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Abstra
t

In the �rst part of the paper we 
onstru
t a ring stru
ture on the rational 
obordism 
lasses of Morin

maps (i. e. smooth generi
 maps of 
orank 1). We show that asso
iating to a Morin map its Σ
1r

(or Ar)

singular strata de�nes a ring homomorphism to Ω∗⊗Q, the rational oriented 
obordism ring. This is proved

by analyzing the multiple-point sets of a produ
t immersion. Using these homomorphisms we 
ompute the

ring of Morin maps.

In the se
ond part of the paper we �nd the oriented Thom polynomial of the Σ
2
singularity type with Q


oe�
ients. Then we provide a produ
t formula for the Σ
2
and the Σ

1,1
singularities.

1 Introdu
tion

The results of this paper are the �rst steps toward understanding how the dire
t produ
t operation a�e
ts the

singularities of maps. There are two main problems. The �rst one is that the dire
t produ
t of generi
 maps will

not be generi
, so one has to take a small perturbation. This makes it hard to understand the singular strata

geometri
ally. The se
ond problem is that in general the produ
t of two singular maps even after a generi


perturbation will have more 
ompli
ated singularities then the original maps had.

In Se
tion 2 we study produ
ts of immersions. Here only the �rst type of problem arises, namely that the

self interse
tions will not be transverse. This 
an be over
ome by employing a general multiple-point formula

from [2℄ that helps to 
ompute the 
hara
teristi
 numbers of multiple-point manifolds.

In Se
tion 3 we study Morin maps. In this 
ase one has to deal with the se
ond kind of problem. We get

around this by in
reasing the dimension of the target spa
e by one.

In Se
tion 4 we set out to 
ompute the ring MorQ (the ring of rational 
obordism 
lasses of Morin maps)

de�ned at the end of Se
tion 3. First, in Se
tion 4.1, 
ombining the results of the previous se
tions we show

that the singular strata behave ni
ely under the multipli
ation de�ned in Se
tion 3.2. Then in Se
tion 4.2 we

show that this information is a
tually enough to 
ompute MorQ .

Finally Se
tion 5 deals with general singular maps. We show that a Cartan-type formula relates the Σ1

points of two maps with the Σ1
points of their dire
t produ
t. We 
ompute the oriented Thom polynomial of

the Σ2
singularity with Q 
oe�
ients. Finally we derive a Cartan-type formula for the Σ2

points as well.

2 Produ
ts of immersions

We start this se
tion by re
alling some basi
 notions about multiple points and the relevant results of [2℄.

First we shall introdu
e a 
hara
teristi
 
lass β that assigns to any oriented ve
tor bundle ξ over B an

element

β(ξ) =

∞∏

i=1

(1 + p1(ξ)ti + p2(ξ)t
2
i + . . . ) ∈ H∗(B;Q)[[t1, t2, . . . ]]

in the ring of formal power series of the variables ti over the ring H∗(B;Q). (Here pi(ξ) ∈ H4i(B;Q) is the
4i-dimensional Pontrjagin 
lass of ξ). Sin
e the Cartan formula holds for Pontrjagin 
lasses modulo 2-torsion

it follows that β(ξ ⊕ η) = β(ξ) · β(η). (We have got rid of all torsions by taking Q 
oe�
ients.) It is also easily

seen that β is natural, and always has an inverse element. When B is a manifold we shall abbreviate β(TB) by
β(B).

Now let f : Mn → Nn+k
be a generi
 (i.e. selftransverse) immersion between oriented manifolds. The

manifolds and the maps representing the r-fold points of f in the sour
e and the target respe
tively will be

denoted by

1

http://arxiv.org/abs/0710.2681v2


φr(f) : M̃r(f) →M, and

ψr(f) : Ñr(f) → N.

When the 
odimension of the map k is even, these manifolds are equipped with a natural orientation. It is

easy to see that the 
obordism 
lasses of these manifolds depend only on the 
obordism 
lass of f . Our goal is

to obtain information about these 
obordism 
lasses. To this end we 
ompute their 
hara
teristi
 numbers.

Let us denote

mr = mr(f) = φr(f)!(β(M̃r(f))),

nr = nr(f) = ψr(f)!(β(Ñr(f))).

The reason for 
onsidering these elements is the following simple observation. Evaluating ea
h 
oe�
ient of

mr on the fundamental 
lass of M we get an element in Q[[t1, t2, . . . ]]. The 
oe�
ients of this power series are

exa
tly the Pontrjagin numbers of M̃r(f).
The 
lasses mr and nr are related by the equality:

mr · β(νf ) = f∗nr−1 − e(νf )mr−1 (1)

where νf is the normal bundle of f and e is the Euler 
lass. This is a generalization of the well-known Herbert-

Ronga formula (see the Main formula of [2℄).

We are going to apply this in the 
ase when the target is a Eu
lidean spa
e. Then f∗ = 0 so (1) is simpli�ed

to mr · β(νf ) = −e(νf) ·mr−1. Applying this re
ursively one gets that mr · β(νf )
r−1 = (−e(νf ))

r−1 ·m1. But

m1 = β(M) and β(M) · β(νf ) = β(Rn) = 1, so we end up with

mr = (−e(νf ))
r−1 · β(M)r .

Now we 
an state and prove the main result of this se
tion.

Theorem 1. Let gi :M
ni

i → Rni+ki ; (i = 1, 2) be generi
 immersions. Then we have

M̃r(g1 × g2) ∼ (−1)r−1M̃r(g1)× M̃r(g2) (2)

where ∼ stands for �unoriented-
obordant�.

If both manifolds Mi are oriented and both 
odimensions ki are even, then the two sides of 2 are oriented


obordant.

Proof. We will only 
onsider the oriented 
ase. The unoriented version is proved exa
tly the same way, ex
ept

that there is no need to study Pontrjagin 
lasses.

Let f = g1 × g2. Then

mr(f) = (−e(νf ))
r−1 · β((M1 ×M2))

r =

= (−e(νg1 × νg2))
r−1 · β(TM1 × TM2)

r =

= (−1)r−1
(
(−e(νg1)

r−1 · β(M1)
r
)
×
(
(−e(νg2)

r−1 · β(M2)
r
)
=

= (−1)r−1mr(g1)×mr(g2).

The following equations are easily 
he
ked.

〈β(M̃r(f)), [M̃r(f)]〉 = 〈mr(f), [M1 ×M2]〉 = 〈mr(g1 × g2), [M1 ×M2]〉 =

= (−1)r−1〈β(M̃r(g1), [M̃r(g1)]〉 · 〈β(M̃r(g2), [M̃r(g2)]〉 =

= (−1)r−1〈β((M̃r(g1)× M̃r(g2))), [M̃r(g1)× M̃r(g2)]〉

We have obtained equality of two formal power series, so the 
orresponding 
oe�
ients must be equal on the

two sides. As the 
oe�
ients are the Pontrjagin numbers of the manifolds involved, we get that the Pontrjagin

numbers of the two manifolds are all equal.

To �nish the proof we have to repeat the whole argument using an analogous 
lass instead of β, namely

β′(ξ) =

∞∏

i=1

(1 + w1(ξ)t
1
i + w2(ξ)t

2
i + . . . ) ∈ H∗(B,Z2)[[t1, t2, . . . ]].

It is obvious that all the above hold for β′
as well. Thus not only the Pontrjagin numbers, but also the

Stiefel-Whitney numbers of the two manifolds are equal. Sin
e the oriented 
obordism 
lass is determined by

these numbers, the 
laim of the theorem follows.
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This result will no longer hold if we 
onsider a general target spa
e N . However the Pontrjagin and Stiefel-

Whitney numbers of the multiple-point manifolds of g1 × g2 are still expressible in terms of g1, g2 and their

multiple-point manifolds. This expression is parti
ularly simple for the double-point set.

First we need a simple result about the embedded manifold representing a ve
tor bundle's Euler 
lass. Let

ξ → B be a ve
tor bundle over a manifold B. Let s : B → ξ be a se
tion transverse to the 0-se
tion. Let us

denote by ∆ξ the submanifold in B that is the inverse image of the 0-se
tion by s, and let δξ : ∆ξ → B denote

the in
lusion.

Lemma 1. 〈β(∆ξ), [∆ξ]〉 = 〈β(B) · e(ξ)
β(ξ) , [B]〉.

Proof. It su�
es to show that

δξ !(β(∆ξ)) = β(B) ·
e(ξ)

β(ξ)
.

By the 
onstru
tion of ∆ξ we have the following pull-ba
k diagram:

∆ξ B

B ξ

............................................................................................................
.....
.......
.....

δξ

................................................................................................................. ......
......

δξ

................................................................................................................. ......
......

s

............................................................................................................
.....
.......
.....

0-se
tion

Hen
e the normal bundle of δξ is just the pull-ba
k of the normal-bundle of the 0-se
tion. This latter is just

ξ. Thus we have

T∆ξ ⊕ δξ
∗ξ = δξ

∗TB,

whi
h in turn implies that

β(∆ξ) = δξ
∗

(
β(B)

β(ξ)

)

.

Applying the push-forward to this equation gives the proof of the lemma, sin
e f!(f
∗x) = f!(1) ·x is well known

and obviously δξ !(1) = e(ξ) .

Theorem 2. Let gi :M
ni

i → Nni+ki

i ; (i = 1, 2) be generi
 immersions. Then

M̃2(g1 × g2) ∼ M̃2(g1)× M̃2(g2) + M̃2(g1)×∆νg2
+∆νg1

× M̃2(g2)

where ∼ stands for �unoriented-
obordant�. (Re
all that νgi is the normal bundle of gi and ∆gi is the zero set

of a generi
 se
tion of νgi .) If the Mi are oriented and the ki are even, then the same is true up to oriented


obordism.

Proof. We pro
eed in a similar manner as in the previous theorem. Let us put f = g1 × g2 and M =M1 ×M2

again. Then using (1) we get

β(νf ) ·m2(f) = f∗f!(β(M))− e(νf ) · β(M) =

= g∗1g1!(β(M1))× g∗2g2!(β(M2))− e(νf ) · β(M) =

= (β(νg1)m2(g1) + e(νg1) · β(M1))× (β(νg2 )m2(g2) + e(νg2) · β(M2))−

−e(νf ) · β(M) =

= β(νf ) ·

(

m2(g1)×m2(g2) +m2(g1)× β(M2)
eνg2
β(νg2 )

+ β(M1)
eνg1
β(νg1 )

×m2(g2)

)

Now we 
an divide by β(νf ) as it is an invertible element. We evaluate both sides on [M ] = [M1] × [M2].
Finally we have to apply the previous lemma to get that all the 
orresponding 
hara
teristi
 numbers are equal

for the two manifolds in question. As before, we 
an repeat the argument for Stiefel-Whitney numbers in Z2


oe�
ients and Pontrjagin numbers in Q 
oe�
ients, so we get both parts of the theorem at the same time.

Remark 1. 1. It is possible to 
arry out similar 
al
ulations for triple points or points of higher (say r)

multipli
ity. But the number of terms involved in these formulas grow exponentially with r and the

authors did not manage to �nd a ni
e way to write them down, not even re
ursively.
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2. It would be possible to obtain similar formulas not only for the 
obordism 
lasses of the underlying

multiple-point manifolds, but for the 
obordism 
lasses of the immersions φr themselves. To do this

one would need to 
onsider the 
hara
teristi
 numbers of these immersions instead of the 
hara
teristi


numbers of the manifolds. These 
al
ulations are more or less the same as the ones des
ribed here, but

they are harder to keep tra
k of.

3. It seems that the same results 
ould be obtained using te
hniques of E

les and Grant from [4℄.

4. We would like to point out that Theorem 2 is a non-trivial generalisation of the oriented 
ase of Theorem

A in [3℄, whi
h 
onsiders the 
ase of n = k.

3 Ring stru
ture of Morin maps

Given a smooth map f :M → N , a point x ∈M is said to be a Σi
point if the 
orank of dfx : TxM → Tf(x)N

is at least i. The set of su
h points is denoted by Σi(f). If i1 ≥ i2 then we 
an de�ne Σi1,i2f = Σi2f |Σi1f . This

method 
an be 
ontinued re
ursively to give the de�nition of Σ(i1,i2,...,ir)
points, where i1 ≥ i2 ≥ · · · ≥ ir. This


lassi�
ation of singular points is 
alled the Thom-Boardman type. For details see e. g. [1℄.

A generi
 smooth map f : M → N is 
alled a Morin map if it has no Σ2
points. The singularities of su
h

maps are 
lassi�ed by their Thom-Boardman type, whi
h 
an only be Σ

r
︷ ︸︸ ︷

(1, 1, . . . , 1) = Σ1r
for some r ≥ 0. (In

the notation of [1℄ this is Ar.)

Cobordism of Morin maps is de�ned in the usual way: two Morin maps f :Mn
1 → Nn+k

and g :Mn
2 → Nn+k

are said to be 
obordant if there is a Morin map H : Wn+1 → Nn+k × [0, 1] su
h that δW = M1 ∪M2 and

H |M1 = f,H |M2 = g.

Let us 
onsider the set of 
obordism 
lasses of all Morin maps to Eu
lidean spa
es (for all nonnegative

dimensions and all positive 
odimensions). This set is a 
ommutative group with addition indu
ed by the disjoint

union of maps. We 
an take tensor produ
t with Q to obtain the rational 
obordism group whose elements will

be referred to as rational 
obordism 
lasses. In this se
tion we endow this rational 
obordism group with a ring

stru
ture. Further we will show that the singularities 
an be used to de�ne ring homomorphisms into Ω∗, the

oriented 
obordism ring of manifolds.

The main tool in 
onstru
ting the multipli
ation will be the so-
alled �prim maps�, while the ring homomor-

phisms will be derived from the results of the previous se
tion.

3.1 Prim maps

De�nition 1. A generi
 map f : M → N is 
alled prim (proje
ted immersion) if it 
an be lifted to a generi


immersion, f̃ : M → N × R. (We will always denote the lifting by a tilde.)

Cobordism of prim maps 
an be de�ned in a natural way (the 
obordism itself should be a prim map into

N × [0, 1]), and disjoint union indu
es a group operation on the 
obordism 
lasses. The 
lass of a prim map f

will be denoted by [f ]. (For details see e.g. [6℄.)
Clearly a prim map is ne

essarily a Morin map. Prim maps provide a good link between immersions and

Morin maps. We shall �rst de�ne multipli
ation of prim maps (using their liftings to immersions) and then

show how to extend it to multipli
ation of Morin maps (using results from [8℄). We will only work with prim

maps whose target spa
e is Eu
lidean.

Let us denote l0 : pt →֒ R the in
lusion of a point into the line.

Lemma 2.

a) Any two generi
 hyperplane proje
tions of an immersion represent the same prim 
obordism 
lass.

b) Proje
tions of 
obordant immersions represent the same prim 
obordism 
lass.

Proof. a) Instead of taking two proje
tions of the same immersion we 
an take the same proje
tion of two

immersions whi
h di�er only by a rotation. This rotation 
an be realized by a regular homotopy. We 
an take

a generi
 proje
tion of this homotopy to a hyperplane that is su�
iently 
lose to the original one. This gives

a prim 
obordism between slightly perturbed versions of the original prim maps, but sin
e generi
 proje
tions

form an open set this perturbation does not e�e
t the prim 
obordism 
lass (not even the prim homotopy 
lass).

b) This 
an be proved in exa
tly the same way, by taking a generi
 proje
tion of the 
obordism 
onne
ting the

two immersions.
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De�nition 2. Given two prim maps fi :Mi → Rni (i = 1, 2) 
onsider the produ
t map

g = f1 × f2 × l0 :M1 ×M2 → Rn1+n2 × R.

The map g might not yet be prim, but we 
an turn it into su
h by a small perturbation. Take liftings f̃1 and

f̃2 that are su�
iently 
lose to f1 × l0 and f2 × l0. Now f̃1 × f̃2 : M1 ×M2 → Rn1+n2 × R2
is a non-generi


immersion. Let us take a su�
iently small perturbation of this produ
t so that it be
omes a generi
 immersion.

Finally take a generi
 proje
tion this immersion to a hyperplane �
lose� to Rn1+n2 ×R, where the last R fa
tor is

the diagonal in R2
. We obviously get a prim map g′ that 
an be arbitrarily 
lose to g. Let us denote g′ = f1 ∗f2

and let us de�ne the multipli
ation on prim 
obordism 
lasses as follows: [f1] ∗ [f2] = [f1 ∗ f2].

Theorem 3. The above de�nition is 
orre
t, that is [f1 ∗ f2] is independent of the 
hoi
e of f1 and f2 within

their 
obordism 
lass and of any other 
hoi
es made in the de�nition. The multipli
ation de�ned in this way

gives rise to a ring stru
ture with respe
t to the disjoint union as additon.

Proof. The liftings are uniqe up to regular homotopy. Also the perturbation of f̃1 × f̃2 is uniqe up to regular

homotopy. Thus Lemma 2 implies that the resulting prim map is independent of these 
hoi
es.

Now suppose [f1] = [g1]. Then there is a prim 
obordism H joining f1 and g1. We 
an take its lifting

H̃ whi
h is an immersed 
obordism between f̃1 and g̃1, and so f̃1 × f̃2 and g̃1 × f̃2 are regularly homotopi


via H̃ × f̃2. So their proje
tions are prim 
obordant, and this is what we wanted to prove. (The de�nition is

symmetri
 so the other fa
tor 
an be handled the same way.)

The last 
laim only requires the 
he
king of distributivity, whi
h is obvious.

3.2 Morin maps

In this se
tion we only 
onsider maps between oriented manifolds. Let us denote the group of 
obordism


lasses of oriented Morin maps f : Mn → Rn+k
by CobΣ1(n, k) and the 
obordism 
lasses of prim maps

f : Mn → Rn+k
by Prim(n, k). As a prim map is automati
ally Morin and prim 
obordant maps are Morin


obordant as well, we have a natural forgetting map F : Prim(n, k) → CobΣ1(n, k), that indu
es a map

FQ : Prim(n, k) ⊗ Q → CobΣ1(n, k) ⊗ Q. The following key result, whi
h says that every Morin map has a

non-zero multiple that is Morin-
obordant to a prim map is proved in [8℄:

Lemma 3. The map FQ is epimorphi
.

Using this result and the 
onstru
tion in the previous se
tion we 
an now de�ne a multipli
ation on

(
⊕

n,k CobΣ1(n, k)
)

⊗Q.

De�nition 3. Let us take two Morin maps gi : M
ni

i → Rni+ki
. By Lemma 3 we 
an �nd prim maps f1 and

f2 that are rationally Morin 
obordant to g1 and g2. Let us de�ne [g1] ∗ [g2]
def

= [FQ(f1 ∗ f2)], where [f ] denotes
the rational Morin 
obordism 
lass of the Morin map f .

Theorem 4. The above de�nition is 
orre
t, that is [g1] ∗ [g2] is independent of the 
hoi
es made. The multi-

pli
ation de�ned this way gives rise to a ring stru
ture on

(
⊕

n,k CobΣ1(n, k)
)

⊗Q.

Proof. There is only one thing left that needs to be 
he
ked: if f1 and f ′
1 are Morin 
obordant prim-

representatives of g1, then F (f1 ∗ f2) is indeed Morin 
obordant to F (f ′
1 ∗ f2). Let us take the Morin 
obordism

H 
onne
ting f1 and f ′
1. Then H × (f2 × l0) is still a Morin 
obordism after a su�
iently small perturbation,

sin
e the se
ond fa
tor 
an be perturbed to an immersion. This Morin 
obordism 
onne
ts exa
tly the two

desired maps.

De�nition 4. Let MorQ denote the group

⊕

n,k CobΣ1(n, k)⊗Q with this ring stru
ture. MorQ is a bigraded

ring, the two grades being n and k + 1.

4 Computing MorQ
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4.1 Ring homomorphisms

Let k be odd, and let f : Mn → Rn+k
be a generi
 oriented Morin map of odd 
odimension. To su
h a

map we 
an asso
iate the subset of Mn
of those points where the Thom-Boardman singularity type of f is

Σ

r
︷ ︸︸ ︷
1,1,. . . ,1 = Σ1r

. This subset is a
tually a submanifold and will be denoted by Σ1r (f). The 
obordism 
lass of

this submanifold is invariant under a Morin 
obordism of f , sin
e the Σ1r
points of the 
obordism of f give a


obordism between the Σ1r
points of f . For even r we a
tually get an oriented 
obordism 
lass. We 
an tensor

with Q and get a map

Σ1r :
⊕

k odd,n

CobΣ1(n, k)⊗Q → Ω∗ ⊗Q

to the rational oriented 
obordism ring.

Theorem 5. If r is even then the map Σ1r
is a ring homomorphism or in other words for Morin maps f, g to

Eu
lidean spa
es we have

Σ1r (f ∗ g) ∼ Σ1r (f)× Σ1r (g)

where ∼ now stands for rationally 
obordant (in the oriented sense).

Proof. We will pro
eed along the lines explained earlier, that is we will use prim maps as a link between Morin

maps and immersions. Then the multipli
ative properties of multiple points of immersions will provide the

result.

Let us �rst 
onsider prim maps. The same argument as above gives a map

Σ1r
Pr :




⊕

k odd,n

Prim(n, k)



⊗Q → Ω∗ ⊗Q.

It is obvious that Σ1r
Pr = Σ1r ◦ FQ.

Let us denote the oriented 
obordism groups of k+1 
odimensional immersions from n-dimensional manifolds

to Eu
lidean spa
es by Imm

SO(n, k + 1). Given an immersion f : Mn → Rn+k+1
, let us denote by π(f) its

generi
 proje
tion to a hyperplane. This map is a prim map whose prim 
obordism 
lass is well de�ned a

ording

to Lemma 2. The dire
t sum

⊕

k odd,n Imm

SO(n, k + 1) has a natural ring stru
ture with multipli
ation being

the dire
t produ
t. It is 
lear from the de�nitions that

π :
⊕

k odd,n

Imm

SO(n, k + 1) →
⊕

k odd,n

Prim(n, k)

is a ring homomorphism with respe
t to the dire
t produ
t on the left, and ∗-produ
t on the right. The same

remains true after forming the tensor produ
t with Q.

In Theorem 1 we have shown that

M̃r+1 :
⊕

k odd,n

Imm

SO(n, k + 1) → Ω∗

is a ring homomorphism, and obviously the same is true after forming the tensor produ
t with Q.

To �nish the proof we have to re
all a result from [7℄ whi
h in our notations reads as:

Theorem 6 ([7℄). M̃r+1⊗ idQ = (π⊗ idQ)◦Σ
1r
Pr i. e. the rational 
obordism 
lass of the manifold of r+1-tuple

points of an immersion f : Mn → Rn+k+1

oin
ides with that of the manifold of Σ1r

(or Ar) points of its

hyperplane proje
tion.

All of the above proves that the following diagram is 
ommutative.
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(
⊕

k odd,n Imm

SO(n, k + 1)
)

⊗Q

(
⊕

k odd,n Prim(n, k)
)

⊗Q Ω∗ ⊗Q

(
⊕

k odd,nCobΣ1(n, k)
)

⊗Q

............................................................................................................................................................................................................................................... .........
...

M̃r+1 ⊗ idQ

..................................................................................................................................
.....
.......
.....

π ⊗ idQ

...........................................................................................................................
.....
.......
.....

FQ

................................................................................................................. ......
......

Σ1r
Pr

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.......................
............

Σ1r

The verti
al maps are ring epimorphisms and M̃r+1 is a ring homomorphism. This implies that Σ1r
Pr and

Σ1r
are ring homomorphisms too.

4.2 The stru
ture of CobΣ1(n, k)

In [8℄ it is shown that the rational 
obordism 
lass of an oriented Morin map is a
tually determined by those

of its singular strata. As we have seen the singular strata are ring homomorphisms from MorQ . This provides

a 
omplete 
omputation of the ring MorQ .

For any stable singularity type η there is a bundle ξ̃η that plays the role of the universal normal bundle for

this singularity type. This means the following: Whenever for a map f : M → N one of its most 
ompli
ated

singularities is η then the η-points of f form a submanifold of M . The restri
tion of f to this submanifold is

an immersion to N . The normal bundle of this immersion is indu
ed from ξ̃η. (See [5℄ for details.)

Let us write ξ̃r = ξ̃Σ1r for short. Let Imm

ξ̃r (n, k) denote the 
obordism group of oriented immersions

f :Mn → Rn+k
whose normal bundles are indu
ed from ξ̃r.

We need two results from [8℄ whi
h we state here in a lemma.

Lemma 4.

1. For odd k we have

CobΣ1(n, k)⊗Q =

∞⊕

i=0

Imm

ξ̃2i(n− 2i(k + 1), 2i(k + 1) + k)⊗Q. (3)

while for even k we have CobΣ1(n, k)⊗Q = Imm

SO(n, k).

2. For even r we have Hn+k(T ξ̃r;Q) = Hn−r(k+1)(BSO(k);Q).

Proof. Part (i) is stated expli
itly in [8℄ as Example 119.

For part (ii) we have to re
all that the bundle ξ̃η has a 
ounterpart denoted by ξη whi
h is the universal

normal bundle of the η-points of a map in the sour
e manifold. The two bundles ξη and ξ̃η have the same base

spa
e BGη where Gη is the maximal 
ompa
t subgroup of the symmetry group of the singularity η. This implies

that the homologies of T ξ̃η and Tξη are the same up to a dimension shift equal to rank ξ̃η − rank ξη = k, i. e.

Hn+k(T ξ̃r;Q) = Hn(Tξr;Q).
Lemma 103/b in [8℄ implies that for even r we have Hn(Tξr;Q) = Hn−r(k+1)(BSO(k);Q). The statement

follows.

It is well known that

Imm

ξ̃r (n, k)⊗Q ∼= πS
n+k(T ξ̃r)⊗Q ∼= Hn+k(T ξ̃r;Q) = Hn−r(k+1)(BSO(k);Q).

There is the natural forgetting map that assigns to an immersion the 
obordism 
lass of its underlying sour
e

manifold. This forgetting map on the level of 
lassifying spa
es is just the in
lusion of the 
lassifying spa
es

BSO(k) →֒ BSO. The rational 
ohomology ring of the 
lassifying spa
e for Ω∗ is Q[p1, p2, . . . ]. Sin
e k is odd

H∗(BSO(k);Q) = Q[p1, p2, . . . , p k−1
2
]. Thus the in
lusion map indu
es a surje
tive homomorphism between the

rings and this means that the forgetting map is a
tually inje
tive.
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Thus for every even r we have a map CobΣ1(n, k)⊗Q → Imm

ξ̃r (n−r(k+1), r(k+1)+k)⊗Q → Ωn−r(k+1)⊗Q.

The �rst arrow is just the proje
tion in the splitting (3) while the se
ond arrow is the forgetting map. The


omposition of the two is obviously the previously de�ned Σ1r
.

This proves that for odd k an element [f ] ∈ CobΣ1(n, k) ⊗ Q is indeed determined by the 
olle
tion of

rational 
obordism 
lasses of the Σ1rf manifolds. It also follows from the previous argument that exa
tly

those 
obordism 
lasses are in the image Σ1r (CobΣ1(n, k)⊗Q) whi
h do not have non-zero Pontrjagin numbers

involving Pontrjagin 
lasses higher than p k−1
2
.

For even k the situation is simpler. It follows from Lemma 4 that for an element [f ] ∈ CobΣ1(n, k)⊗Q we

have Σ1r(f) = 0 for every r ≥ 1 and thus the 
lass of f is 
ompletely determined by the 
obordism 
lass of its

underlying manifold. In other words any even 
odimensional Morin map is Morin-
obordant to an immersion.

It is then 
lear from the de�nitions 2 and 3 that multiplying by an even 
odimensional map annihilates any

singularities.

5 Singular strata of dire
t produ
ts

Our goal in this �nal se
tion is to show that the 
ohomology 
lass represented by the submanifold formed

by the 
losure of the set of 
ertain singular points of a dire
t produ
t f × g depends only on those f and g and

some maps 
losely related to them.

The arguments are based on the well known fa
t, that the Thom polynomials of the singularity types in

question are simple. Before we formulate the theorems, we have to introdu
e some notation.

De�nition 5. For j ≥ 0 let qj : ∗ → Sj
denote the in
lusion of a point into Sj

and for j < 0 let qj : S|j| → ∗
be the map that takes the sphere to a point. Now for any integer j we de�ne f ′

j = f × qj and take fj to be a

generi
 perturbation of f ′
j .

Finally let idj = idM × qj .

5.1 The Σ1
stratum

Let Σ1f denote the 
losure of the set of all singular points in the sour
e manifold of f . The Thom polynomial

of this singularity type is wk+1. That is, given a map f :Mn → Nn+k
, the 
ohomology 
lass Poin
aré dual to

the homology 
lass represented by Σ1f is equal to wk+1(νf ) where νf stands for the virtual normal bundle of

f . This dual 
ohomology 
lass will be denoted by [Σ1f ] for simpli
ity.

Theorem 7. Let f : Mn1
1 → Nn1+k1 , g :Mn2

2 → Nn2+k2
2 be two generi
 maps. Then for a generi
 perturbation

of their produ
t we have

[Σ1f × g] =
∑

j≥1

(

[Σ1fj−1]× id

∗
j [Σ

1g(−j)] + id

∗
j [Σ

1f(−j)]× [Σ1gj−1]
)

Proof. As a �rst step let us noti
e that sin
e νf×g = νf × νg we 
an write

wk1+k2+1(νf×g) =

k1+k2+1∑

r=0

wr(νf )× wk1+k2+1−r(νg) =

=
∑

j≥1

(

wk1+j(νf )× wk2−j+1(νg) + wk1−j+1(νf )× wk2+j(νg)
)

Now we have to take a 
loser look at wk1+j(νf ). If k1+j−1 would be equal to the 
odimension of f then this


hara
teristi
 
lass would just represent the singular lo
us of f . When this is not the 
ase, we have to �nd an

appropriate repla
ement of f that has the right 
odimension, whose normal bundle however is stably equivalent

to that of f . This repla
ement map is exa
tly fj−1. Indeed, νfj−1 = νf ⊕ εj−1
so wk1+j(νf ) = wk1+j(νfj−1 )

whi
h in turn is equal to [Σ1fj−1] sin
e this map has the right 
odimension.

The argument is just slightly more 
ompli
ated in the 
ase of wk2−j+1. Here �rst we take the map g(−j) :

Mn2
2 × Sj → Nn2+k2

2 . This has 
odimension k2 − j so [Σ1g(−j)] = wk2−j+1(νg(−j)
). The only problem is that

this 
lass lives in the 
ohomology of M2 × Sj
. This is why we have to pull it ba
k to M2 by id(−j). Sin
e the


omposition of idj and g(−j) is just a perturbation of g and w(νqj ) = 1 it follows that id∗jwk2−j+1(νg(−j)
) =

wk2−j+1(νg).
Putting all these together gives the result of the theorem.
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5.2 The Σ2
stratum

A very similar result 
an be proved about the Σ2
stratum of oriented maps. First we need to 
ompute the

Thom polynomial of the Σ2
stratum in the oriented 
ase. We will work with rational 
oe�
ients.

Theorem 8. Let f : Mn → Nn+k
be a generi
 map where (k = 2t − 2). Then the rational 
ohomology 
lass

dual to the 
losure of the set of Σ2
-points of f (for short [Σ2f ]) equals pt(νf ), where pt ∈ H4t(M ;Q) is the tth

Pontrjagin 
lass.

Proof. By de�nition the Thom polynomial tpΣ2
of the Σ2

-stratum is a 
ohomology 
lass in H4t(BSO;Q) =
Q[p1, p2, p3, . . . ]. We want to show that tpΣ2 = pt. It is enough to show that these two 
ohomology 
lasses

evaluated on any homology 
lass in H4t(BSO;Q) are equal.

Lemma 5. All homology 
lasses in H4t(BSO;Q) 
an be represented by a normal map, i. e. by a map h :
L4t → BSO of an oriented 4t-manifold L4t


orresponding to the stable normal bundle of L4t
.

Proof. It is enough to 
onsider a su�
iently large �nite dimensional approximation BSO(N), (N ≫ 1). By

the Pontrjagin-Thom 
onstru
tion an embedding L4t →֒ SK
gives a map h′ : SK → MSO(K − 4t) that maps

L4t
into BSO(K − 4t) and the restri
tion h′|L4t 
orresponds to the normal bundle of L4t

. The homotopy


lass [h′] ∈ πK(MSO(K − 4t)) is mapped by the 
omposition of the Hurewi
z homomorphism and the Thom

isomorphism into a homology 
lass x = h′∗([L
4t]) ∈ H4t(BSO(K − 4t)). Hen
e this 
lass x is represented by a

normal map. Sin
e the Hurewi
z homomorphism in stable dimensions (K ≥ 8t+ 2) is a rational isomorphism,

we obtain the statement of the lemma.

To evaluate a 4t dimensional 
ohomology 
lass on a 4t dimensional homology 
lass represented by a manifold,

one just pulls ba
k the 
ohomology 
lass to the manifold and evaluates it on the fundamental 
lass.

Now it is enough to prove, that for every oriented M4t
the map ν∗ : H4t(BSO;Q) → H4t(M ;Q) indu
ed

by the normal mapping ν : M4t → BSO takes pt and tpΣ2
to the same 
ohomology 
lass in H4t(M ;Q). As

ν∗(pt) = pt(νM ) and ν∗(tpΣ2) is the dual of the Σ2
stratum of a generi
 map M4t → R6t−2

we redu
ed the

problem of �nding the Thom polynomial to the spe
ial 
ase of M4t → R6t−2
maps.

If we take an immersion f : M4t → R6t
, and proje
t it to two non-parallel hyperplanes, then we get a map

f ′ : M4t → R6t−2
. Let us denote the two hyperplanes H1, H2. The proje
tion of f to Hi shall be 
alled fi. It

is obvious that those and only those points belong to Σ2f ′
whi
h belong to Σ1f1 and Σ1f2 at the same time.

This means that for this f ′
we have [Σ2f ′] = [Σ1f1]∪ [Σ1f2]. The two 
ohomology 
lasses on the right are both

equal to the Thom polynomial of the Σ1
singularity, whi
h is the Euler 
lass of the normal bundle of f . As this

normal bundle has rank 2t, the square of its Euler 
lass is equal to pt(νf ), whi
h is the same as pt(νM ). So far

we have proved our 
laim for those maps M4t → R6t−2
where the sour
e manifold 
an be immersed into R6t

.

Let us re
all that by Imm

SO(4t, 2t) we denoted the 
obordism group of oriented immersions from 4t dimen-

sional manifolds to R6t
. There is the natural forgetting map ψ : Imm

SO(4t, 2t) → Ω4t taking an immersion to

its underlying manifold. To �nish the proof of the theorem it is su�
ient to show, that this map is a rational

epimorphism. A

ording to the Pontrjagin-Thom 
onstru
tion and the stable Hurewi
z homomorphism

Imm

SO(4t, 2t) ∼= πS
6tMSO(2t)

Q
∼= H6t(MSO(2t);Q))

and

Ω4t
∼= πS

4t(MSO)
Q
∼= H4t(MSO;Q),

where

Q
∼= means isomorphi
 if tensored with Q. Thus ψ being epimorphi
 is equivalent to

ψH : H6t(MSO(2t);Q)) → H4t(MSO;Q)

being epimorphi
, whi
h is further equivalent to (by taking the dual morphism in 
ohomology)

ψ∗ : H4t(MSO;Q) → H6t(MSO(2t);Q))

being monomorphi
. We 
an apply the Thom-isomorphism to further redu
e the problem to showing that

ψ∗
B : H4t(BSO;Q) → H4t(BSO(2t);Q)

is monomorphi
. It is easy to see that ψ∗
B is indu
ed by the natural in
lusion map BSO(2t) →֒ BSO. The


ohomology ring of BSO(2t) is the polynomial ring Q[p1, p2, . . . , pt−1, χ2t] generated by the Pontrjagin 
lasses

and the Euler 
lass, whose square is pt. On the other hand H∗(BSO;Q) ∼= Q[p1, p2, . . . ]. As ψ∗
B takes ea
h

Pontrjagin 
lass to the same Pontrjagin 
lass, we get that ψ∗
B is indeed inje
tive in dimension 4t. This 
ompletes

the proof of tpΣ2 = pt.

9



When we want to 
onsider dire
t produ
ts of maps, we will need the Cartan formula. For Pontrjagin 
lasses

the Cartan formula only holds mod 2, so we will need to 
onsider everything in H∗(M ;Q) to get rid of the

2-torsion.

The proof of the next theorem 
opies the proof of the previous se
tion.

Theorem 9. Let f : Mn1
1 → Nn1+k1 , g : Mn2

2 → Nn2+k2
2 be two generi
 maps of even 
odimension. Then for

a generi
 perturbation of their produ
t we have

[Σ2f × g] =
∑

j≥1

(

[Σ2f2j−2]× id

∗
2j [Σ

2g(−2j)] + id

∗
2j [Σ

2f(−2j)]× [Σ2g2j−2]
)
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