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Affine Classification of n-Curves

Mehdi Nadjafikhah Ali Mahdipour Sh.

Abstract

Classification of curves up to affine transformation in a finite dimen-

sional space was studied by some different methods. In this paper, we

achieve the exact formulas of affine invariants via the equivalence prob-

lem and in the view of Cartan’s theorem and then, state a necessary and

sufficient condition for classification of n–Curves.

A.M.S. 2000 Subject Classification: 53A15, 53A04, 53A55.
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1 Introduction

This paper devoted to the study of curve invariants, in an arbitrary finite di-
mensional space, under the group of special affine transformations. This work
was done before in some different methods. Furthermore, these invariants were
just pointed by Spivak [6], in the method of Cartan’s theorem, but they were
not determined explicitly. Now, we will exactly determine these invariants in
the view of Cartan’s theorem and equivalence problem.

An affine transformation, in a n−dimensional space, is generated by the
action of the general linear group GL(n,R) and then, the translation group
R

n. If we restrict GL(n,R) to special linear group SL(n,R) of matrix with
determinant equal to 1, we have a special affine transformation. The group of
special affine transformations has n2 + n − 1 parameters. This number is also,
the dimension of Lie algebra of special affine transformations Lie group. The
natural condition of differentiability is Cn+2.

In next section, we state some preliminaries about Maurer–Cartan forms,
Cartan’s theorem for the equivalence problem, and a theorem about number of
invariants in a space. In section three, we obtain the invariants and then with
them, we classify the n−curves of the space.

2 Preliminaries

Let G ⊂ GL(n,R) be a matrix Lie group with Lie algebra g and P : G →
Mat(n× n) be a matrix-valued function which embeds G into Mat(n× n) the
vector space of n×n matrices with real entries. Its differential is dPB : TBG →
TP (B)Mat(n× n) ≃ Mat(n× n).
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Definition 2.1 The following form of G is called Maurer-Cartan form:

ωB = {P (B)}−1 . dPB

that it is often written ωB = P−1 . dP . The Maurer-Cartan form is the key to
classifying maps into homogeneous spaces of G, and this process needs to this
theorem (for proof refer to [2]):

Theorem 2.2 (Cartan) Let G be a matrix Lie group with Lie algebra g and
Maurer-Cartan form ω. Let M be a manifold on which there exists a g−valued
1-form φ satisfying dφ = −φ ∧ φ. Then for any point x ∈ M there exist a
neighborhood U of x and a map f : U → G such that f∗ ω = φ. Moreover, any
two such maps f1, f2 must satisfy f1 = LB ◦ f2 for some fixed B ∈ G (LB is the
left action of B on G).

Corollary 2.3 Given maps f1, f2 : M → G, then f∗

1 ω = f∗

2 ω, that is, this
pull-back is invariant, if and only if f1 = LB ◦ f2 for some fixed B ∈ G.

The next section, is devoted to the study of the properties of n−curves
invariants, under the special affine transformations group. The number of es-
sential parameters (dimension of the Lie algebra) is n2 + n − 1. The natural
assumption of differentiability is Cn+2.

We achieve the invariants of the n−curve in respect to special affine trans-
formations, and with theorem 2.2, two n−curves in R

n will be equivalent under
special affine transformations, if they differ with a left action introduced with
an element of SL(n,R) and then a translation.

3 Classification of n−curves

Let C : [a, b] → R
n be a curve of class Cn+2 in finite dimensional space R

n,
n−space, which satisfies in the condition

det(C′, C′′, · · · , C(n)) 6= 0,(3.1)

that, we call this curve n−curve. The condition (3.1) Guarantees that C′, C′′,
· · ·, and C(n) are independent, and therefore, the curve does not turn into the
lower dimensional cases. Also, we may assume that

det(C′, C′′, · · · , C(n)) > 0,(3.2)

to being avoid writing the absolute value in computations.
For the n−curve C, we define a new curve αC(t) : [a, b] → SL(n,R) that is

in the following form

αC(t) :=
(C′, C′′, · · · , C(n))

n

√

det(C′, C′′, · · · , C(n))
.(3.3)
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Obviously, it is well-defined on [a, b]. We can study this new curve in respect
to special affine transformations, that is the action of affine transformations

on first, second, ..., and nth differentiation of C. For A, the special affine
transformation, there is a unique representation A = τ ◦ B which B is an
element of SL(n,R) and τ is a translation in R

n. If two n−curves C and C̄ be
same under special affine transformations, that is, C̄ = A ◦C, then from [4], we
have

C̄′ = B ◦ C′, C̄′′ = B ◦C′′, ... , C̄(n) = B ◦ C(n).(3.4)

We can relate the determinants of these curves as below

det(C̄′, C̄′′, · · · , C̄(n)) = det(B ◦ C′, B ◦ C′′, · · · , B ◦ C̄(n))

= det(B ◦ (C′, C′′, · · · , C(n)))(3.5)

= det(C′, C′′, · · · , C(n)).

So we can conclude that αC̄(t) = B ◦ αC(t) and thus αC̄ = LB ◦ αC that LB is
a left translation by B ∈ SL(n,R).

This condition is also necessary because when C and C̄ are two curves in
R

n such that for an element B ∈ SL(n,R), we have αC̄ = LB ◦αC , thus we can
write

αC̄(t) = det(C̄′, C̄′′, · · · , C̄(n))−1/n(C̄′, C̄′′, · · · , C̄(n))

= det(B ◦ (C′, C′′, · · · , C(n)))−1/nB ◦ (C′, C′′, · · · , C(n))(3.6)

= det(C′, C′′, · · · , C(n))−1/nB ◦ (C′, C′′, · · · , C(n)).

Therefore, we have C̄′ = B ◦ C′, and so there is a translation τ such that
A = τ ◦ B, and so, we have C̄ = A ◦ C when, A is a n−dimensional affine
transformation. Therefore, we have

Theorem 3.1 Two n−curves C and C̄ in R
n are same under the special affine

transformations that is, C̄ = A ◦ C, which A = τ ◦ B for translation τ in R
n

and B ∈ SL(n,R); if and only if, αC̄ = LB ◦αC , where LB is left translation by
B.

From Cartan’s theorem, a necessary and sufficient condition for αC̄ = LB ◦
αC by B ∈ SL(n,R), is that for any left invariant 1-form ωi on SL(n,R) we
have α∗

C̄
(ωi) = α∗

C(ω
i), that is equivalent with α∗

C̄
(ω) = α∗

C(ω), for natural
sl(n,R)-valued 1-form ω = P−1 . dP , where P is the Maurer–Cartan form.

Thereby, we must compute the α∗

C(P
−1.dP ), which is invariant under special

affine transformations, that is, its entries are invariant functions of n−curves.
This n× n matrix form, consists of arrays that are coefficients of dt.

Since α∗

C(P
−1 . dP ) = α−1

C . dαC , so for finding the invariants, it is sufficient
that we calculate the matrix αC(t)

−1. dαC(t). Thus, we compute α∗

C(P
−1 . dP ).

We have

α−1
C = n

√

det(C′, C′′, · · · , C(n)) . (C′, C′′, · · · , C(n))−1.(3.7)
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We assume that C is in the form (C1 C2 · · · Cn)
T . By differentiating of

determinant, we have

[det(C′, C′′, · · · , C(n))]′ = det(C′′, C′′, · · · , C(n))

+ det(C′, C′′′, · · · , C(n))

...(3.8)

+ det(C′, C′′, · · · , C(n−1), C(n+1))

= det(C′, C′′, · · · , C(n−1), C(n+1)) .

Thus, we conclude that

α′

C = {det(C′, C′′, · · · , C(n))}−1/n ·













C′′

1 C′′′

1 · · · C
(n)
1

C′′

2 C′′′

2 · · · C
(n)
2

...
...

...

C′′

3 C′′′

3 · · · C
(n)
n )













(3.9)

−
1

n
det(C′, C′′, C′′′)}−(n+1)/n ·













C′

1 C′′

1 · · · C
(n)
1

C′

2 C′′

2 · · · C
(n)
2

...
...

...

C′

3 C′′

3 · · · C
(n)
3













.

Therefore, we have the α−1
C · dαC as the following matrix multiplying with dt:















a 0 · · · 0 0
1 a · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 a

0 0 · · · 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M .C(n+1) +











0
0
...
a

























(3.10)

where, the latest column, M .C(n+1)+(0, 0, · · · , a)T is multiple of M by C(n+1)

added by transpose of (0, 0, · · · , a); whichM is the inverse of matrix (C′, C′′, · · · , C(n))
and also, we assumed that

a = −
det(C′, C′′, · · · , C(n−1), C(n+1))

n det(C′, C′′, · · · , C(n))
.(3.11)

But with use of Crammer’s law, we compute M .C(n+1). If M .C(n+1) = X =
(X1, X2, · · · , Xn)

T , then M−1.X = C(n+1). So for each i = 1, 2, · · · , n we con-
clude that

Xi =
det(C′, C′′, · · · , C(i−1), C(n+1), C(i+1), · · · , C(n))

det(C′, C′′, · · · , C(n))
(3.12)
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Finally, the α−1
C · dαC is the following multiple of dt:





















a 0 · · · 0 0 (−1)n−1 det(C′′,···,C(n+1))
det(C′,C′′,···,C(n))

1 a · · · 0 0 (−1)n−2 det(C′,C′′′,···,C(n))
det(C′,C′′,···,C(n))

...
...

. . .
...

...
...

o 0 · · · 1 a −det(C′,···,C(n−2),C(n),C(n+1))

det(C′,C′′,···,C(n))

0 0 · · · 0 1 n−1
n

det(C′,···,C(n−1),C(n+1))

det(C′,C′′,···,C(n))





















,(3.13)

which the coefficient (−1)i−1 for ith entry of the latest column, comes from the

translation of C(n+1) to nth column of matrix

(C′, C′′, · · · , C(i−1), C(n+1), C(i+1), · · · , C(n)).(3.14)

Clearly, the trace of matrix (3.13) is zero. The entries of α∗

C(P
−1 . dP ) and

therefore, arrays of matrix (3.13), are invariants of the group action.
Two n−curves C, C̄ : [a, b] → R

n are same in respect to special affine trans-
formations, if we have

det(C′′(t), · · · , C(n+1)(t))

det(C′(t), C′′(t), · · · , C(n)(t))
=

det(C̄′′(t), · · · , C̄(n+1)(t))

det(C̄′(t), C̄′′(t), · · · , C̄(n)(t))

det(C′(t), C′′′(t), · · · , C(n+1)(t))

det(C′(t), C′′(t), · · · , C(n)(t))
=

det(C̄′(t), C̄′′′(t), · · · , C̄(n+1)(t))

det(C̄′(t), C̄′′(t), · · · , C̄(n)(t))

...(3.15)

det(C′(t), · · · , C(n−1)(t), C(n+1))

det(C′(t), C′′(t), · · · , C(n)(t))
=

det(C̄′(t), · · · , C̄(n−1)(t), C̄(n+1))

det(C̄′(t), C̄′′(t), · · · , C̄(n)(t))
.

We may use of a proper parametrization γ : [a, b] → [0, l], such that the param-
eterized curve, γ = C ◦ σ−1, satisfies in condition

det(γ′(s), γ′′(s), · · · , γ(n−1)(s), γ(n+1)(s)) = 0,(3.16)

then, the arrays on main diagonal of α∗

γ(dP . P−1) will be zero. But the latest

determinant is differentiation of det(γ′(s), γ′′(s), · · · , γ(n)(s)) thus, it is sufficient
that we suppose

det(γ′(s), γ′′(s), · · · , γ(n)(s)) = 1.(3.17)

On the other hand, we have

C′ = (γ ◦ σ)′ = σ′.(γ′ ◦ σ)

C′′ = (σ′)2.(γ′′ ◦ σ) + σ′′.(γ′ ◦ σ)

...(3.18)

C(n) = (σ′)(n).(γ(n) ◦ σ) + nσ(n−1)σ′.(γ(n−1) ◦ σ)

+
n(n− 1)

2
σ(n−2)σ′′.(γ(n−2) ◦ σ) + · · ·+ σ(n).(γ′ ◦ σ)
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Therefore, C(i)s for 1 ≤ i ≤ n, are some statements in respect to γ(j) ◦ σ,
1 ≤ j ≤ n. We conclude that

det(C′, C′′, · · · , C(n)) = det(σ′.(γ′ ◦ σ) , (σ′)2.(γ′′ ◦ σ) + σ′′.(γ′ ◦ σ) ,

· · · , (σ′)(n).(γ(n) ◦ σ) + nσ(n−1)σ′.(γ(n−1) ◦ σ)

+
n(n− 1)

2
σ(n−2)σ′′.(γ(n−2) ◦ σ) + · · ·+ σ(n).(γ′ ◦ σ))(3.19)

= det(σ′.(γ′ ◦ σ) , (σ′)2.(γ′′ ◦ σ) , · · · , (σ′)n.(γ(n) ◦ σ))

= σ′
n(n−1)

2 . det(γ′ ◦ σ , γ′′ ◦ σ , · · · , γ(n) ◦ σ)

= σ′
n(n−1)

2 ,

The latest expression signifies σ therefore, we define the special affine arc length
as follows

σ(t) :=

∫ t

a

{

det(C′(u), C′′(u), · · · , C(n)(u))
}

2
n(n−1)

du.(3.20)

So, σ is the natural parameter for n−curves under the action of special affine
transformations, that is, when C be parameterized with σ, then for each special
affine transformation A, A ◦ C will also be parameterized with the same σ.
Furthermore, every n−curve parameterized with σ in respect to special affine
transformations, will be introduced with the following invariants

χ1 = (−1)n−1 det(C′′, · · · , C(n+1))

χ2 = (−1)n−2 det(C′, C′′′, · · · , C(n))

...(3.21)

χn−1 = det(C′, · · · , C(n−2), C(n), C(n+1)).

We call χ1, χ2, · · · , and χn−1 as (respectively) the first, second, ..., and n−1th

special affine curvatures. In fact, we proved the following theorem

Theorem 3.2 A curve of class Cn+2 in R
n with condition (3.1), up to special

affine transformations has n − 1 invariants χ1, χ2, ..., and χn−1, the first,

second, ..., and n− 1th affine curvatures that are defined as formulas (3.3).

Theorem 3.3 Two n−curves C, C̄ : [a, b] → R
n of class Cn+2, that satisfy in

the condition (3.1), are special affine equivalent, if and only if, χC
1 = χC̄

1 , · · ·,
and χC

n−1 = χC̄
n−1.

Proof: Proof is completely similar to the three dimensional case [5]. The first
side of the theorem was proved in above descriptions. For the other side, we
assume that C and C̄ are n−curves of class Cn+2 with conditions (resp.):

det(C′, C′′, · · · , C(n)) > 0, det(C̄′, C̄′′, · · · , ¯C(n)) > 0,(3.22)
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with this mean that they are not (n − 1)–curves. Also, we suppose that they
have same χ1, · · ·, and χn−1.

By changing the parameter to the natural parameter (σ), discussed above,
we obtain new curves γ and γ̄ resp. that the determinants (3.22) will be equal
to 1. We prove that γ and γ̄ are special affine equivalent, so there is a special
affine transformation A such that γ̄ = A ◦ γ and then we have C̄ = A ◦ C and
proof will be completed.

At first, we replace the curve γ with δ := τ(γ) properly, in which case
that δ intersects γ̄, that τ is a translation defined by translating one point of
γ to one point of γ̄. We correspond t0 ∈ [a, b], to the intersection point of δ
and γ̄ thus, δ(t0) = γ̄(t0). One can find a unique element B of the general
linear group GL(n,R), such that maps the base {δ′(t0), δ

′′(t0), · · · , δ
(n)(t0)} of

tangent space Tδ(t0)R
3 to the base {γ̄′(t0), γ̄

′′(t0), · · · , γ̄
(n)(t0)} of it. So, we

have B ◦ δ′(t0) = γ̄′(t0), B ◦ δ′′(t0) = γ̄′′(t0), · · ·, and B ◦ δ(n)(t0) = γ̄(n)(t0). B
also is an element of the special linear group, SL(n,R), since we have

det(γ′(t0), γ
′′(t0), · · · , γ

(n)(t0)) =

= det(δ′(t0), δ
′′(t0), · · · , δ

(n)(t0)),(3.23)

and

det(δ′(t0), δ
′′(t0), · · · , δ

(n)(t0)) =

det
(

B ◦ (γ̄′(t0), γ̄
′′(t0), · · · , γ̄

(n)(t0))
)

,(3.24)

so, det(B) = 1. If we denote that η := B ◦ δ is equal to γ̄ on [a, b], then by
choosing A = τ ◦B, there will remind nothing for proof.

For the curves η and γ̄ we have (resp.)

(η′, η′′, · · · , η(n))′ =

= (η′, η′′, · · · , η(n)).



















0 0 · · · 0 0 χ
η
1

1 0 · · · 0 0 −χ
η
2

0 1 · · · 0 0 χ
η
3

...
...

. . .
...

...
...

0 0 · · · 1 0 (−1)(n−2)χ
η
n−1

0 0 · · · 0 1 0



















,(3.25)

and

(γ̄′, γ̄′′, · · · , γ̄(n))′ =

= (γ̄′, γ̄′′, · · · , γ̄(n)).



















0 0 · · · 0 0 χ
γ̄
1

1 0 · · · 0 0 −χ
γ̄
2

0 1 · · · 0 0 χ
γ̄
3

...
...

. . .
...

...
...

0 0 · · · 1 0 (−1)(n−2)χ
γ̄
n−1

0 0 · · · 0 1 0



















,(3.26)
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Since, χ1, · · ·, and χn−1, are invariants under special affine transformations so,
we have

χ
η
i = χ

γ
i = χ

γ̄
i , (i = 1, · · · , n− 1).(3.27)

Therefore, we conclude that η and γ̄ are solutions of ordinary differential equa-
tion of degree n+ 1:

Y n+1 + (−1)n−1χn−1Y
(n) + · · ·+ χ2 Y

′′ − χ1 Y
′ = 0,

where, Y depends to parameter t. Because of same initial conditions

η(i)(t0) = B ◦ δ(t0) = γ̄(i)(t0),(3.28)

for i = 0, · · · , n, and the generalization of the existence and uniqueness theorem
of solutions, we have η = γ̄ in a neighborhood of t0, that can be extended to all
[a, b]. ♦

Corollary 3.4 The number of invariants of special affine transformations
group acting on R

n is n−1, that is same with results provided with other methods
such as [1].
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