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Abstract

This paper is devoted to the complete classification of space curves under affine

transformations in the view of Cartan’s theorem. Spivak has introduced the method

but has not found the invariants. Furthermore, for the first time, we propound a

necessary and sufficient condition for the invariants. Then, we study the shapes of

space curves with constant curvatures in detail and suggest their applications in

physics, computer vision and image processing.
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1 Introduction

Classification of curves has a significant place in geometry, physics, mechanics, com-

puter vision and image processing. In geometrical sense, a plane curve with constant

curvature, up to special affine transformations may be either an ellipse, a parabola

or a hyperbola [14]. This classification will be obtained by the concept of invariants.

Geometry of curves in spaces with dimension ≥ 3 has studied with geometers such as

Guggenheimer [5], Spivak [14] and etc. The aim was finding the invariants of curves

under transformations. On the other hand, in [14], study of space curves in the view

of Cartan’s theorem was started but has not completed yet.

This paper can be viewed as a continuation of the work [14], where the authors began

the classification of space curves up to special affine transformations. We determine all

of differential invariants and our method is different from the method of Guggenheimer

1Corresponding Author. E-mail Address: m nadjafikhah@iust.ac.ir
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and other existing methods. Also, for the first time, we prove a necessary and sufficient

condition for the invariants in order that complete the classification. Moreover, we

classify the shapes of space curves of constant curvatures which has a wide variety of

applications in physics, computer vision and image processing. The general form of

these shapes are exist in [5], but here we try to discuss them in more details.

In physics, classification of curves up to affine transformations has a special position

in the study of rigid motions. Suppose we have a particle moving in 3D space and that

we want to describe the trajectory of this particle. Especially, each curve in a three

dimensional space could be imagined as a trajectory of a particle with a specified mass in

the view of an observer. By classification of curves we can, in fact, obtain conservation

laws.

Computer vision deals with image understanding at various levels. At the low level,

it addresses issues such us planar shape recognition and analysis. Some results on dif-

ferential invariants associated to space curves are relevant to space object recognition

under different views and partial occlusion. The evolution of space shapes under curva-

ture controlled diffusion have applications in geometric shape decomposition, smooth-

ing, and analysis, as well as in other image processing applications (see, e.g. [8, 9])

and similar to recent results for planer shapes. For instance, there are some important

applications of moving frames method in use of the differential invariant signatures [12].

In [1, 2] there exist some applications to the problem of object recognition and symme-

try. Also, joint differential invariants has been proposed as noise-resistant alternatives

to differential invariant signatures in computer vision [3]. Practical applications of the

derived shapes in the latest section are related to invariant signatures, object recogni-

tions, and symmetry of 3D shapes via the generalization of them from 2D shapes to

3D ones.

In the next section, we state some preliminaries about Maurer-Cartan forms and a

way of classification of maps with the notable role of Maurer-Cartan forms and Cartan’s

theorem. In section three, classification of space curves in R3 under the action of
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affine transformations is discussed. Finally, in the last section, we study the shapes of

space curves with constant curvatures and propose some applications of these shapes

in physics, computer vision and image processing.

2 Maurer-Cartan form

Let G ⊂ GL(n,R) be a matrix Lie group with Lie algebra L and P : G → Mat(n× n)

be a matrix-valued function which embeds G into Mat(n × n), the vector space of

n × n matrices with real entries. Its differential is dPB : TBG → TP (B)Mat(n × n) ≃
Mat(n× n).

Definition 2.1 The 1-form ωB = {P (B)}−1 · dPB of G is called the Maurer-Cartan

form. It is often written ω = P−1 · dP . The Maurer-Cartan form is in fact the unique

left invariant L−valued 1-form on G such that ωId : TIdG → L is the identity map.

The Maurer-Cartan form ω satisfies in Maurer-Cartan equation dω = −ω ∧ ω. The

Maurer-Cartan form is the key to classifying maps into homogeneous spaces of G. This

process needs to the following theorem (for a proof we refer the reader to [6]):

Theorem 2.2 (Cartan) Let G be a matrix Lie group with Lie algebra L and Maurer-

Cartan form ω. Let M be a manifold on which there exists a L−valued 1-form φ

satisfying dφ = −φ ∧ φ. Then for any point x ∈ M there exist a neighborhood U of x

and a map f : U → G such that f∗ ω = φ. Moreover, Any two such maps f1, f2 must

satisfy f1 = LB ◦ f2 for some fixed B ∈ G (LB is the left action of B on G).

Corollary 2.3 Given maps f1, f2 : M → G, then f∗
1 ω = f∗

2 ω, that is, this pull-back

is invariant, if and only if f1 = LB ◦ f2 for some fixed B ∈ G.

In Theorem 2.2, if M is connected and simply-connected, then the desired map

f may be extended to all of M [15]. We suppose that G be the special linear group
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SL(3,R) as a Lie group and we denote its Lie algebra with sl(3,R). This Lie group is

not simply-connected, so our achievements are local.

Definition 2.4 An affine transformation of the Euclidean space R3 is the composi-

tion of a translation in R3 among with an element of the general linear group GL(3,R).

An affine transformation is called special or unimodular, if its matrix part is an element

of SL(3,R). The group of special affine transformations is the connected coefficient,

closed subgroup of the Lie group of affine transformations.

The following section is devoted to the study of the properties of space curves’

invariants under the action of volume–preserving affine transformations, i.e., the special

affine group. The number of essential parameters (dimension of the Lie algebra) is 11.

The natural assumption of differentiability is C5.

In the next section, by defining the new curve αc instead of a considered regular

smooth curve c, we will see that the classification of curves in R3 and in the viewpoint

of Theorem 3.1 is equivalent to the ones in SL(3,R). Thus we find the Maurer-Cartan

form of SL(3,R) and then its pull-back via the matrix–valued curve αc. In fact, αc s

play the role of fi s in Corollary 2.3. This tends to a complete set of invariants of

αc as 1-forms on R. The derived invariants in a corresponding manner determines

curves of SL(3,R). Finally in Theorem 3.3, we find that these invariants also provide

a necessary and sufficient condition for specifying curves in R3 when we supposed the

action of special affine group SL(3,R) on R3.

3 Classification of space curves

In the present section, we achieve the invariants of a space curve up to special affine

transformations. From Theorem 2.2, two curves in R3 are equivalent under special

affine transformations, if they differ with a left action introduced by an element of

SL(3,R) and then a translation.
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Let c : [a, b] → R3 be a curve in three dimensional space which we call the space

curve, be of class C5 and

det(c′, c′′, c′′′) 6= 0, (1)

for any point of the domain, that is, we assume that c′, c′′ and c′′′ are linear independent.

Otherwise, if for example, c′′′ depends to c′ and c′′ for some interval [a, b], then we

can simply observe that the curve c will sit in R2, which is not our main topic of

investigation. Moreover, we can assume that det(c′, c′′, c′′′) > 0 for being avoid writing

the absolute value in calculations.

For the curve c, we consider a new curve, namely αc(t) : [a, b] → SL(3,R), defined

by

αc(t) :=
(c′, c′′, c′′′)

{det(c′, c′′, c′′′)}1/3

which is well defined on the domain of c into the special linear group SL(3,R). We

can study the new curve in respect to special affine transformations, i.e. the action

of special affine transformations on first, second and third differentiations of c. If we

assume that A is a three dimensional special affine transformation, then we have the

unique representation A = τ ◦B which B is an element of SL(3,R) and τ is a translation

in R3. If two curves c and c̄ be the same up to an A, c̄ = A ◦ c, then we have

c̄′ = B ◦ c′, c̄′′ = B ◦ c′′, c̄′′′ = B ◦ c′′′.

Also from detB = 1 we obtain

det(c̄′, c̄′′, c̄′′′) = det(B ◦ c′, B ◦ c′′, B ◦ c′′′) = det(B ◦ (c′, c′′, c′′′))

= det(c′, c′′, c′′′).

and so we conclude that αc̄(t) = B ◦ αc(t) and αc̄ = LB ◦ αc, where LB is the left

translation for B ∈ SL(3,R).
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This condition is also necessary because when c and c̄ are two space curves in which

αc̄ = LB ◦ αc for an element B ∈ SL(3,R), then we can write

αc̄ = {det(c̄′, c̄′′, c̄′′′)}−1/3 (c̄′, c̄′′, c̄′′′)

= {det(B ◦ (c′, c′′, c′′′))}−1/3 B ◦ (c′, c′′, c′′′)

= {det(c′, c′′, c′′′)}−1/3 B ◦ (c′, c′′, c′′′).

Thus c̄′ = B ◦ c′ and there is a translation τ such that A = τ ◦B and c̄ = A ◦ c where

A is a three dimensional affine transformation. Therefore we have

Theorem 3.1. Let c and c̄ are two space curves. c and c̄ are the same with respect

to special affine transformations, i.e. c̄ = A ◦ c when A = τ ◦B for translation τ in R3

and B ∈ SL(3,R) if and only if αc̄ = LB ◦ αc where LB is a left translation generated

by B.

From Cartan’s theorem, a necessary and sufficient condition for αc̄ = LB ◦ αc (B ∈
SL(3,R)) is that for any left invariant 1-form ωi on SL(3,R) we have α∗

c̄(ω
i) = α∗

c(ω
i).

It is equivalent to α∗
c̄(ω) = α∗

c(ω) for natural sl(3,R)-valued 1-form ω = P−1 . dP for

matrix-valued function P which embeds SL(3,R) into Mat3× 3, the vector space of

3× 3 matrices with real entries, and ω is the Maurer-Cartan form.

We must compute α∗
c(P

−1.dP ) which is invariant under special affine transforma-

tions. Its entries are in fact invariant functions of space curves. It is a 3 × 3 matrix

form which arrays are multiplications of dt (1-forms on [a, b]).

Since α∗
c(P

−1 ·dP ) = α−1
c ·dαc, so we calculate the matrix α−1

c ·α′
c and then multiply

it by dt to have α∗
c(P

−1 · dP ). we have

α−1
c = det(c′, c′′, c′′′)1/3 · (c′, c′′, c′′′)−1

= det(c′, c′′, c′′′)−2/3 ·













c′′2c
′′′
3 − c′′3c

′′′
2 c′′3c

′′′
1 − c′′1c

′′′
3 c′′1c

′′′
2 − c′′2c

′′′
1

c′3c
′′′
2 − c′2c

′′′
3 c′3c

′′′
5 − c′1c

′′′
3 c′2c

′′′
1 − c′1c

′′′
2

c′2c
′′
3 − c′3c

′′
2 c′3c

′′
1c

′
1c

′′
3 c′1c

′′
2 − c′2c

′′
1












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which c = (c1, c2, g3)
T as a column matrix be the vector representation of curve c. We

also have

[det(c′, c′′, c′′′)]′ = det(c′′, c′′, c′′′) + det(c′, c′′′, c′′′) + det(c′, c′′, c′′′′)

= det(c′, c′′, c′′′′).

Thus we see that

α′
c = det(c′, c′′, c′′′)−1/3 ·













c′′1 c′′′1 c′′′′1

c′′2 c′′′2 c′′′′2

c′′3 c′′′3 c′′′′3













− 1

3
det(c′, c′′, c′′′)−4/3 ·













c′1 c′′1 c′′′1

c′2 c′′2 c′′′2

c′3 c′′3 c′′′3













.

After some computations, finally we find that α−1
c ·α′

c is in the following multiple of dt













− det(c′,c′′,c′′′′)
3 det(c′,c′′,c′′′) 0 det(c′′,c′′′,c′′′′)

det(c′,c′′,c′′′)

1 − det(c′,c′′,c′′′′)
3 det(c′,c′′,c′′′) −det 8c′,c′′′,c′′′′)

det(c′,c′′,c′′′)

0 1 2 det(c′,c′′,c′′′′)
3 det(c′,c′′,c′′′)













.

Clearly, the trace of the last matrix is zero and entries of α∗
c(P

−1 · dP ) and therefore

entries of the above matrix, are invariants of the group action.

Therefore according to Theorem 3.1, two space curves c, c̄ : [a, b] → R3 are the same

under special affine transformations if we have

det(c′, c′′, c′′′′)
det(c′, c′′, c′′′)

=
det(c̄′, c̄′′, c̄′′′′)
det(c̄′, c̄′′, c̄′′′)

det(c′′, c′′′, c′′′′)
det(c′, c′′, c′′′)

=
det(c̄′′, c̄′′′, c̄′′′′)
det(c̄′, c̄′′, c̄′′′)

det(c′, c′′′, c′′′′)
det(c′, c′′, c′′′)

=
det(c̄′, c̄′′′, c̄′′′′)
det(c̄′, c̄′′, c̄′′′)

.

We may use of a proper parametrization σ : [a, b] → [0, l] such that the parameterized

curve γ = c ◦ σ−1 satisfies in condition det(γ′(s), γ′′(s), γ′′′′(w)) = 0 and then entries

over the principal diagonal of α∗
γ(P

−1 · dP ) be zero. But this determinant is in fact
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the differentiation of det(γ′(s), γ′′(s), γ′′′(s)) and for being zero it is sufficient that we

assume det(γ′(s), γ′′(s), γ′′′(s)) = 1. On the other hand, we have

c′ = (γ ◦ σ)′ = σ′ · (γ′ ◦ σ)

c′′ = (σ′)2 · (γ′′ ◦ σ) + σ′′ · (γ′ ◦ σ)

c′′′ = (σ′)3 · (γ′′′ ◦ σ) + 3σ′σ′′ · (γ′′ ◦ σ) + σ′′′ · (γ′ ◦ σ).

Thus we conclude that

det(c′, c′′, c′′′) = det(σ′ · (γ′ ◦ σ) , (σ′)2 · (γ′′ ◦ σ) + σ′′ · (γ′ ◦ σ) ,

(σ′)3 · (γ′′′ ◦ σ) + 3 ∗ σ′σ′′ · (γ′′ ◦ σ) + σ′′′ · (γ′ ◦ σ))

det(σ′ · (γ′ ◦ σ) , (σ′)2 · (γ′′ ◦ σ) , (σ′)3 · (γ′′′ ◦ σ))

= (σ′)6 · det(γ′ ◦ σ , γ′′ ◦ σ γ′′′ ◦ σ)

= (σ′)6 ,

The last expression specifies σ, namely the special affine arc length, is defined as follows

σ :=

∫ t

a

[

det(c′(u), c′′(u), c′′′(u))
]1/6

du.

So σ is a natural parameter under the action of special affine transformations, that

is, when c is parameterized by σ then for each special affine transformation A, A ◦ c is

also parameterized by the same σ. Furthermore, every curve parameterized by σ up to

special affine transformations is introduced with the following invariants

χ1 = det(c′′, c′′′, c′′′′), χ2 = det(c′, c′′′, c′′′′). (2)

We call χ1 and χ2 the first and the second special affine curvatures resp. Thus finally

we have

α∗
γ(P

−1 . dP ) =













0 0 χ1

1 0 −χ2

0 1 0













dσ.
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Theorem 3.2 Every space curve of class C5 satisfying in condition (1) under the

action of special (unimodular) affine transformations is determined by its natural equa-

tions χ1 = χ1(σ) and χ2 = χ2(σ) of the first and second special affine curvatures (2)

as functions (invariants) of the special affine arc length.

Theorem 3.3 Two space curves c, c̄ : [a, b] → R3 of class C5 which satisfy in condition

(1) are special affine equivalent if and only if χc
1 = χc̄

1 and χc
2 = χc̄

2.

Proof: The first side of the theorem is trivial with respect to above descriptions. For

the other side, we assume that c, c̄ are curves of class C5 satisfying (resp.) in

det(c′, c′′, c′′′) > 0, det(c̄′, c̄′′, c̄′′′) > 0, (3)

that is, they are not plane curves. Also we suppose that functions χ1 and χ2 are the

same for these curves.

By changing the parameter to the natural parameter σ (mentioned above), we

obtain new curves γ and γ̄ resp., that determinant (3) will be equal to 1. We prove

that γ and γ̄ are special affine equivalent and so there is a special affine transformation

A sech that γ̄ = A ◦ γ. Then we have c̄ = A ◦ c and the proof is complete.

At first, we replace the curve γ with δ := τ(γ) properly, in which case that δ

intersects γ̄ where τ is a translation defined by translating one point of γ to one point

of γ̄. We correspond t0 ∈ [a, b] to the intersection of δ and γ̄, thus δ(t0) = γ̄(t0). One can

find a unique element B of the general linear group GL(3,R) such that maps the frame

{δ′(t0), δ′′(t0), δ′′′(t0)} to the frame {γ̄′(t0), γ̄′′(t0), γ̄′′′(t0)}. So we have B ◦ δ′(t0) =

γ̄′(t0), B ◦ δ′′(t0) = γ̄′′(t0), and B ◦ δ′′′(t0) = γ̄′′′(t0). B is also an element of the special

linear group SL(3,R); since we have

det(γ′(t0), γ
′′(t0), γ

′′′(t0)) = det(δ′(t0), δ
′′(t0), δ

′′′(t0)) and

det(δ′(t0), δ
′′(t0), δ

′′′(t0)) = det(B ◦ (γ̄′(t0), γ̄′′(t0), γ̄′′′(t0))),

and thus det(B) = 1. If we prove that η := B ◦δ is equal to γ̄ on [a, b], then by choosing

A = τ ◦B, there will remain nothing for proof.
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For curves η and γ̄ we have (resp.)

(η′, η′′, η′′′)′ = (η′, η′′, η′′′)













0 0 χ
η
1

1 0 −χ
η
2

0 1 0













and

(γ̄′, γ̄′′, γ̄′′′)′ = (γ̄′, γ̄′′, γ̄′′′)













0 0 χ
γ̄
1

1 0 −χ
γ̄
2

0 1 0













.

Since χ1 and χ2 remain unchanged under special affine transformations, so we have

χ
η
1 = χ

γ
1 = χ

γ̄
1 and χ

η
2 = χ

γ
2 = χ

γ̄
2 , therefore, we conclude that η and γ̄ are solutions of

ordinary differential equation Y ′′′′ + χ2 Y
′′ − χ1 Y

′ = 0 where Y depends to t. Because

of the same initial conditions

η(t0) = B ◦ δ(t0) = γ̄(t0), η′(t0) = B ◦ δ′(t0) = γ̄′(t0),

η′′(t0) = B ◦ δ′′(t0) = γ̄′′(t0), η′′′(t) = B ◦ δ′′′(t0) = γ̄′′′(t0),

and the generalization of the existence and uniqueness theorem of solutions, we have

η = γ̄ in a neighborhood of t0 that can be extended to the whole [a, b]. ♦

Corollary 3.4 The number of invariants of special affine transformation group acting

on R3 is two which is the same with another results provided by other methods such as

[5].

The generalization of the affine classification of curves in an arbitrary finite dimen-

sional space has been discussed in [10] and a complete set of invariants with a necessary

and sufficient condition of them for classifying curves up to affine transformations has

been derived.
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4 Geometric interpretations applied to physics and com-

puter vision

In the present section, the geometric interpretation of the first and the second special

affine curvatures and their applications in physics and computer vision is discussed.

Since every curve parameterized with special affine arc length σ and with constant first

and second affine curvatures χ1 and χ2 fulfilled in relation α′
c(σ) = αc(σ).(b), for some

b ∈ sl(3,R) via the right action of the Lie algebra. In fact, we assumed that the action

of the Lie group be the left action [11]. Whereof, Maurer-Cartan matrix of SL(3,R) is

a base for Lie algebra sl(3,R) and one can write α′
c(σ) = αc(σ).













0 0 χ1

1 0 −χ2

0 1 0













. By

solving this first order equation, we obtain αc(σ) = exp
(

σ.













0 0 χ1

1 0 −χ2

0 1 0













)

that, for

different values of χ1 and χ2 it has a different forms which we divide these forms in the

following cases:

I. The case χ1 = χ2 = 0.

In this case, the curve is in the form αc(σ) =













1 0 0

σ 1 0

1
2 σ

2 σ 1













. It is clear that the

first column of this matrix is c′(σ) and so we have c(σ) = K +(σ , 1
2 σ

2 , 1
6 σ

3) for some

constant K ∈ R3, that its image is analogous to the image of twisted cubic [4]. Also

the image is similar to the Neil or semi-cubical parabola’s graph [7]. The projection of

this space curve in the direction of z−axis is a parabola in plane. This space curve is

the simplest curve in R3 under special affine transformations. Its figure is a translation

of Figure 1-(a) by constant K.
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Theorem 4.1 Space curves with zero special affine curvatures are in the form of

twisted cubic probably with some translations.

Figure 1: (a) χ1 = χ2 = 0. (b) χ1 = 0, χ2 > 0.

II. The case χ1 = 0 and χ2 > 0.

In this case, we have

αc(σ) =













1 0 0

1√
χ2

sin(
√
χ2 σ) cos(

√
χ2 σ) −√

χ2 sin(
√
χ2 σ)

− 1
χ2

(cos(
√
χ2 σ)− 1) 1√

χ2
sin(

√
χ2 σ) cos(

√
χ2 σ)













.

So we obtain c(σ) = K +
(

σ , − 1
χ2

cos(
√
χ2 σ) , − 1

χ2

√
χ2

sin(
√
χ2 σ) +

σ
χ2

)

for K ∈ R3.

The image of this curve is a translation of Figure 1-(b) by constant K. Its projection

in the direction of z−axis is similar to the graph of function cos(σ).

III. The case χ1 = 0 and χ2 < 0.

If we use |χ2| = −χ2 to be the absolute value of χ2, in the same way as the previous

cases, we find that

αc(σ)=















1 0 0

1√
|χ2|

sinh(
√

|χ2| σ) cosh(
√

|χ2| σ)
√

|χ2| sinh(
√

|χ2|σ)
1

|χ2| {cosh(
√

|χ2|σ)− 1} 1√
|χ2|

sinh(
√

|χ2|σ) cosh(
√

|χ2| σ)















.
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Thus c(σ) = K +
(

σ , 1
|χ2| cosh(

√

|χ2|σ) , 1

|χ2|
√

|χ2|
sinh(

√

|χ2| σ)− σ
|χ2|

)

where K is an

element of R3. Its image is drown in Figure 2-(a) probably after a translation. Its

z−axis projection is similar to the graph of the function cosh(σ).

Figure 2: (a) χ1 = 0, χ2 < 0. (b) χ1 > 0, χ2 = 0.

IV. The case χ1 > 0 and χ2 = 0.

Under these conditions, the αc(σ) is















2
3M+ 1

3R −1
3χ

1/3
1 (

√
3N+M−R) 1

3χ
2/3
1 (

√
3N−M+R)

1

3χ
1/3
1

(
√
3N−M+R) 2

3M + 1
3R −1

3χ
1/3
1 (

√
3N+M−R)

− 1

3χ
2/3
1

(
√
3N+M−R) 1

3χ
1/3
1

(
√
3N−M+R) 2

3M + 1
3R















,

where

M = exp(−1
2χ

1/3
1 σ) cos(

√
3
2 χ

1/3
1 σ), R = exp(χ

1/3
1 σ)

N = exp(−1
2χ

1/3
1 σ) sin(

√
3
2 χ

1/3
1 σ).

Therefore with above conditions, we can write

c(σ) = K+

(

1

3χ
1/3
1

(
√
3N−M+R),

1

3χ
2/3
1

(−
√
3N−M+R),

1

3χ1
(2M+R)

)

for some K ∈ R3. Its figure is similar to Figure 2-(b).



14 Mathematical Sciences Vol. x, No. x (200x)

V. The case χ1 < 0 and χ2 = 0.

Such as case III, with use of |χ2| = −χ2, the conditions of this case lead to the form of

αc(σ):












2
3M+ 1

3R
1
3 |χ1|1/3(−

√
3N+M−R) 1

3 |χ1|2/3(
√
3N+M−R)

1
3|χ1|1/3 (

√
3N+M−R) 2

3M+ 1
3R

−1
3 |χ1|1/3(

√
3N−M+R)

−1
3|χ1|2/3 (

√
3N−M+R) 1

3|χ1|1/3 (
√
3N+M−R) 2

3M+ 1
3R













,

where

M = exp(12 |χ1|1/3σ) cos(
√
3
2 |χ1|1/3/σ), R = exp(−|χ1|1/3σ)

N = − exp(12 |χ1|1/3σ) sin(
√
3
2 |χ1|1/3/σ).

And so we have the following curve

c(σ)=K+
( 1

3|χ1|1/3
(
√
3N+M−R),

−1

3|χ1|2/3
(
√
3N−M+R),

−1

3|χ1|
)2M+R)

)

for some K ∈ R3. Its shape is similar to Figure 3-(a).

Figure 3: χ1 < 0, χ2 = 0.

VI. The case χ1, χ2 6= 0.

In this case, relations are not as simple as previous cases. αc(σ) in this general case, is

in the following form αc(σ) =













B11 B12 B13

B21 B22 B23

B31 B32 B33













where for 1 ≤ i, j ≤ 3 the entries

Bij for brevity are given in Appendix at the end of the paper.
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Thus the relation c′(σ) = (B11, B21, B31) signifies the curve c(σ) by integrating of

the coefficients with respect to σ. Therefore we obtain c(σ) = K + (T1, T2, T3) when

K is an element of R3 and Ti s are in the forms of variables which are indicated in

Appendix.

For different values of constants χ1, χ2 6= 0, there exist various curves and c(σ) is

a translation, contraction or extraction of a curve in the form of these cases. Thus we

have different figures that each of which is similar to one of the shapes given in Figure

4, (a)–(d).

Figure 4: (a) χ1, χ2 > 0. (b) χ1, χ2 < 0. (c) χ1 < 0 < χ2. (d) χ1 > 0 > χ2.

Corollary 4.2 In general, every solution of αc : R → SL(3,R) is provided by multi-

plying a special linear transformation and a translation from an acquired curve in above

cases. In fact, the geometrical sense of above curves can be explained as follows:

Each curve has two branches. The values of the first and second special affine cur-

vatures determine “rotation quantities” of the branches that by ascending (descending

resp.) the values, each branch’s bend will increase (decrease resp.). Accordingly, the

definitions of χ1 and χ2 have geometric interpretations as the usual terminology of cur-
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vatures.

In the case of constant χ1 and χ2, by using Theorem 3.3, we can classify space

curves in these cases via special affine transformations and as a result we have the

following theorem:

Theorem 4.3 Each curve of class C5 in R3 satisfied in condition (1) with constant

affine curvatures χ1 and χ2, up to special affine transformations, is the trajectory of a

one–parameter subgroup of special (unimodular) affine transformations, that is, a curve

of cases I-VI.

Finally we give two applications of the classification of space curves by the action

of special affine transformations and Theorem 4.3:

Corollary 4.4 In the physical sense, we may assume that each space curve X :

[a, b] → R3 is the trajectory of a particle with a specified mass m” in R3 and in the view

of an observer, that is influenced under the effect of a force F. By the action of special

affine transformations, particle’s path has two conservation laws: (X′′×X′′′) ·X′′′′ and

(X′×X′′′)·X′′′′, that are, the first and the second special affine curvatures. Therefore, by

multiplying constant m3 to theses invariants, we find conservation laws as (F×F′) ·F′′

and (P×F′) ·F′′ where P = m ·v is the momentum of the particle. If these invariants

of the trajectory are constant, then the shape of the motion is similar to one of the six

cases mentioned in the above theorem.

The derived invariants in above, may have important applications in astronomy,

fluid mechanics, quantum, general relativity and etc. A reason for this importance is

that in these areas we deal with the motion of a space particle and it may be of our

interest to investigate for symmetry properties and invariants of the particle under rigid
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motions.

Corollary 4.5 In computer vision and image processing, we may suppose that each

space curve is one of the characteristic curves on a 3-dimensional object, that are fea-

sible minimum segment curves that completely signify the object in the viewpoint of

an observer. Also, if by an effect provided by (orientation-preserving) rotations and

translations in R3 we change the position of a picture without any change in charac-

teristic lines, then these cur es will be equivalent under special affine transformation.

If a characteristic line has constant affine curvatures χ1 and χ2, then it will be similar

to one of the cases of curves mentioned in Theorem 4.3.

For instance, these image invariants provide the most prominent application fields

in 3D medical imagery, including MRI, ultrasound and CT data, in object recognition,

symmetry and differential invariant signatures of 3D shapes [8, 9, 12].

Appendix

In case VI of section 4, entries Bij (1 ≤ i, j ≤ 3) are

B11 =
1

∆

{

A
(

72 c
1/3
1 χ1 χ2 − 8 c

1/3
1 c2 χ2 − 144 c2χ1 − 192χ3

2 − 1296χ2
1

+8 c
2/3
1 χ2

2) +B
(

13.85640646 c
2/3
1 χ2

2 + 12.470765820 c
1/3
1 χ1 χ2

+13.85640646 c1−3
1 c2 χ2

)

+D
(

− 8 c
2/3
1 χ2

2 − 72 c2 χ1 − 648χ2
1

−96χ3
2 − 72 b

1/3
1 χ1 χ2 − 8 c

1/3
1 c2 χ2

)}

,

B21 = −B32 = − 1

χ1
B13 =

1

∆

{

A
(

− 18 c
2/3
1 χ1 − 2 c

2/3
1 c2 + 24 c

1/3
1 χ2

2

)

+B
(

41.56921940 c
1/3
1 χ2

2 + 31.176874540c
2/3
1 χ1 + 3.464101616c

2/3
1 c2

)

+D
(

− 24 c
1/3
1 χ2

2 + 18 c2/3 χ1 + 2 c
2/3
1 c2

)}

,

B31 = c
2/3
1 B12 =

1

∆

{

A
(

− c
4/3
1 − 12 c

2/3
1 χ2

)

+B
(

− 1.732050808 c
4/3
1

+20.7846097 c
2/3
1 χ2

)

+D
(

c
4/3
1 + 12 c

2/3
1 χ2

)}

,
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B22 = B33 =
1

∆

{

A
(

1296χ2
1 + 144 c2 χ1 + 4 c

2/3
1 χ2

2 + 36 c
1/3
1 χ1 χ2

+4 c
1/3
1 c2 χ2 + 192χ3

2

)

+B
(

62.353831080 c
1/3
9 χ1 χ2

+69.28203232 c
2/3
1 c2 χ2 − 69.28203232 c

2/3
1 χ2

2

)

+D
(

72 c2 χ1

+96χ3
2 + 648χ2

1 − 36 c
1/3
1 χ1 χ2 −M4 c

1/3
1 c2 χ2 − 4 c

2/3
1 χ2

2

)}

,

F23 =
−1

∆

{

A
(

108c
1/3
1 χ2

1 + 24c
1/3
1 χ3

2 − 6c
2/3
1 χ1χ2 − 2c

1/3
1 c2χ2 + 12c

1/3
1 c2χ1

)

+B
(

10.39230485c
2/3
1 χ1χ2 + 3.464101616c

1/3
1 c2χ2 + 187.0614873

×c
1/3
1 χ2

1 + 41.5692194c
1/3
1 χ3

2 + 20.7846097c
1/3
1 c2χ1

)

+D
(

6c
2/3
1 χ1χ2

−24c
1/3
1 χ3

2 + 2c
2/3
1 c2χ2 − 12c

2/3
1 c2χ1 − 108c

1/3
1 χ2

1

)}

,

Which in the above relations we assumed that

c1 = 108χ1 + 12(
√

12χ3
2 + 81χ2

1),

c2 =
√

12χ3
2 + 81χ2

1,

A = exp (− 0.08333333333
c
2/3
1 − 12χ1

c
1/3
1

σ) cos (0.1443375673
c
2/3
1 + 12χ1

c
1/3
1

σ),

B = exp (− 0.08333333333
c
2/3
1 − 12χ1

c
1/3
1

σ) sin (0.1443375673
c
2/3
1 + 12χ1

c
1/3
1

σ),

D = exp (0.1666666667
c
2/3
1 − 12χ1

c
1/3
1

σ),

∆ = (c
2/3
1 χ2 − 9c

1/3
1 χ1 − c

1/3
1 c2 − 12χ2

2)(c
2/3
1 + 12χ2).

Also Ti s are in the following forms

T1 =
72

∆′

{

A
(

5832χ3
1χ2 + 864χ1χ

4
2 − 24c

1/3
1 χ5

2 − 81c
2/3
1 χ3

1 + 48c2χ
4
2

−24c
2/3
1 χ1χ

3
2 + 648c2χ

2
1χ2 − 30c

1/3
1 c2χ

2
2 − 9c

2/3
1 c2χ

2
1 − 2c

2/3
1 c2χ

3
2

−270c
1/3
1 χ2

1χ
2
2

)

+B
(

− 41.56921939c
1/3
1 χ5

2 + 140.2961154c
2/3
1 χ3

1

+41.56921939c
2/3
1 χ1χ

3
2 − 467.6537182c

1/3
1 χ2

1χ
2
2 + 15.58845727c

2/3
1 c2χ

2
1

−51.96152424c
1/3
1 c2χ

2
2 + 3.46101616c

2/3
1 c2χ

3
2

)

+D
(

432χ1χ
4
2 + 24c2χ

4
2

+81c
2/3
1 χ3

1 + 2916χ3
1χ2 + 24c

1/3
1 χ5

2 + 24c
2/3
1 χ1χ

3
2 + 270c

1/3
1 χ2

1χ
2
2
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+324c2χ
2
1χ2 + 2c

2/3
1 c2χ

3
2 + 9 c

2/3
1 c2 χ

2
1 + 30c

1/3
1 c2χ1χ

2
2

)}

,

T2 =
−1

∆′

{

A
(

864c
2/3
1 χ2

1χ2 + 216c
2/3
1 c2χ1χ2 + 162c

4/3
1 χ2

1 + 18c
4/3
1 c2χ1

)

−B
(

3367.1067714c
2/3
1 χ2

1χ2 − 374.1229746c
2/3
1 c2χ1χ2

+280.59223086c
4/3
1 χ2

1 + 31.176914544c
4/3
1 c2χ1

)

−D
(

162c
4/3
1 χ2

1

−18c
4/3
1 c2χ1 − 216c

2/3
1 c2χ1χ2

)}

,

T3 =
−144

∆′

{

A
(

12c
1/3
1 χ4

2 − 324c2χ
2
1 − 432χ1χ

3
2 − 24c2χ

3
2 − 2916χ3

1 + 9c
2/3
1

·χ1χ
2
2 + c

2/3
1 c2χ

2
2 + 162c

1/3
1 χ2

1χ2 + 18c
1/3
1 c2χ1χ2

)

+B
(

20.78460970c
1/3
1

·χ4
2 − 15.58845727c

2/3
1 χ1χ

2
2 − 1.732050808c

2/3
1 c2χ

2
2 + 280.5922309c

1/3
1

·χ2
1χ2 + 31.17691454c

1/3
1 c2χ1χ2

)

−D
(

12c
1/3
1 χ4

2 − 9c
2/3
1 χ1χ

2
2 − c

2/3
1 c2χ

2
2

−162c
1/3
1 χ2

1χ2 − 162c2χ
2
1 − 216χ1χ

3
2 − 12c2χ

3
2 − 1458χ3

1 − 18c
1/3
1 c2χ1χ2

)}

.

In the latter relations, A, B, D, c1 and c2 are the same with relations mentioned in

above and

∆′ = [9c
1/3
1 χ1 + c

1/3
1 c2 − c

2/3
1 χ2 + 12χ2

2][9c
1/3
1 χ1 + c

1/3
1 c2 + c

2/3
1 χ1 + 12χ2

2]

×[9c
1/3
1 χ1 + c

1/3
1 c2 − 12χ2

2].
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