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THE THREE HAT PROBLEM

BRIAN BENSON AND YANG WANG

Abstract. In this paper we study the Three Hat Problem which appeared in Puzzle

Corner of the Technology Review magazine. This puzzle gives a scenario in which three
players wearing hats are sitting together and each hat can be seen by everyone except
the player that is wearing that hat. Each player is told that all of the hats contain a
positive integer and that two of the integers add to the third. In an ordered, turn-wise,
modular fashion, each player truthfully states whether or not he knows his integer. We
give a strategy which allows for one of the players to solve for his integer for all possible
integer configurations of the puzzle and prove it is the optimal such strategy.

1. Introduction

Many classical puzzles involve hats. The general setting for these puzzles is a game in

which several players are each given a hat to wear. Associated with each hat is either a color

or a number. Each player can see the color of or number on the other players’ hats, but

cannot see his own. The objective of the players is to figure out the colors or the numbers

on their own hats. The Three Hat Problem is one of such puzzles.

The Three Hat Problem. Three players are each given a hat to wear. Written on each

hat is a positive integer. Any player can see the two numbers on the other players’ hats, but

not his own. It is known that one of the numbers is the sum of the other two. Individually,

each player takes a turn in which he either identifies his number or passes if he cannot.

If each player fails to identify his number on his first turn, the players start the turn-wise

process over again using the same order from the previous round. The process ends when

one of the players is able to correctly identify his number. One popular example of the

puzzle gives the following scenario:

Player A: Pass.

Player B: Pass.

Player C: Pass.

Player A: My number is 50.
1
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The question is: What are the other numbers?

There is also a more complex version of the above problem in which the players take

longer to reach a solution. It proceeds as follows:

Player A: Pass.

Player B: Pass.

Player C: Pass.

Player A: Pass.

Player B: Pass.

Player C: Pass.

Player A: Pass.

Player B: Pass.

Player C: My number is 60.

Again the question is: What are the other numbers?

The most general form of the Three Hat Problem would have numbers a, b, a + b. In this

general setting, one may ask: (a) Will the players be able to determine their numbers, and

(b) if so, how will the players proceed in doing so?

As far as we know, both puzzles were proposed by Donald Aucamp in the MIT Technology

Review, see [4],[5],[6]. Although by no means trivial, the first puzzle is readily within grasph

of most enthusiasts who have some familiarity with these type of puzzles. The solution is

Player B has 20 and Player C has 30. To see why these two numbers work, we proceed with

the following observation. Player A on his first turn obviously doesn’t know whether his

number is 50 or 10. Similarly neither Player B nor Player C can immediately figure out their

numbers. However, on his second turn Player A can reason: If mine is a 10, then Player C

would know his number is either 10 or 30. If it is 10 Player B would immediately know his

number is 20. But he didn’t know. So Player C should know his number is 30. Now since

Player C didn’t know, my number must be 50. With this kind of reasoning we can also rule

out all other combinations. So [50, 20, 30] is the only solution to the first puzzle. In a private

communication Aucamp mentioned that he received no solution to the second puzzle from

the readers [1]. As it turns out, our study shows that the second puzzle has eight solutions!

They are [25, 35, 60], [35, 25, 60], [42, 18, 60], [18, 42, 60], [10, 50, 60], [50, 10, 60], [44, 16, 60],

[16, 44, 60].
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The Three Hat Problem is among the more challenging hat puzzles. However, as we shall

see, many of these hat puzzles can be solved using the same principles and techniques as

the Three Hat Problem. To illustrate, we list two classical hat puzzles.

The Two Hat Problem. Two players are each given to wear a hat with a positive integer

written on it. Assume that the two numbers are consecutive integers. Each player can see

the other player’s number but not his own. They take turns to either identify their numbers

or pass if they cannot. Will the players be able to identify their numbers, and if so, what

will they proceed in doing so?

The Color-Hat Problem. Several players are each given either a red or a blue hat to

wear. Each player can see all other hats but not his own. They are also told that there is

at least one red hat. The game proceeds by rounds. In each round, every player will either

identify the color of his hat or pass, but all players do so simultaneously. The game ends

when one or more players have correctly identified their colors while none of the players

responds with the incorrect color. What will happen? This puzzle takes on many popular

forms, one of which is the Muddy Face Problem analyzed in Tanaka and Tsujishita [8].

A very challenging variation of the Color-Hat Problem was due to Todd Ebert [2] and

was reported in an article in the New York Times [7]. In this variation, the players are

allowed to collaborate as a team and decide on a strategy before the game starts. However,

the players have only one chance to identify their colors. They win if at least one player

correctly names the color of his hat while no one is wrong. The question is: How well can

they do? What is their optimal strategy? This problem has an interesting connection to

coding theory.

Interestingly enough, each of the hat puzzles mentioned here can have a similar collusion

version that is phrased as a game of strategy. Suppose that we say the players win if at

least one player makes a correct identification while none of the other players makes an

incorrect identification attempt. Then each aforementioned hat puzzle can be viewed as a

problem of finding the strategy for the players to win with the least number of go-arounds.

Although this paper is concerned with the Three Hat Problem, a main additional objec-

tive is to show that these type of puzzles can be analyzed easily if we first treat them as

games of strategies. Once optimal strategies are found we can often easily show that the
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non-collusion version and the collusion version for those games are equivalent, and therefore

they will end in exactly the same fashion. One of the main advantages of presenting these

puzzles as games of strategy is that we can avoid invoking the so-called super-rationality

assumption (see Hofstadter [3]), namely each player has unlimited mental capacity to pro-

cess all informations available to them, including long chains of reasonings such as “I know

player B knows player C knows I know player C knows ....” Such an assumption can be

confusing even to mathematicians without venturing deeply into the realm of set theory

and mathematical logic. The Three Hat Problem is an excellent example to illustrate this

point.

2. Optimal Strategy for the Three Hat Problem

We now discuss a strategy for the collusion version of the Three Hat Problem. We say

a strategy is viable if it always leads to a win for the players; in otherwords, the players

need not resort to guessing at any stage. A viable strategy is optimal if it requries the least

number of turns (go-arounds) to end the game successfully regardless what the numbers

are on the three hats. Of course, while all optimal strategies must be viable, not all viable

strategies are optimal. In theory it is also possible that an optimal strategy does not exist,

in which case a strategy may be the best for some configurations but no strategy is the best

for all configurations. For the Three Hat Problem, there does exist an optimal strategy

which is given herein. The optimality of the strategy is proven in the next section.

The optimal strategy we describe here is a reduction scheme involving a chain of vectors

with postive integer entries. Throughout this paper we assume that the game begins with

Player A, Player B, and Player C taking turns respectively in that order. Further, this

order remains in all subsequent rounds until the game ends. The numbers a, b, c for Players

A, B and C respectively are represented by the vector [a, b, c]. Such a vector is called a

Three Hat configuration, or simply just a configuration.

Let H denote the set of all triples s = [a, b, c] where a, b, c are positive integers such

that the largest of which is the sum of the other two. H represents the set of all possible

configurations of the Three Hat Problem. Define a map σ : H −→ H as follows: For

s = [a, b, c] ∈ H, if two of the entries are identical then σ(s) = s; otherwise the largest entry

is replaced by the difference of the other two entries. For example, σ([3, 10, 7]) = [3, 4, 7],
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σ([10, 1, 9]) = [8, 1, 9], and σ([3, 3, 6]) = [3, 3, 6]. We shall call s ∈ H a base configuration if s

contains two identical entries, or equivalently σ(s) = s. Note that in the base configuration,

the player with the largest number can immediately declare that his number is the sum of

the other two numbers. Although, we must note that in this situation, the aforementioned

player may choose not to initially identify his number in order to obey his strategy.

Our strategy for the Three Hat Problem involves a chain of configurations for each player.

For any s ∈ H we otain a sequence of configurations s, σ(s), ...σn(s) where n ≥ 0 is the

smallest power such that σn(s) is a base configuration. For example, for s = [3, 10, 7] the

sequence is

[3, 10, 7], [3, 4, 7], [3, 4, 1], [3, 2, 1], [1, 2, 1].

We call the sequence in reverse order the configuration chain associated with s. So in the

above example s = [3, 10, 7] the associated configuration chain is

[1, 2, 1], [3, 2, 1], [3, 4, 1], [3, 4, 7], [3, 10, 7].

Given a configuration, we say that a player has the cue if his number is the sum of the other

two. For example, for the configuration [3, 10, 7] Player B has the cue.

Chain Reduction Strategy for the Three Hat Problem. For the Three Hat Problem

with configuration s = [a, b, c], let sA = [b + c, b, c], sB = [a, a + c, c] and sC = [a, b, a + b].

These are the working configurations for Players A, B, and C respectively. Each player

now writes down the configuration chain associated with his working configuration. It is

important to note that the chains differ only at the end. The players with the two smaller

numbers have longer chains by one configuration, which may differ for these two players.

The remainder of the chains are identical.

When the game begins, the players are assigned the first configuration in their respective

configuration chain and proceed with the following reduction scheme:

At each turn, a player looks at the configurations remaining on his configuration chain.

If it contains only one configuration, he declares that his number is the sum of the other

two numbers ending the game; otherwise, he will pass. Each player will now examine

his assigned configuration (which is identical for all the players before the game ends). If

and when the player with the cue for the current configuration passes, all the players will

cross out or exclude the current configuration from his chain and assign himself the next
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configuration in the chain. Otherwise, he keeps his currently assigned configuration and his

chain intact. The game continues until a player declares his number.

The following two examples will facilitate the understanding of the strategy.

Example 1. The numbers for Players A, B, C are 60, 36, 24, respectively. In this case the

working configurations are sA = [60, 36, 24], sB = [60, 84, 24] and sC = [60, 36, 96]. The

configuration chains are

Player A : [12, 12, 24], [12, 36, 24], [60, 36, 24]
Player B : [12, 12, 24], [12, 36, 24], [60, 36, 24], [60, 84, 24]
Player C : [12, 12, 24], [12, 36, 24], [60, 36, 24], [60, 36, 96]

At the start of the game, all players are assigned the configuration [12, 12, 24]. Player A

will pass, as will Player B and Player C. But Player C has the cue. So after Player C has

passed the configuration [12, 12, 24] is crossed out by all players from their chain. The new

configuration chains are

Player A : [12, 36, 24], [60, 36, 24]
Player B : [12, 36, 24], [60, 36, 24], [60, 84, 24]
Player C : [12, 36, 24], [60, 36, 24], [60, 36, 96]

All three players are now assigned the configuration [12, 36, 24]. Player A and Player B will

pass again. But since Player B has the cue, after his pass all three players will cross out

[12, 36, 24] from their chain and assign themselves the next configuration, which is [60, 36, 24]

for everyone. The new configuration chains are

Player A : [60, 36, 24]
Player B : [60, 36, 24], [60, 84, 24]
Player C : [60, 36, 24], [60, 36, 96]

It is Player C’s turn and he will pass. Now Player A has only one configuration left on

his chain, namely [60, 36, 24]. So he declares his number to be the sum of the other two

numbers, which is 60. The game ends with a win for the players.

Example 2. The numbers for Players A, B, C are 3, 10, 7, respectively. In this case the

working configurations are sA = [17, 10, 7], sB = [3, 10, 7] and sC = [3, 10, 13]. The following

shows the configuration chains and the action at each turn. Players with the cue are denoted
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by a ∗.

Player A: Pass [1, 2, 1], [3, 2, 1], [3, 4, 1], [3, 4, 7], [3, 10, 7], [17, 10, 7]
Player B*: Pass [1, 2, 1], [3, 2, 1], [3, 4, 1], [3, 4, 7], [3, 10, 7]
Player C: Pass [3, 2, 1], [3, 4, 1], [3, 4, 7], [3, 10, 7], [3, 10, 13]
Player A*: Pass [3, 2, 1], [3, 4, 1], [3, 4, 7], [3, 10, 7], [17, 10, 7]
Player B*: Pass [3, 4, 1], [3, 4, 7], [3, 10, 7]
Player C*: Pass [3, 4, 7], [3, 10, 7], [3, 10, 13]
Player A: Pass [3, 10, 7], [17, 10, 7]
Player B*: I have 10 [3, 10, 7].

The game ends successfully for the players.

Using this strategy, the player with the sum of the other two numbers will always be the

one to declare his number correctly to end the game. This is quite easily shown. Since his

chain is a subchain of the other two players, and by the time his chain is down to only one

configuration the other players still have two. Moreover, since he holds the cue at that stage

the other players cannot reduce the chain further without waiting for him to act. But when

he does act he will declare his number. So he is always the first to identify his number.

3. Optimality of the Chain Reduction Strategy

We will now prove that the above strategy is optimal for the Three Hat Problem in the

sense that no other viable strategy will be able to end the game with fewer turns for all

configurations. Before proceeding further we first notice that because gcd(a, b) = gcd(a, c) =

gcd(b, c) the players can always divide out the numbers by the greatest common divisor of

the two numbers they see. So we may without loss of generality assume that all numbers in

the three hat game are pairwise coprime. In the coprime case the only base configurations

are [1, 1, 2], [1, 2, 1] and [2, 1, 1].

Proposition 1. No matter what viable strategy the players use for the Three Hat Problem,

the player whose number is the sum of the other two is always the first player to declare his

number.

Proof. Assume that in the Three Hat Game a player declared his number on the very first

turn of the game. It is easy to see that this can happen only if we have a base configuration

and this player has the sum of the other two numbers. No other cases allow the game to

end on the very first turn without guessing. For instance, even in the base configuration
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[1, 2, 1] Player A cannot declare his number on his first turn without guessing, for he can

have both 1 or 3.

If the proposition is false then we have a game with configuration [a, b, c] that ends on

the n-th turn, with n > 1, with a player who does not have the sum of the two numbers.

Without loss of generality, we assume that Player C declares his number to end the game,

and he does not have the sum. This gives that c = |a − b|; but if so, Player C must have

concluded on the n-th turn that his number is not c = a + b. This is equivalent to saying

that had his number been c = a+ b the game would have ended earlier, with another player

declaring his number. Therefore the strategy the players use allows them to end the three

hat configuration [a, b, a + b] in k < n turns by a player other than Player C. This player

does not have the sum of the other two numbers.

We can repeat this reasoning. In the end, we deduce that using their strategy the players

can end a non-base configuration game in one turn by a player whose number is not the

sum of the other two numbers. This is a contradiction.

Theorem 2. The Chain Reduction Strategy is the optimal strategy for the Three Hat Prob-

lem.

Proof. For the Three Hat Problem with the configuration [a, b, c] let r([a, b, c]) denote the

number of turns needed to end the game using the Chain Reduction Strategy. We prove

that one cannot end the game in fewer turns using any other strategy.

Assume that the players are using another viable strategy such that the game ends in

f([a, b, c]) turns. Our objective is to show f([a, b, c]) ≥ r([a, b, c]). Without loss of generality,

we assume that a, b, c are pairwise coprime. We will prove the optimality of the Chain

Reduction Strategy by induction on max(a, b, c).

For max(a, b, c) = 2 we have the base case. It is clear that the Chain Reduction Strategy

is optimal, f([a, b, c]) ≥ r([a, b, c]). Now assume that f([a, b, c]) ≥ r([a, b, c]) whenever

max(a, b, c) < M . We now prove that f([a, b, c]) ≥ r([a, b, c]) if max(a, b, c) = M .

We shall examine the case a = b + c and b > c, so a = M . The other cases are proved in

virtually identical fashion so we shall omit them. Note that by Proposition 1 the game will

end with Player A declaring his number regardless of the strategy. With this in mind we

need only to examine what happens before Player A declares his number. Clearly from his
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perspective Player A knows he has either a = b + c or a = b − c. He is not able to declare

his number until he rules out a = b − c, regardless of the strategy the players are using.

Now since all strategies end with the player with the sum declaring his number, Player A

knows that if his number is a = b − c Player B will declare his number first on the n-th

turn, where n = f([b − c, b, c]). But by the n-th turn Player B will pass because he does

not have the sum, and after it the earliest Player A can declare his number is after Player

C’s pass. Thus,

f([a, b, c]) ≥ 2 + f([b − c, b, c]).

Note that here we do not get equality in general because we do not assume the strategy

is optimal. By the induction hypothesis, since max(b − c, b, c) = b < a = M we have

f([b − c, b, c]) ≥ r([b − c, b, c]), and hence f([a, b, c]) ≥ 2 + r([b − c, b, c]). We argue that

r([a, b, c]) = 2 + r([b − c, b, c]). This can be seen easily if we compare the configuration

chains for [b − c, b, c] and those for [a, b, c]. For all three players the former is a sub-chain

of the latter with one less configuration. On the r([b − c, b, c])-th turn, Player B has the

cue and will pass. So [b − c, b, c] is crossed out from eveyone’s chain, leaving Player A

with only one configuration on his chain, namely [a, b, c]. After Player C passes Player

A is able to declare his number as a = b + c using the Chain Reduction Strategy. Thus

f([a, b, c]) ≥ 2+r([b−c, b, c]) = r([a, b, c]). This proves the optimality of the Chain Reduction

Strategy.

One may wonder whether there are indeed non-optimal viable strategies for the Three

Hat Problem. One such strategy is the following: Players will note the larger of the two

numbers they see, call these nA, nB, and nC respectively. Unless another player has already

declared his number, Player A will pass until his nA-th turn, when he will declare his number

to the the sum of the two other numbers; further, Players B and C do likewise. This is

clearly a viable strategy but by no means an optimal one.

4. Equivalence of Collusion and No-Collusion Versions

We now argue that under the super-rationality assumption the no-collusion version of the

Three Hat Problem will end exactly the same way as if the players are colluding using the

Chain Reduction Strategy. Specifically, we assert that if there exists an optimal strategy

then a super-rational player is able to obtain this result. Clearly, from this perspective, if an
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optimal strategy exists then the players need not collude. The super-rationality assumption

suffices to gurantee that all players will be able to find it and use it with the knowledge that

other players will do likewise. Collusion is helpful only when there exists no single optimal

strategy. This is the case when for any one strategy there is another strategy that is better

for some configurations. If so the players need to collude to decide on one strategy. Note

that two strategies for the Three Hat Problem are considered to be the same if they lead to

exactly the same solution for all configurations. In this sense the Chain Reduction Strategy

is clearly the unique optimal strategy. By the above argument we have

Theorem 3. The no-collusion Three Hat Problem is equivalent to the collusion Three Hat

Problem using the Chain Reduction Strategy.

By establishing the equivalence of collusion and no-collusion versions we can also solve

the other two hat problems easily. For the Two Hat Problem, the no-collusion version is

equivalent to players using the following strategy: Each player will pass until on his n-th

turn, when he will declare his number to be n + 1, where n is the number written on the

other player’s hat. The game ends when one player declares his number. For the Color-Hat

Problem, the no-collusion version is equivalent to this strategy: Players will each note how

many red hats he sees. Say a player sees n red hats. He will then pass in the first n rounds,

but declares his hat to be red on the (n + 1)-th round. The games ends when some players

declare their numbers. These strategies are easily shown to be optimal by similar arguments

for the Three Hat Problem.
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