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LOWER BOUNDS ON THE COEFFICIENTS OF EHRHART

POLYNOMIALS

MARTIN HENK AND MAKOTO TAGAMI

Abstract. We present lower bounds for the coefficients of Ehrhart polyno-
mials of convex lattice polytopes in terms of their volume. Concerning the
coefficients of the Ehrhart series of a lattice polytope we show that Hibi’s
lower bound is not true for lattice polytopes without interior lattice points.
The counterexample is based on a formula of the Ehrhart series of the join of
two lattice polytope. We also present a formula for calculating the Ehrhart
series of integral dilates of a polytope.

1. Introduction

Let Pd be the set of all convex d-dimensional lattice polytopes in the d-
dimensional Euclidean space R

d with respect to the standard lattice Z
d, i.e.,

all vertices of P ∈ Pd have integral coordinates and dim(P ) = d. The lattice
point enumerator of a set S ⊂ R

d, denoted by G(S), counts the number of
lattice (integral) points in S, i.e., G(S) = #(S ∩Z

d). In 1962, Eugéne Ehrhart
(see e.g. [3, Chapter 3], [7]) showed that for k ∈ N the lattice point enumerator
G(k P ), P ∈ Pd, is a polynomial of degree d in k where the coefficients gi(P ),
0 ≤ i ≤ d, depend only on P :

(1.1) G(k P ) =
d
∑

i=0

gi(P ) ki.

The polynomial on the right hand side is called the Ehrhart polynomial, and
regarded as a formal polynomial in a complex variable z ∈ C it is denoted
by GP (z). Two of the d + 1 coefficients gi(P ) are almost obvious, namely,
g0(P ) = 1, the Euler characteristic of P , and gd(P ) = vol(P ), where vol()
denotes the volume, i.e., the d-dimensional Lebesgue measure on R

d. It was
shown by Ehrhart (see e.g. [3, Theorem 5.6], [8]) that also the second leading
coefficient admits a simple geometric interpretation as lattice surface area of P

(1.2) gd−1(P ) =
1

2

∑

F facet of P

vold−1(F )

det(affF ∩ Zd)
.

Here vold−1(·) denotes the (d−1)-dimensional volume and det(affF∩Zd) denotes
the determinant of the (d−1)-dimensional sublattice contained in the affine hull
of F . All other coefficients gi(P ), 1 ≤ i ≤ d − 2, have no such known explicit
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geometric meaning, except for special classes of polytopes. For this and as a
general reference on the theory of lattice polytopes we refer to the recent book
of Matthias Beck and Sinai Robins [3] and the references within. For more
information regarding lattices and the role of the lattice point enumerator in
convexity see [9].

In [4, Theorem 6] Ulrich Betke and Peter McMullen proved the following
upper bounds on the coefficients gi(P ) in terms of the volume:

gi(P ) ≤ (−1)d−istirl(d, i)vol(P ) + (−1)d−i−1 stirl(d, i+ 1)

(d− 1)!
, i = 1, . . . , d− 1.

Here stirl(d, i) denote the Stirling numbers of the first kind which can be defined

via the identity
∏d−1

i=0 (z − i) =
∑d

i=1 stirl(d, i) z
i.

In order to present our lower bounds on gi(P ) in terms of the volume we need
some notation. For an integer i and a variable z we consider the polynomial

(z + i)(z + i− 1) · . . . · (z + i− (d− 1)) = d!

(

z + i

d

)

,

and we denote its r-th coefficient by Cd
r,i, 0 ≤ r ≤ d. For instance, it is Cd

d,i = 1,

and for 0 ≤ i ≤ d− 1 we have Cd
0,i = 0. For d ≥ 3 we are interested in

(1.3) Mr,d = min{Cd
r,i : 1 ≤ i ≤ d− 2}.

Obviously, we have M0,d = 0, Md,d = 1 and it is also easy to see that (cf. Propo-
sition 2.1 iii))

(1.4) Md−1,d = Cd
d−1,1 = −d(d− 3)

2
.

With the help of these numbers Mr,d we obtain the following lower bounds.

Theorem 1.1. Let P ∈ Pd, d ≥ 3. Then for i = 1, . . . , d− 1 we have

gi(P ) ≥ 1

d!

{

(−1)d−istirl(d+ 1, i+ 1) + (d! vol(P )− 1)Mi,d

}

.

We remark that the coefficients gi(P ), 1 ≤ i ≤ d− 2, might be negative and
thus also the lower bounds given above. In general, the bounds of Theorem 1.1
are not best possible. For instance, in the case i = d − 1 we get together with
(1.4) the bound

gd−1(P ) ≥ 1

(d− 1)!

{

d− 1− d− 3

2
d! vol(P )

}

.

On the other hand, since the lattice surface area of any facet is at least 1/(d−1)!
we have the trivial inequality (cf. (1.2))

(1.5) gd−1(P ) ≥ 1

2

d+ 1

(d− 1)!
.

Hence the lower bound on gd−1(P ) given in Theorem 1.1 is only best possible
if vol(P ) = 1/d!. In the cases i ∈ {1, 2, d− 2}, however, Theorem 1.1 gives best
possible bounds for any volume.
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Corollary 1.2. Let P ∈ Pd, d ≥ 3. Then

i) g1(P ) ≥ 1 +
1

2
+ · · ·+ 1

d− 2
+

2

d− 1
− (d− 2)! vol(P ),

ii) g2(P ) ≥ (−1)d

d!
×

{

stirl(d+ 1, 3) +
(

(−1)d(d− 2)! + stirl(d− 1, 2)
)

(d! vol(P )− 1)
}

,

iii) gd−2(P ) ≥







1
d!

(d−1)d(d+1)
24 {3(d+ 1)− d! vol(P )} : if d odd,

1
d!

(d−1)d
24 {3d(d + 2)− (d− 2) d! vol(P )} : if d even.

And the bounds are best possible for any volume.

For some recent inequalities involving more coefficients of Ehrhart polynomi-
als we refer to [2]. Next we come to another family of coefficients of a polynomial
associated to lattice polytopes.

The generating function of the lattice point enumerator, i.e., the formal power
series

EhrP (z) =
∑

k≥0

GP (k) z
k,

is called the Ehrhart series of P . It is well known that it can be expressed as a
rational function of the form

EhrP (z) =
a0(P ) + a1(P ) z + · · ·+ ad(P ) zd

(1− z)d+1
.

The polynomial in the numerator is called the h⋆-polynomial. Its degree is also
called the degree of the polytope [1] and it is denoted by deg(P ). Concerning
the coefficients ai(P ) it is known that they are integral and that

a0(P ) = 1, a1(P ) = G(P )− (d+ 1), ad(P ) = G(int(P )),

where int(·) denotes the interior. Moreover, due to Stanley’s famous non-
negativity theorem (see e.g. [3, Theorem 3.12], [17]) we also know that ai(P )
is non-negative, i.e., for these coefficients we have the lower bounds ai(P ) ≥ 0.
In the case G(int(P )) > 0, i.e., deg(P ) = d, these bounds were improved by
Takayuki Hibi [13] to

(1.6) ai(P ) ≥ a1(P ), 1 ≤ i ≤ deg(P )− 1.

In this context it was a quite natural question whether the assumption deg(P ) =
d can be weaken (see e.g. [15]), i.e., whether these lower bounds (1.6) are also
valid for polytopes of degree less than d. As we show in Example 1.4 the answer
is already negative for polytopes having degree 3. The problem in order to study
such a question is that only very few geometric constructions of polytopes are
known for which we can explicitly calculate the Ehrhart series. In [3, Theorem
2.4, Theorem 2.6] the Ehrhart series of special pyramids and double pyramids
over a basis Q are determined in terms of the Ehrhart series of Q. In a recent
paper Braun [6] gave a very nice product formula for the Ehrhart series of
the free sum of two lattice polytopes, where one of the polytopes has to be
reflexive. Here we consider a related construction, known as the join of two
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polytopes [11]. As we learned by Matthias Beck the Ehrhart series of such a
join is already described as Exercise 3.32 in the book [3] and it was personally
communicated to the authors of the book by Kevin Woods. For completeness’
sake we present its short proof in Section 3.

Lemma 1.3. For P ∈ Pp and Q ∈ Pq let P ⋆ Q be the join of P and Q, i.e.,

P ⋆ Q = conv {(x, 0q , 0)⊺, (0p, y, 1)⊺ : x ∈ P, y ∈ Q} ∈ Pp+q+1,

where 0p and 0q denote the p- and q-dimensional 0-vector, respectively. Then

EhrP⋆Q(z) = EhrP (z) · EhrQ(z).

In order to apply this lemma we consider two families of lattice simplices.
For an integer m ∈ N let

T
(m)
d = conv{o, e1, e1 + e2, e2 + e3, . . . , ed−2 + ed−1, ed−1 +med},

S
(m)
d = conv{o, e1, e2, e3, . . . , ed−1,m ed},

where ei denotes the i-th unit vector. It was shown in [4] that

(1.7) Ehr
T

(m)
d

(z) =
1 + (m− 1) z⌈

d
2
⌉

(1− z)d+1
and Ehr

S
(m)
d

(z) =
1 + (m− 1) z

(1− z)d+1
.

Actually, in [4] the formula for T
(m)
d was only proved for odd dimensions, but

the even case can be treated completely analogously.

Example 1.4. For q ∈ N odd and l,m ∈ N we have

Ehr
T

(l+1)
q ⋆S

(m+1)
p

(z) =
1 +mz + l z

q+1
2 +ml z

q+3
2

(1− z)p+q+2
.

In particular, for q ≥ 3 and l < m this shows that (1.6) is, in general, false for
lattice polytopes without interior lattice points.

Another formula for calculating the Ehrhart Series from a given one concerns
dilates. Here we will show

Lemma 1.5. Let P ∈ Pd, k ∈ N and let ζ be a primitive k-th root of unity.
Then

Ehrk P (z) =
1

k

k−1
∑

i=0

EhrP (ζ
i z

1
k ).

The lemma can be used, for instance, to calculate the Ehrhart series of the
cube Cd = {x ∈ R

d : |xi| ≤ 1, 1 ≤ i ≤ d}.

Example 1.6. For two integers j, d, 0 ≤ j ≤ d, let

A(d, j) =

j
∑

k=0

(−1)k
(

d+ 1

k

)

(j − k)d
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be the Eulerian numbers (see e.g. [3, pp. 28]). Furthermore, we set A(d, j) = 0
if j /∈ {0, . . . , d}. Then, for 0 ≤ i ≤ d, we have

ai(Cd) =
d+1
∑

j=0

(

d+ 1

j

)

A(d, 2 i + 1− j).

Of course, the cube Cd may be also regarded as a prism over a (d− 1)-cube,
and as a counterpart to the bipyramid construction in [3] we calculate here also
the Ehrhart series of some special prism.

Example 1.7. Let Q ∈ Pd−1, m ∈ N, and let P = {(x, xd)⊺ : x ∈ Q, xd ∈
[0,m]} be the prism of height m over Q. Then

ai(P ) = (mi+ 1)ai(Q) + (m(d− i+ 1)− 1) ai−1(Q), 0 ≤ i ≤ d,

where we set ad(Q) = a−1(Q) = 0.

It seems to be quite likely that for the class of 0-symmetric lattice polytopes
Pd
o the lower bounds on ai(P ) can considerably be improved. In [5] it was

conjectured that for P ∈ Pd
o

ai(P ) + ad−i(P ) ≥
(

d

i

)

(ad(P ) + 1) ,

where equality holds for instance for the cross-polytopes C⋆
d(2 l−1) = conv{±l e1,

±ei : 2 ≤ i ≤ d}, l ∈ N, with 2l − 1 interior lattice points. It is also conjec-
tured that these cross-polytopes have minimal volume among all 0-symmetric
lattice polytopes with a given number of interior lattice points. The maximal
volume of those polytopes is known by the work of Blichfeldt and van der Cor-
put (cf. [9, p. 51]) and, for instance, the maximum is attained by the boxes
Qd(2 l − 1) = {|x1| ≤ l, |xi| ≤ 1, 2 ≤ i ≤ d} with 2 l − 1 interior points. By the
Examples 1.6 and 1.7 we can easily calculate the Ehrhart series of these boxes.

Example 1.8. Let l ∈ N. Then, for 0 ≤ i ≤ d,

ai(Qd(2 l − 1)) = (2 l i+ 1) ai(Cd−1) + (2 l(d− i+ 1)− 1) ai−1(Cd−1).

It is quite tempting to conjecture that the box Qd(2 l−1) maximizes ai(P )+
ad−i(P ) for 0-symmetric polytope with 2 l − 1 interior lattice points. In the
2-dimensional case this follows easily from a result of Paul Scott [16] which
implies that a1(P ) ≤ 6 l = a1(Q2(2 l − 1)) for any 0-symmetric convex lattice
polygon with 2 l − 1 interior lattice points. In fact, the result of Scott was
recently generalized by Jaron Treutlein [19] to all degree 2 polytopes.

Theorem 1.9 (Treutlein). Let P ∈ Pd of degree 2 and let ai = ai(P ). Then

(1.8) a1 ≤
{

7, if a2 = 1,

3 a2 + 3, if a2 ≥ 2.

In Section 3 we will show that these conditions indeed classify all h⋆-polynomials
of degree 2.

Proposition 1.10. Let f(z) = a2 z
2+a1 z+1, ai ∈ N, satisfying the inequalities

in (1.8). Then f is the h⋆-polynomial of a lattice polytope.
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Concerning lower bounds on the coefficients gi(P ) for 0-symmetric polytopes
P we only know, except the trivial case i = d, a lower bound on gd−1(P )
(cf. (1.5)). Namely

gd−1(P ) ≥ gd−1(C
⋆
d) =

2d−1

(d− 1)!
,

where C⋆
d = conv{±ei : 1 ≤ i ≤ d} denotes the regular cross-polytope. This

follows immediately from a result of Richard P. Stanley [18, Theorem 3.1] on
the h-vector of ”symmetric” Cohen-Macaulay simplicial complex.

Motivated by a problem in [12] we study in the last section also the related
question to bound the surface area F(P ) of a lattice polytope P . In contrast to
the gi(P )’s the surface area is not invariant under unimodular transformations.
In order to describe our result we denote by Td the standard simplex Td =
conv{0, e1, . . . , ed}.

Proposition 1.11. Let P ∈ Pd. Then

F(P ) ≥







F(C⋆
d) =

2d

d! d
3
2 , if P = −P,

F(Td) =
d+

√
d

(d−1)! , otherwise .

The paper is organized as follows. In the next section we give the proof of
our main Theorem 1.1. Then, in Section 3, we prove the Lemmas 1.3 and 1.5
and show how the Ehrhart series in the Examples 1.4 and 1.6 can be deduced.
Moreover, we will give the proof of Proposition 1.10. Finally, in the last section
we provide a proof of Proposition 1.11 which in the symmetric cases is based
on a isoperimetric inequality for cross-polytopes (cf. Lemma 4.1).

2. Lower bounds on gi(P )

In the following we denote for an integer r and a polynomial f(x) the r-th
coefficient of f(x), i.e. the coefficient of xr, by f(x)|r. Before proving Theorem
1.1 we need some basic properties of the numbers Cd

r,i and Mr,d defined in the

introduction (see (1.3)). We begin with some special cases.

Proposition 2.1. Let d ≥ 3. Then M0,d = 0, Md,d = 1 and

i)M1,d = Cd
1,d−2 = −(d− 2)!,

ii)M2,d = Cd
2,d−2 = (d− 2)! + (−1)dstirl(d− 1, 2),

iii)Md−1,d = Cd
d−1,1 = −d(d− 3)

2
,

iv)Md−2,d =







Cd
d−2, d−1

2

= −1
4

(

d+1
3

)

, if d odd,

Cd
d−2, d

2

= −1
4

(

d
3

)

, if d even.

Proof. The casesM0,d andMd,d are trivial. Since C
d
r,l is the (d−r)-th elementary

symmetric function of {l, l− 1, . . . , l− (d− 1)} we have Cd
1,i = (−1)d−i−1 i! (d−
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i− 1)! and

M1,d = min{Cd
1,i : 1 ≤ i ≤ d− 2} = Cd

1,d−2 = −(d− 2)!

In the case r = 2 we obtain by elementary calculations that

Cd
2,i = i! stirl(d− i, 2) + (−1)d (d− i− 1)! stirl(i+ 1, 2)

= i! (d− i− 1)! (−1)d−i

(

d−i−1
∑

k=1

1

k
−

i
∑

k=1

1

k

)

,

from which we conclude M2,d = Cd
2,d−2 = (d− 2)! + (−1)dstirl(d− 1, 2).

For iii) we note that

Cd
d−1,i =

i
∑

j=i−(d−1)

j = −d

2
(d− 1− 2 i),

and so Md−1,d = Cd
d−1,1. Finally, for the value of Md−2,d we first observe that

Cd
d−2,i − Cd

d−2,i−1 = (z + i) (z + i− 1) · . . . · (z + i− (d− 1))
∣

∣

d−2

− (z + i− 1) · . . . (z + i− (d− 1)) (z + i− d)
∣

∣

d−2

=
i−1
∑

j=−d+i+1

j (i− (−d+ i)) = d
i−1
∑

j=−d+i+1

j

= d
(d − 1)(−d+ 2 i)

2
.

Thus the function Cd
d−2,i is decreasing in 0 ≤ i ≤ ⌊d/2⌋ and increasing in

⌊d/2⌋ ≤ i ≤ d. So it takes its minimum at i = ⌊d/2⌋. First let us assume that
d is odd. Then

Md−2,d = Cd
d−2, d−1

2

= d!

(

z + (d− 1)/2

d

)

∣

∣

∣

∣

∣

d−2

= z (z2 − 1) (z2 − 4) · . . . · (z2 − ((d− 1)/2)2)

∣

∣

∣

∣

d−2

= −
(d−1)/2
∑

i=0

i2

= −1

4

(

d+ 1

3

)

.

The even case can be treated similarly. �

In addition to the previous proposition we also need

Lemma 2.2.

i) Cd
r,i = (−1)d−rCd

r,d−1−i for 0 ≤ i ≤ d− 1.

ii) Let d ≥ 3. Then Mr,d ≤ 0 for 1 ≤ r ≤ d − 1, and Mr,d = 0 only in the
case d = 3 and r = 2.

Proof. The first statement is just a consequence of the fact that Cd
r,l is the

(d− r)-th elementary symmetric function of {l, l− 1, . . . , l− (d− 1)}. For ii) we
first observe that the case d = 3 follows directly from Proposition 2.1. Hence it
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remains to show that Mr,d < 0 for d ≥ 4 and 1 ≤ r ≤ d− 1. On account of i) it
suffices to prove this when d− r is even and we will proceed by induction on d.

The case d = 4 is covered by Proposition 2.1. So let d ≥ 5. By Proposition
2.1 i) we also may assume r ≥ 2. It is easy to see that

(2.1) Cd
r,i = (i− d+ 1) Cd−1

r,i + Cd−1
r−1,i,

and by induction we may assume that there exists a j ∈ {1, . . . , d − 3} with

Cd−1
r−1,j < 0. Observe that d−1− (r−1) is even. If Cd−1

r,j ≥ 0 we obtain by (2.1)

that Cd
r,j < 0 and we are done. So let Cd−1

r,j < 0. By part i) we know that

Cd−1
r,j = (−1)d−1−rCd−1

r,d−2−j and Cd−1
r−1,j = (−1)d−r Cd−1

r−1,d−2−j .

Since d − r is even we conclude Cd−1
r,d−2−j > 0 and Cd−1

r−1,d−2−j < 0. Hence, on

account of (2.1) we get Cd
r,d−2−j < 0 and so Mr,d < 0. �

Now we are able to give the proof of our main Theorem.

Proof of Theorem 1.1. We follow the approach of Betke and McMullen used in
[4, Theorem 6]. By expanding the Ehrhart series at z = 0 one gets (see e.g. [3,
Lemma 3.14])

(2.2) GP (z) =
d
∑

i=0

ai(P )

(

z + d− i

d

)

.

In particular, we have

(2.3)
1

d!

d
∑

i=0

ai(P ) = gd(P ) = vol(P ).

For short, we will write ai instead of ai(P ) and gi instead of gi(P ). With this
notation we have

d! gr = d! GP (z)|r = d!
d
∑

i=0

ai

(

z + d− i

d

)

∣

∣

∣

∣

∣

r

= Cd
r,d + (a1 C

d
r,d−1 + ad C

d
r,0) +

d−1
∑

i=2

ai C
d
r,d−i.

(2.4)

Since Cd
r,d−1 ≥ 0 we get with Lemma 2.2 i) that Cd

r,d−1 = |Cd
r,0|. Together with

a1 = G(P )− (d+ 1) ≥ G(int(P )) = ad and Cd
r,d = (−1)d−rstirl(d+ 1, r + 1) we

find

d! gr ≥ (−1)d−rstirl(d+ 1, r + 1) +

d−1
∑

i=2

aiC
d
r,d−i

= (−1)d−rstirl(d+ 1, r + 1) +

d−1
∑

i=2

ai

(

Cd
r,d−i −Mr,d

)

+

d
∑

i=1

ai Mr,d

− (a1 + ad)Mr,d

≥ (−1)d−rstirl(d+ 1, r + 1) + (d! vol(P )− 1)Mr,d,

(2.5)
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where the last inequality follows from the definition of Mr,d and the non-
positivity of Mr,d (cf. Proposition 2.1 and Lemma 2.2 ii)). �

We remark that for d ≥ 3, r ∈ {1, . . . , d − 1} and (r, d) 6= (2, 3) we can
slightly improve the inequalities in Theorem 1.1, because in these cases we have
Mr,d < 0 (cf. Lemma 2.2 ii)), and since Cd

r,d−1 is the (d − r)-th elementary

symmetric function of {0, . . . , d− 1} we also know Cd
r,d−1 > 0 for 1 ≤ r ≤ d− 1.

Hence we get (cf. (2.4) and (2.5))

d! gr = Cd
r,d +

d
∑

i=1

ai C
d
r,d−i

= Cd
r,d + a1

(

Cd
r,d−1 −Mr,d

)

+

d
∑

i=2

(

Cd
r,d−i −Mr,d

)

+

d
∑

i=1

ai Mr,d

≥ (−1)d−rstirl(d+ 1, r + 1) + 2a1(P ) + (d! vol(P )− 1)Mr,d

= (−1)d−rstirl(d+ 1, r + 1)− 2(d + 1) + 2G(P ) + (d! vol(P )− 1)Mr,d.

Corollary 1.2 is an immediate consequence of Theorem 1.1 and Proposition
2.1.

Proof of Corollary 1.2. The inequalities just follow by inserting the value of
Mr,d given in Proposition 2.1 in the general inequality of Theorem 1.1. Here
we also have used the identities

stirl(d+ 1, 2) = (−1)d+1 d!
d
∑

i=1

1

i
and stirl(d+ 1, d − 1) =

3 d+ 2

4

(

d+ 1

3

)

.

It remains to show that the inequalities are best possible for any volume.

For r = d − 2 we consider the simplex T
(m)
d (cf. (1.7)) with a0(T

(m)
d ) = 1,

a⌈d/2⌉(T
(m)
d ) = (m− 1) and ai(T

(m)
d ) = 0 for i /∈ {0, ⌈d/2⌉}. Then vol(T

(m)
d ) =

m/d! and on account of Proposition 2.1 we have equality in (2.4) and (2.5).

For r = 1, 2 and d ≥ 4 we consider the (d − 4)-fold pyramid T̃
(m)
d over T

(m)
4

given by T̃
(m)
d = conv{T (m)

4 , e5, . . . , ed}. Then vol(T̃
(m)
d ) = m/d! and in view of

(1.7) and [3, Theorem 2.4] we obtain

a0(T̃
(m)
d ) = 1, a2(T̃

(m)
d ) = m− 1 and ai(T̃

(m)
d ) = 0, i /∈ {0, 2}.

Again, by Proposition 2.1 we have equality in (2.4) and (2.5). �

3. Ehrhart series of some special polytopes

We start with the short proof of Lemma 1.3.

Proof of Lemma 1.3. Since

EhrP (z) EhrQ(z) =
∑

k≥0

(

∑

m+l=k

GP (m)GQ(l)

)

zk,
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it suffices to prove that the Ehrhart polynomial GP⋆Q(k) of the lattice polytope
P ⋆ Q ∈ Pp+q+1 is given by

GP⋆Q(k) =
∑

m+l=k

GP (m)GQ(l).

This, however, follows immediately from the definition since

k (P ⋆ Q) = {λ (x, oq, 0)⊺ + (k − λ) (op, y, 1)
⊺ : x ∈ P, y ∈ Q, 0 ≤ λ ≤ k} .

�

Example 1.4 in the introduction shows an application of this construction.
For Example 1.6 we need Lemma 1.5.

Proof of Lemma 1.5. With w = z
1
k we may write

1

k

k−1
∑

i=0

EhrP (ζ
iw) =

1

k

k−1
∑

i=0

∑

m≥0

GP (m)(ζ iw)m =
1

k

∑

m≥0

GP (m)wm
k−1
∑

i=0

ζ im.

Since ζ is a k-th root of unity the sum
∑k−1

i=0 ζ im is equal to k if m is a multiple
of k and otherwise it is 0. Thus we obtain

1

k

k−1
∑

i=0

EhrP (ζ
iw) =

∑

m≥0

GP (mk)wmk =
∑

m≥0

Gk P (m)zm = Ehrk P (z).

�

As an application of Lemma 1.5 we calculate the Ehrhart series of the cube Cd

(cf. Example 1.6). Instead of Cd we consider the translated cube 2 C̃d, where

C̃d = {x ∈ R
d : 0 ≤ xi ≤ 1, 1 ≤ i ≤ d}. In [3, Theorem 2.1] it was shown

that ai(C̃d) = A(d, i + 1) where A(d, i) denotes the Eulerian numbers. Setting
w =

√
z Lemma 1.5 leads to

EhrCd
(z) =

1

2

(

EhrC̃d
(w) + EhrC̃d

(−w)
)

=
1

2

(

∑d
i=1A(d, i)w

i−1

(1−w)d+1
+

∑d
i=1 A(d, i) (−w)i−1

(1 + w)d+1

)

=
1

2

1

(1− z)d+1

(

d
∑

i=1

A(d, i)wi−1 (1 + w)d+1

+

d
∑

i=1

A(d, i) (−w)i−1 (1− w)d+1

)

=
1

(1− z)d+1





d
∑

i=1

A(d, i)

d+1
∑

j=0, i+ j − 1 even

(

d+ 1

j

)

wi+j−1




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Substituting 2 l = i+ j − 1 gives

EhrCd
(z) =

1

(1− z)d+1

(

d
∑

l=0

2 l+1
∑

i=2 l−d

(

d+ 1

2 l + 1− i

)

A(d, i)w2 l

)

=
1

(1− z)d+1





d
∑

l=0

zl
d+1
∑

j=0

(

d+ 1

j

)

A(d, 2 l + 1− j)



 ,

which explains the formula in Example 1.6.
In order to calculate in general the Ehrhart series of the prism P = {(x, xd)⊺ :

x ∈ Q,xd ∈ [0,m]} where Q ∈ Pd−1, m ∈ N (cf. Example 1.7), we use the
differential operator T defined by z d

dz . Considered as an operator on the ring
of formal power series we have (cf. e.g. [3, p. 28])

(3.1)
∑

k≥0

f(k) zk = f(T )
1

1− z

for any polynomial f . Since GP (k) = (mk + 1)GQ(k) we deduce from (3.1)

EhrP (z) = (mT + 1)EhrQ(z) = mz
d

dz
EhrQ(z) + EhrQ(z).

Thus

EhrP (z) = mz

∑d−1
i=0 i ai(Q)zi−1(1− z) +

∑d−1
i=0 d ai(Q) zi

(1− z)d+1
+

∑d−1
i=0 ai(Q) zi

(1− z)d

=

∑d−1
i=0 (mi+ 1)ai(Q)zi(1− z) +

∑d−1
i=0 md ai(Q)zi+1

(1− z)d+1

=
1

(1− z)d+1

d
∑

i=1

((mi+ 1)ai(Q) + (m(d− i+ 1)− 1) ai−1(Q)) zi,

which is the formula in Example 1.7.
Finally, we come to the classification of h⋆-polynomials of degree 2.

Proof of Proposition 1.10. We recall that a1(P ) = G(P )− (d+1) and ad(P ) =
G(int(P )) for P ∈ Pd. In the case a2 = 1, a1 = 7 the triangle conv{0, 3 e1, 3 e2}
has the desired h⋆-polynomial. Next we distinguish two cases:

i) a2 < a1 ≤ 3 a2 +3. For integers k, l,m with 0 ≤ l, k ≤ m+1 let P ∈ P2

given by P = conv{0, l e1, e2 + (m + 1) e1, 2 e2, 2 e2 + k e1}. Then it is
easy to see that a2(P ) = m and P has k + l + 4 lattice points on the
boundary. Thus a1(P ) = k + l +m+ 1.

ii) a1 ≤ a2. For integers l,m with 0 ≤ l ≤ m let P ∈ P3 given by
P = conv{0, e1, e2,−l e3, e1 + e2 + (m+ 1) e3}. The only lattice points
contained in P are the vertices and the lattice points on the edge
conv{0,−l e3}. Thus a3(P ) = 0 and a1(P ) = l. On the other hand, since

(l +m+ 1)/6 = vol(P ) = (
∑3

i=0 ai(P ))/6 (cf. (2.3)) it is a2(P ) = m.

�
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4. 0-symmetric lattice polytopes

In order to study the surface area of 0-symmetric polytopes we first prove an
isoperimetric inequality for the class of cross-polytopes.

Lemma 4.1. Let v1, . . . , vd ∈ R
d be linearly independent and let C = conv{±vi :

1 ≤ i ≤ d}. Then

F(C)d

vol(C)d−1
≥ 2d

d!
d

3
2
d,

and equality holds if and only if C is a regular cross-polytope, i.e., v1, . . . , vd
form an orthogonal basis of equal length.

Proof. Without loss of generality let vol(C) = 2d/d!. Then we have to show

(4.1) F(C) ≥ 2d

d!
d

3
2 .

By standard arguments from convexity (see e.g. [10, Theorem 6.3]) the set of
all 0-symmetric cross-polytopes with volume 2d/d! contains a cross-polytope
C⋆ = conv{±w1, . . . ,±wd}, say, of minimal surface area. Suppose that some
of the vectors are not pairwise orthogonal, for instance, w1 and w2. Then
we apply to C⋆ a Steiner-Symmetrization (cf. e.g. [10, pp. 169]) with respect
to the hyperplane H = {x ∈ R

d : wi x = 0}. It is easy to check that the

Steiner-symmetral of C⋆ is again a cross-polytope C̃∗, say, with vol(C̃⋆) =
vol(C⋆) (cf. [10, Proposition 9.1]). Since C⋆ was not symmetric with respect

to the hyperplane H we also know that F(C̃∗) < F(C⋆) which contradicts the
minimality of C⋆ (cf. [10, p. 171]).

So we can assume that the vectors wi are pairwise orthogonal. Next suppose
that ‖w1‖ > ‖w2‖, where ‖ · ‖ denotes the Euclidean norm. Then we apply
Steiner-Symmetrization with respect to the hyperplane H which is orthogonal
to w1−w2 and bisecting the edge conv{w1, w2}. As before we get a contradiction
to the minimality of C⋆.

Thus we know that wi are pairwise orthogonal and of same length. By our
assumption on the volume we get ‖wi‖ = 1, 1 ≤ i ≤ d, and it is easy to calculate

that F(C⋆) = (2d/d!)d3/2. So we have

F(C) ≥ F(C⋆) =
2d

d!
d

3
2 ,

and by the foregoing argumentation via Steiner-Symmetrizations we also see
that equality holds if and only C is a regular cross-polytope generated by vectors
of unit-length. �

The determination of the minimal surface area of 0-symmetric lattice poly-
topes is an immediate consequence of the lemma above, whereas the non-sym-
metric case does not follow from the corresponding isoperimetric inequality for
simplices.

Proof of Proposition 1.11. Let P ∈ Pd with P = −P . Then P contains a 0-
symmetric lattice cross-polytope C = conv{±vi : 1 ≤ i ≤ d}, say, and by the
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monotonicity of the surface area and Lemma 4.1 we get

(4.2) F(P ) ≥ F(C) ≥
(

2d

d!

)

1
d

d
3
2 vol(C)

d−1
d .

Since vi ∈ Z
d, 1 ≤ i ≤ d, we have vol(C) = (2d/d!)|det(v1, . . . , vd)| ≥ 2d/d!,

which shows by (4.2) the 0-symmetric case.
In the non-symmetric case we know that P contains a lattice simplex T =

{x ∈ R
d : ai x ≤ bi, 1 ≤ i ≤ d + 1}, say. Here we may assume that ai ∈ Z

n

are primitive, i.e., conv{0, ai} ∩ Z
n = {0, ai}, and that bi ∈ Z. Furthermore,

we denote the facet P ∩ {x ∈ R
d : ai x = bi} by Fi, 1 ≤ i ≤ d + 1. With these

notations we have det(affFi ∩ Z
n) = ‖ai‖ (cf. [14, Proposition 1.2.9]). Hence

there exist integers ki ≥ 1 with

(4.3) vold−1(Fi) = ki
‖ai‖

(d− 1)!
,

and so we may write

F(P ) ≥ F(T ) =

d+1
∑

i=1

vold−1(Fi) ≥
1

(d− 1)!

d+1
∑

i=1

‖ai‖.

We also have
∑d+1

i=1 vold−1(Fi)ai/‖ai‖ = 0 (cf. e.g. [10, Theorem 18.2]) and in

view of (4.3) we obtain
∑d+1

i=1 ki ai = 0. Thus, since the d+ 1 lattice vectors ai
are affinely independent we can find for each index j ∈ {1, . . . , d} at least two
vectors ai1 and ai2 having a non-trivial j-th coordinate. Hence

(4.4)
d+1
∑

i=1

‖ai‖2 ≥ 2 d.

Together with the restrictions ‖ai‖ ≥ 1, 1 ≤ i ≤ d+ 1, it is easy to argue that
∑d+1

i=1 ‖ai‖ is minimized if and only if d norms ‖ai‖ are equal to 1 and one is

equal to
√
d. For instance, the intersection of the cone {x ∈ R

d+1 : xi ≥ 1, 1 ≤
i ≤ d + 1} with the hyperplane Hα = {x ∈ R

d+1 :
∑d+1

i=1 xi = α}, α ≥ d + 1,
is the d-simplex T (α) with vertices given by the permutations of the vector

(1, . . . , 1, α − d)⊺ of length
√

d+ (α− d)2. Therefore, a vertex of that simplex

is contained in {x ∈ R
d+1 :

∑d+1
i=1 x2i ≥ 2d} if α ≥ d +

√
d. In other words, we

always have
d+1
∑

i=1

‖ai‖ ≥ d+
√
d,

which gives the desired inequality in the non-symmetric case (cf. (4.3)). �

We remark that the proof also shows that equality in Proposition 1.11 holds
if and only if P is the o-symmetric cross-polytope C⋆

d or the simplex Td (up to
lattice translations).
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