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Abstract

Let [γ] be the conformal boundary of a warped product C3,α AHE
metric g = gM+u2h on N = M×F , where (F, h) is compact with unit
volume and nonpositive curvature. We show that if [γ] has positive
Yamabe constant, then u has a positive lower bound that depends
only on [γ].

1 Introduction

Let N̄ = N ∪∂M be a smooth manifold with nonempty boundary ∂N . Let ρ
be a smooth defining function for N , i.e. ρ is a nonnegative smooth function
on N such that ρ−1(0) = ∂N and dρ 6= 0 on ∂N . A smooth metric g on N is
said to be conformally compact if for some smooth defining function ρ, the
tensor ḡ = ρ2g has a continuous extension to N̄ , and the restriction of ρ2g
to ∂N is a positive definite 2-tensor. We define

Π(g) = [ρ2g|∂N ] ,

where [γ] is the conformal class of γ. The metric g is said to be Cm,α con-
formally compact if ḡ ∈ Cm,α(N̄). In particular, if g is Cm,α conformally
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compact, then the induced metric on the boundary ĝ = ḡ|∂N is a metric of
class Cm,α.

We say g is asymptotically hyperbolic (AH) if the sectional curvatures of
g approach -1 on approach to the boundary. If g is Cm,α conformally compact
and |dρ|ḡ = 1, then g is AH; see [3]. In general, we say g is AH of order Cm,α,
if g is conformally compact of order Cm,α and |dρ|ḡ = 1.

Many of the results and topics in the area of conformally compact metrics,
in one way or another, describe the relationship between the interior metric
g with the conformal class of the induced boundary metric. A typical result
makes geometric conclusions based on geometric conditions on the conformal
class of the induced boundary (for example, its Yamabe invariant).

In this paper, we only consider the class of warped product conformally
compact Einstein metrics. Let N̄ = M̄ ×F be a smooth (n+1)-dimensional
manifold with boundary ∂N = ∂M×F . Here and throughout, F is a smooth
compact p-dimensional manifold without boundary. We assume that g is a
warped-product metric:

g = gM + u2h , (1)

where gM is a smooth complete metric on M , the warping function u is
smooth and positive onM , and h is a smooth metric on F . To avoid confusion
in the choice of the warping function, we will always assume (F, h) has unit
volume. Moreover, we assume that g is Einstein, i.e. (after rescaling the
metric) we have

Ricg = −ng . (2)

Let Em,α
W (N) denote the set of warped product AHE metrics of class Cm,α

on N such that the metric on the fiber F has nonpositive scalar curvature.
Also let ΠW denote the restriction of the boundary map to Em,α

W , and define

Cm,α
W = ΠW (Em,α

W ) .

We will prove the following theorem in section 3.

Theorem 1. Suppose [γ] ∈ Im(ΠW ) has positive Yamabe constant. If
g ∈ Π−1

W (γ), then the warping function of g has a positive lower bound that
depends only on [γ].

The main motivation for obtaining results of this sort is to study the
properness of the map ΠW . Given a sequence in Cm,α

W , one would like to show
that there is a subsequence γi such that Π−1

W (γi) is convergent in a suitable
topology to a metric in Em,α

W . Such results have been obtained in the case of
static circle actions on 4-manifolds [1].
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2 Warped Product AHE metrics

In this section, we assume g is an AH Einstein metric on N , and derive
the induced equations on gM and u. Recall that a metric g on N is called
Einstein, if its Ricci curvature tensor is a constant multiple of the metric, i.e.

Ricg = Λg ,

for some Λ ∈ R. In our case, N is AH, and so Λ < 0. In fact, by scaling
the metric g if necessary, we shall assume g satisfies the equation (2). In this
note, geometric notations such as g,∇, or ∆ refer to the metric g. If we are
dealing with corresponding notations with respect to gM or h, we will clarify
our intentions by accompanying M or h as a subscript or a superscript. For
example ∆M is the Laplacian on (M, gM), defined by

∆Mu =

q
∑

i=1

gM
(

∇M
Xi
∇Mu,Xi

)

,

where Xi’s form an orthonormal basis.

Lemma 2. Let (M q, gM) and (F p, h) be Riemannian manifolds such that
(N, g) = (M×K, gM+u2h), for some positive function u ∈ C∞(M). Suppose
(N, g) satisfies the Einstein equations (2). Then (F, h) has constant Ricci
curvature, and u satisfies:

∆Mu

u
=

sF
p

− (p− 1)
|∇u|2

u2
+ n ,

where sF is the scalar curvature of (F, h).

Proof. Let T(x, y)N = TxM ⊕ TyF be the natural splitting of the tangent
space of N to horizontal and vertical vectors. We fix an orthonormal basis
{E1, . . . , Eq} for TxM and an orthonormal basis {Eq+1, . . . , Eq+p} for TyF
(in the h-metric). Then, one calculates:

∇Ei
Ej = ∇M

Ei
Ej , i, j ≤ q , (3)

∇Eα
Eβ = ∇h

Eα
Eβ − g(Eα, Eβ)

∇u

u
, q + 1 ≤ α, β , (4)

∇Eα
Ei = ∇Ei

Eα =
Ei · u

u
Eα , i ≤ q < α . (5)

3



It follows that

∇Ei
∇Eα

Eα = ∇Ei

(

∇h
Eα

Eα − u∇u
)

=
Ei · u

u
∇h

Eα
Eα −∇Ei

(u∇u) , (6)

∇Eα
∇Ei

Eα = ∇Eα

(

Ei · u

u
Eα

)

=
Ei · u

u

(

∇h
Eα

Eα − u∇u
)

. (7)

Hence,

q
∑

i=1

R(Ei, Eα, Eα, Ei) =

q
∑

i=1

g(−u∇Ei
∇u,Ei) = −u∆Mu .

Similarly, we compute:

q+p
∑

β=q+1

R(Eβ, Eα, Eα, Eβ) = u2

q+p
∑

β=q+1

Rh(Eβ, Eα, Eα, Eβ)− (p− 1)|∇u|2 .

Since Ricg(Eα, Eα) = −(p + q − 1)u2, we get (by adding the above two
equations):

−nu2 = −u∆Mu+ u2Rich(Eα, Eα)− (p− 1)|∇u|2 ,

and the lemma follows.

Next, we derive the equation for ∆ ln u. First, we have

∆ ln u =
∆u

u
−

|∇u|2

u2
=

1

u

(

∆Mu+

q+p
∑

α=q+1

1

u2
g(∇Eα

∇u,Eα)

)

−
|∇u|2

u2
.

On the other hand,

g(∇Eα
∇u,Eα) = ∆Mu+

q+p
∑

α=q+1

g(
|∇u|2

u
Eα, Eα) =

|∇u|2

u
.

And so, we get:

∆ ln u =
∆Mu

u
+ (p− 1)

|∇u|2

u2
=

sF
p

+ n . (8)
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3 Proof of Theorem 1

If g is Cm,α conformally compact, then so is gM . Moreover, if ρ is a smooth
defining function for g, then ρu extends to a Cm,α positive function on ∂N
which is in fact the warping function of the induced boundary metric.

Lemma 3. If g is AHE of order C3,α, 0 < α < 1, then for any smooth
defining function ρ on N , there exists a smooth, strictly positive function w
on N such that

(1) ∆w = (p+ q)w ,

(2) w − ρ−1 is bounded,

(3) ∆(|dw|2 − w2) ≥ 0 ,

(4) |dw|2 − w2 has a continuous extension to ∂N , and is equal to

−
ŝ

n(n− 1)

on the boundary, where ŝ is the scalar curvature of the induced boundary
metric ĝ = ρ2g|∂N .

Proof. These results are Propositions 4.1, 4.2, and 5.3 of [2].

Now, we are ready to present the proof of Theorem 1.

Proof of Theorem 1. Let ρ1 be a defining function for (N, g) such that
ρ21g ∈ C3,α(N̄), and γ = ρ21g|∂N be the induced boundary metric. Since
Y [γ] > 0, there exists a positive function f such that η = f 2γ is the Yamabe
representative of the conformal class [γ], and

sη = Y [γ] > 0 ,

where sη is the scalar curvature of η. Then ρ = fρ1 is a defining function for
(N, g). By Lemma 3, there exists a function w onN such that ∆w = (n+1)w.
It follows that

∆ lnw = (n + 1)−
|dw|2

w2
. (9)
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Equations 8 and 9 imply that

∆ ln
u

w
=

sF
p

− 1 +
|dw|2

w2
≤

|dw|2 − w2

w2
, (10)

since F has nonpositive Ricci curvature. By part (4) of the Lemma 3, we
have:

max
∂N

(|dw|2 − w2) = −
sη

n(n− 1)
.

On the other hand, by part (3) of Lemma 3, we know that |dw|2 − w2 is
subharmonic, and so it attains its maximum on the boundary. It follows
that

|dw|2 − w2 < −
sη

n(n− 1)
, (11)

throughout N . In particular, we have:

w2 >
sη

n(n− 1)
, (12)

throughout N . Equations (10) and (11) imply that

∆ ln
u

w
< 0 ,

i.e. ln(u/w) is superharmonic, and so its minimum occurs on approach to
the boundary. By part (2) of Lemma 3, we have ρw = 1 on ∂N . Hence

min
∂N

ln
( u

w

)

= min
∂N

ln

(

ρu

ρw

)

= min
∂N

ln(ρu) = C(η) .

Note that C(η) depends only on η, since the extension of ρu to the boundary
is the warping function of η.

ln
( u

w

)

≥ min
∂N

ln(ρu) , (13)

throughout N . Inequalities (12) and (13) imply that

u ≥ wC(η) ≥

(

Y [γ]

n(n− 1)

)1/2

C(η) .

This completes the proof of the theorem. �
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