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GROUPOID EXTENSIONS OF MAPPING CLASS
REPRESENTATIONS FOR BORDERED SURFACES

JØRGEN ELLEGAARD ANDERSEN, ALEX JAMES BENE,
AND R. C. PENNER

Abstract. The mapping class group of a surface with one bound-
ary component admits numerous interesting representations in-
cluding as a group of automorphisms of a free group and as a
group of symplectic transformations. Insofar as the mapping class
group can be identified with the fundamental group of Riemann’s
moduli space, it is furthermore identified with a subgroup of the
fundamental path groupoid upon choosing a basepoint. A com-
binatorial model for this, the mapping class groupoid, arises from
the invariant cell decomposition of Teichmüller space, whose funda-
mental path groupoid is called the Ptolemy groupoid. It is natural
to try to extend representations of the mapping class group to the
mapping class groupoid, i.e., construct a homomorphism from the
mapping class groupoid to the same target that extends the given
representations arising from various choices of basepoint.

Among others, we extend both aforementioned representations
to the groupoid level in this sense, where the symplectic repre-
sentation is lifted both rationally and integrally. The techniques
of proof include several algorithms involving fatgraphs and chord
diagrams. The former extension is given by explicit formulae de-
pending upon six essential cases, and the kernel and image of the
groupoid representation are computed. Furthermore, this provides
groupoid extensions of any representation of the mapping class
group that factors through its action on the fundamental group of
the surface including, for instance, the Magnus representation and
representations on the moduli spaces of flat connections.
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1. Introduction

Let Σg,1 be a surface with genus g ≥ 1 and one boundary compo-
nent, and let π1 = π1(Σg,1, p) be its fundamental group with respect
to a basepoint p lying on its boundary ∂Σg,1. π1 is non-canonically
isomorphic to a free group F2g on 2g generators, and the mapping
class group MC(Σg,1) (i.e., the group of path components of the space
of orientation-preserving homeomorphisms fixing ∂Σg,1 pointwise) acts
on it in a natural way. In fact, it is a classical result [10] of Nielsen
that MC(Σg,1) can be identified with the subgroup of Aut(π1) which
fixes the element of π1 corresponding to ∂Σg,1.
Following [11, 12], let us consider the Ptolemy groupoid Pt(Σg,1),

i.e., the combinatorial fundamental path groupoid of Teichmüller space
for Σg,1, where objects are suitable equivalence classes of marked fat-
graphs (trivalent except for one univalent vertex, see the next section),
and morphisms are given by finite sequences of Whitehead moves con-
necting them (again, see the next section). In this way, any element
of MC(Σg,1) is represented by a finite sequence of Whitehead moves
starting from a fixed trivalent fatgraph and ending on a combinatori-
ally identical fatgraph, where the sequence is uniquely determined up
to known relations.
Similarly, we define the mapping class groupoid MC(Σg,1) and the

Torelli groupoid To(Σg,1) to be the respective quotients of Pt(Σg,1)
under the action of the mapping class group and the Torelli group
I(Σg,1) (i.e., the subgroup ofMC(Σg,1) acting trivially on the homology
of Σg,1). Mapping classes are given by sequences of Whitehead moves
beginning and ending at combinatorially identical fatgraphs, i.e., the
same object of MC(Σg,1), and elements of the Torelli group moreover
preserve some, hence any, “homology marking” (as in [9] and described
at the end of Section 2).
By a groupoid representation, we shall mean a map from a groupoid

to a group which respects composition. It is natural to ask whether
known representations of the mapping class group MC(Σg,1) can be
extended to representations of MC(Σg,1) or Pt(Σg,1), and in particular,
one may wonder if Nielsen’s embedding N : MC(Σg,1) → Aut(F2g)
extends to a groupoid representation. In this paper (in Theorem 3.6),
we prove that the answer is yes, and we give explicit formulae for our
extension

N̂ : MC(Σg,1) → Aut(F2g)

which are governed by six essential cases of fatgraph combinatorics.
It is important to remark that Nielsen’s embedding N : MC(Σg,1) →
Aut(F2g) is defined by the action ofMC(Σg,1) on π1 via an isomorphism
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π1 ∼= F2g given by a choice of generating set for π1; our construction,
on the other hand, is canonical with target Aut(F2g) and relies on an
algorithm which canonically determines a generating set for π1(Σg,1)
by constructing a maximal tree in each appropriate fatgraph (see the

greedy algorithm in Section 3). The kernel and image of N̂ are com-
puted (in Propositions 5.3 and 6.3 respectively). The automorphism
group Aut(π1) acts on the representation variety of π1 in any group,
hence so too do MC(Σg,1) and Pt(Σg,1).
It follows that representations of MC(Σg,1) which factor through

the Nielsen embedding N : MC(Σg,1) → Aut(π1) also must extend
to Pt(Σg,1). In particular, the Magnus representation (see Section 4)
MC(Σg,1) → Gl(2g,Z[π1]) extends to the groupoid level

Pt(Σg,1) → Gl(2g,Z[π1]),

and explicit formulae for this extension are also given. The algorithm
here seems comparable in terms of complexity to existing algorithms
[8, 14] for the calculation of Magnus representations.
Utilizing further combinatorial algorithms, we obtain maps from the

Ptolemy groupoid to various subgroups ofMC(Σg,1) which can be con-
sidered as extensions of the appropriate identity representations. In

particular, the extension ĩd : Pt(Σg,1)→MC(Σg,1) of the identity rep-
resentation of the mapping class group itself to the Ptolemy groupoid in
Theorem 6.1 leads to a different representation Pt(Σg,1) → Aut(π1) as
well as an extension of the symplectic representation τ0 : MC(Σg,1) →
Sp(H) ∼= Sp(2g,Z) to a representation

τ̂0 : MC(Σg,1) → Sp(2g,Z)

by explicit algorithms (in Corollary 6.2).
As a general point, we remark that it is not surprising that these ex-

tensions exist, but rather that they can be described fairly succinctly
depending only upon six basic cases. This same feature will persist
in other contexts as well, for instance in principle, an extension of
the Meyer cocycle [7] to the groupoid level should follow from the sym-
plectic representation given here and further calculation. We hope that
the techniques of this paper might be generally useful in studying map-
ping class group representations. See [1] for extensions to the Ptolemy
groupoid of the finite type invariants of 3-dimensional quantum topol-
ogy, parts of which depend upon the algorithms developed here. The
extension of the present work to the setting of surfaces with several
boundary components seems straight-forward, and we have restricted
here to the case of surfaces with one boundary component simply for
convenience.
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2. Marked Bordered Fatgraphs

Given a graphG (i.e., a finite connected 1-dimensional CW complex),
let Eor(G) denote the set of oriented edges of G. Given e ∈ Eor(G), let ē
denote the same edge with the opposite orientation and let v(e) denote
the vertex to which e points.
A fatgraph is a graph together with a cyclic ordering of {e : v(e) = v}

for each vertex v of G. This additional structure gives rise to certain
cyclically ordered sequences of oriented edges called the boundary cycles
of G, where an oriented edge e is followed by the next edge in the cyclic
ordering at v(e), but with the opposite orientation, so that it points
away from v(e). In depicting a fatgraph, we will always identify the
cyclic ordering at a vertex with the counterclockwise orientation of the
plane, according to which we will represent the boundary cycle of G as
a path alongside it with G on the left.
Any two consecutive oriented edges in the boundary cycle define a

sector of the fatgraph, and each sector G can be associated to a unique
vertex of G. We say that a fatgraph G with n boundary cycles has
genus g if its Euler characteristic is χ(G) = 2− 2g − n.
An isomorphism between two fatgraphs is a bijection of edges and

vertices which preserves the incidence relations of edges with vertices
and the cyclic ordering at each vertex. We shall always regard isomor-
phic fatgraphs as equivalent.
A (once-)bordered fatgraph is a fatgraph with only one boundary

cycle such that all vertices are at least trivalent except for a unique
univalent vertex. A bordered fatgraph is “rigid” in the sense that any
fatgraph automorphism is trivial.
There is a natural linear ordering on the set Eor(G) of oriented edges

of a bordered fatgraph G obtained by setting x < y if x appears before
y while traversing the boundary cycle of G beginning at the univalent
vertex. This provides each edge e of G with a preferred orientation,
denoted simply by e ∈ Eor(G), by requiring e < ē. We call the edge
incident to the univalent vertex the tail of G and denote its preferred
orientation by t so that t ≤ x for all x ∈ Eor(G).
Given a trivalent bordered fatgraph G and a non-tail edge e of G,

define the Whitehead move on e to be the collapse of e followed by
the unique distinct expansion of the resulting four-valent vertex. (Any
non-tail edge of G necessarily has distinct endpoints since there is only
one boundary cycle.)
There is a natural composition on the set of Whitehead moves,

where one Whitehead move W : G0→G1 can be composed with an-
other W ′ : G′

0→G′
1 in the natural way if and only if G1 = G′

0.
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Definition 2.1. As in [11, 12], the mapping class groupoid MC(Σg,1)
of Σg,1 is defined to be the set of finite compositions of Whitehead
moves on bordered fatgraphs modulo the pentagon, commutativity,
and involutivity relations.

MC(Σg,1) can be identified with the combinatorial fundamental path
groupoid of the dual cell decomposition of Riemann’s moduli space
of Σg,1 [13], and in this way, any element of the mapping class group
MC(Σg,1) of Σg,1 can be represented by a sequence of Whitehead moves
{Wi : Gi−1→Gi}

k
i=1 with G0 = Gk.

Definition 2.2. Fixing a point q 6= p ∈ ∂Σg,1, a marking of a bordered
fatgraph G is an isotopy class of embeddings f : G →֒ Σg,1 such that
the cyclic ordering at vertices of G agrees with the orientation of Σg,1,
the complement Σg,1\f(G) is contractible, and f(G) ∩ ∂Σg,1 = f(t) ∩
∂Σg,1 = {q}.

Markings evolve unambiguously under Whitehead moves, and in this
way, there is a natural composition on the set of Whitehead moves
acting on marked fatgraphs.

Definition 2.3. Define the Ptolemy groupoid Pt(Σg,1) of Σg,1 to be
the set of finite sequences of composable Whitehead moves on genus g
marked bordered fatgraphs modulo the corresponding pentagon, com-
mutativity, and involutivity relations, cf. [9].

As with the mapping class groupoid, Pt(Σg,1) can be identified with
a combinatorial version of the fundamental path groupoid of the Te-
ichmüller space Tg,1 of Σg,1. Since Tg,1 is connected and simply con-
nected, any two marked bordered fatgraphs are related by a unique
element of Pt(Σg,1), i.e., there is a sequence of Whitehead moves con-
necting the two which is uniquely determined modulo the pentagon,
commutativity, and involutivity relations.
The mapping class groupMC(Σg,1) acts by post-composition on the

set of markings of G in a free and transitive manner, which directly
corresponds to its free action on Tg,1. In this way, an element ϕ of
the mapping class group MC(Σg,1) is represented by any sequence of
Whitehead moves {Wi : (Gi−1, fi−1)→(Gi, fi)}

k
i=1 on marked fatgraphs

fi : Gi →֒ Σg,1, where (Gk, fk) = (G0, ϕ ◦ f0).
Fix a marking f : G →֒ Σg,1 of a fatgraph. For each edge e ofG, there

is a properly embedded “dual” arc, unique up to isotopy rel boundary,
that meets G only at a single transverse intersection point interior to
e. An orientation e on e induces an unambiguous orientation on its
dual arc, where the pair of tangent vectors at the intersection point
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of the edge and arc in this order determine the positive orientation
of the surface. In this manner, each marking of G gives rise to a
map π1 : Eor(G)→π1, which clearly satisfies the conditions of the next
definition.

Definition 2.4. A geometric π1-marking of a bordered fatgraph G is
a map π1 : Eor(G)→π1 which satisfies the following compatibility con-
ditions:

• (edge) we have π1(e)π1(ē) = 1 for every oriented edge e ∈
Eor(G);

• (vertex) we have π1(e1)π1(e2) · · ·π1(ek) = 1, for every vertex v
of G, where e1, . . . , ek are the cyclically ordered oriented edges
pointing towards v;

• (surjectivity) π1(Eor(G)) generates π1;
• (geometricity) π1(̄t) is the class of the boundary ∂Σg,1.

In fact, the two notions of marking are equivalent [4], and we shall
not distinguish between them in the sequel. Also for convenience, we
shall henceforth denote π1(e) simply by e ∈ π1.
More generally, for any group K, we can define an abstract K-

marking of a fatgraph G to be a map Eor(G)→K which satisfies the
analogous edge and vertex conditions, and we say that the K-marking
is surjective if the surjectivity condition is also satisfied. By the com-
patibility conditions, an abstract K-marking evolves unambiguously
under a Whitehead move, which moreover preserves surjectivity.
In particular, by composing a geometric π1-marking with the abelian-

ization homomorphism π1→H = H1(Σg,1,Z), one obtains what we call
a geometric H-marking of G, which is a map H : Eor(G)→H satisfying
the analogous abelian edge, vertex, and surjectivity conditions, as well
as a geometricity condition which we now describe. This condition is
expressed in terms of the skew pairing on Eor(G) given by

〈x,y〉 =





−1, if x < y < x̄ < ȳ;

0, else;

+1, if x < ȳ < x̄ < y,

where the conditions hold up to cyclic permutation along the boundary
cycle, namely:

• (H-geometricity) 〈x,y〉 = H(x) ·H(y) for all oriented edges
x,y ∈ Eor(G), where · is the intersection pairing on H .

In fact, a map Eor(G)→H is a geometric H-marking if and only if
it satisfies the edge, vertex, surjectivity, and H-geometricity conditions
[4]. Furthermore, H-markings evolve unambiguously under Whitehead
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moves and both the surjectivity and geometricity conditions are pre-
served under such moves.
Following [9], we define the Torelli groupoid To(Σg,1) of Σg,1 to be the

set of finite sequences of Whitehead moves on geometrically H-marked
genus g bordered fatgraphs, together with the natural composition of
sequences, modulo the corresponding pentagon, commutativity, and
involutivity relations. The Torelli groupoid can be identified with the
fundamental path groupoid of the Torelli cover of Riemann’s moduli
space corresponding to the kernel of the symplectic representation τ0,
namely, the Torelli subgroup I(Σg,1), again cf. [9].

3. The Greedy Algorithm

In this section, we describe an algorithm for canonically determining
a maximal tree in each bordered fatgraph.

Definition 3.1. (Greedy algorithm) Define a subgraph TG of G
by e ∈ TG if e ≤ x for all x ∈ Eor(G) with v(x) = v(e). We call
the linearly ordered set of oriented edges XG = {xi}

2g
i=1 determined by

the complement XG = G\TG with its preferred orientations the set of
generators for G.

Note that there must be at least one and at most two edges whose
preferred orientations point to a given trivalent vertex v, and these
two cases correspond to whether the three sectors associated to v are
transversed in the counterclockwise or clockwise sense near v along the
boundary cycle.

Lemma 3.2. For each bordered fatgraph G, the subgraph TG is a max-
imal tree rooted by the tail of G.

Proof. Consider the following equivalent construction of the subgraph
TG. Begin at the univalent vertex of G and traverse the boundary cycle
of G and “greedily” adding every edge to TG as long as the resulting
subgraph is still a tree, meaning no non-trivial cycles would be intro-
duced. Since the introduction of a non-trivial cycle from the addition
of an edge e would mean the vertex v(e) had previously been traversed,
this definition is equivalent to the original one. From this perspective,
TG is obviously a tree containing the tail, and it is maximal since adding
any edge would result in a non-trivial cycle. �

Theorem 3.3. There is a canonical ordered set of generators of π1
associated to every marked bordered fatgraph G →֒ Σg,1.

Proof. We take π1(XG) to be the desired set of generators of π1 and
need only show that they do indeed generate π1. Since a geometric
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π1-marking satisfies the surjectivity condition, it suffices to show that
for each oriented edge e of G the element π1(e) is in the subgroup
generated by π1(XG). To this end, note that each leaf l of the tree
TG is adjacent to two generators in G, so by the vertex compatibility
condition, the corresponding element π1(l) can be written as a product
of two elements of π1(XG) (or their inverses). The argument follows
easily by induction. �

Corollary 3.4. For every marked bordered fatgraph, there is an explicit
canonical isomorphism π1 ∼= F2g.

Proof. This follows immediately from the Hopfian property of F2g. �

From now on when G comes equipped with a marking, we shall
identify XG with the ordered set π1(XG) of generators of π1.

Corollary 3.5. To each Whitehead move W : G→G′ between marked
trivalent bordered fatgraphs, there is a canonically associated element

Ñ(W ) ∈ Aut(π1)

which is natural in the sense that if {Wi} is a sequence of Whitehead
moves representing an element ϕ ∈ MC(Σg,1) ⊂ Aut(π1), then the

composition of the Ñ(Wi) agrees with the image N(ϕ) of ϕ under the
Nielsen embedding.

Proof. Consider the isomorphism which maps the ordered generating
set XG to X′

G. Again by the Hopfian property of π1, this is an auto-
morphism, and it is obvious that it respects composition of Whitehead
moves. The last statement follows by noting that if the generating set
for (G, f) is π1(XG), then the generating set for (G,ϕ◦f) is ϕ(π1(XG))
by construction. �

In the next section, we shall see that the representation Ñ can be
described in fairly concrete terms. Moreover in Section 5, we shall

explicitly describe the kernel of Ñ (see Proposition 5.3), and in Section

6.2, we shall describe the image of Ñ (see Proposition 6.3).

3.1. Essential cases of Ñ(W ). Whitehead moves on bordered fat-
graphs can be categorized into six basic types determined by the order
of traversal of nearby sectors in the boundary cycle as depicted in Fig-

ure 1, and we now turn towards calculating Ñ(W ) for each. We say
that a Whitehead move W : G→G′ is a type k move if it or its inverse
corresponds the the kth case according to our labeling in the figure.
We will find it most illuminating to write our expressions as elements of
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Figure 1. Six cases of Whitehead moves W : G→G′

Aut(F2g) rather than Aut(π1) via the isomorphism π1 ∼= F2g provided
by Corollary 3.4.
First, consider the type 1 Whitehead move. The initial fatgraph G

has three edges a, b, and c which may be generators (represented by
question marks) depending on the global properties of the graph (not
depicted). The resulting fatgraph G′ similarly has three possible gen-
erators which are naturally identified with those of the first fatgraph.
By construction, a is a generator of G if and only if it is a generator
for G′ and similarly for the edges b and c. Moreover, the order of ap-
pearance of these generators in XG and XG′ must be the same. Thus,
the element of Aut(F2g) corresponding to this Whitehead move is the
identity element.
For a type 2 move, whereas the edges a and b perhaps may not be

generators, the edge c is definitely a generator (represented by a check
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mark) since the vertex to which it points was first traversed in sector
1. In any case, the corresponding element of Aut(F2g) is again the
identity element.
Next, consider a type 3 Whitehead move; note that the edges a and

c may coincide. In any case, the edges b and c must be generators
of G while b and d must be generators of G′. Moreover, if c is the
ith generator xi of G, then d must be the ith generator of G′ so that
under the Whitehead move we have c 7→ d while all other generators
are fixed. Now note that by the vertex condition for G′, we have the
relation bcd̄ = 1 so that c 7→ d = bc. If b is the jth generator xj of
G, then we can explicitly write the corresponding element of Aut(F2g)
as

xk 7→ xk, for k 6= i,
xi 7→ xjxi.

For case 4, the situation is almost identical to case 3 except that now
b need not be a generator, and we have the slightly different relation
c 7→ e = b̄c. If b is a generator, say xj , then we find

xk 7→ xk, for k 6= i,
xi 7→ x̄jxi.

If b is not a generator of G, then we must first express b as a word in
the generators (which can be obtained from the combinatorics of the
fatgraph) before arriving at an explicit element of Aut(F2g).
Consider now case 5, where the edge b must be a generator of G

while the edge d must be a generator of G′. The vertex condition
forces the relation dbc̄ = 1, so that d = cb̄. Now assume that b is
the ith generator of G so that XG = (x1, . . . ,xi−1,b,xi+1, . . . ,x2g) and
that d is the jth generator of G′. Under this Whitehead move, we find
that

xk 7→ xk, for k < i,
xk 7→ xk+1, for i ≤ k < j,
xj 7→ cx̄i,
xk 7→ xk, for k > j.

If c is a generator of G (so that c = xi+1), then the above maps
explicitly determine the element of Aut(F2g), and otherwise, one must
first express c as a word in the xk.
For the Whitehead move of type 6, we have a situation which is

essentially identical to that of case 5 except that now the generator e
has an orientation which is opposite that of the generator d of case
5. Thus, if we let e be the jth generator of G′, then we get the same
mapping XG 7→ XG′ as in case 5 except that xj 7→ xic̄.
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Thus, the values respectively taken by our representation Ñ for the
six essential types of Whitehead moves are the identity in the first

two cases, “local” in the third case in the sense that Ñ(W ) depends
only upon the edges near the edge of the Whitehead move, and not
necessarily local in the remaining cases. We can summarize our results
with the following

Theorem 3.6. There is an explicit extension

N̂ : MC(Σg,1)→Aut(F2g)

of Nielsen’s embedding to a representation of the mapping class groupoid

with target Aut(F2g). Its value N̂(W ) for a Whitehead moveW : G→G′

on an edge e of G is explicitly calculable, and its particular form depends
on six essential cases corresponding to the possible orders of traversal
of the four sectors surrounding the edge e.

Proof. Since the formulae for the representation Ñ in terms of Aut(F2g)
did not depend on the explicit markings of the fatgraphs, they define

a map N̂ : MC(Σg,1)→Aut(F2g), which we claim is a representation in
the sense that for any two composable Whitehead moves W1 : G→G1

and W2 : G1→G2, we have N̂(W1 ◦W2) = N̂(W2) ◦ N̂(W1); this change
of ordering reflects the simple change of composition for functions from
right-to-left and for concatenation of paths from left-to-right. Indeed,
this follows from the fact that for elements ϕ, ψ ∈ Aut(F2g) defined by
ϕ : xi 7→ ui = ui(x1, . . . ,x2g) and ψ : ui 7→ wi = wi(u1, . . . ,u2g), the
composition ψϕ = ϕ(ϕ−1ψϕ) ∈ Aut(F2g) is given by

xi 7→ wi = wi(x1, . . . ,x2g) = wi(u1, . . . ,u2g)|ui=ui(x1,...,x2g).

�

4. The Magnus representation

Recall [5] that the Fox free derivative with respect to xi can be de-
fined as the unique derivation ∂

∂xi
: Z[π1]→Z[π1] satisfying

∂
∂xi

(xi) =

1, ∂
∂xi

(x̄i) = −x̄i, and the product rule ∂
∂xi

(w1w2) = ∂
∂xi

(w1) +

w1
∂

∂xi
(w2). One of the important properties of the Fox free derivative

is the chain rule which states that if u1, . . . ,u2g is another generating
set for π1 and w ∈ π1 is a word, then

(1)
∂w

∂xj

=

2g∑

i=1

(
∂w

∂ui

)

ui=ui(x1,...,x2g)

(
∂ui

∂xj

)
.
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The classical Magnus representation of Aut(π1) is the map which as-

sociates to any element ϕ of Aut(π1) its Fox Jacobian
(

∂ϕ(xi)
∂xj

)
with

respect to a given basis {xi}
2g
i=1; this map is a crossed homomorphism

by (1), cf. [8].
It is an immediate consequence of Corollary 3.5 that the Magnus

representation extends to the Ptolemy groupoid. However, such an ex-
tension a priori would be non-canonical as it would depend on a choice
of generating set for π1. Instead, we extend the Magnus representation
by

M̃(W : G→G′) =

(
∂x′i
∂xj

)

where {xi}
2g
i=1 and {x′

i}
2g
i=1 are the sets of generators for G and G′

respectively. As a consequence of this definition and (1), we have the

Corollary 4.1. The Magnus representation explicitly extends to a rep-

resentation M̃ of the Ptolemy groupoid with target Gl(2g,Z[π1]).

Again, the formulae are governed by the six types of Whitehead
moves, and we proceed to describe each. The first non-trivial type is
the third, where we have xi 7→ xjxi and find a matrix in Gl(2g,Z[π1])
which is the identity except for the ith row

(2) (0, . . . ,xj , . . . , 1, . . . , 0) ,

which has all entries zero except for ∂
∂xi

(xjxi) = xj in the ith position

and ∂
∂xj

(xjxi) = 1 in the jth position.

In case 4, we have xi 7→ b̄xi, which again gives a matrix differing
from the identity only in its ith row, where If b = xj is a generator,
then this row

(3) (0, . . . , x̄j , . . . ,−1, . . . , 0)

has all entries zero except for x̄j in the ith position and −1 in the jth
position. If b is not a generator, there is a more complicated matrix
with the ith row the Fox gradient:

(
∂b̄

∂x1
,
∂b̄

∂x2
, . . . , b̄,

∂b̄

∂xi+1
, . . . ,

∂b̄

∂x2g

)
.
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Assuming that c = xi+1 is a generator in case 5, the corresponding
matrix is the identity except for the (i, j) submatrix which is given by




0 1 . . . 0
0 1

0
. . .
. . . 1

−xi+1x̄i 1 0 . . . 0



.

If c is not a generator, then the jth row is replaced by
(
∂c

∂x1
,
∂c

∂x2
, . . . ,

∂c

∂xi−1
,
∂c

∂xi

− cx̄i,
∂c

∂xi+1
, . . . ,

∂c

∂x2g

)
.

Case 6 is almost identical to case 5, except that in this case if c is
not a generator, then the jth row is replaced by

(
∂x̄ic

∂x1

,
∂x̄ic

∂x2

, . . . ,
∂x̄ic

∂xi−1

,−x̄i + x̄i

∂c

∂xi

,
∂x̄ic

∂xi+1

, . . . ,
∂x̄ic

∂x2g

)
.

This completes the discussion of the various cases.
Morita [8] introduced variations Mk : MC(Σg,1)→Gl(2g,Z[Nk]) of

the Magnus representation by composing the classical Magnus rep-
resentation described above with the quotient maps π1→Nk, where

Nk = πi/π
(k)
1 is the kth nilpotent quotient of π1 (for k = 1, see [14]). In

the same way, our extension of the Magnus representation immediately
yields extensions

M̃k : Pt(Σg,1)→Gl(2g,Z[Nk]).

Moreover, the value of these extensions on aWhitehead moveW : G→G′

can be computed purely from the combinatorics of G together with the
surjective Nk-markings of G induced from its π1-marking. In particular

in the case k = 1, we obtain a representation M̃1 : Pt(Σg,1)→Gl(2g,Z[H ])
whose value onW : G→G′ depends only on the H-marking of G. Thus,
we also have the stronger result:

Proposition 4.2. The representation M1 : MC(Σg,1)→Gl(2g,Z[H ])
extends to a representation of the Torelli groupoid

M̃H : To(Σg,1)→Gl(2g,Z[H ]).

5. Linear chord diagrams and the kernel of Ñ

We determine the kernel of the extension Ñ : Pt(Σg,1)→Aut(π1) of
the Nielsen embedding in this section.
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Lemma 5.1. Given any trivalent marked bordered fatgraph G = G0,

there is a sequence of Whitehead moves {Wi : Gi−1→Gi}
k
i=1 with Ñ(Wi) =

Id ∈ Aut(π1), for all i, such that Gk is a fatgraph whose maximal tree
TGk

is a line segment.

Proof. Let SG ⊂ TG be the subtree of TG defined by s ∈ SG if and only
if s < x for all x ∈ XG, so SG is a line segment. If SG = TG, then
we are done, so assume otherwise. Since TG is connected, there is an
e ∈ TG − SG which is adjacent to two edges of SG, and since e is in
TG, e must point away from SG. One can check that this dictates that
the boundary cycle first traverses the sector containing e so that that
e points away from it and next traverses the sector to the right of e.
As a result, the Whitehead move We on e must be a move of type 1

or 2 so that Ñ(We) = Id. Moreover, under the move We, the length
of SG is increased by one. By repeated application of this process, we
obtain the desired sequence of moves resulting in a fatgraph Gk with
TGk

= SGk
. �

We let CG denote the fatgraph resulting from this procedure, which
is called the branch reduction algorithm.
Recall from [2] that a linear chord diagram is a segment in the real

line, called the core of the diagram, together with a collection of arcs,
called the chords, with endpoints attached to the core at distinct points.
By identifying the subgraph TCG

of CG with a portion of the real line,
we see that the set XG can be viewed as a collection of chords attached
to this core. Strictly speaking however, this results in a diagram with
the two right-most chords attached to the same point; thus, in order to
obtain a true chord diagram, we add a bivalent vertex to the right-most
chord in CG and consider its first half as part of the core. See Figure
2.

x3 x4x2 x1

t

x3 x4 x2 x1x3x2 x1 x4

Figure 2. Illustration of Observation 1.

We now make two observations:

Observation 1. By repeated application of the orientation and vertex
conditions, the word representing t in the letters XG can be computed
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directly from the chord diagram CG. Namely, by associating the el-
ement x̄i (respectively xi) to the vertex v(xi) (respectively v(x̄i)), t
is obtained by simply multiplying these elements in their left-to-right
ordering along the core of CG. For example in Figure 2, we have
t = x3x̄2x̄3x4x2x̄1x̄4x1.

Observation 2. The word representing t obtained in this way is reduced
since the fatgraph CG has only one boundary cycle.

Lemma 5.2. The (marked) fatgraph CG obtained by the algorithm of
Lemma 5.1 is well-defined in the sense that if XG = XG′, then CG =
CG′.

Proof. This follows from the above observations since there is a unique
reduced word representing any element of a free group with respect to
a given set of generators. �

As a result of the previous two lemmas, we have the following

Proposition 5.3. The kernel of the extension of Ñ : Pt(Σg,1)→Aut(π1)
is generated by type 1 and type 2 moves, i.e., any element in the ker-

nel of Ñ is equivalent under pentagon, commutativity, and involutivity
relations to a composition of type 1 and 2 moves.

Proof. Consider any sequence {Wi}
k
i=1 of Whitehead moves from G0 to

Gk with corresponding composition Ñ(Wk) · · · Ñ(W1) ∈ Aut(π1) equal
to the identity. By definition, this implies that XG0

= XGk
. Using

the previous two lemmas, there exists two sequences of Whitehead
moves comprised solely of type 1 or 2 moves connecting G0 and Gk

respectively to CG0
= CGk

. The composition of the first such sequence
and the inverse of the second is equivalent modulo relations to {Wi}

k
i=1

since there exists a unique element of the Ptolemy groupoid connecting
any two marked bordered fatgraphs. �

6. Chord slide algorithm and the image of Ñ

In this section, we introduce an algorithm which produces a path
in the mapping class groupoid from any bordered fatgraph to a fixed
“symplectic basepoint.” As a consequence, we obtain an extension of
the identity representation id : MC(Σg,1)→MC(Σg,1) of the mapping
class group. Similarly in the next section, we will apply this algorithm
in several guises to extend various representations.

6.1. Chord diagrams and the chord slide algorithm. We begin
with an algorithm for linear chord diagrams described in [2] in terms of
“chord slides”. Let CG be the chord diagram associated to a bordered
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fatgraph G and let c and d be two chords of CG so that the endpoint
v(c) of c immediately precedes v(d) in the left-to-right ordering along
the core of CG. We define the slide of v(c) along d to be the composition
of a Whitehead move on the edge e of the core separating v(c) and v(d)
followed by the Whitehead move on the chord d. Similarly, we define
the slide of v(d) along c to be the Whitehead move on e followed by the
Whitehead move on c. Note that as the notation suggests, the result of
the two moves is to slide the vertex along the boundary cycle so that it
is adjacent to the opposite vertex of the chord along which it was slid.
A marking of the bordered fatgraph G induces a marking of the

fatgraph CG, and under a slide, the markings of all chords remain fixed
except for the chord upon which the slide was performed. For example,
under the slide of v(c) along d as discussed above, the marking of the
oriented chord d changes from d to dc. However, note that the effect
on the linearly ordered set of generators XG is more complicated as
the ordering of the elements as well as their preferred orientations may
change under such a slide.

ag-1ag bg-1bg

t

Figure 3. Symplectic chord diagram.

Now, define the genus g symplectic chord diagram to be the unique
genus g fatgraph S such that CS = S and for any marking of S, t =∏1

i=g[x2i, x̄2i−1] with XS = (x1, . . . ,x2g). We have depicted such a
fatgraph in Figure 3 where we have used the labels bi = x2i and āi =
x2i−1 so that t =

∏1
i=g[bi, ai].

The chord slide algorithm can now be described as follows. Given a
chord diagram CG associated to a fatgraph G, label the left-most chord
of CG by bg and label the left-most chord which crosses bg by ag (note
that such a chord must exist). Next, sequentially slide all endpoints of
chords (other than bg and ag) which lie between the leftmost endpoint
of bg and the rightmost endpoint of ag along the path represented by
the dotted line in Figure 3 so that all endpoints of chords lie to the
right of bg and ag. Next, label the left-most chord appearing after bg
and ag by bg−1 and label the left-most chord which crosses bg−1 by ag−1.
Repeating this procedure, we eventually obtain a fatgraph isomorphic
to S, cf. [2].
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Theorem 6.1. There is an explicit extension

ĩd : Pt(Σg,1)→MC(Σg,1)

to the Ptolemy groupoid of the identity homomorphism of MC(Σg,1).

Proof. Consider a Whitehead move W : G1→G2 on a marked fatgraph
G1. Let S1 and S2 be the respective marked symplectic chord dia-
grams obtained from G1 and G2 by performing the branch reduction
algorithm followed by the chord slide algorithm. Since S1 and S2 are
isomorphic as unmarked fatgraphs, there exists a unique element ϕ of

MC(Σg,1) such that ϕ(S1) = S2, and we define ĩd(W ) = ϕ. This gives

a well-defined map ĩd : Pt(Σg,1)→MC(Σg,1) which extends the identity
homomorphism by construction. �

Note that if we fix a marking S →֒ Σg,1 for the symplectic chord dia-
gram S, a modification of the proof actually provides a representation

ĩd : MC(Σg,1)→MC(Σg,1) of the mapping class groupoid. Also note
that by considering the mapping class group MC(Σg,1) as a subgroup
of Aut(π1), the theorem provides yet another extension of Nielsen’s
embedding; however, this extension has the disadvantage that it no
longer depends on six essential cases.
By combining Theorem 6.1 and the action of MC(Σg,1) on the first

integral homology H = H1(Σg,1,Z) of Σg,1, we immediately obtain

Corollary 6.2. There is an explicit canonical extension

(4) τ̃0 : Pt(Σg,1)→Sp(H).

of the symplectic representation of MC(Σg,1).

6.2. The Image of Ñ . We conclude this section by describing the
image of the extension of the Nielsen embedding. This image cannot
be all of Aut(F2g) as the combinatorics of bordered fatgraphs put lim-
itations on which sets of generators for F2g can arise from the greedy
algorithm. For example, due to the preferred orientation of edges, if
XG is a set of generators for G, then the set obtained from XG by
replacing xi with x̄i for some i cannot arise from a marked bordered
fatgraph.
More generally, we have the following result, which implicitly de-

scribes the image of the extension of the Nielsen embedding.

Proposition 6.3. After some number of replacements x 7→ x̄, a set of
generators X of π1 arises as the set XG of a generators for a marked
bordered fatgraph G if and only if the element of π1 representing ∂Σg,1

can be written as a reduced word which contains each element x of X
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and its inverse x̄ exactly once. Moreover, the set of replacements x 7→ x̄
performed on X is uniquely determined and explicitly computable.

Proof. We employ a construction which is essentially the reverse of Ob-
servation 1 to build a chord diagram from the word w representing the
class of the boundary in the letters X. Begin with a straight line seg-
ment and 2g oriented chords labeled by X and then attach the ends of
the edges to the line according to the appearance of the correspond-
ing letters in w as in Observation 1 to obtain a fatgraph C with tail
t (oriented pointing to the right). The orientations of the chords X
endow C with a surjective π1-marking such that π1(t) is the class of
the boundary by construction.
If C has only one boundary cycle, then it is a bordered genus g

fatgraph which endows the elements of X with preferred orientations.
Thus, after replacing some x with their inverses according to their
preferred orientations, we have realized X as the set of generators XC

for C as required.
In order to derive a contradiction, now assume that the fatgraph C

has more than one boundary cycle. By an Euler characteristic argu-
ment, this number must be odd, say 2n+ 1 with n > 0. Note that the
oriented chords of C still endow C with an abstract (but not geometric)
surjective π1-marking. By the transitivity of Whitehead moves, there
exists a sequence of moves which takes this fatgraph C to a chord di-
agram C ′ with tail with 2n isolated chords followed on the right by a
genus g − n symplectic chord diagram. (See [2] for an explicit algo-
rithm which is a generalization of the chord slide algorithm, where the
resulting diagram is called a “(2n, g − n)-caravan”.)
We again denote the tail of C ′ by t since its value in π1 remains

fixed under any sequence of Whitehead moves. If we then label the
oriented chords of C ′ (in their right-to-left appearance) by {ā′

i,b
′
i}

g
i=1,

this provides a set of generators of π1. The contributions of the isolated
chords {ā′

i,b
′
i}

g
i=g−n+1 to the word representing t̄ in these letters cancel

so that t̄ =
∏g−n

i=1 [a
′
i,b

′
i] as a word in these letters. However, we can

always find a set of generators {āi,bi}
g
i=1 for which t̄ =

∏g

i=1[ai,bi] =∏g−n

i=1 [a
′
i,b

′
i]. By Proposition 6.8 of [6], we must have g − n ≥ g, a

contradiction as required. �

7. The symplectic representation

Just as for π1-markings, the greedy algorithm applied to a geomet-
rically H-marked bordered fatgraph G results in a canonical linearly
ordered basis H(XG) of H . We call a basis of H arising in this way for
some marked bordered fatgraph G a geometric basis of H . A geometric
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basis H(XG) = {X1, X2, . . . , X2g} has the property that Xi ·Xj equals
-1 only if i < j, while it equals 1 only if i > j. Thus, the intersection
matrix of XG is given by a skew symmetric 2g-by-2g matrix with only
0’s and 1’s below the diagonal.
Fix a rank 2g symplectic vector space (V, ω). Recall that a standard

integral symplectic basis for (V, ω) is a basis {Ai, Bi}
g
i=1 for V such that

the symplectic pairing ω takes values ω(Ai, Bj) = δij and ω(Ai, Aj) =
ω(Bi, Bj) = 0, for all i, j.
While a standard symplectic basis ofH is not quite a geometric basis,

any geometric H-marking of the symplectic chord diagram S provides
a geometric basis which differs from a symplectic one only in the signs
of half of its elements. In this way, any such basis provides a symplectic
isomorphism H ∼= (V, ω). By applying the branch reduction and chord
slide algorithms, we thus obtain the following (cf. Corollary 3.4)

Corollary 7.1. For every H-marked bordered fatgraph G, there is an
explicit canonical integral symplectic basis for H, thus a canonical sym-
plectic isomorphism H ∼= (V, ω).

Given any two symplectic bases B = {Ai, Bj} and B′ = {A′
i, B

′
j} of a

symplectic vector space, the linear map taking Ai 7→ A′
i and Bj 7→ B′

j

lies in Sp(2g,Z). Thus, completely analogously to Theorem 3.6 by
combining Corollary 7.1 and (4), we obtain the following

Theorem 7.2. There is an explicit extension

τ̂0 : MC(Σg,1)→Sp(2g,Z)

to the mapping class groupoid of the symplectic representation of the
mapping class group.

7.1. The rational algorithm. One may be interested to know if an
extension of the symplectic representation with target Sp(2g,Z) can
be obtained through more algebraic methods. Here we describe such
an approach which uses only linear algebra and the H-markings of
bordered fatgraphs. The new ingredient is to provide a different but
analogous isomorphism to that provided by Corollary 7.1. While the
following method only works over the rationals for generic bases of H ,
it in fact is an integral algorithm for geometric bases since it can be
realized by certain “dual chord slides” as shown in [3].
Consider an ordered geometric basis H(XG) of H and let A1 = X1.

Let i ≥ 2 be minimal, such that X1 ·Xi 6= 0, and renumber the Xj, for
j ≥ 2 by interchanging X2 and Xi. Let b1 =

1
X1·X2

X2 and define

X ′
j = Xj − (Xj · B1)A1 + (Xj · A1)B1,
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for j ≥ 3.
By repeating this process on the ordered set (X ′

3, . . . , X
′
2g) of inde-

pendent vectors in H⊗Q, we eventually arrive at a symplectic basis of
H⊗Q. By the result of [3], this basis is in fact integral, and we have de-
fined another MC(Σg,1)-equivariant map from geometric to symplectic
bases of H , thus also another extension of the symplectic representa-
tion.

8. Other identity extensions

In analogy to the extension of the identity representation given in
Theorem 6.1, we conclude by describing two other extensions of iden-
tity representations: one for the Torelli group I(Σg,1) and one for the
subgroupMC(Λ) of mapping classes preserving the Lagrangian Λ < H ,
i.e., Λ is a maximal isotropic subspace.

Theorem 8.1. Given any geometric basis B for H, there is an explicit
extension

ĩdB : Pt(Σg,1)→I(Σg,1)

to the Ptolemy groupoid of the identity homomorphism of the Torelli
group, which is natural in the sense that if φ ∈MC(Σg,1) then

ĩdB(W : G→ G′) = φ−1
[
ĩdφ(B)(φ(W ) : φ(G) → φ(G′))

]
φ.

Theorem 8.2. Given any integral Lagrangian subspace Λ of H, there
is an explicit extension

ĩdΛ : Pt(Σg,1)→MC(Λ)

to the Ptolemy groupoid of the identity homomorphism of MC(Λ),
which is natural in the sense that if φ ∈MC(Σg,1), then

ĩdΛ(W : G→ G′) = φ−1
[
ĩdφ(Λ)(φ(W ) : φ(G) → φ(G′))

]
φ.

The proofs are quite similar and given or sketched in the next sec-
tion after first developing the requisite tools here. Just as the proof of
Theorem 6.1 involved an algorithm which took any bordered fatgraph
to a fixed “symplectic basepoint” bordered fatgraph, the above theo-
rems are similarly based on an algorithm which takes any geometrically
H-marked bordered fatgraph to a fixed H-marked bordered fatgraph,
i.e., a fixed “symplectic basepoint” in the Torelli groupoid. Also as in
Theorem 6.1, if we fix a marked bordered fatgraph with corresponding
geometric basis B, then Theorem 8.1 in fact leads to a representation
of the Torelli groupoid in I(Σg,1). Similarly, fixing a marked bordered
fatgraph, the representation of Theorem 8.2 can also be extended to
the Torelli groupoid.
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8.1. Homology markings and chord slides. Under a chord slide,
the H-marking of a linear fatgraph evolves in a simple way: up to
sign and permutation, all H-markings of chords are fixed except the
one being slid over, which is modified by adding or subtracting the
H-marking of the slid chord. For example, consider the chord slide of
Figure 4, where we begin with an isolated pair of overlapping chords
with H-markings Bi and −Ai. When the left end of the Bi-marked
chord is slid along the −Ai-marked chord, we obtain a new isolated
pair of overlapping chords which are H-marked Ai + Bi and Bi as in
the figure. Thus, this chord slide corresponds to the transformation

Ai 7→ −Bi, Bi 7→ Ai +Bi,

which is easily seen to be a symplectic transformation.

Bi −Ai

→
BiAi +Bi

Figure 4. Evolution of H-marking under a chord slide.

More generally, we have the

Lemma 8.3. Assume that C is a symplectic chord diagram with chords
H-marked by the basis {−Ai, Bi}, 1 ≤ i ≤ g. Then the following
elements of Sp(2g,Z) can be realized in terms of chord slides (1 ≤ i 6=
j ≤ g):

i±) Ai 7→ Ai ± Bi.
ii±) Bi 7→ Bi ±Ai.
iii) Ai 7→ Bi 7→ −Ai.
iv) Ai 7→ Aj 7→ Ai, Bi 7→ Bj 7→ Bi,
v±) Ai 7→ Ai ± Ai+1, Bi+1 7→ Bi+1 ∓Bi.

Proof. The moves of types i+ and ii+ are provided by the following two
chord slides

Bi −Ai Bi −Ai

,

and the moves of types i− and ii− are obtained similarly.
The move of type iii is obtained by combining moves of type i± and

ii± with moves similar to that illustrated in Figure 4. The move of type
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iv is provided by iterations of sequences of chord slides of the following
type

{ }
−Ai−1Bi Bi−1−Ai

.

The move of type v+ is provided by composing the following two se-
quences

−Ai−1Bi Bi−1−Ai −Ai−1Bi Bi−1−Ai

while type v− is similar. �

We now apply this lemma to prove the following

Lemma 8.4. There is an algorithm starting with any marked symplec-
tic chord diagram C →֒ Σg,1 and any primitive integral vector v ∈ H
(i.e., v extends to an integral basis of H) which produces a sequence of
chord slides on C resulting in a marked symplectic chord diagram C ′

with the leftmost chord H-marked by v.

Proof. Let B = {Ai, Bi}1≤i≤g be the symplectic basis of H given by the
marking of C. Since v is integral, we have

v =

g∑

i=1

ciAi + diBi, ci, di ∈ Z.

By applying a sequence of type iiimoves, we can assume that all ci, di ≥
0.
Next by applying a sequence of type i moves according to a “ho-

mological division algorithm,” we can obtain a new geometric basis B′

such that either c′i = 0 or d′i = 0 for all i = 1, . . . , g. For example, if
di ≥ mici, we would begin by applying a type i+ move mi times to
reduce the coefficient di of Bi by mici. After completing this process,
we can apply several type iii moves to obtain a basis B′′ with all c′′i = 0,
so that

v =

g∑

i=1

d′′iB
′′
i .

Next by applying a similar division algorithm using type iv and v
moves, we obtain a basis B′′′ = {A′′′

i , B
′′′
i }1≤i≤g with

v = d′′′i B
′′′
i ,
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for some i. Since both v and B′′′
i are integral basis elements, we must

have d′′′i = 1. By applying type iv moves, we can finally arrange that
i = 1, as required. �

8.2. Proofs of Theorem 8.1 and 8.2. For the proof of Theorem
8.1, we devise an algorithm which will take any marked fatgraph G to
a symplectic chord diagram C with corresponding geometric H-basis
given by B. Once we have obtained such an algorithm, the theorem
will follow analogously to the proof of Theorem 6.1: we compare the
results of the algorithm for the marked fatgraphs G and G′ which differ
by a Whitehead move, and the difference in marking defines an element
of I(Σg,1).
By applying the branch reduction and chord slide algorithms, we can

assume that G is a symplectic chord diagram and that B = {−Ai, Bi}
corresponds to the symplectic basis {Ai, Bi}. The algorithm then pro-
ceeds as follows. First, we apply Lemma 8.4 using v = B2g to obtain
a new symplectic chord diagram with leftmost chord labelled by B2g.
It is easy to see that the unique chord overlapping with the leftmost
one must be labelled by −A2g +kB2g, and by applying k moves of type
i, we can arrange that the labeling is precisely −Ai. We then apply
this procedure to the genus g − 1 symplectic chord diagram subgraph
with v = B2g−1, and so on, until we arrive at a symplectic chord dia-
gram with geometric basis B. The naturality statement is a tautology
tantamount to the existence of the algorithm.
The proof of Theorem 8.2 is similar and only sketched here. The

proof follows from an algorithm which takes any marked fatgraph G to
a symplectic chord diagram C with the property that the Lagrangian
subspace Λ equals the span of the H-markings of those chords of C
corresponding to the chords labelled bi produced in the chord slide
algorithm. The only truly new ingredient is the determination of a
vector v ∈ Λ in the application of Lemma 8.4. This is done by looking
at the integral subspaces

W2i−1 = Λ ∩ span(A1, B1, A2, . . . , Ai),

W2i = Λ ∩ span(A1, B1, A2, . . . , Bi).

For the minimal j withWj nonempty, the intersection is one-dimensional,
hence contains a unique integral basis element v ∈ Wj .

References

1. J. E. Andersen, A. Bene, J.-B. Meilhan, R. C. Penner, “Finite type invariants
and fatgraphs”, preprint.



24JØRGEN ELLEGAARD ANDERSEN, ALEX JAMES BENE, AND R. C. PENNER

2. D. Bar-Natan, S. Garoufalidis On the Melvin-Morton-Rozansky conjecture,
Invent. Math. 125 (1996) no. 1, 103–133.

3. A. Bene, A chord diagrammatic presentation of the mapping class group of a

once-bordered surface, to appear in Geom. Dedicata., e-print: 0802.2747.
4. A. Bene, N. Kawazumi, R.C. Penner, Canonical extensions of the Johnson

homomorphisms to the Torelli groupoid, Adv. Math. 221 (2009), 627–659.
5. R.H. Fox, Free differential calculus.I:Derivation in the free group ring, Ann.

of Math. (2) 57, 547560, (1953).
6. R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Classics in Math-

ematics, Springer-Verlag, Berlin (2001).
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