SETS NON-THIN AT ∞ IN \mathbb{C}^m , AND THE GROWTH OF SEQUENCES OF ENTIRE FUNCTIONS OF GENUS ZERO

TUYEN TRUNG TRUONG

ABSTRACT. In this paper we define the notion of non-thin at ∞ as follows: Let E be a subset of \mathbb{C}^m . For any $R > 0$ define $E_R = E \cap \{z \in \mathbb{C}^m : |z| \leq R\}$. We say that E is non-thin at ∞ if

$$
\lim_{R \to \infty} V_{E_R}(z) = 0
$$

for all $z \in \mathbb{C}^m$, where V_E is the pluricomplex Green function of E.

This definition of non-thinness at ∞ has good properties: If $E \subset \mathbb{C}^m$ is non-thin at ∞ and A is pluripolar then $E\setminus A$ is non-thin at ∞ , if $E\subset\mathbb{C}^m$ and $F \subset \mathbb{C}^n$ are closed sets non-thin at ∞ then $E \times F \subset \mathbb{C}^m \times \mathbb{C}^n$ is non-thin at ∞ (see Lemma [1\)](#page-5-0).

Then we explore the properties of non-thin at ∞ sets and apply this to extend the results in [\[10\]](#page-10-0) and [\[4\]](#page-10-1).

1. INTRODUCTION

Fix $m \in \mathbb{N}$, let \mathbb{C}^m be the usual complex m-dimensional complex space. Before going into the main points, we recall some facts about the potential theory in \mathbb{C}^m . Let U be an open subset of \mathbb{C}^m . A function $u: U \to [-\infty, \infty)$ (see [\[5\]](#page-10-2)) is called PSH in U (written $u \in PSH(U)$) if u is upper-semicontinuous and when restricted to any complex line $L \simeq \mathbb{C}$ then u is subharmonic (see [\[5\]](#page-10-2)).

A $PSH(\mathbb{C}^m)$ function u is said to be of minimal growth if

$$
u(z) - \log|z| \le O(1), \text{ as } |z| \to \infty,
$$

here |z| is the usual Euclide norm of an element $z \in \mathbb{C}^m$. We denote the set of all such functions by L.

Let E be a subset in \mathbb{C}^m . Then the pluricomplex Green function of the set E with pole at infinity (see [\[5\]](#page-10-2), page 184) is

$$
V_E(z) = \sup \{ u(z) : \ u \in \mathbb{L}, \ u|_E \le 0 \} \ (z \in \mathbb{C}^m).
$$

 V_E is also called the Siciak extremal function of the set E. By definition we see that $V_E \geq 0$.

For any function $u: \mathbb{C}^m \to [-\infty, \infty)$ we define its upper-semicontinuos regularization u^* (see [\[5\]](#page-10-2)) by

$$
u^*(z) = \limsup_{\zeta \to z} u(\zeta).
$$

Date: October 27, 2018.

²⁰⁰⁰ Mathematics Subject Classification. 31B05, 32A15, 31A22.

Key words and phrases. Growth of entire functions; Non-thin at infinity; Pluricomplex Green function; Robin constant; Siciak extremal function.

The author would like to thank Professor Bedford and Professor Levenberg for their generous and fruitful help.

Let $V_E^*(z)$ be the regularization of the Green function $V_E(z)$. It is well-known (see [\[5\]](#page-10-2)) that there are only three cases:

Case 1: $V_E^*(z) \equiv +\infty$. Then E is pluripolar.

Case 2: $V_E^*(z) \in \mathbb{L}$, and $V_E^* \not\equiv 0$.

Case 3: $V_E^*(z) \equiv 0$.

When $m = 1$ then $V_E^*(z) \equiv 0$ iff the set E is non-thin at ∞ , or equivalently the set $E^* = \{z : 1/z \in E\}$ is non-thin at 0 (see [\[10\]](#page-10-0), [\[3\]](#page-10-3)). Recall that a subset E of \mathbb{C}^m is pluri-thin (or thin for brevity) at a point $a \in \mathbb{C}^m$ if either a is not a limit point of E or there is a neighborhood U of a and a function $u \in PSH(U)$ such that

$$
\limsup_{z \to a, z \in E \setminus a} u(z) < u(a).
$$

If E is not thin then it is called non-thin.

In [\[10\]](#page-10-0) the authors proved the following result (see also [\[3\]](#page-10-3), page 270)

Proposition 1. Let E be a closed subset of \mathbb{C} . Then the following four statements are equivalent

- 1. E is non-thin at ∞ .
- 2. For any $z \in \mathbb{C}$ we have

$$
\lim_{R \to \infty} V_{E_R}(z) = 0,
$$

where we define $E_R = E \cap \{z \in \mathbb{C} : |z| \leq R\}.$

3. If sequences (P_n) of polynomials and $k_n \geq deg(P_n)$ satisfy

$$
\limsup_{n \to \infty} |P_n(z)|^{1/k_n} \le 1
$$

for all $z \in E$, then

$$
\limsup_{n \to \infty} |P_n(z)|^{1/k_n} \le 1
$$

for all $z \in \mathbb{C}$. 4. $V_E(z) \equiv 0$.

When $m > 1$, as to our knowledge, there was no conception of non-thin at ∞ . The difficulty here is because we can not reduce the definition of non-thinness of E at ∞ to the non-thinness at 0 of some other sets E^* , as it was when $m = 1$. However, Proposition [1](#page-1-0) suggests a way to define non-thinness at ∞ in higher dimensions:

Definition 1. Let E be a subset of \mathbb{C}^m . For any $R > 0$ define $E_R = E \cap \{z \in \mathbb{C}^m$: $|z| \leq R$. We say that E is non-thin at ∞ if

$$
\lim_{R \to \infty} V_{E_R}(z) = 0
$$

for all $z \in \mathbb{C}^m$.

If E is not non-thin at ∞ then we say E is thin at ∞ .

This definition of non-thinness at ∞ has good properties: If $E \subset \mathbb{C}^m$ is non-thin at ∞ and A is pluripolar then $E \backslash A$ is non-thin at ∞ , if $E \subset \mathbb{C}^m$ and $F \subset \mathbb{C}^n$ are closed sets non-thin at ∞ then $E \times F \subset \mathbb{C}^m \times \mathbb{C}^n$ is non-thin at ∞ (see Lemma [1\)](#page-5-0).

Our first result in this paper is the following, which is an analog to the case $m=1$:

Theorem 2. Let E be a closed subset of \mathbb{C}^m . Then the following two statments are equivalent:

1. E is non-thin at ∞ .

2. If sequences (P_n) of polynomials and $k_n \geq deg(P_n)$ satisfy

$$
\limsup_{n \to \infty} |P_n(z)|^{1/k_n} \le 1
$$

for all $z \in E$, then

$$
\limsup_{n \to \infty} |P_n(z)|^{1/k_n} \le 1
$$

for all $z \in \mathbb{C}^m$.

If E is non-thin at ∞ then it is easy to see that $V_E \equiv 0$. The converse is not true for $m \geq 2$, by the following example (which essentially is the same as Example 1.1 in [\[3\]](#page-10-3)).

Example 1. Let E be a subset of \mathbb{C}^2 defined by

$$
E = \{(z_1, z_2) \in \mathbb{C}^2 : |z_2| \le 1\} \bigcup \{(z_1, z_2) \in \mathbb{C}^2 : z_1 = 0\}.
$$

Then $V_E \equiv 0$ but V_E is thin at ∞ .

Proof. Use arguments in Example 1.1 in [\[3\]](#page-10-3), it is easy to see that $V_E \equiv 0$.

If E was non-thin at ∞ then since $A = \{(z_1, z_2) \in \mathbb{C}^2 : z_1 = 0\}$ is pluripolar, by Lemma [1](#page-5-0) we should have $E\setminus A$ is non-thin at ∞ . In particular we should have $V_{E\setminus A} \equiv 0$. However as computed in [\[3\]](#page-10-3) we have $V_{E\setminus A}(z) = \log^+ |z|$, which is a contradiction.

Hence E is thin at ∞ .

$$
\Box
$$

The following result gives a characterization of sets E with $V_E \equiv 0$, which also shows that the non-thin at ∞ sets are not rare.

Theorem 3. Let E be a closed subset of \mathbb{C}^m . Then $V_E \equiv 0$ iff any open neighborhood of E is non-thin at ∞ .

In [\[10\]](#page-10-0), the authors applied the result of Proposition [1](#page-1-0) to various problems of convergence of sequences of polynomials in one complex variable. In [\[4\]](#page-10-1) we extended the results to sequences of entire functions of genus zero of one complex variable. With our definition of non-thinness at ∞ for a set $E \subset \mathbb{C}^m$ here, we can extend Theorems 1 and 3 in [\[4\]](#page-10-1) to the case of entire functions of genus zero of several complex variables, under appropriate assumptions.

If $P(z)$ is an entire function of genus zero of one complex variable then we have a representation of P by (see [\[9\]](#page-10-4))

(1.1)
$$
P(z) = az^{\alpha} \prod_{j} (1 - \frac{z}{z_j}).
$$

Moreover

$$
\sum_{j} \frac{1}{|z_j|} < \infty.
$$

In higher dimensions we still have a canonical representation of any entire function of genus zero $P(z_1, \ldots, z_m)$ (see Proposition 3.16 in [\[7\]](#page-10-5), see also [\[12\]](#page-10-6)). However in this paper we will use instead the reduction to one variable complex as described below.

4 TUYEN TRUNG TRUONG

Let $P(z_1, \ldots, z_m)$ be an entire function of genus zero in \mathbb{C}^m . Then for any $\lambda \in \mathbb{P}^{m-1}$ (here \mathbb{P}^{m-1} means the complex projective space of dimension $m-1$) which represents a pluricomplex direction in \mathbb{C}^m , we define a one complex variable function

$$
P_{\lambda}(w) = P(w\lambda)
$$

where $w \in \mathbb{C}$. Here we understand the expression $w\lambda$ as follows: $w\lambda := w\widetilde{\lambda} \in \mathbb{C}^m$ where $\tilde{\lambda} \in S^{2m-1} = \{z \in \mathbb{C}^m : |z| = 1\}$ is a fixed representative of λ . Then $P_{\lambda}(w)$ is also an entire function of genus zero of one complex variable hence we can use (1.1) to write

$$
P_{\lambda}(w) = a_{\lambda} w^{\alpha_{\lambda}} \prod_{j} (1 - \frac{w}{w_{\lambda,j}}).
$$

We define the counting functions of P_λ and P as follows: If $t > 0$ then

$$
\eta_P(t,\lambda)
$$
 = the number of elements of the set $\{w \in C : P_\lambda(w) = 0, |w| \le t\},\$

$$
\eta_P(t) \;\; = \;\; \int_{\mathbb{P}^{m-1}} n_P(t,\lambda) d\lambda
$$

where we integrate using the standard metric on \mathbb{P}^{m-1} .

The following result generalizes Theorem 1 in [\[4\]](#page-10-1)

Theorem 4. Let $E \subset \mathbb{C}^m$ be non-thin at ∞ .

Let $P_n : \mathbb{C}^m \to \mathbb{C}$ be a sequence of entire functions of genus zero, and let (k_n) be a sequence of positive numbers greater than 1. For $\lambda \in \mathbb{P}^{m-1}$ let us define the function $P_{n,\lambda} : \mathbb{C} \to \mathbb{C}$ by

$$
P_{n,\lambda}(w) = P_n(w\lambda).
$$

Let

$$
P_{n,\lambda}(w) = a_{n,\lambda} w^{\alpha_{n,\lambda}} \prod_j (1 - \frac{w}{w_{n,\lambda,j}}),
$$

its representation, where

$$
\sum_j \frac{1}{|w_{n,\lambda,j}|} < \infty.
$$

Let $\eta_{P_n}(t,\lambda)$ and $\eta_{P_n}(t)$ be counting functions of P_n as defined above.

Assume that for any compact set $K \subset \mathbb{C}^m$ there exists N_0 such that the set

(1.2)
$$
\{|P_n(z)|^{1/k_n}: n \ge N_0, z \in K\}
$$

is bounded from above.

For each $\lambda \in \mathbb{P}^{m-1}$ assume that the following three conditions are satisfied:

(1.3)
$$
\limsup_{n\to\infty}\frac{[\eta_{P_n}(1,\lambda)+\sum_{|w_{n,\lambda,j}|\geq 1}1/|w_{n,\lambda,j}|]}{k_n}<\infty.
$$

(1.4)
$$
\lim_{R \to \infty} \lim_{n \to \infty} \frac{|\sum_{|w_{n,\lambda,j}| \geq R} 1/w_{n,\lambda,j}|}{k_n} = 0.
$$

There exists a sequence $R_{n,\lambda} \to \infty$ such that

(1.5)
$$
\limsup_{n \to \infty} \frac{\eta_{P_n}(R_{n,\lambda}, \lambda)}{k_n} \le \kappa < \infty,
$$

SETS NON-THIN AT ∞ IN C^m, AND THE GROWTH OF SEQUENCES OF ENTIRE FUNCTIONS OF GENUS ZERG

where κ is independent of λ .

Then the following conclusion is true: If

$$
\limsup_{n \to \infty} |P_n(z)|^{1/k_n} \le 1
$$

for all $z \in E$, then we have

$$
\limsup_{n \to \infty} |P_n(z)|^{1/k_n} \le 1
$$

for all $z \in \mathbb{C}^m$.

We mention here some remarks about the result of Theorem [4:](#page-3-0)

1. Theorem [4](#page-3-0) is not a direct consequence of the one-dimensional result in [\[4\]](#page-10-1). This is because although E is non-thin at ∞ in \mathbb{C}^m , we may have that $E \cap L$ is thin at ∞ in L (even $E \cap L$ may be the empty set) where L is a complex line in \mathbb{C}^m .

2. The way of considering the growth of the sequence (P_n) in \mathbb{C}^m by considering the growth of the restricted sequence to any line L_{λ} is a natural approach.

3. Condition [\(1.2\)](#page-3-1) is natural. By Theorem 2 in [\[4\]](#page-10-1) conditions [\(1.4\)](#page-3-2) and [\(1.5\)](#page-3-0) (with κ may depend on λ) in Theorem [4](#page-3-0) are satisfied in case we have condition [\(1.3\)](#page-3-3),

$$
\limsup_{n \to \infty} |P_n(z)|^{1/k_n} \le 1,
$$

for all $z \in \mathbb{C}^m$, and

$$
\liminf_{n \to \infty} |P_n(0)|^{1/k_n} > 0.
$$

Similarly, we can extend Theorems 3 in [\[4\]](#page-10-1) by the same manner as that of Theorem [4.](#page-3-0) Because the statement of the result is rather long, we defer the statement of this result to Section 3 (see Theorem [5\)](#page-9-0). Here we outline the notations and results we will use in the statement and the proof of Theorem [5.](#page-9-0)

Let $K \subset \mathbb{C}^m$ be compact. Then the Robin constant of K is defined as (see [\[8\]](#page-10-7))

$$
\gamma(K) = \limsup_{z \to \infty} [V_E^*(z) - \log|z|],
$$

and the \mathbb{C}^m -capacity of K is

$$
C(K) = e^{-\gamma(K)}
$$

Let $K \subset \{z \in \mathbb{C}^m : |z| \leq s\}$ be compact and non-pluripolar, where $s > 0$. By Theorem 2 in [\[14\]](#page-11-0) and Poisson integration formula for harmonic functions (see Theorem 2.2.3 in [\[5\]](#page-10-2)), there exists a constant $C_m > 0$ depending only on the dimension m such that

.

(1.7)
$$
\sup_{|z| \le s} V_K^*(z) \le C_m (\log s + \log 2 - \log C(K)).
$$

The following corollary is an analog of Remark 1 in [\[10\]](#page-10-0)

Corollary 1. Let $E \subset \mathbb{C}^m$ be closed. Let $0 < C_m < +\infty$ be the constant in [\(1.7\)](#page-4-0). Then E is non-thin at ∞ if it satisfies the following condition: There exists $\beta > 0$ such that

$$
\limsup_{R \to \infty} \frac{\log C(E_R)}{\log R} \ge \beta > \frac{C_m - 1}{C_m},
$$

where $C(E_R)$ is determined from formula [\(1.6\)](#page-4-1).

6 TUYEN TRUNG TRUONG

Interesting questions may arise such as whether we can in fact get rid of the condition [\(1.2\)](#page-3-1) or get rid of the constant κ in [\(1.5\)](#page-3-0) so we have complete analogs with the results in [\[4\]](#page-10-1), or whether we have a Wienner criterion for non-thin at ∞ in \mathbb{C}^m ... We hope to return to these issues in a future paper.

This paper consists of three sections. In Section 2 we prove Theorems [2](#page-2-1) and [3,](#page-2-2) as well as some other properties of sets non-thin at ∞ . In Section 3 we prove Theorem [4](#page-3-0) as well as the analog of Theorem 3 in [\[4\]](#page-10-1).

2. NON-THIN AT ∞ sets in \mathbb{C}^m

In this section we explore some properties of sets which are non-thin at ∞ in \mathbb{C}^m .

Lemma 1. a) Let E be a subset of \mathbb{C}^m . If E is non-thin at ∞ and A is pluripolar then $E \backslash A$ is non-thin at ∞ .

b) Let $E \subset \mathbb{C}^m$ and $F \subset \mathbb{C}^n$. Then $E \times F \subset \mathbb{C}^m \times \mathbb{C}^n$ is non-thin at ∞ iff $E \subset \mathbb{C}^m$ and $F \subset \mathbb{C}^n$ are non-thin at ∞ .

Proof. a) Define $F = E \setminus A$. For any $R > 0$ the set $E_R = E \cap \{z \in \mathbb{C}^m : |z| \le R\}$ is bounded. Hence by Corollary 5.2.5 in [\[5\]](#page-10-2) we have

$$
V_{E_R}^* = V_{F_R}^*.
$$

Fix a sequence $R_n \to \infty$, using the same argument as in the proof of Theorem [2](#page-2-1) there exists a pluripolar set B such that

$$
\lim_{n \to \infty} V_{F_{R_n}}(z) = \lim_{n \to \infty} V_{F_{R_n}}^*(z) = \lim_{n \to \infty} V_{E_{R_n}}^*(z) = \lim_{R \to \infty} V_{E_{R_n}}(z) = 0.
$$

for all $z \in \mathbb{C}^m \backslash B$. Then a little more argument completes the proof of this part. b) Let $R > 0$. Then one can check easily that

$$
\max\{V_{E_R}(z), V_{F_R}(w)\} \le V_{E_R \times F_R}(z, w) \le V_{E_R}(z) + V_{F_R}(w).
$$

where $z \in \mathbb{C}^m$, $w \in \mathbb{C}^n$. This completes the proof of case b).

Now we proceed to proving Theorem [2.](#page-2-1)

Proof. In this proof fix a sequence $R_n \nearrow \infty$.

 $(2 \Rightarrow 1)$ Since E is closed, for any $R > 0$ we have E_R is compact.

Fixed $z_0 \in \mathbb{C}^m$. By Siciak's theorem (see Theorem 5.1.7 in [\[5\]](#page-10-2)) there exists a sequence of polynomials (P_n) of degree (k_n) such that

$$
||P_n||_{E_{R_n}}^{1/k_n} \le 1,
$$

for all $n = 1, 2, \ldots$, and

(2.1)
$$
\lim_{n \to \infty} \log |P_n(z_0)|^{1/k_n} = \lim_{n \to \infty} V_{E_{R_n}}(z_0).
$$

Then for any $z \in E$ we have

$$
\limsup_{n \to \infty} |P_n(z)|^{1/k_n} \le 1.
$$

Hence by assumption that Statement 2 is true, we have

$$
\limsup_{n \to \infty} |P_n(z)|^{1/k_n} \le 1
$$

for all $z \in \mathbb{C}^m$. In particular, with $z = z_0$ we get from [\(2.1\)](#page-5-1) that

$$
\lim_{n \to \infty} V_{E_{R_n}}(z_0) \leq 0.
$$

SETS NON-THIN AT ∞ IN C^m, AND THE GROWTH OF SEQUENCES OF ENTIRE FUNCTIONS OF GENUS ZERO

Since $z_0 \in \mathbb{C}^m$ is arbitrary and obviously $V_E(z) \geq 0$ for all z, we get Statement 1.

 $(1 \Rightarrow 2)$ We use the ideas in [\[10\]](#page-10-0). Assume that Statement 1 is true. Consider any sequence (P_n) of polynomials and $k_n \geq deg(P_n)$ such that

$$
\limsup_{n \to \infty} |P_n(z)|^{1/k_n} \le 1
$$

for all $z \in E$. For each *n* define

$$
v_n(z) = \log |P_n(z)|^{1/k_n}.
$$

Note that Statement 1 implies that for R large enough then E_R is non-pluripolar. Fix $R > 0$ such that E_R is non-pluripolar.

For any $h, l \in \mathbb{N}$ define

$$
E_R^{h,l} = \bigcap_{n=h}^{\infty} \{ z \in E_R : \ v_n(z) < \frac{1}{l} \}.
$$

Then $E_R^{h,l} \subset E_R^{h+1,l}$ and from (2.2)

$$
\bigcup_{h=1}^{\infty} E_R^{h,l} = E_R
$$

for any $l \in \mathbb{N}$.

By definition of the pluricomplex Green function, for any $h, l \in \mathbb{N}$, $n \geq h$ and $z \in \mathbb{C}^m$

$$
v_n(z) \le V_{E_R^{h,l}}(z) + \frac{1}{l} \le V_{E_R^{h,l}}^*(z) + \frac{1}{l}.
$$

Hence take the limsup of the above inequality as $n \to \infty$ we get

$$
v(z) = \limsup_{n \to \infty} v_n(z) \le V_{E_R^{h,l}}(z) + \frac{1}{l} \le V_{E_R^{h,l}}^*(z) + \frac{1}{l},
$$

for all $h, l \in \mathbb{N}$, $z \in \mathbb{C}^m$. Take the limit of this inequality as $h \to \infty$, using (2.2) , we see from Corollary 5.2.6 in [\[5\]](#page-10-2) that

$$
v(z) \le \lim_{h \to \infty} V_{E_R^{h,l}}^*(z) + \frac{1}{l} = V_{E_R}^*(z) + \frac{1}{l},
$$

for all $l \in \mathbb{N}$, $z \in \mathbb{C}^m$, $R > 0$. Since l is arbitrary, we get

$$
(2.4) \t v(z) \le V_{E_R}^*(z),
$$

for all $z \in \mathbb{C}^m$, $R > 0$.

For each $n \in I\!\!N$ define

$$
A_n = \{ z \in \mathbb{C}^m : \ V_{E_{R_n}}(z) < V_{E_{R_n}}^*(z) \}
$$

then A_n is pluripolar thus has Lebesgue measure zero, and $V_{E_{R_n}}(z) = V_{E_{R_n}}^*(z)$ for $z \in \mathbb{C}^m \backslash A_n$. Hence

$$
A = \bigcup_{n=1}^{\infty} A_n
$$

is also pluripolar and of Lebesgue measure zero, and we have $V_{E_{R_n}}(z) = V_{E_{R_n}}^*(z)$ for $z \in \mathbb{C}^m \backslash A$ and $n \in \mathbb{N}$. Hence for $z \in \mathbb{C}^m \backslash A$, apply (2.4) we get

$$
v(z) \le \lim_{n \to \infty} V_{E_{R_n}}^*(z) = \lim_{n \to \infty} V_{E_{R_n}}(z) = 0
$$

for all $z \in \mathbb{C}^m \backslash A$. Since A is of Lebesgue measure zero, by definition of $v(z)$, we see that $v(z) \leq 0$ for all $z \in \mathbb{C}^m$. This completes the proof of Theorem [2.](#page-2-1)

Now we prove Theorem [3.](#page-2-2)

Proof. (\Rightarrow) Let E be a closed subset of \mathbb{C}^m . Assume that $V_E \equiv 0$. We will show that any open neighborhood of E is non-thin at ∞ . Let F be any open neighborhood of E. Then for any $R > 0$ since E_R is compact, F is open and contains E_R , we can find $1 > \epsilon = \epsilon_R > 0$ such that

$$
E_{R,\epsilon} = \{ z \in \mathbb{C}^m : \ dist(z, E_R) \le \epsilon \} \subset F.
$$

By Corollary 5.1.5 in [\[5\]](#page-10-2) we have $V_{E_{R,\epsilon}}^*(z) = 0$ for $z \in E_{R,\epsilon} \supset E_R$. Now it is obvious that $E_{R,\epsilon} \subset F_{R+1}$ hence for $z \in E_R$

(2.5)
$$
V_{F_{R+1}}^{*}(z) = 0.
$$

Define

$$
v(z) = \lim_{R \to \infty} V_{F_R}^*(z),
$$

then v is the limit of a decreasing sequence of PSH functions hence v is itself PSH. By [\(2.5\)](#page-7-0) for $z \in E$ we have $v(z) \equiv 0$. Thus by definition of the pluricomplex Green function

$$
v(z) \le V_E(z) = 0
$$

for all $z \in \mathbb{C}^m$. This shows that F is non-thin at ∞ .

(←) Assume that E is an arbitrary subset of \mathbb{C}^m with $V_E \neq 0$. Then $V_E(z_0) > 0$ for some $z_0 \in \mathbb{C}^m$, hence by definition of the pluricomplex Green function, there exist a function $u \in L$ such that $u(z) \leq 0$ for $z \in E$, and $u(z_0) > 0$. Define

$$
F = \{ z \in \mathbb{C}^m : \ u(z) < u(z_0)/2 \}.
$$

F is open because u is upper-semicontinuous, and $E \subset F$ because $u|_E \leq 0$ and $u(z_0) > 0$. Now $u(z) < u(z_0)/2$ for $z \in F$, hence we have

$$
u(z) \le V_F(z) + u(z_0)/2
$$

for all $z \in \mathbb{C}^m$. In particular choose $z = z_0$ we have $V_F(z_0) \geq u(z_0)/2 > 0$, hence F is thin at ∞ .

Theorem [3](#page-2-2) applied to Example [1](#page-2-3) shows that any nonempty open cone in \mathbb{C}^m is non-thin at ∞. The following result provide other sources of sets which are non-thin at ∞ .

Remark 1. Let Δ be a collection of complex lines L in \mathbb{C}^m such that

$$
\bigcup_{L\in \Delta} L = \mathbb{C}^m.
$$

Let E be a closed subset of \mathbb{C}^m such that for each $L \in \Delta$ the set $E \cap L$ considered as a subset in the one-dimensional complex line L is non-thin at ∞ . Then E is non-thin at ∞ as a subset in \mathbb{C}^m .

Proof. By Theorem [2](#page-2-1) we need only to show that: If (P_n) is a sequence of polynomials, and $k_n \geq deg(P_n)$ such that

$$
\limsup_{n \to \infty} |P_n(z)|^{1/k_n} \le 1
$$

SETS NON-THIN AT ∞ IN C^m, AND THE GROWTH OF SEQUENCES OF ENTIRE FUNCTIONS OF GENUS ZERO

for $z \in E$, then

$$
\limsup_{n \to \infty} |P_n(z)|^{1/k_n} \le 1
$$

for all $z \in \mathbb{C}^m$.

Let $w \in \mathbb{C}$ be a coordinate for L such that the coordinates z_1, \ldots, z_n of \mathbb{C}^m are linear functions of w when restricted on L, and denote by $P_{n,L}(w)$ the restriction of P_n to L. Then $P_{n,L}(w)$ is a polynomial in one complex variable w of degree $deg(P_{n,L}(w)) \leq deg(P_n) \leq k_n.$

Then since

$$
\limsup_{n \to \infty} |P_{n,L}(w)|^{1/k_n} \le 1
$$

for $w \in E \cap L$, and $E \cap L$ is non-thin at ∞ in the complex line L, hence

$$
\limsup_{n \to \infty} |P_n(w)|^{1/k_n} \le 1
$$

for all $w \in L$. Since this is true for any complex line $L \in \Delta$, it is also true for their union, which is equal to \mathbb{C}^m . m .

3. The growth of sequences of entire functions of genus zero

In this section we apply the results in previous section to sequences of entire functions of genus zero in \mathbb{C}^m .

First we give a proof of Theorem [4.](#page-3-0)

Proof. Define functions from \mathbb{C}^m to $[-\infty, +\infty]$ by

$$
u(z) = \limsup_{n \to \infty} u_n(z),
$$

where

$$
u_n(z) = \sup_{j \ge n} \frac{1}{k_j} \log |P_j(z)|.
$$

From the assumption (1.2) , by Theorem 4.6.3 in [\[5\]](#page-10-2), u^* is PSH. Moreover there is a pluripolar set $A \subset \mathbb{C}^m$ such that $u(z) = u^*(z)$ for all $z \in \mathbb{C}^m \backslash A$.

Fix $\lambda \in \mathbb{P}^{m-1}$. Choose $R_n = R_{n,\lambda}$ as the sequence in condition [\(1.5\)](#page-3-0). Then from the proof of Theorem 1 in [\[4\]](#page-10-1) we see that for all $w \in \mathbb{C}$

$$
\limsup_{n \to \infty} u_n(w\lambda) = \limsup_{n \to \infty} \frac{1}{k_n} \log |Q_{n,\lambda}(w)|
$$

where $Q_{n,\lambda} : \mathbb{C} \to \mathbb{C}$ is defined by

$$
Q_{n,\lambda}(w) = a_{n,\lambda} w^{\alpha_{n,\lambda}} \prod_{|w_{n,\lambda,j}| \le R_n} \left(1 - \frac{w}{w_{n,\lambda,j}}\right).
$$

Condition [\(1.2\)](#page-3-1) shows that

$$
\limsup_{n \to \infty} \frac{1}{k_n} \log |Q_{n,\lambda}(w)| \le \kappa \log C_0
$$

for all $w \in \mathbb{C}$ with $|w| \leq \epsilon$. This, together with condition [\(1.5\)](#page-3-0) and potential theory in one complex variable (Berstein's lemma for polynomials, see also the proof of Theorem [2\)](#page-2-1), show that there exists $C > 0$ such that

(3.1)
$$
\limsup_{n \to \infty} \frac{1}{k_n} \log |Q_{n,\lambda}(w)| \le \kappa \log^+ |w| + C
$$

for all $w \in \mathbb{C}$. Moreover C is independent of λ .

Hence u^*/κ is in L. Let $F = E\setminus A$, then by Lemma [1](#page-5-0) F is non-thin at ∞ . In particular $V_F \equiv 0$. Now for all $z \in F$ we have by assumption

 $u^*(z) \leq 0,$

thus

$$
u^*(z) \le \kappa V_F(z) = 0
$$

for all $z \in \mathbb{C}^m$. m .

Now we consider the analog of Theorem 3 in [\[4\]](#page-10-1). We have the following result.

Theorem 5. Let $E \subset \mathbb{C}^m$ be closed and satisfy the following condition: there exists $\beta > 0$ such that

(3.2)
$$
\limsup_{R \to \infty} \frac{\log C(E_R)}{\log R} \ge \beta > \frac{C_m - 1}{C_m},
$$

where $C(E_R)$ is determined from formula [\(1.6\)](#page-4-1), and $0 < C_m < \infty$ is the constant in [\(1.7\)](#page-4-0).

Let (P_n) and (k_n) be sequences satisfying conditions (1.2) , (1.3) , (1.4) and (1.5) of Theorem [4.](#page-3-0) Then for $\lambda \in \mathbb{P}^{m-1}$ we have

$$
\exp\{\limsup_{n\to\infty}\frac{1}{2\pi k_n}\int_0^{2\pi}\log|P_n(e^{i\theta}\lambda)|d\theta\} = C_\lambda < \infty.
$$

Assume that for all $z \in E$ we have

$$
\limsup_{n \to \infty} |P_n(z)|^{1/k_n} \le h(|z|)
$$

where

(3.3)
$$
\limsup_{R \to \infty} \frac{\log h(R)}{\log R} \le \tau < \infty.
$$

Then for any $w \in \mathbb{C}$ and $\lambda \in \mathbb{P}^{m-1}$ we have

$$
\limsup_{n \to \infty} |P_n(w\lambda)|^{1/k_n} \le C_{\lambda} (1+|w|)^{\tau/[1-C_m(1-\beta)]}.
$$

Proof. Define functions u and $Q_{n,\lambda}$ as in the proof of Theorem [4.](#page-3-0) Without loss of generality we may assume that $u \geq 0$. By part (i) of Lemma 1 in [\[4\]](#page-10-1) and the proof of Theorem [4](#page-3-0) there exists a constant $C > 0$ such that

$$
(3.4) \t\t u^*(z) \le \kappa \log^+|z| + C,
$$

for all $z \in \mathbb{C}^m$. Now we define

(3.5)
$$
\kappa_0 = \limsup_{z \in \mathbb{C}^m, z \to \infty} \frac{u^*(z)}{\log |z|}.
$$

For any $R > 0$, by the definition of the pluricomplex Green function

$$
(3.6) \t\t\t u^*(z) \le \kappa_0 V_{E_R}(z) + h(R).
$$

For any $\lambda \in \mathbb{P}^{m-1}$ define

$$
\kappa(\lambda) = \limsup_{w \in \mathbb{C}, w \to \infty} \frac{u(w\lambda)}{\log |w|} \le \kappa_0.
$$

SETS NON-THIN AT ∞ IN C^m, AND THE GROWTH OF SEQUENCES OF ENTIRE FUNCTIONS OF GENUS ZERO

Fixed $\lambda \in \mathbb{P}^{m-1}$. By definition

$$
u(w\lambda) = \limsup_{n \to \infty} \frac{1}{k_n} \log |Q_n(w\lambda)|
$$

for all $w \in \mathbb{C}$. Hence using [\(3.6\)](#page-9-1), for any $s > 0$ we have

$$
\limsup_{n \to \infty} \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{k_n} \log |Q_n(se^{i\theta}\lambda)| d\theta \le \frac{1}{2\pi} \int_0^{2\pi} u(se^{i\theta}\lambda) d\theta
$$

$$
\le \kappa_0 \frac{1}{2\pi} \int_0^{2\pi} V_{E_s}(se^{i\theta}\lambda) d\theta + h(s).
$$

By the previous inequality, (1.7) and assumption (3.2) we get

$$
(3.7) \qquad \liminf_{s \to \infty} \limsup_{n \to \infty} \frac{1}{\log s} \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{k_n} \log |Q_n(se^{i\theta}\lambda)| d\theta \le \kappa_0 C_m (1 - \beta) + \tau.
$$

Then by Lemma 2 in [\[4\]](#page-10-1) we have

(3.8)
$$
\kappa(\lambda) \leq \kappa_0 C_m (1 - \beta) + \tau.
$$

Since [\(3.8\)](#page-10-8) is true for any $\lambda \in \mathbb{P}^{m-1}$, by definition [\(3.5\)](#page-9-3) and Lemma 2 in [\[4\]](#page-10-1) we have

$$
\kappa_0 \leq \kappa_0 C_m (1 - \beta) + \tau,
$$

or equivalently

$$
\kappa_0 \leq \frac{\tau}{1 - C_m(1 - \beta)}.
$$

From the above inequality, use Lemma 2 in [\[4\]](#page-10-1) we get the conclusion of Theorem $5.$

REFERENCES

- [1] Eric Bedford and B. A. Taylor, Plurisubharmonic functions with logarithmic singularities, Annales de Int. Fourier (Grenoble) 38 (1988), 133-171.
- [2] Eric Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), No 1-2, 1–40.
- [3] U, Cegrell, S. Kolodziej and N. Levenberg, Two problems on potential theory for unbounded sets, Math. Scan. 83 (1998), 265-276.
- [4] Dang Duc Trong and Truong Trung Tuyen, The growth of entire functions of genus zero, arXiv: 0610045.
- [5] Maciej Klimek, Plutipotential theory, Courier International Ltd., Scotland, 1991.
- [6] S. Kolodziej, The logarithmic capacity in \mathbb{C}^n , Annales Polonici Mathematici, XLVIII (1988).
- [7] P. Lelong and L. Gruman, Entire functions of several complex variables, Springer-Verlag ,Berlin Heidelberg, 1986.
- [8] Norman Levenberg, *Capacities in several complex variables*, PhD thesis, The University of Michigan, 1984.
- [9] B. Ya. Levin, Lectures on Entire Functions, Translations of Mathematical Monographs, Vol. 150, AMS, Providence, Rhode Island, 1996.
- [10] J. Muller and A. Yavrian, On polynomials sequences with restricted growth near infinity, Bull. London Math. Soc. 34 (2002), pp. 189-199.
- [11] Thosmas Ransford, Potential theory in the complex plane, London Maths. Soc. Student Texts 28, Cambridge University Press, 1995.
- [12] L. I. Ronkin, Introduction to the theory of entire functions of several variables, Trans. Maths. Monographs (Vol 44), AMS 1974.
- [13] Josef Siciak, Extremal plurisubharmonc functions in \mathbb{C}^n , Annales Polonici Mathematici, XXXIX (1981).

12 TUYEN TRUNG TRUONG

[14] B. A. Taylor, An estimate for an extremal plurisubharmonic function \mathbb{C}^n , Seminar P. Lelong-P. Dolbeaut-H. Skoda, Lecture Notes in Mathematics 1028, Springer-Verlag, Belin Heidelberg New York Tokyo, 1983.

Department of Mathematics, Indiana University Bloomington, IN 47405 USA $\it E\mbox{-}mail\,\,address:$ truongt@indiana.edu