabilizers of the

two are conjugate. Thus f preserves the orbit-type.

5. Middle convolution

Multiplicative preprojective relation has a certain surprising similarity to preprojective relation.

Let i ∈ I be a loop-free vertex, i.e., there is no h ∈ H such that out(h) = in(h) = i. In this section

we fix such an i ∈ I. Let si : C
I → CI be the reflection defined by si(α) := α − (α, ei)ei. There is a

reflection ri : C
I → CI which is dual to si with respect to the standard inner product:

ri(ζ) := (ζ ′j), ζ ′j = ζj − (ei, ej)ζi.

Then the i-th reflection functor is defined as a certain equivalence between the category of represen-

tations (V, x) of (I,H) satisfying the preprojective relation µV (x) = ζ with a fixed ζ such that ζi 6= 0,

and the category of those (V ′, x′) satisfying the preprojective relation µV ′(x′) = ri(ζ). This func-

tor transforms the dimension vector dimV to dimV ′ = si(dimV ). Crawley-Boevey and Shaw [11]

constructed its multiplicative analogue by generalizing an algebraic formulation of Katz’ middle con-

volution given by Dettweiler-Reiter [13]. In other words, they constructed an equivalence between

the category of the representations (V, x) satisfying the relation ΦV (x) = ζ with a fixed q such that

qi 6= 1, and the category of those (V ′, x′) satisfying ΦV ′(x′) = ui(q), where

ui(q) := (q′j), q′j = qjq
−(ei,ej)
i .

This functor is called the middle convolution functor.

On the other hand, Maffei [27] showed that the reflection functor sends a θ-stable representation

to a ri(θ)-stable representation if dimV 6= ei. Thus the reflection functor induces an isomorphism

Ms
ζ,θ(V ) ≃Ms

ri(ζ),ri(θ)
(V ′),

where V ′ is an I-graded vector space with dimV ′ = si(dimV ). Moreover he proved that the above

isomorphism can be defined in the case of ζi = 0.

In this section we show a multiplicative version of his result.

Theorem 5.1. If dimV 6= ei and si(dimV ) /∈ ZI
≥0, then Ms

q,θ(V ) is empty.

If si(dimV ) ∈ ZI
≥0, take an I-graded vector space V ′ with dimV ′ = si(dimV ). Then there is an

isomorphism of algebraic varieties

Ms
q,θ(V ) ≃Ms

ui(q),ri(θ)
(V ′).
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The proof of the first statement is easy. Indeed if dimV 6= ei andMs
q,θ(V ) 6= ∅, then Proposition 3.7

implies

0 ≥ dim V̂i − dimVi = −(ei,dimV ) + dimVi.

The right hand side is just the coefficient of si(dimV ) in ei, so si(dimV ) ∈ ZI
≥0. Moreover if we

assume further that θi = 0 and qi = 1, then the sequence

0 −−−−→ Vi
σi−−−−→ V̂i

τi−−−−→ Vi −−−−→ 0

is exact at any point inMs
q,θ(V ) by Proposition 3.7 again. The exactness implies that the right hand

side of the previous inequality is equal to dimVi, and hence that si(dimV ) = dimV . Since we have

ri(θ) = θ, ui(q) = q under the assumption, the second statement in the case θi = 0, qi = 1 is clear.

The rest of this section is devoted to the proof of the general case. In fact, all the proofs are very

similar to the case of reflection functor.

5.1. Middle convolution functor. First we rewrite the middle convolution functor in our context.

See [11] for the original definition.

From now on, we assume that si(dimV ) ∈ ZI
≥0. Note that dimV 6= ei under this assumption. For

simplicity, we assume further that Hi ⊂ Ω.

Let us recall the definitions of σi(x) and τi(x):

σi(x) =
∑

ιhxh : Vi → V̂i,

τi(x) =
∑

h∈Hi

Φhxhπh : V̂i → Vi,

where

Φh = Φh(x) =

<∏

h′∈Hi;h′<h

(1 + xh′xh′).

Since i is fixed, we will drop the subscript i; σ = σi, τ = τi.

For a point x ∈ Φ−1
V (q), we define

φh :=
∑

h′∈Hi;h′<h

ιh′x
h′xh +

1

qi

∑

h′∈Hi;h′≥h

ιh′x
h′xh +

1− qi
qi

ιh : Vout(h) → V̂i (h ∈ Hi).

Then one can show that

τφh = 0 for all h ∈ Hi,(8)

and that

∏

h∈Hi

(1 + φhπh) = 1− 1

qi
(qi − 1− στ).(9)

For the proof, see [11].

Now suppose qi 6= 1. The equality τσ = qi−1 implies that τ is surjective. Thus if we set V ′
i := Ker τ

and V ′
j := Vj for j 6= i, then dimV ′

j = si(dimV ).
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Using (8) we define

(10) x′h :=





φh : Vout(h) → V ′
i if h ∈ Hi,

πh|Ker τ : V
′
i → Vin(h) if h ∈ H i,

xh otherwise,

Then (9) implies

Φi(x
′) =

∏

h∈Hi

(1 + x′hx
′
h
) =

1

qi
= q′i.

Moreover for any h ∈ Hi we have

x′
h
x′h = πhφh =

1

qi
xhxh +

1− qi
qi

,

and hence

1 + x′
h
x′h =

1

qi
(1 + xhxh).

Thus we get

Φj(x
′) = q

Aij

i Φj(x) = q′j

for all j 6= i, where Aij is the number of h ∈ H satisfying in(h) = i and out(h) = j.

Thus under the assumption qi 6= 1, we have a map

Si : Φ
−1
V (q)/GV → ΦV ′(q)/GV ′ ; GV · x 7→ GV ′ · x′

between the set-theoretical orbit spaces. This is a set-theoretical definition of the middle convolution

functor.

Crawley-Boevey and Show observed that S2
i = id. We use this map to prove Theorem 5.1 for

the case qi 6= 1 or θi < 0. Note that even if qi = 1, the above definition of x′ for a θ-stable point

x ∈ Φ−1
V (q) with θi ≤ 0 makes sense since τ(x) is still surjective by Proposition 3.7. Thus we have a

map Si :Ms
q,θ(V )→ ΦV ′(q)/GV ′ in the case θi ≤ 0.

5.2. Lusztig’s correspondence. To prove Theorem 5.1, we modify a beautiful formulation of the

reflection functor by Lusztig [26] for the middle convolution.

From now on, we assume that θi ≤ 0 and ǫ(h) > 0 for all h ∈ Hi as in the previous subsection.

Both of the assumption lose no generality by r2i = id and Proposition 3.3. Moreover we exclude the

case θi = 0, qi = 1 as we explained before.

Set q′ := ui(q) and θ′ := ri(θ). Take an I-graded vector space V ′ such that dimV ′ = si(dimV )

and V ′
j = Vj for all j 6= i.

In this section we use the following notation:

M = M(V ),

M′ = M(V ′),

Z = Ms
θ(V ) ∩ Φ−1

V (q),

Z ′ = Ms
θ′(V

′) ∩ Φ−1
V ′ (q

′).

Definition 5.2. Let P be the subvariety of M ×M′ which consists of all pairs (x, x′) ∈ M ×M′

satisfying the following conditions:

(R1) xh = x′h for all h /∈ Hi ∪H i.
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(R2) The sequence

0 −−−−→ V ′
i

σ′

−−−−→ V̂i
τ−−−−→ Vi −−−−→ 0

is exact. Here σ′ = σ(x′).

(R3) στ = qiσ
′τ ′ + qi − 1. Here τ ′ = τ(x′).

(R4) det(1 + xhxh) 6= 0 for all h ∈ H.

(R4’) det(1 + x′hx
′
h
) 6= 0 for all h ∈ H.

(R5) ΦV (x) = q.

(R5’) ΦV ′(x′) = q′.

(R6) x is θ-stable.

(R6’) x′ is θ′-stable.

Let r : P → Z (resp. r′ : P → Z ′) be the map induced from the projection to the first (resp. the

second) factor. P is naturally acted on by the reductive group

G := GL(Vi)×GL(V ′
i )×

∏

j 6=i

GL(Vj),

and r (resp. r′) is equivariant through the projections G→ GV (resp. G→ GV ′). Note that P has a

geometric quotient, because Z × Z ′ has a geometric quotient for the action of GV ×GV ′ and hence

so for the action of its reductive subgroup G, and P is a G-invariant subvariety of Z × Z ′.

The second statement of Theorem 5.1 is deduced from the following fact.

Theorem 5.3. Suppose θi ≤ 0, and qi 6= 1 if θi = 0. Then r and r′ induce isomorphisms

Ms
q,θ(V ) ≃ P/G ≃Ms

q′,θ′(V
′).

We give a proof of this theorem in §5.4. In the next subsection, we give several properties of P , all

of which are needed in §5.4.

5.3. Several lemmas.

Lemma 5.4. Suppose θi ≤ 0, and qi 6= 1 if θi = 0. If a point (x, x′) ∈M×M′ satisfies the conditions

(R1), (R2) and (R3), then

(x, x′) satisfies (R6) ⇐⇒ (x, x′) satisfies (R6’).

Proof. We adapt a beautiful proof of Nakajima [32] for the reflection functor to our case.

First we prove the direction ⇒. Suppose that (R1-3) and (R6). If θi = 0, suppose further that

qi 6= 1.

Let S′ be a x′-invariant subspace of V ′. Then

(11) σ′(S′
i) ⊂ Ŝ′

i, τ ′(Ŝ′
i) ⊂ S′

i.

Set

(12) Sj :=




S′
j for j 6= i,

τ(Ŝ′
i) for j = i.
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Clearly xh(Sout(h)) ⊂ Sin(h) if in(h) 6= i 6= out(h). By (11), we have

σ(Si) = στ(Ŝi)

= qiσ
′τ ′(Ŝi) + (qi − 1)(Ŝi)

⊂ σ′(S′
i) + Ŝi ⊂ Ŝi.

Thus S is x-invariant by Lemma 3.6.

By the θ-stability of x we have

(13) 0 ≥ θ · dimS =
∑

j 6=i

θj dimSj + θi dimSi

and the strict inequality holds unless S = 0 or S = V .

Consider the following complex.

S′
i

σ′

−−−−→ Ŝi
τ−−−−→ Si

The left arrow is injective by (R2) and the right arrow is surjective by the definition of Si. Hence we

have

(14) dimSi ≤
∑

dimSout(h) − dimS′
i.

Noticing θi ≤ 0, we substitute this inequality into (13). Then we get

0 ≥
∑

j 6=i

(θj +Aijθi) dimSj − θi dimS′
i = θ′ · dimS′.

If we have the equality, we must have the equality in (13) which implies S = 0 or S = V . If S = 0,

then S′
j = 0 for j 6= i. Then (11) and the injectivity of σ′ imply S′

i = 0. Thus S′ = 0. We assume

S = V . When θi 6= 0, we must also have the equality in (14). Substituting S = V into it, we obtain

dimS′
i = dimV ′

i . Thus S
′ = V ′. When θi = 0, qi 6= 1 by the assumption. Thus by (R2) and (R3) we

have

0 = στσ′ = qiσ
′τ ′σ′ + (qi − 1)σ′.

By (R2) σ′ is injective, so we have τ ′σ′ = q−1
i −1 6= 0. Thus τ ′ is surjective and hence S′

i ⊃ τ ′(Ŝ′
i) = V ′

i .

Thus S′ = V ′. Hence x′ is θ′-stable.

The proof of the inverse direction ⇐ also can be done similarly. Let S be a x-invariant subspace

of V . Set

S′
j :=




Sj for j 6= i,

(σ′)−1(Ŝi) for j = i.

Then S′ is x′-invariant.

By the θ′-stability of x′ we have

(15) 0 ≥ (θ′,dimS′) =
∑

j 6=i

θ′j dimS′
j + θ′i dimS′

i

and we have the strict inequality unless S′ = 0 or S′ = V ′.

Consider the following complex.

S′
i

σ′

−−−−→ Ŝi
τ−−−−→ Si
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The left arrow is injective by (R2) and its image is equal to the kernel of the right arrow by the

definition of S′
i and (R2). Hence we have

(16) dimS′
i ≥

∑
dimSout(h) − dimSi.

Noticing θ′i ≥ 0, we substitute this inequality into (15). Then we get

0 ≥
∑

j 6=i

(θ′j +Aijθ
′
i) dimSj − θ′i dimSi = (θ,dimS).

If we have the equality, we must have the equality in (15) which implies S′ = 0 or S′ = V ′. If S′ = V ′,

then Sj = Sj for j 6= i. Thus Si ⊃ τ(Ŝi) = Vi by the surjectivity of τ . Hence S = V . We assume

S′ = 0. When θi 6= 0, we must also have the equality in (16). This implies Si = 0, and hence S = 0.

When θi = 0, the conditions (R2), (R3) and the assumption qi 6= 1 implies

0 = τσ′τ ′ = q−1
i τστ + (q−1

i − 1)τ.

By (R2), τ is surjective, so we have τσ = qi− 1 6= 0. Thus σ is injective and hence Si ⊂ σ−1(Ŝi) = 0.

Thus S = 0. Hence x is θ-stable. �

Lemma 5.5. Suppose θi ≥ 0, and qi 6= 1 if θi = 0. If a point (x, x′) ∈M ×M′ satisfies (R1), (R3)

and

(R2’) The sequence

0 −−−−→ Vi
σ−−−−→ V̂i

τ ′−−−−→ V ′
i −−−−→ 0

is exact,

then

(x, x′) satisfies (R6) ⇐⇒ (x, x′) satisfies (R6’).

Proof. The proof is similar to the previous lemma. �

Proposition 5.6. Suppose that qi 6= 1 or θi < 0. For a point x ∈ Z, let x′ be a representative of

Si(GV · x) which is defined by (10). Then (x, x′) ∈ P .

Proof. (R1) is satisfied by the definition of x′. Moreover both (R4’) and (R5’) are satisfied by the

argument before.

To check (R2), first note that

σ′ =
∑

h∈Hi

ιhx
′
h
=

∑

h∈Hi

ιhπh

is equal to the inclusion V ′
i = Ker τ →֒ V̂i. Thus σ

′ is injective and τσ′ = 0. Since τ is surjective and

the Euler number of the complex in (R2) is zero, (x, x′) satisfies (R2).

By (9), we have

τ ′ =
∑

h∈Hi

∏

h′∈Hi;h′<h

(1 + x′h′x′
h′)x

′
hπh

=
∑

h∈Hi

∏

h′∈Hi;h′<h

(1 + φh′πh′)φhπh

=
∏

h∈Hi

(1 + φhπh)− 1

= q−1
i στ + q−1

i (1− qi).
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Thus (R3) is satisfied.

Lemma 5.4 shows that x′ is θ′-stable when θi < 0. So we assume that θi ≥ 0 and qi 6= 1. By (R3)

and the equality τ ′σ′ = q′i − 1, we have

τ ′στ = qiτ
′σ′τ ′ + (qi − 1)τ ′

= qi(q
′
i − 1)τ ′ + (qi − 1)τ ′ = 0.

Since τ is surjective, the above implies τ ′σ = 0. Note that τ ′ is surjective and σ is injective by the

equalities τ ′σ′ = q′i − 1 and τσ = qi − 1. Hence the sequence

0 −−−−→ Vi
σ−−−−→ V̂i

τ ′−−−−→ V ′
i −−−−→ 0

is exact. Thus x′ is θ′-stable by Lemma 5.5. �

Proposition 5.7. Suppose qi 6= 1 or θ′i < 0. For a point x ∈ Z ′, let x′ be a representative of

Si(GV ′ · x). Then (x′, x) ∈ P .

Proof. The proof is similar. �

5.4. Proof of the main theorem. In this subsection we prove Theorem 5.3. First consider the

case qi 6= 1.

Proof of Theorem 5.3 for the case qi 6= 1. r : P → Z is surjective by Proposition 5.6. Let x0 ∈ Z. We

construct a section of r over a neighborhood of x0.

Take an identification V̂i ≃ Vi ⊕ V ′
i such that the first projection coincides with τ(x0). Set

Z0 = {x ∈ Z | τ(x)|Vi
: Vi → Vi is an isomorphism }.

Then Z0 is a neighborhood of x0, and for any x ∈ Z,

α :=

[
−(τ(x)|Vi

)−1τ(x)|V ′
i

1

]
: Vi → Ker τ(x)

is an isomorphism. We choose it for the identification Vi ≃ Ker τ(x) to define the point x′ ∈ Z ′, i.e.,

we define

x′h := α−1φh : V
′
out(h) → V ′

i , x′
h
:= πhα : V

′
i → V ′

out(h) for h ∈ Hi,

and define xh for h /∈ Hi ∪H i by the condition (R1). Then x 7→ x′ defines a section of r over Z0.

Since r has a local section, the induced morphism P/G→ Z/GV is an isomorphism. The proof for

r′ is similar (use Proposition 5.7 instead of Proposition 5.6). �

In the rest of this subsection we assume that qi = 1 and θi < 0.

Lemma 5.8. If a pair (x, x′) ∈M×M′ satisfies the conditions (R1), (R2) and (R3), then

(x, x′) satisfies (R4) ⇐⇒ (x, x′) satisfies (R4’).

And under these assumptions, the equality xhxh = x′
h
x′h holds for all h ∈ Hi.
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Proof. Let Hi = {h1 < h2 < · · · < hn }. By (R3),

xh1
xh1

= πh1
στιh1

= πh1
σ′τ ′ιh1

= x′
h1
x′h1

,

and

det(1 + x′h1
x′
h1
) = det(1 + x′

h1
x′h1

) = det(1 + xh1
xh1

) = det(1 + xh1
xh1

).

Set R1 = ιh1
πh1

στ . Then

xh1
xh1

τ = τιh1
πh1

στ = τR1,

and also

x′h1
x′
h1
τ ′ = τ ′ιh1

πh1
σ′τ ′ = τ ′R1.

by (R3). Suppose now that (x, x′) satisfies (R4). Since det(1 + R1) = det(1 + πh1
στιh1

) = det(1 +

xh1
xh1

) 6= 0, (1 +R1) is invertible and hence

xh2
xh2

= πh2
σ(1 + xh1

xh1
)−1τιh2

= πh2
στ(1 +R1)

−1ιh2

= πh2
σ′τ ′(1 +R1)

−1ιh2

= πh2
σ′(1 + x′h1

x′
h1
)−1τ ′ιh2

= x′
h2
x′h2

.

Next we define

R2 = (1 +R1)
−1ιh2

πh2
στ.

Then

det(1 +R2) = det(1 + ιh2
πh2

στ(1 +R1)
−1)

= det(1 + ιh2
πh2

σ(1 + xh1
xh1

)−1τ)

= det(1 + xh2
xh2

) 6= 0,

and

xh2
xh2

τ = (1 + xh1
xh1

)−1τιh2
πh2

στ

= τ(1 +R1)
−1ιh2

πh2
στ = τR2,

x′h2
x′
h2
τ ′ = (1 + x′h1

x′
h1
)−1τ ′ιh2

πh2
σ′τ ′

= τ ′(1 +R1)
−1ιh2

πh2
σ′τ ′ = τ ′R2.

By induction, one can easily show that

Rk := (1 +Rk−1)
−1 · · · (1 +R2)

−1(1 +R1)
−1ιhk

πhk
στ

is well-defined and

det(1 +Rk) = det(1 + xhk
xhk

),

xhk
xhk

τ = τRk,

x′hk
x′
hk
τ ′ = τ ′Rk
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for 1 ≤ k ≤ n. Hence for 1 ≤ k ≤ n,

xhk
xhk

= πhk
σ(1 + xhk−1

xhk−1
)−1 · · · (1 + xh1

xh1
)−1τιhk

= πhk
στ(1 +Rk−1)

−1 · · · (1 +R1)
−1ιhk

= πhk
σ′τ ′(1 +Rk−1)

−1 · · · (1 +R1)
−1ιhk

= πhk
σ′(1 + x′hk−1

x′
hk−1

)−1 · · · (1 + x′h1
x′
h1
)−1τ ′ιhk

= x′
hk
x′hk

.

The proof of the inverse direction (R4’)⇒ (R4) can be done similarly, so we omit it. �

Lemma 5.9. If a pair (x, x′) satisfies (R1), (R2) and (R3), then

(x, x′) satisfies (R4) and (R5) ⇐⇒ (x, x′) satisfies (R4’) and (R5’).

Proof. Under the conditions (R1), (R2), (R3) and (R4) (or (R4’)), the above lemma implies that

Φj(x) = Φj(x
′) for all j 6= i. Since qj = q′j for j 6= i, the result follows. �

Proof of Theorem 5.3 for the case qi = 1 and θi < 0. The proof for r is the same that in the case

qi 6= 1. To prove that r′ is a geometric quotient, we will construct locally a section of r′, as in the

other case.

Let x′ ∈ Z ′. By Proposition 3.7 and θ′i > 0, σ′ is injective. Thus we can identify Vi with V̂i/ Im σ′.

Let p be the projection V̂i → Vi. Since τ
′σ′ = 0, τ ′ descends to a linear map τ ′ : Vi → V ′

i . We define

xh = x′
h
τ ′ : Vi → Vout(h), xh = Φ−1

h pιh : Vout(h) → Vi

for h ∈ Hi. Here we use induction to define xh.

We define xh for h /∈ Hi ∪H i by the condition (R1). Then

σ = σ′τ ′, τ = p.

Thus στ = σ′τ ′p = σ′τ ′ and τσ′ = pσ′ = 0. Clearly τ is surjective, so (R2) is satisfied. By Lemma 5.4

and Lemma 5.9, the pair of x and x′ is an element of P .

The definition of x depends on the identification Vi ≃ V̂i/ Im σ′, but we can choose it locally to

be regular in the variable x′, as in the case of r. Thus the induced morphism P/G → Z ′/GV ′ is an

isomorphism. �

6. Representations of Kac-Moody algebra

In [29], Nakajima constructed all irreducible highest weight representations of a Kac-Moody Lie

algebra using the vector spaces of constructible functions on the nilpotent subvarieties of the quiver

varieties. In this section we observe that the same method can be applied to the case of the multi-

plicative quiver varieties.

6.1. Notation. Suppose that the following data are given:

• P — a free Z-module, called a weight lattice.

• I — an index set of simple roots.

• αi ∈ P (i ∈ I) — simple root,

• hi ∈ P ∗ := HomZ(P,Z) (i ∈ I) — simple coroot.
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• ( , ) — a symmetric bilinear form on P .

These are required to satisfy:

(i) 〈hi, λ〉 = 2(αi, λ)/(αi, αi) for i ∈ I and λ ∈ P ; where 〈 , 〉 : P ∗⊗P → Z is the natural pairing;

(ii) cij := 〈hi, αj〉 forms a generalized Cartan matrix, i.e., cii = 2, cij ∈ Z≤0 (i 6= j) and cij = 0⇔
cji = 0;

(iii) (αi, αi) ∈ 2Z>0;

(iv) {αi}i∈I is linearly independent; and

(v) there exists Λi ∈ P (i ∈ I), called the fundamental weight, such that 〈hj ,Λi〉 = δij .

Such data are so-called root data, to which one associates a Kac-Moody Lie algebra g (see e.g.

[19]). Let U be the universal enveloping algebra of g. Recall the defining relations of it:

[h, h′] = 0 for h, h′ ∈ P ∗,(17)

[h, ei] = 〈h, αi〉ei,(18)

[h, fi] = −〈h, αi〉fi,(19)

[ei, fj] = δijhi,(20)

1−cij∑

n=0

(−1)n
(
1− cij
n

)
eni eje

1−cij−n

i = 0 (i 6= j),(21)

1−cij∑

n=0

(−1)n
(
1− cij
n

)
fni fjf

1−cij−n

i = 0 (i 6= j).(22)

We also use the following symbols:

• P+ := {λ ∈ P | 〈hi, λ〉 ≥ 0 for any i ∈ I} (the semigroup of dominant weights),

• Q :=
⊕

i Zαi ⊂ P (root lattice),

• Q+ :=
∑

i Z≥0αi ⊂ Q.

Let (I,E) be the graph associated to C, i.e., the graph whose vertex set is I and edge set E is

given by 2I −A = C, where I is the identity matrix and A is a matrix whose (i, j) entry is just the

number of edges joining i and j. Let (I,Ω) be a quiver whose underlying graph is (I,E).

6.2. Framed multiplicative quiver variety. For v ∈ Q+ andw ∈ P+, we define a varietyM(v,w)

which is a multiplicative analogue of the Nakajima quiver variety M(v,w).

Following Crawley-Boevey (see [7, Introduction]), we associate to (I,Ω) and w another quiver

(Ĩ , Ω̃) by setting Ĩ := I ∪ {∞} and letting Ω̃ be the set obtained by adding wi arrows starting at ∞
toward i for each i ∈ I to Ω, where wi := 〈hi,w〉.

Take an I-graded vector space V such that
∑

i(dimVi)αi = v. To such V , we associate an Ĩ-

graded vector space Ṽ by Ṽi := Vi and Ṽ∞ := C. To a pair (q, θ) ∈ (C×)I × ZI , we associate a pair

(q̃, θ̃) ∈ (C×)Ĩ × ZĨ by

q̃i := qi, q̃∞ :=
∏

i

q−dimVi

i ,

θ̃i := θi, θ̃∞ := −
∑

i

θi dimVi.
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We define an I-graded vector spaceW byWi := Cwi . Then the vector spaceM(Ṽ ) can be identified

with

M(V,W ) := M(V )⊕
⊕

i∈I
Hom(Wi, Vi)⊕

⊕

i∈I
Hom(Wi, Vi).

For an element x inM(V,W ), we usually denote its three components by B = (Bh) , a = (ai), b = (bi).

The multiplicative preprojective relation Φi(x) = qi at i ∈ I becomes

(1 + ai,1bi,1) · · · (1 + ai,wi
bi,wi

)
∏

i∈I
(1 +BhBh)

ǫ(h) = qi,

where

ai =
[
ai,1 ai,2 · · · ai,wi

]
: Cwi → Vi, bi =




bi,1

bi,2
...

bi,wi



: Vi → Cwi .

The following can be checked easily.

Proposition 6.1. A point x = (B, a, b) ∈ M(V,W ) is θ̃-semistable if and only if the following

conditions are satisfied:

(i) For any B-invariant subspace S ⊂ V contained in Ker b :=
⊕

Ker bi, the inequality θ ·dimS ≤
0 holds.

(ii) For any B-invariant subspace T ⊂ V containing Im a :=
⊕

Im ai, the inequality θ · dimT ≤
θ · dimV holds.

x is θ̃-stable if and only if the strict inequalities hold in (i), (ii) unless S = 0, T = V respectively.

For a subspace S ⊂ V we usually identify dimS ∈ ZI
≥0 with

∑
i(dimSi)αi ∈ Q+.

We define

Mq,θ(v,w) :=M
q̃,θ̃

(Ṽ ), Ms
q,θ(v,w) :=Ms

q̃,θ̃
(Ṽ ),

both of which we call the framed multiplicative quiver varieties. One can easily check that the

dimension ofMs
q,θ(v,w) can be written as

dimMs
q,θ(v,w) = 〈v∨, 2w − v〉,

where v∨ :=
∑

i(dimVi)hi.

6.3. Brill-Noether locus, Steinberg variety and Hecke correspondence. In this subsection,

we assume that:

(i) h < h′ for all h ∈ Ω, h′ ∈ Ω; and

(ii) qi = 1 and θi > 0 for all i.

Note that the stability condition for (B, a, b) ∈ Φ−1(1) then becomes

• If a subspace S ⊂ V is B-invariant and contained in Ker b, then S = 0,

and the semistability coincides with the stability. We write

Ms(V,W ) = Ms
θ(Ṽ ), Zs(V,W ) = Φ−1(1) ∩Ms(V,W ),

and

M(v,w) =M1,θ(v,w), M0(v,w) =M1,0(v,w).



42 DAISUKE YAMAKAWA

Also we writeMs
0(v,w) =Ms

1,0(v,w).

The purpose of this section is to show that all the results proved by Nakajima in [30, §4] can be

shown analogously in the multiplicative case, and that we can define the multiplicative version of

Hecke correspondence of quiver varieties.

Since the projection Zs(V,W )→M(v,w) is a principal GV -bundle and each Vi,Wi are represen-

tation spaces of GV , we can define associated vector bundles

Vi = Zs(V,W )×GV
Vi, Wi = Zs(V,W )×GV

Wi.

We call these the tautological bundles.

Consider the following sequence of vector bundles:

C•
i (v,w) : Vi σi−−−−→ ⊕

h∈Hi
Vout(h) ⊕Wi

τi−−−−→ Vi ,

where we have assigned the degree 0 to the middle term. C•
i (v,w) is a complex by the multiplicative

preprojective relation, and the degree (-1) cohomology vanishes by Proposition 3.7. Let Qi(v,w)

denote the degree 0 cohomology; Qi(v,w) := H0(C
•
i (v,w)) = Ker τi/ Imσi.

We introduce the following subset ofM(v,w):

Mi;n(v,w) := { [B, a, b] ∈ M(v,w) | corank τi(B, a, b) = n } ,

Mi;≤n(v,w) :=
⋃

m≤n

Mi;m(v,w).

SinceMi;≤n(v,w) is an open subvariety ofM(v,w),Mi;n(v,w) is a locally closed subvariety. The

restriction Qi;n(v,w) := Qi(v,w)|Mi;n(v,w) is a vector bundle of rank 〈hi,w − v〉+ n. Mi;n(v,w) is

a multiplicative analogue of the Brill-Noether locus of the quiver variety.

Replacing Vi to Im τi, we have a natural morphism

p :Mi;n(v,w)→Mi;0(v − nαi,w).

Similar to [30, Proposition 4.5], we have:

Proposition 6.2. Let G(n,Qi;0(v−nαi,w)) be the Grassmann bundle of n-planes in Qi;0(v−nαi,w).

Then we have the following commutative diagram:

G(n,Qi;0(v − nαi,w))
projection−−−−−−→ Mi;0(v − nαi,w)

y≃
∥∥∥

Mi;n(v,w)
p−−−−→ Mi;0(v − nαi,w) .

The kernel of the natural surjective homomorphism p∗Qi;0(v − nαi,w) → Qi;n(v,w) is isomorphic

to the tautological vector bundle of G(n,Qi;0(v − nαi,w)) via the isomorphism of the first row. In

particular,

dimMi;n(v,w) = dimMi;0(v − nαi,w) + n (〈hi,w − v〉+ n)

= dimM(v,w) − n (〈hi,w − v〉+ n) .

Proof. The proof is almost the same as [30, Proposition 4.5].

The vector bundle p∗Qi;0(v − nαi,w) is given by Ker τi/σi(Im τi). Considering the natural sur-

jection Ker τi/σi(Im τi) → Ker τi/ Imσi, we have a surjective homomorphism p∗Qi;0(v − nαi,w) →
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Qi;n(v,w). Its kernel Imσi/σi(Im τi) ≃ Vi/ Im τi has a constant rank n. Thus we get a morphism

fromMi;n(v,w) to the Grassmann bundle.

Conversely suppose that a point φ in the Grassmann bundle is given. Take a subspace V ′ ⊂ V such

that dimV ′ = v − nαi. Let (B′, a′, b′) ∈ Zs(V ′,W ) be a representative of the image of φ under the

projection, and σ′i, τ
′
i denote σi(B

′, a′, b′), τi(B′, a′, b′) respectively. Take an injective homomorphism

σi : Vi → V̂i ⊕Wi such that σi|V ′
i
= σ′i and Imσi/ Imσ′i = φ. Now we define

Bh := B′
h for h /∈ Hi ∪Hi,

aj := a′j, bj := b′j for j 6= i,

Bh := B′
h : Vout(h) → V ′

i →֒ Vi for h ∈ Hi,

ai := a′i : Wi → V ′
i →֒ Vi,

and define bi and Bh for h ∈ Hi by the condition σi(B, a, b) = σi. Since σi|V ′
i
= σ′i, one can prove

inductively that bi|V ′
i
= b′i and Bh|V ′

i
= B′

h
for h ∈ Hi. Thus τi = τ ′i and hence

Imσi/σi(Im τi) = Imσi/ Imσ′i = φ.

By definition we have τiσi = 0, which implies Φi(B, a, b) = 1. Moreover bi|V ′
i
= b′i and Bh|V ′

i
= B′

h

implies biai = b′ia
′
i and BhBh = B′

h
B′

h, and hence Φj(B, a, b) = 1 for all j 6= i. Thus (B, a, b) ∈ Φ−1(1).

To check the stability condition, suppose that there is a B-invariant subspace S contained in Ker b.

We define a subspace S′ ⊂ V ′ by

S′
j =




Sj if j 6= i,

Si ∩ Im τ ′i = Si ∩ Im τi if j = i.

Then one can easily check that S′ is B′-invariant and contained in Ker b′ using Lemma 3.6. Thus

S′ = 0 by the stability condition for (B′, a′, b′). In particular Sj = 0 for j 6= i, which implies

σi(Si) = 0. Since we have taken σi to be injective, Si must be zero. Thus (B, a, b) is stable. Taking

a quotient by the GV -action we obtain a morphism from the Grassmann bundle toMi;n(v,w). It is

the inverse of the previous morphism.

To prove the last equality we compute that

dimM(v,w) − dimM(v − nαi,w) = 〈v∨, 2w − v〉 − 〈v∨ − nhi, 2w − v+ nαi〉
= 2n (〈hi,w − v〉+ n) .

�

Let v1,v2 ∈ Q+ and w ∈ P+. Let π :M(vi,w) →M0(v
i,w) (i = 1, 2) be the projection. Recall

that M0(v
i,w) is naturally embedded in M0(v

1 + v2,w) by Proposition 2.7. Thus we can regard

π’s as maps toM0(v
1 + v2,w). Following Nakajima [30], we define

S(v1,v2;w) :=
{
(x1, x2) ∈ M(v1,w)×M(v2,w)

∣∣ π(x1) = π(x2)
}

=M(v1,w)×M0(v1+v2,w)M(v2,w),

which is an analogue of the Steinberg variety.
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Definition 6.3. For n ∈ Z>0 and v ∈ Q+, the Hecke correspondence P(n)
i (v,w) is the variety defined

as

P(n)
i (v,w) :=

{
(B, a, b, S)

(B, a, b) ∈ Zs(V,W ), S ⊂ V,
S is B-invariant, Ima ⊂ S and dimS = v− nαi

}
/GV .

We denote Pi(v,w) = P(1)
i (v,w).

We have the following diagram:

(23) M(v − nαi,w)
p1←− P(n)

i (v,w)
p2−→M(v,w).

The first map is given by the restriction of (B, a, b) to S, and the second is given by forgetting S (It

is clear that (B, a, b)|S ∈ Zs(S,W )).

Note that p1× p2 : P(n)
i (v,w)→M(v−nαi,w)×M(v,w) is an embedding whose image consists

of all pairs ([B′′, a′′, b′′], [B, a, b]) such that there exists ξ ∈⊕
i∈I Hom(V ′′

i , Vi) satisfying

ξB′′ = Bξ, ξa′′ = a, b′′ = bξ.

Here we fix an I-graded vector space V ′′ such that
∑

(dimV ′′
i )αi = v−v′. Indeed, if such a ξ exists,

then Ker ξ is zero by the stability condition and Im ξ is B-invariant and contains Im a. Moreover ξ is

unique if we fix representatives (B′′, a′′, b′′), (B, a, b). Thus the point [(B, a, b), Im ξ] ∈ P(n)
i (v,w) is

well-defined.

It is clear that this subvariety is contained in S(v− nαi,v;w). So we may regard P(n)
i (v,w) as a

subvariety of S(v − nαi,v;w).

Similar to [30, Lemma 5.12], we can prove the following.

Proposition 6.4. Consider the diagram (23) with n = 1.

(i) p−1
1 (Mi;n(v − αi,w)) can be identified with the projective bundle P (Qi;n(v − αi,w)).

(ii) p−1
2 (Mi;n(v,w)) can be identified with the projective bundle P

(
H1(C

•
i (v,w))∗|Mi;n(v,w)

)
.

Proof. The proof is similar to Proposition 6.2 �

6.4. Constructible functions. Let X be an algebraic variety. A Q-valued constructible function

on X is a function f : X → Q such that f(X) is finite and f−1(a) is constructible for all a ∈ Q. Let

CF(X) be the Q-vector space consisting of all Q-valued constructible functions on X. If Y ⊂ X is a

subvariety, we regard CF(Y ) as a subspace of CF(X) by extending with zero on the complement. A

typical example of constructible functions is the characteristic function [A] of a constructible subset

A ⊂ X;

[A](x) :=




1 if x ∈ A,
0 otherwise,

and by the definition any constructible functions can be written as a linear combination of charac-

teristic functions.

Any morphism p : X → Y induces the pull-back and the push-forward between the vector spaces of

constructible functions:

p∗ : CF(Y )→ CF(X); (p∗g)(x) := g(p(x)),

p! : CF(X)→ CF(Y ); (p!f)(y) :=
∑

c∈Q
c χ(p−1(y) ∩ f−1(c)),
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where χ denotes the Euler characteristic. Regarding χ as a “measure” of constructible subsets, p! is

also written as

(p!f)(y) =

∫

x∈p−1(y)
f(x).

LetM1,M2,M3 be three varieties and pij : M1×M2×M3 →Mi×Mj (i, j = 1, 2, 3) be the projection

to the i-th and j-th factors. For f ∈ CF(M1 ×M2) and f
′ ∈ CF(M2 ×M3), the convolution product

f ∗ f ′ of f and f ′ is defined by

f ∗ f ′ := (p13)!(p
∗
12(f)p

∗
23(f

′)) ∈ CF(M1 ×M3).

Note that it can be written as

(f ∗ f ′)(x1, x3) =
∫

x2∈M2

f(x1, x2)f
′(x2, x3).

It is easy to see that the convolution product is associative.

Suppose there are morphisms pi : Mi →M0 (i = 1, 2, 3) to some variety M0. Then it is clear that

if f ∈ CF(M1 ×M0
M2) and f

′ ∈ CF(M2 ×M0
M3), then f ∗ f ′ ∈ CF(M1 ×M0

M3), i.e., the support

of f ∗ f ′ is contained in M1 ×M0
M3.

6.5. A geometric construction of the universal enveloping algebra. LetA(w) be the subspace

of the direct product ∏

v1,v2

CF(S(v1,v2;w))

consisting of all elements (Fv1,v2) such that the following two conditions are satisfied:

(i) For fixed v1, Fv1,v2 = 0 for all but finitely many v2.

(ii) For fixed v2, Fv1,v2 = 0 for all but finitely many v1.

By the convolution product, it is an associative algebra with 1 =
∑

v
[∆(v,w)], where ∆(v,w) denotes

the diagonal subset ofM(v,w) ×M(v,w).

Let (•)† :M(v−αi,w)×M(v,w)→M(v,w)×M(v−αi,w) be the flip of the components. The

main theorem in this section is the following:

Theorem 6.5 (cf. [30, Theorem 9.4]). There is an algebra homomorphism U→ A(w) such that

h 7→
∑

v

〈h,w − v〉 · [∆(v,w)], ei 7→
∑

v2

[Pi(v2,w)], fi 7→
∑

v2

[Pi(v2,w)†].

The relations (17), (18), (19) are obviously satisfied. We check the relations (20) and (21), (22) by

the same method as in [29, 30].

6.6. The relation [ei, fj] = δijhi. In this subsection we check the relation [ei, fj ] = δijhi. Fix

v ∈ Q+ and consider the following diagram:

M(v − αi,w) ←−−−− S(v − αi,v;w)
y

M(v,w) ←−−−− S(v,v − αj ;w)
y

M(v − αj ,w),
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where the arrows are the natural morphisms. Set v1 := v − αi, v2 := v, v3 := v − αj and let

S(v1,v2,v3;w) be the fiber product of S(v1,v2;w) and S(v2,v3;w) over M(v2,w). Then the

above diagram induces the natural morphisms

M(vi,w)
pi←− S(v1,v2,v3;w)

pj−→M(vj ,w)

for i, j = 1, 2, 3. We set pij := pi × pj : S(v1,v2,v3;w) → M(vi,w) × M(vj ,w). Then eifj is

described as

eifj =
∑

v2

(p13)!

(
p∗12[Pi(v2,w)]p∗23[Pj(v2,w)†]

)

=
∑

v2

(p13)!

[
p−1
12 (Pi(v2,w)) ∩ p−1

23 (Pj(v2,w)†)
]
.

Next consider the following diagram:

M(v − αi,w) ←−−−− S(v − αi,v − αj − αi;w)
y

M(v − αj − αi,w) ←−−−− S(v − αj − αi,v − αj;w)
y

M(v − αj,w).

Set v4 := v − αj − αi, and define S(v1,v4,v3) and qij : S(v1,v4,v3) → M(vi,w) ×M(vj ,w) as

above. Then fjei is described as

fjei =
∑

v4

(q13)!

(
q∗14[Pj(v1,w)†]q∗43[Pi(v3,w)])

)

=
∑

v4

(q13)!

[
q−1
14 (Pj(v1,w)†) ∩ q−1

43 (Pi(v3,w))
]
.

The following lemma can be proved by the same way as [30, Lemma 9.10].

Lemma 6.6. Let U ⊂ M(v1,w) ×M(v3,w) denotes the outside of the diagonal when i = j, and

the whole set otherwise. Then there is an isomorphism

Π: p−1
13 (U) ∩ p−1

12 (Pi(v2,w)) ∩ p−1
23 (Pj(v2,w)†) −→ q−1

13 (U) ∩ q−1
14 (Pj(v1,w)†) ∩ q−1

43 (Pi(v3,w))

such that q13 ◦Π = p13.

Thus eifj − fjei = 0 if i 6= j, and the support of eifi − fiei is contained in ⊔v∆(v,w). So it is

sufficient to prove

(eifi − fiei)(x, x) = 〈hi,w − v〉

for all x ∈ M(v,w).

Suppose that x ∈ Mi;n(v,w). Then using Proposition 6.4 we compute

χ
(
p−1
13 (x, x) ∩ p−1

12 (Pi(v,w)) ∩ p−1
23 (Pj(v,w)†)

)
= χ (P (Qi,n(v − αi,w)|x))

= 〈hi,w − v〉+ r + 1.
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Similarly,

χ
(
q13

−1(x, x) ∩ q−1
14 (Pj(v − αi,w)†) ∩ q−1

43 (Pi(v − αi,w))
)
= χ (P (H1(C

•
i (v − αi,w))|x))

= r + 1.

Thus

(eifi − fiei)(x, x) = 〈hi,w − v〉 + r + 1− (r + 1) = 〈hi,w − v〉.

6.7. The Serre relations. In this subsection we check the relations (21) and (22).

Fix vertices i, j with i 6= j, and set N := −cij. For n = 0, 1, . . . , N +1, let Pn be the fiber product

P(N+1−n)
j (v − nαj − αi,w)×M(v−nαj−αi,w) Pi(v − nαj,w)×M(v−nαj ,w) P(n)

j (v,w).

Consider the variety consisting of all tuples (B, a, b, S1, S2, S3), where (B, a, b) ∈ Zs(V,W ) and each

Sk is B-invariant subspace of V such that

S1 ⊃ S2 ⊃ S3 ⊃ Im a, and

dimS1 = v− nαi, dimS2 = v − nαj − αi, dimS3 = v− (N + 1)αj − αi.

Then the quotient of it by the GV -action is naturally isomorphic to Pn.

Set

P :=

{
(B, a, b, S)

(B, a, b) ∈ Zs(V,W ), S ⊂ V,
S is B-invariant, Im a ⊂ S and dimS = v − αi − (N + 1)αj

}
/GV .

It is a subvariety of S(v−αi− (N +1)αj ,v;w), and we have a natural morphism rn : Pn → P which

sends [(B, a, b, S1, S2, S3)] to [(B, a, b, S3)].

Lemma 6.7. We have

eN+1−n
j eie

n
j [∆(v,w)] = fnj fif

N+1−n
j [∆(v,w)] = (N + 1− n)!n!(rn)![Pn][∆(v,w)].

Proof. Consider the variety consisting of all tuples (B, a, b, {Sk}nk=1), where (B, a, b) ∈ Zs(V,W ) and

each Sk is a B-invariant subspace of V such that

S1 ⊃ S2 ⊃ · · · ⊃ Sn ⊃ Im a, and

dimSk = v − kαi.

Let Pn
i (v,w) be the quotient of it modulo GV -action. Then eN+1−n

j eie
n
j [∆(v,w)] is given by the

push-forward of

[PN+1−n
j (v − nαj − αi,w)] ∗ [Pi(v − nαj ,w)] ∗ [Pn

j (v,w)]

by the obvious morphism.

Let πn : Pn
i (v,w)→ P(n)

i (v,w) be the morphism [(B, a, b, S1, . . . , Sn)] 7→ [(B, a, b, Sn)]. Then the

fiber of πn is isomorphic to the full flag variety of n-dimensional vector space, and hence its Euler

characteristic is just n!. Thus

(πn)![Pn
i (v,w)] = n![P(n)

i (v,w)].

This proves the assertion. �
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By the above lemma, it is enough to show that

N+1∑

n=0

(−1)nχ(r−1
n (x)) = 0 for any x ∈ P(v,w;αi + (N + 1)αj).

Take a representative (B, a, b, S) of x.

Recall the complex

Vj
σj−−−−→ V̂j ⊕Wj

τj−−−−→ Vj .

For k ∈ I with k 6= j, let σkj be the projection of σj to
⊕

h∈Hj ;out(h)=k Vk, and τ
k
j be the restriction

of τj on
⊕

h∈Hj ;out(h)=k Vk ⊂ V̂j . Similarly, let σWj be the projection of σj to Wj and τWj be the

restriction of τj on Wj .

Lemma 6.8. Define T1 := Sj + Im τ ij and T2 := (σij)
−1(S⊕N

i ). Then the fiber r−1
n (x) is isomorphic

to the variety consisting of all codimension n subspaces T ⊂ Vj such that T1 ⊂ T ⊂ T2.

Proof. For given (B, a, b, S1, S2, S3) ∈ r−1
n (x), we set T := S1

j = S2
j . Since S

1, S2 are B-invariant and

Vi = S1
i , T1 ⊂ T ⊂ T2 is clearly satisfied.

Conversely suppose that a codimension n subspace T ⊂ Vj with T1 ⊂ T ⊂ T2 is given. Then we

set

S3 := S, S2
k :=




T if k = j,

Sk if k 6= j,
S1
k :=




T if k = j,

Vk if k 6= j.

T1 ⊂ T implies S3 = S ⊂ S2. We prove that S1, S2 are B-invariant. Since S2
k = Sk for k 6= j and

S1
k = S2

k for k 6= i, it is enough to show that

σj(S
2
j ) ⊂ Ŝj ⊕Wj, Im τj ⊂ S1

j

by Lemma 3.6. T ⊂ T2 implies σij(S
2
j ) ⊂ S⊕N

i , and S2
k = Vk for k 6= i, j implies σkj (S

2
j ) ⊂ S

⊕−ckj
k .

Thus σj(S
2
j ) ⊂ Ŝj ⊕Wj. Also, Im τkj ⊂ S1

j for k 6= i, j follows from Vk = Sk and Sj ⊂ S1
j , and T1 ⊂ T

implies Im τ ij ⊂ S1
j . Moreover Im a ⊂ S ⊂ S1 implies Im τWj ⊂ S1

j . So we get τj(Ŝ1
j ⊕Wj) ⊂ S1

j .

We complete the proof. �

Lemma 6.9. T1 6= T2.

Proof. Note that τ ijσ
i
j = −τWj σWj −

∑
k 6=i,j τ

k
j σ

k
j , and hence

Im τ ijσ
i
j = Im τWj +

∑

k 6=i,j

τkj σ
k
j (Vj) ⊂ Sj +

∑

k 6=i,j

τkj

(
V

⊕−ckj
k

)
= Sj +

∑

k 6=i,j

τkj

(
S
⊕−ckj
k

)
⊂ Sj.

So by the definitions of T1, T2 we have a complex

0 −−−−→ Vj/T2
σi
j−−−−→ (Vi/Si)

⊕N
τ ij−−−−→ T1/Sj −−−−→ 0 ,

which is exact except possibly at the middle term. Hence we have dimVj/T2 ≤ N − dimT1/S
3
j , and

hence

dimT2 − dimT1 ≥ dimVj − dimS3
j −N = 1.

Thus T1 6= T2. �
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Set di := codimTi (i = 1, 2). Then the fiber r−1
n (x) is empty unless T1 ⊂ T2 and d1 ≤ n ≤ d2,

in which case r−1
n (x) is a Grassmannian manifold of (d1 − n)-dimensional subspaces in a (d1 − d2)-

dimensional space. Thus

N+1∑

n=0

(−1)nχ(r−1
n (x)) =

d1∑

n=d2

(−1)n
(
d1 − d2
d1 − n

)
= 0.

We complete the proof.

6.8. Construction of irreducible highest weight representations. Let L(v,w) denote the

nilpotent subvariety π−1([0]) ⊂ M(v,w). The vector space
⊕

v
CF(L(v,w)) becomes a representa-

tion space of the algebra A(w) by the following way:

(F ∗ f)(x1) :=
∫

x2∈L(v2,w)
F (x1, x2)f(x2) for F ∈ CF(S(v1,v2;w)), f ∈ CF(L(v2,w)).

Note thatM(0,w) (and hence L(0,w)) consists of a single point. Set

L(w) := U− · [L(0,w)] ⊂
⊕

v

CF(L(v,w)), L(v,w) := CF(L(v,w)) ∩ L(w).

By the same way as [29, Lemma 10.13], one can easily show that fwi+1
i [L(0,w)] = 0 for all i ∈ I,

where wi = 〈w, hi〉. Thus we get the following corollary:

Corollary 6.10 (cf. [29, Theorem 10.14]). L(w) is the irreducible highest weight integrable g-module

with the highest weight w, and L(v,w) is the (w − v)-weight space of L(w).
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