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THE STRUCTURES OF STANDARD (g,K)-MODULES OF SL(3,R).

TADASHI MIYAZAKI

Abstract. We describe explicitly the structures of standard (g,K)-modules of SL(3,R).

1. Introduction

As far as we know, for some ‘small’ semisimple Lie groups G, the (g,K)-module structures
of standard representations are completely described. For example, the description of them for
SL(2,R) is found in standard textbooks, and there are rather complete results for some groups
of real rank 1, e.g. SU(n, 1) in [1] and Spin(1, 2n) in [6]. However, for Lie groups of higher
rank, there are few references as far as the author knows. It seems to be difficult to describe the
whole (g,K)-module structures even for standard representations of classical groups of higher
rank, since their K-types are not multiplicity free. In the papers [4] and [5], the (g,K)-module
structures of some standard representations of Sp(2,R) are described by T. Oda. In the former
paper [3], we extend the result for principal series representations of Sp(3,R). The method
in these papers is applicable to study of standard representations of another groups. In this
paper, we use this method to study standard (g,K)-modules of SL(3,R).

Before describing the case of SL(3,R), let us explain the problem in a more precise form
for a general real semisimple Lie group G with its Lie algebra g. Fix a maximal compact
subgroup K of G. Since any standard (g,K)-modules are realized as subspaces of L2(K) as
K-modules, we investigate the K-module structure of standard (g,K)-modules by the Peter-
Weyl’s theorem. In order to describe the action of g or gC = g⊗RC, it suffices to investigate the
action of p or pC, because of the Cartan decomposition g = k⊕ p. Therefore, the investigation
of the action of p or pC is essential to give the description of the (g,K)-module structure of a
standard representation. To study the action of pC, we compute the linear map Γτ,i defined
as follows. Let (π,Hπ) be a standard representation of G with its subspace Hπ,K of K-finite
vectors. For a K-type (τ, Vτ ) of π, and a nonzero K-homomorphism η : Vλ → Hπ,K, we define
a linear map η̃ : pC ⊗C Vλ → Hπ,K by X ⊗ v 7→ X · η(v). Then η̃ is a K-homomorphism with
pC endowed with the adjoint action Ad of K. Let Vτ ⊗C pC ≃⊕i∈I Vτi be the decomposition
into a direct sum of irreducible K-modules and ιi an injective K-homomorphism from Vτi to
Vτ ⊗C pC for each i. We define a linear map Γτ,i : HomK(Vτ ,Hπ,K) → HomK(Vτi ,Hπ,K) by
η 7→ η̃ ◦ ιi. These linear maps Γτ,i (i ∈ I) characterize the action of pC. Our purpose of this
paper is to give explicit expressions of ιi and Γτ,i when π is a P -principal series representation
of G = SL(3,R) for each standard parabolic subgroup P of G. As a result, we obtain infinite
number of ’contiguous relations’, a kind of system of differential-difference relations among
vectors in Hπ[τ ] and Hπ[τi]. Here Hπ[τ ] is τ -isotypic component of Hπ. These are described
in Proposition 4.2, Theorem 5.5 and 6.5.

As an application, we can utilize the contiguous relations to obtain the explicit formulae
of some spherical functions. In the paper [2], H. Manabe, T. Ishii and T. Oda give the
explicit formulae of Whittaker functions of principal series representations of SL(3,R) to
solve the holonomic system of differential equations characterizing those functions, which is
derived from the Capelli elements and the contiguous relations around minimal K-type. We
can obtain the holonomic systems characterizing Whittaker functions of generalized principal
series representations of SL(3,R) from the result of this paper. We hope that this interesting
possibility will be considered in future work. On the other hand, if we have the explicit formula
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of Whittaker function with a certain K-type, then we can give those with another K-type by
using contiguous relations.

We give the contents of this paper. In Section 2, we recall the classical case SL(2,R) shortly.
In Section 3, we recall the structure of SL(3,R) and define a standard representations obtained
by a parabolic induction with respect to the standard parabolic subgroups. In Section 4, we
introduce the standard basis of a finite dimensional irreducible representation of K and give
explicit expressions of ιi : Vτi → Vτ ⊗CpC. In Section 5, we introduce the general setting of this
paper and give matrix representations of Γτ,i for principal series representations in Theorem
5.5. In Section 6, we give the matrix representations of Γτ,i for generalized principal series
representations in Theorem 6.5. In Section 7, we give explicit expressions of the action of pC
in Proposition 7.2.

Acknowledgments
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work and also thanks to Yasuko Hasegawa for correction of many typos.

2. The standard (g,K)-modules of SL(2,R)

We start with a short review of the most classical case, i.e. the case of the group SL(2,R).

2.1. The principal series representations of SL(2,R). We denote by Z, R and C the ring
of rational integers, the real number field and the complex number field, respectively. Let Z≥0

be the set of non-negative integers, 1n be the unit matrix in the space Mn(R) of real matrices
of size n and Om,n be the zero matrix of size m×n. We denote by δij the Kronecker delta, i.e.

δij =

{
1, i = j,
0, otherwise.

For a Lie algebra l, we denote by lC = l⊗R C the complexification of l.
We put

G′ = SL(2,R), M ′ = {m = diag(ε, ε−1) | ε ∈ {±1}}, A′ = {a(r) = diag(r, r−1) | r ∈ R>0},

N ′ =

{(
1 x
0 1

)∣∣∣∣ x ∈ R

}
, K ′ = SO(2) =

{
κt =

(
cos t sin t
− sin t cos t

)∣∣∣∣ t ∈ R

}
.

Let g′, k′, a′ and n′ be Lie algebras of G′, K ′, A′ and N ′, respectively.
For ν ∈ C and a character σ of M ′, the principal series representation π(ν,σ) of G

′ is defined
as the right regular representation of G′ on the space H(ν,σ) which is the completion of

H∞
(ν,σ) =

{
f : G′ → C smooth

∣∣∣∣
f(namx) = rν+1σ(m)f(x)
for n ∈ N ′, a = a(r) ∈ A′, m ∈ M ′, x ∈ G′

}

with respect to the norm

‖f‖2 =
∫

K ′

|f(k)|2dk.

The restriction map rK ′ : H(ν,σ) ∋ f 7→ f |K ′ ∈ L2(K ′) is an injective K ′-homomorphism when

L2(K ′) is endowed with right regular action of K ′. Then the image of rK ′ is the following
subspace of L2(K ′):

L2
(M ′,σ)(K

′) = {f ∈ L2(K ′) | f(mx) = σ(m)f(x) for a.e. m ∈ M ′, x ∈ K ′}.
We have an irreducible decomposition of the K ′-module L2(K ′):

L2(K ′) =
⊕̂

p∈Z
C · χ̃p,

where χ̃p : K
′ ∋ κt 7→ e

√
−1pt ∈ C×.
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Therefore we have an isomorphism

H(ν,σ) → L2
(M ′,σ)(K

′) =





⊕̂
p∈2ZC · χ̃p, if σ(−12) = 1,

⊕̂
p∈1+2ZC · χ̃p, if σ(−12) = −1.

Let χp ∈ H(ν,σ) be an inverse image of χ̃p by this isomorphism.
Now we take a basis {w, x+, x−} of g′C defined by

w =

(
0 1
−1 0

)
, x± =

(
1 ±

√
−1

±
√
−1 −1

)
.

Here we note that

g′C = k′C ⊕ p′C, k′C = C · w, p′C = C · x+ ⊕C · x−.
is a complexification of a Cartan decomposition g′ = k′⊕p′ with respect to a Cartan involution
g′ ∋ X 7→ −tX ∈ g′ where tX means transpose of X.

Since w ∈ k′, we see that

(2.1) π(ν,σ)(w)χp =
√
−1pχp

from direct computation. Here we denote the differential of π(ν,σ) again by π(ν,σ). The action
of p′C is given in the following proposition.

Proposition 2.1. π(ν,σ)(x±)χp = (ν + 1± p)χp±2.

Proof. By the relations
[w, x±] = ±2

√
−1x±,

we have

(2.2) π(ν,σ)(w)(π(ν,σ)(x±)χp) =
√
−1(p± 2)(π(ν,σ)(x±)χp).

Here [·, ·] is the bracket product. From the equations (2.1) and (2.2), we see that π(ν,σ)(x±)χp ∈
C · χp±2.

The elements x± of p′C have the following expressions according to Iwasawa decomposition
g′C = n′C ⊕ a′C ⊕ k′C:

x± = ±2
√
−1E′ +H ′ ∓

√
−1w

where E′ =

(
0 1
0 0

)
∈ n′C and H ′ = diag(1,−1) ∈ a′C. From this expression and the

definition of the space H(ν,σ), we have the value of π(ν,σ)(x±)χp at 12 = κ0 ∈ K ′ as follows:

π(ν,σ)(x±)χp(12) =± 2
√
−1π(ν,σ)(E

′)χp(12) + π(ν,σ)(H
′)χp(12)∓

√
−1π(ν,σ)(w)χp(12)

=0 + (ν + 1)∓
√
−1(

√
−1p)

=ν + 1± p.

Since χp±2(12) = 1, we obtain π(ν,σ)(x±)χp = (ν + 1± p)χp±2. �

From this proposition, we obtain the following.

Proposition 2.2. (i) Let k be an integer such that k ≥ 2. If ν = k − 1 and σ(−1) = (−1)k,
there is an injective homomorphism from D±

k to π(ν,σ). Here D+
k and D−

k are discrete series
representations of SL(2,R) with the Blattner parameter k and −k ∈ Z, respectively. Moreover
the quotient (g′,K ′)-modules π(ν,σ)/(D

+
k ⊕D−

k ) is of dimension k − 1.

(ii) Let k be an integer such that k ≥ 2. If ν = −k + 1 and σ(−1) = (−1)k, the (k − 1)-
dimensional subspace Fk−2 of H(ν,σ) generated by

{χp | p = −k + 2, −k + 4, · · · k − 2}
is G′-invariant and is isomorphic to the symmetric tensor representation of degree k − 2.
Moreover the quotient π(ν,σ)/Fk−2 is isomorphic to D+

k ⊕D−
k .
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(iii) If ν = 0 and σ(12) = −1, π(ν,σ) is a direct sum of two irreducible representations, called
limit of discrete series representations.
(iv) If (ν, σ) is not in the cases of (i), (ii) and (iii), π(ν,σ) is irreducible.

We are going to show the analogue of Proposition 2.1 for SL(3,R) in Theorem 5.5 and 6.5.

3. Preliminaries

3.1. Groups and algebras. Let G be the special linear group SL(3,R) of degree three and
g be its Lie algebra. We define a Cartan involution θ of G by G ∋ g 7→ tg−1 ∈ G. Here g−1

means the inverse of g. Then a maximal compact subgroup of G is given by

K = {g ∈ G | θ(g) = g} = SO(3).

If we denote the differential of θ again by θ, then we have θ(X) = −tX for X ∈ g. Let k

and p be the +1 and the −1 eigenspaces of θ in g, respectively, that is,

k = {X ∈ g | tX = −X} = so(3), p ={X ∈ g | tX = X}.

Then k is the Lie algebra of K and g has the Cartan decomposition g = k⊕ p.
Put a0 = {diag(t1, t2, t3) | ti ∈ R (1 ≤ i ≤ 3), t1+t2+t3 = 0}. Then a0 is a maximal abelian

subalgebra of p. For each 1 ≤ i ≤ 3, we define a linear form ei on a0 by a0 ∋ diag(t1, t2, t3) 7→
ti ∈ C. The set Σ of the restricted roots for (a0, g) is given by Σ = Σ(a0, g) = {ei − ej | 1 ≤
i 6= j ≤ 3}, and the subset Σ+ = {ei − ej | 1 ≤ i < j ≤ 3} forms a positive root system. For
each α ∈ Σ, we denote the restricted root space by gα and choose a restricted root vector Eα

in gα as follows:

Ee1−e2 =




0 1 0
0 0 0
0 0 0


 , Ee1−e3 =




0 0 1
0 0 0
0 0 0


 , Ee2−e3 =




0 0 0
0 0 1
0 0 0


 ,

and E−α = tEα for α ∈ Σ+. If we put n0 =
⊕

α∈Σ+ gα, then g has an Iwasawa decomposition
g = n0 ⊕ a0 ⊕ k. Also we have G = N0A0K, where N0 = exp(n0) and A0 = exp(a0).

The group G has three non-trivial standard parabolic subgroups P0, P1, P2 with

P0 =








∗ ∗ ∗
0 ∗ ∗
0 0 ∗


 ∈ G



 , P1 =








∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗


 ∈ G



 , P2 =








∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


 ∈ G



 .

Let n1, n2 be subalgebras of n0 defined by n1 = ge1−e2 ⊕ ge1−e3 , n2 = ge1−e3 ⊕ ge2−e3 . We take
a basis {H1,H2} of a0 defined by

H1 =




1 0 0
0 0 0
0 0 −1


 , H2 =




0 0 0
0 1 0
0 0 −1


 ,

and set H(1) = 2H1 − H2, H(2) = H1 + H2. we define subalgebras a1, a2 of a0 by a1 =
R ·H(1), a2 = R ·H(2). We specify Langland decompositions of Pi = NiAiMi (0 ≤ i ≤ 2) by

M0 = {diag(ε1, ε2, ε1ε2) | εi ∈ {±1} (1 ≤ i ≤ 2)},

M1 =

{(
det(h)−1 O1,2

O2,1 h

)∣∣∣∣h ∈ SL±(2,R)

}
, A1 = exp(a1), N1 = exp(n1),

M2 =

{(
h O2,1

O1,2 det(h)−1

)∣∣∣∣h ∈ SL±(2,R)

}
, A2 = exp(a2), N2 = exp(n2).

Here SL±(2,R) = {g ∈ GL(2,R) | det(g) = ±1}. For i = 1, 2, let mi be a Lie algebra of Mi.
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3.2. Definition of the Pi-principal series representations of G. For 0 ≤ i ≤ 2, in order
to define the Pi-principal series representation of G, we prepare the data (νi, σi) as follows.

For ν0 ∈ HomR(a0,C), we define a coordinate (ν0,1, ν0,2) ∈ C2 by ν0,i = ν0(Hi) (i =

1, 2). Then the half sum ρ0 = 1
2

(∑
α∈Σ+

α
)

= e1 − e3 of the positive roots has coordinate

(ρ0,1, ρ0,2) = (2, 1). We define a quasicharacter eν0 : A0 → C× by

eν0(a) = a
ν0,1
1 a

ν0,2
2 , a = diag(a1, a2, a3) ∈ A0.

We fix a character σ0 of M0. σ0 is realized by (σ0,1, σ0,2) ∈ {0, 1}⊕2 such that

σ0(diag(ε1, ε2, ε1ε2)) = ε
σ0,1

1 ε
σ0,2

2 , ε1, ε2 ∈ {±1}.

For each i = 1, 2, we identify νi ∈ HomR(ai,C) with a complex number νi(H
(i)) ∈ C. Let

ρi (i = 1, 2) be the half sums of positive roots whose root spaces are contained in ni, i.e.
ρ1 = 1

2(2e1 − e2 − e3), ρ2 = 1
2 (e1 + e2 − 2e3). Then both ρ1 and ρ2 are identified with 3. We

identify Mi (i = 1, 2) with SL±(2,R) by natural isomorphisms mi : SL
±(2,R) → Mi (i = 1, 2)

defined by

m1(h) =

(
det(h)−1 O1,2

O2,1 h

)
, m2(h) =

(
h O2,1

O1,2 det(h)−1

)
(h ∈ SL±(2,R)).

Then we fix a discrete series representation σi = Dk = Ind
SL±(2,R)
SL(2,R) (D+

k ) of Mi ≃ SL±(2,R)

where D+
k is a discrete series representation of SL(2,R) with the Blattner parameter k ≥ 2.

Definition 3.1. For 0 ≤ i ≤ 2, we define the Pi-principal series representation π(νi,σi) of G
by

π(νi,σi) = IndGPi
(1Ni

⊗ eνi+ρi ⊗ σi),

i.e. π(νi,σi) is the right regular representation of G on the space H(νi,σi) which is the completion
of

H∞
(νi,σi)

=

{
f : G → Vσi

smooth

∣∣∣∣
f(namx) = eνi+ρi(a)σi(m)f(x)
for n ∈ Ni, a ∈ Ai, m ∈ Mi, x ∈ G

}

with respect to the norm

‖f‖2 =
∫

K
‖f(k)‖2σi

dk.

Here Vσi
is a representation space of σi and ‖ · ‖σi

is its norm.

4. Representations of K = SO(3)

4.1. The spinor covering. To describe the finite dimensional representations of SO(3), the
simplest way seems to be the one utilizing the double covering ϕ : SU(2) = Spin(3) → SO(3).
We use the following realization of the double covering ϕ, which is introduced in [2].

The Hamilton quaternion algebra H is realized in M2(C) by

H =

{(
a b
−b̄ ā

)
∈ M2(C)

∣∣∣∣ a, b ∈ C

}
.

Then SU(2) is the subgroup of the multiplicative group consisting of quaternions with reduced
norm 1, i.e. SU(2) = {x ∈ H | det x = 1}. Let P = {x ∈ H | trx = 0} be the 3-dimensional
real Euclidean space consisting of pure quaternions. Then for each x ∈ SU(2), the map
P ∋ p 7→ x · p · x−1 ∈ P preserve the Euclidean norm p 7→ det p and the orientation, hence we
have the homomorphism

ϕ : SU(2) → SO(P,det) ≃ SO(3),
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which is surjective, since the range is a connected group. The kernel of this homomorphism is
given by {±12}. An explicit expression of the covering map ϕ is given by

ϕ(x) =




p2 + q2 − r2 − s2 −2(ps− qr) 2(pr + qs)
2(ps + qr) p2 − q2 + r2 − s2 −2(pq − rs)
−2(pr − qs) 2(pq + rs) p2 − q2 − r2 + s2




for x =

(
p+

√
−1q r +

√
−1s

−r +
√
−1s p−

√
−1q

)
∈ SU(2) (p, q, r, s ∈ R).

By the derivation dϕ : su(2) → so(3) of ϕ, the standard generators:

u1 =

( √
−1 0
0 −

√
−1

)
, u2 =

(
0 1
−1 0

)
, u3 =

(
0

√
−1√

−1 0

)

are mapped to −2K23, 2K13,−2K12 with

K23 =




0 0 0
0 0 1
0 −1 0


 , K13 =




0 0 1
0 0 0
−1 0 0


 , K12 =




0 1 0
−1 0 0
0 0 0


 ∈ so(3),

respectively.

4.2. Representations of SU(2). The set of equivalence classes of the finite dimensional con-
tinuous representations of SU(2) is exhausted by the symmetric tensor product τl (l ∈ Z≥0)
of the representation SU(2) ∋ g 7→ (v 7→ g · v) ∈ GL(C2). We use the following realizations of
those which are introduced in [2].

Let Vl be the subspace consisting of degree l homogeneous polynomials of two variables x, y

in the polynomial ring C[x, y]. For g ∈ SU(2) with g−1 =

(
a b
−b̄ ā

)
and f(x, y) ∈ Vl we set

τl(g)f(x, y) = f(ax+ by,−b̄x+ āy).

Passing to the Lie algebra su(2), the derivation of τl, denoted by same symbol, is described
as follows by using the standard basis {vk = xkyl−k | 0 ≤ k ≤ l} and the standard generators
{u1, u2, u3}. Namely we have

τl(H)vk =(l − 2k)vk, τl(E)vk =− kvk−1, τl(F )vk =(k − l)vk+1.

Here {E, H, F} is sl2-triple defined by

H = −
√
−1u1, E =

1

2
(u2 −

√
−1u3), F = −1

2
(u2 +

√
−1u3) ∈ su(2)C = sl(2,C).

The condition that τl defines a representation of SO(3) by passing to the quotient with
respect to ϕ : SU(2) → SO(3) is that τl(−12) = (−1)l = 1, i.e. l is even. For l ∈ Z≥0, we
denote the irreducible representation of SO(3) induced from (τ2l, V2l) again by (τ2l, V2l).

4.3. The adjoint representation of K on pC. It is known that pC becomes a K-module
via the adjoint action of K. Concerning this, we have the following lemma.
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Lemma 4.1. Let {wj | 0 ≤ j ≤ 4} be the standard basis of (τ4, V4) and {Xj | 0 ≤ j ≤ 4} be a
basis of pC defined as follows:

X0 =




0 0 0
0 1 −

√
−1

0 −
√
−1 −1


 , X1 =− 1

2




0
√
−1 1√

−1 0 0
1 0 0


 ,

X2 =− 1

3




2 0 0
0 −1 0
0 0 −1


 , X3 =− 1

2




0
√
−1 −1√

−1 0 0
−1 0 0


 ,

X4 =




0 0 0
0 1

√
−1

0
√
−1 −1


 .

Then via the unique isomorphism V4 and pC as K-modules we have the identification wj =
Xj (0 ≤ j ≤ 4).

Proof. By direct computation, we have the following table of the adjoint actions of the basis
{dϕ(E), dϕ(H), dϕ(F )} of kC on the basis {Xj | 0 ≤ j ≤ 4} of pC.

X0 X1 X2 X3 X4

dϕ(H) 4X0 2X1 0 −2X3 −4X4

dϕ(E) 0 −X0 −2X1 −3X2 −4X3

dϕ(F ) −4X1 −3X2 −2X3 −1X4 0

TABLE. The adjoint actions of kC on the basis {Xj | 0 ≤ j ≤ 4} of pC.

Comparing the actions in the above table with the actions in Subsection 4.2, we have the
assertion. �

4.4. Clebsch-Gordan coefficients for the representations of sl(2,C) with respect to
standard basis. In the later sections, we need irreducible decomposition of the tensor product
V ⊗C pC as K-modules for each K-type (τ, V ) of π(νi,σi). From the previous arguments, it
suffices to consider the irreducible decomposition of Vl ⊗C V4 as sl(2,C) = su(2)C-modules for
arbitrary non-negative integer l.

Generically, the tensor product Vl⊗CV4 has five irreducible components Vl+4, Vl+2, Vl, Vl−2

and Vl−4. Here some components may vanish. We give an explicit expression of a nonzero
sl(2,C)-homomorphism from each irreducible component to Vl ⊗C V4 as follows.

Proposition 4.2. Let {v(l)k | 0 ≤ k ≤ l} be the standard basis of Vl for l ∈ Z≥0. We put

v
(l)
k = 0 when k < 0 or k > l.

If Vl+2m-component of Vl ⊗C V4 does not vanish, then we define linear maps I l2m : Vl+2m →
Vl ⊗C V4 (−2 ≤ m ≤ 2) by

I l2m(v
(l+2m)
k ) =

4∑

i=0

A[l,2m;k,i] · v(l)k+2−m−i ⊗wi.

Here the coefficients A[l,2m;k,i] = a(l, 2m; k, i)/d(l, 2m) are defined by following formulae.
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Formula 1: The coefficients of I l4 : Vl+4 → Vl ⊗C V4 are given as follows:

a(l, 4; k, 0) =(l + 4− k)(l + 3− k)(l + 2− k)(l + 1− k),

a(l, 4; k, 1) =4(l + 4− k)(l + 3− k)(l + 2− k)k,

a(l, 4; k, 2) =6(l + 4− k)(l + 3− k)k(k − 1),

a(l, 4; k, 3) =4(l + 4− k)k(k − 1)(k − 2),

a(l, 4; k, 4) =k(k − 1)(k − 2)(k − 3),

d(l, 4) =(l + 4)(l + 3)(l + 2)(l + 1).

Formula 2: The coefficients of I l2 : Vl+2 → Vl ⊗C V4 are given as follows:

a(l, 2; k, 0) =(l + 2− k)(l + 1− k)(l − k), a(l, 2; k, 1) =− (l + 2− k)(l + 1− k)(l − 4k),

a(l, 2; k, 2) =− 3(l + 2− k)(l − 2k + 2)k, a(l, 2; k, 3) =− (3l − 4k + 8)k(k − 1),

a(l, 2; k, 4) =− k(k − 1)(k − 2), d(l, 2) =(l + 2)(l + 1)l.

Formula 3: The coefficients of I l0 : Vl → Vl ⊗C V4 are given as follows:

a(l, 0; k, 0) =(l − k)(l − 1− k), a(l, 0; k, 1) =− 2(l − k)(l − 2k − 1),

a(l, 0; k, 2) =(l2 − 6kl + 6k2 − l), a(l, 0; k, 3) =2(l − 2k + 1)k,

a(l, 0; k, 4) =k(k − 1), d(l, 0) =l(l − 1).

Formula 4: The coefficients of I l−2 : Vl−2 → Vl ⊗C V4 are given as follows:

a(l,−2; k, 0) =(l − k − 2), a(l,−2; k, 1) =− (3l − 4k − 6), a(l,−2; k, 2) =3(l − 2k − 2),

a(l,−2; k, 3) =− (l − 4k − 2), a(l,−2; k, 4) =− k, d(l,−2) =l − 2.

Formula 5: The coefficients of I l−4 : Vl−4 → Vl ⊗C V4 are given as follows:

a(l,−4; k, 0) =1, a(l,−4; k, 1) =− 4, a(l,−4; k, 2) =6,

a(l,−4; k, 3) =− 4, a(l,−4; k, 4) =1, d(l,−4) =1.

Then I l2m is a generator of Homsl(2,C)(Vl+2m, Vl⊗CV4), which is unique up to scalar multiple.

Proof. We have

(τl ⊗ τ4)(E) ◦ I l2m(v
(l+2m)
0 )

=
4∑

i=0

A[l,2m;0,i] · (τl(E)v
(l)
2−m−i)⊗ wi +

4∑

i=0

A[l,2m;0,i] · v(l)2−m−i ⊗ (τ4(E)wi)

=

4∑

i=0

A[l,2m;0,i] · (−(2−m− i)v
(l)
1−m−i)⊗ wi +

4∑

i=1

A[l,2m;0,i] · v(l)2−m−i ⊗ (−iwi−1)

= −
4∑

i=0

((2−m− i)A[l,2m;0,i] + (i+ 1)A[l,2m;0,i+1]) · v(l)1−m−i ⊗ wi.

Here we put A[l,2m;0,5] = 0. By direct computation, we confirm

(2−m− i)A[l,2m;0,i] + (i+ 1)A[l,2m;0,i+1] = 0

for −2 ≤ m ≤ 2 and 0 ≤ i ≤ 4. Hence

(τl ⊗ τ4)(E) ◦ I l2m(v
(l+2m)
0 ) = 0.

Moreover, we have

(τl ⊗ τ4)(H) ◦ I l2m(v
(l+2m)
0 ) = (l + 2m)I l2m(v

(l+2m)
0 ),
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since

(τl ⊗ τ4)(H)(v
(l)
i ⊗ wj) = (τl(H)v

(l)
i )⊗ wj + v

(l)
i ⊗ (τ4(H)wj)

= (l + 4− 2i− 2j)v
(l)
i ⊗ wj .

This means I l2m(v
(l+2m)
0 ) is the highest weight vector of Vl+2m-component of Vl ⊗C V4 with

respect to a Borel subalgebra (C ·H)⊕ (C ·E) of sl(2,C).
Therefore, in order to complete the proof, it suffices to confirm

(τl ⊗ τ4)(F ) ◦ I l2m(v
(l+2m)
k ) = I l2m ◦ τl+2m(F )(v

(l+2m)
k )

for each 0 ≤ k ≤ l + 2m.
We confirm these equations by direct computation. �

The coefficients A[l,2m;k,i] in the above proposition have the following relations.

Lemma 4.3. The coefficients A[l,2m;k,i] in Proposition 4.2 satisfy following relations:

A[l,2m;l+2m−k,0] = (−1)mA[l,2m;k,4], A[l,2m;l+2m−k,2] = (−1)mA[l,2m;k,2],

3{(k −m+ 1)A[l,2m;k,1] + (l − k +m+ 1)A[l,2m;k,3]} = (ml +m2 +m− 6)A[l,2m;k,2].

for −2 ≤ m ≤ 2 and 0 ≤ k ≤ l + 2m.

Proof. These are obtained by direct computation. �

4.5. The dual representation of (τl, Vl). We denote by (τ∗, V ∗) the dual representation of
(τ, V ). Here we note that V ∗

l is equivalent to Vl as SU(2)-modules, since irreducible l + 1-
dimensional representation of SU(2) is unique up to isomorphism.

Lemma 4.4. Let {v(l)∗k | 0 ≤ k ≤ l} is the dual basis of the standard basis {v(l)k | 0 ≤ k ≤ l}.
Via the unique isomorphism between Vl and V ∗

l as K-modules we have the identification

v
(l)
k = (−1)k

(l − k)!k!

l!
v
(l)∗
l−k

for 0 ≤ k ≤ l.

Proof. We denote by 〈, 〉 the canonical pairing on V ∗
l ⊗C Vl.

Since

〈τ∗l (H)v
(l)∗
k , v(l)m 〉 = −〈v(l)∗k , τl(H)v(l)m 〉 = (2m− l)δkm = (2k − l)δkm,

we have τ∗l (H)v
(l)∗
k = (2k − l)v

(l)∗
k . Similarly, we obtain

τ∗l (E)v
(l)∗
k = (k + 1)v

(l)∗
k+1, τ∗l (F )v

(l)∗
k = (l − k + 1)v

(l)∗
k−1.

From these equations, we obtain the assertion. �

5. The (g,K)-module structures of principal series representations

5.1. Irreducible decomposition of (π(ν0,σ0)|K ,H(ν0,σ0)) as K-modules. We set

L2
(M0,σ0)

(K) = {f ∈ L2(K) | f(mx) = σ0(m)f(x) for a.e. m ∈ M, x ∈ K}
and give a K-module structure by the right regular action of K. Then the restriction map
rK : H(ν0,σ0) ∋ f 7→ f |K ∈ L2

(M0,σ0)
(K) is an isomorphism of K-modules.

L2(K) has a K ×K-bimodule structure by the two sided regular action:

((k1, k2)f)(x) = f(k−1
1 xk2), x ∈ K, f ∈ L2(K), (k1, k2) ∈ K ×K.

Then we define a homomorphism Φl : V
∗
2l ⊗C V2l → L2(K) of K ×K-bimodules by

w ⊗ v 7→ (x 7→ 〈w, τ2l(x)v〉).
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Then the Peter-Weyl’s theorem tells that

⊕̂

l∈Z≥0

Φl :
⊕̂

l∈Z≥0

V ∗
2l ⊗C V2l → L2(K)

is an isomorphism as K ×K-bimodules. Here
⊕̂

means a Hilbert space direct sum.
Since L2

(M0,σ0)
(K) ⊂ L2(K), we have an irreducible decomposition of L2

(M0,σ0)
(K):

L2
(M0,σ0)

(K) ≃
⊕̂

l∈Z≥0

(V ∗
2l[σ0])⊗C V2l.

Here V [σ0] means the σ0-isotypic component in (τ |M0
, V ) for a K-module (τ, V ). Therefore

we obtain an isomorphism

r−1
K ◦

⊕̂

l∈Z≥0

Φl :
⊕̂

l∈Z≥0

(V ∗
2l[σ0])⊗C V2l → H(ν0,σ0).

Since M0 is generated by the two elements

m0,1 =




−1 0 0
0 1 0
0 0 −1


 , m0,2 =




1 0 0
0 −1 0
0 0 −1


 ∈ M0,

we note that v ∈ V2l[σ0] if and only if

τ2l(m0,i)v =σ0(m0,i)v = (−1)σ0,iv (i = 1, 2)

for v ∈ V2l. From the definition of (τ2l, V2l) and

ϕ−1
1 (m0,1) =

{
±
(

0 1
−1 0

)}
, ϕ−1

1 (m0,2) =

{
±
( √

−1 0
0 −

√
−1

)}
,

we have τ2l(m0,1)v
(2l)
k = (−1)kv

(2l)
2l−k and τ2l(m0,2)v

(2l)
k = (−1)l−kv

(2l)
k . Hence we have

V2l[σ0] =
⊕

k∈Z(σ0;l)

C · (v(2l)2l−k + (−1)ε(σ0;l)v
(2l)
k ),

where ε(σ0; l) ∈ {0, 1} such that ε(σ0; l) ≡ l − σ1 − σ2 mod 2 and

Z(σ0; l) =

{
{k ∈ Z | 0 ≤ k ≤ l, k ≡ l − σ0,2 mod 2} if ε(σ0; l) = 0,
{k ∈ Z | 0 ≤ k ≤ l − 1, k ≡ l − σ0,2 mod 2} if ε(σ0; l) = 1.

By the identification V ∗
2l = V2l in Lemma 4.4, we note that {v(2l)∗2l−k + (−1)ε(σ0;l)v

(2l)∗
k | k ∈

Z(σ0; l)} is the basis of V ∗
2l[σ0].

Now we define the elementary function s(l; p, q) ∈ H(ν0,σ0) by

s(l; p, q) = r−1
K ◦Φ(j)

l ((v
(2l)∗
2l−p + (−1)ε(σ0;l)v(2l)∗p )⊗ v(2l)q )

for l ∈ Z≥0, p ∈ Z(σ0; l) and 0 ≤ q ≤ 2l.
For each p ∈ Z(σ0; l), we put S(l; p) a column vector of degree 2l + 1 whose q + 1-th

component is s(l; p, q), i.e. t( s(l; p, 0), s(l; p, 1), · · · , s(l; p, 2l) ).
Moreover we denote by 〈S(l; p)〉 the subspace of H(ν0,σ0) generated by the functions in the

entries of the vector S(l; p), i.e. 〈S(l; p)〉 =⊕2l
q=0C·s(l; p, q) ≃ V2l. Via the unique isomorphism

between 〈S(l; p)〉 and V2l, we identify {s(l; p, q) | 0 ≤ q ≤ 2l} with the standard basis.
From above arguments, we obtain the following.
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Proposition 5.1. As an unitary representation of K, it has an irreducible decomposition:

H(ν0,σ0) ≃
⊕̂

l∈Z≥0

(V ∗
2l[σ0])⊗C V2l.

Then the τ2l-isotypic component of π(ν0,σ0) is given by
⊕

p∈Z(σ0;l)

〈S(l; p)〉.

Corollary 5.2. Let d(σ0; l) be the dimension of the space HomK(V2l,H(ν0,σ0),K) of intertwining
operators. Then

d(σ0; l) =





(l + 2)/2 if (σ0,1, σ0,2) = (0, 0) and l is even,
(l − 1)/2 if (σ0,1, σ0,2) = (0, 0) and l is odd,
l/2 if (σ0,1, σ0,2) 6= (0, 0) and l is even,
(l + 1)/2 if (σ0,1, σ0,2) 6= (0, 0) and l is odd.

5.2. General setting. Let H(νi,σi),K be the K-finite part of H(νi,σi). In order to describe the
action of g or gC = g ⊗R C, it suffices to investigate the action of p or pC, because of the
Cartan decomposition g = k⊕ p.

For a K-type (τ2l, V2l) of π(νi,σi) and a nonzero K-homomorphism η : V2l → H(νi,σi),K , we
define a linear map

η̃ : pC ⊗C V2l → H(νi,σi),K

by X ⊗ v 7→ π(νi,σi)(X)η(v). Here we denote differential of π(νi,σi) again by π(νi,σi). Then η̃ is
K-homomorphism with pC endowed with the adjoint action Ad of K.

Since

V2l ⊗C pC ≃ V2l ⊗C V4 ≃
⊕

−2≤m≤2

V2(l+m),

there are five injective K-homomorphisms

I2l2m : V2(l+m) → V2l ⊗C pC, −2 ≤ m ≤ 2

for general l ∈ Z≥0. Then we define C-linear maps

Γi
l,m : HomK(V2l,H(νi,σi),K) → HomK(V2(l+m),H(νi,σi),K), −2 ≤ m ≤ 2

by η 7→ η̃ ◦ I2l2m.
Now we settle two purposes of this paper:

(i): Describe the injective K-homomorphism I2l2m in terms of the standard basis.
(ii): Determine the matrix representations of the linear homomorphisms Γi

l,m with respect
to the induced basis defined in the next subsection.

We have already accomplished the first purpose in Proposition 4.2. We accomplish the sec-
ond purpose in Theorem 5.5 and 6.5. As a result, we obtain infinite number of ’contiguous
relations’, a kind of system of differential-difference relations among vectors in H(νi,σi)[τ2l] and
H(νi,σi)[τ2(l+m)]. Here H(νi,σi)[τ ] is τ -isotypic component of H(νi,σi).

5.3. The canonical blocks of elementary functions. Let η : V2l → H(νi,σi),K be a non-zero
K-homomorphism. Then we identify η with the column vector of degree 2l+1 whose q+1-th

component is η(v
(2l)
q ) for 0 ≤ q ≤ 2l, i.e. t( η(v

(2l)
0 ), η(v

(2l)
1 ), · · · , η(v

(2l)
2l ) ).

By this identification, we identify S(l; p) with the injective K-homomorphism

V2l ∋ v(2l)q 7→ s(l; p, q) ∈ H(ν0,σ0),K , 0 ≤ q ≤ 2l

for p ∈ Z(σ0; l). We note that {S(l; p) | p ∈ Z(σ0; l)} is a basis of HomK(V2l,H(ν0,σ0),K) and
we call it the induced basis from the standard basis.
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We define a certain matrix of elementary functions corresponding to the induced basis
{S(l; p) | p ∈ Z(σ0; l)} of HomK(V2l,H(ν0,σ0),K) for each K-type τ2l of our principal series
representation π(ν0,σ0).

Definition 5.3. The following (2l + 1)× d(σ0; l) matrix S(σ0; l) is called the canonical block
of elementary functions for τ2l-isotypic component: When (σ0,1, σ0,2) = (0, 0), we consider the
matrix

S(σ0; l) =

{
( S(l; 0), S(l; 2), S(l; 4), · · · , S(l; l) ) if l is even,
( S(l; 1), S(l; 3), S(l; 5), · · · , S(l; l − 2) ) if l is odd.

When (σ0,1, σ0,2) = (1, 0), we consider the matrix

S(σ0; l) =

{
( S(l; 0), S(l; 2), S(l; 4), · · · , S(l; l − 2) ) if l is even,
( S(l; 1), S(l; 3), S(l; 5), · · · , S(l; l) ) if l is odd.

When σ0,2 = 1, we consider the matrix

S(σ0; l) =

{
( S(l; 1), S(l; 3), S(l; 5), · · · , S(l; l − 1) ) if l is even,
( S(l; 0), S(l; 2), S(l; 4), · · · , S(l; l − 1) ) if l is odd.

5.4. The pC-matrix corresponding to I2l2m. For two integers c0, c1 such that c0 ≤ c1 and
a rational function f(x) in the variable x, we denote by

Diag
c0≤n≤c1

(f(n))

the diagonal matrix of size c1 − c0 + 1 with an entry f(n) at the (n − c0 + 1, n − c0 + 1)-th

component. Let e
(l)
i (0 ≤ i ≤ l) be the column unit vector of degree l + 1 with its i + 1-th

component 1 and the remaining components 0. Moreover, let e
(l)
i be the column zero vector

of degree l + 1 when i < 0 or l < i.
In this subsection, we define pC-matrix Cl,m of size (2(l +m) + 1) × (2l + 1) corresponding

to I2l2m with respect to the standard basis.

Let
∑4

i=0 ι
(l,m)
i ⊗Xi be the image of I2l2m by the composite of natural linear maps

HomK(V2(l+m), V2l ⊗C pC) → HomC(V2(l+m), V2l ⊗C pC) ≃ HomC(V2(l+m), V2l)⊗C pC.

Then we define pC-matrix Cl,m =
∑4

i=0R(ι
(l,m)
i ) ⊗Xi where R(ι

(l,m)
i ) is the matrix represen-

tation of ι
(l,m)
i with respect to the standard basis. Explicit expression of the matrix R(ι

(l,m)
i )

of size (2(l +m) + 1)× (2l + 1) is given by
(
O2(l+m)+1,m+2, R(ι

(l,m)
0 ), O2(l+m)+1,m+2

)

=

(
O2(l+m)+1,4−i, Diag

0≤k≤2(l+m)
(A[2l,2m;k,i]), O2(l+m)+1,i

)

for −2 ≤ m ≤ 2 and 0 ≤ i ≤ 4. Here we erase the symbol Om,n when m = 0 or n = 0.

For a column vector v = t(v0, v1, · · · , v2l) ∈ (H(νi,σi),K)⊕2l+1 which is identified with an

element of HomK(V2l,H(νi,σi),K), we define Cl,mv ∈ (H(νi,σi),K)⊕2(l+m)+1 ≃ C2(l+m)+1 ⊗C

H(ν0,σ0),K by

Cl,mv =
∑

0≤i≤4
0≤q≤2l

(R(ι
(l,m)
i ) · e(2l)q )⊗ (π(νi,σi)(Xi)vq).

Here R(ι
(l,m)
i ) · e(2l)q is the ordinal product of matrices R(ι

(l,m)
i ) and e

(2l)
q .

From the definition of Cl,m, we note that the vector Cl,mv is identified with the image of v
by Γi

l,m.
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5.5. The contiguous relations.

Lemma 5.4. The standard basis Xi (0 ≤ i ≤ 4) in pC have the following expressions according
to the Iwasawa decomposition gC = nC ⊕ aC ⊕ kC:

X0 =− 2
√
−1Ee2−e3 +H2 +

√
−1K23,

X1 =− (Ee1−e3 +
√
−1Ee1−e2) +

1

2
(K13 +

√
−1K12),

X2 =− 1

3
(2H1 −H2),

X3 =(Ee1−e3 −
√
−1Ee1−e2)−

1

2
(K13 −

√
−1K12),

X4 =2
√
−1Ee2−e3 +H2 −

√
−1K23.

Proof. We obtain the assertion immediately from Lemma 4.1. �

We give the matrix representation of Γ0
l,m with respect to the induced basis as follows.

Theorem 5.5. For l ∈ Z≥0, −2 ≤ m ≤ 2 such that d(σ0; l) > 0 and d(σ0; l+m) > 0, we have

(5.1) Cl,mS(σ0; l) = S(σ0; l +m) · R(Γ0
l,m)

with the matrix representation R(Γ0
l,m) ∈ Md(σ0;l+m),d(σ0;l)(C) of Γ0

l,m with respect to the in-

duced basis {S(l; p) | p ∈ Z(σ0; l)}:
Explicit expressions of the matrix R(Γ0

l,m) of size d(σ0; l +m)× d(σ0; l) is given as follows:

When σ0,2 = 0 and (m,σ0,1 + l) ∈ {0,±2} × (2Z), the matrix R(Γ0
l,m) is given by

(
On(σ0;l,m),d(σ0;l)

R(Γ0
l,m)

)
=


 Diag

0≤k≤d(σ0;l)−1

(
γ
(0)
[l,m;2k+δ(σ0;l),−1]

)

O1,d(σ0;l)


+




O1,d(σ0;l)

Diag
0≤k≤d(σ0;l)−1

(
γ
(0)
[l,m;2k+δ(σ0;l),0]

)



+




O2,d(σ0;l)−1 O2,1

Diag
0≤k≤d(σ0;l)−2

(
γ
(0)
[l,m;2k+δ(σ0;l),1]

)
γ
(0)
[l,m;l,1] · e

(d(σ0 ;l)−2)
d(σ0;l)−3


 .

When σ0,2 = 0 and (m,σ0,1 + l) ∈ {0,±2} × (1 + 2Z), the matrix R(Γ0
l,m) is given by

(
On(σ0;l,m),d(σ0;l)

R(Γ0
l,m)

)
=


 Diag

0≤k≤d(σ0;l)−1

(
γ
(0)
[l,m;2k+δ(σ0;l),−1]

)

O1,d(σ0;l)


+




O1,d(σ0;l)

Diag
0≤k≤d(σ0;l)−1

(
γ
(0)
[l,m;2k+δ(σ0;l),0]

)



+




O2,d(σ0;l)−1 O2,1

Diag
0≤k≤d(σ0;l)−2

(
γ
(0)
[l,m;2k+δ(σ0;l),1]

)
Od(σ0;l)−1,1


 .

When σ0,2 = 0, (m,σ0,1 + l) ∈ {±1} × (2Z) and d(σ0; l) = 1, the matrix R(Γ0
l,m) is given by

R(Γ0
l,m) =

(
γ
(0)
[l,m;δ(σ0;l),−1]

)
.
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When σ0,2 = 0, (m,σ0,1 + l) ∈ {±1} × (2Z) and d(σ0; l) > 1, the matrix R(Γ0
l,m) is given by

(
On(σ0;l,m),d(σ0;l)

R(Γ0
l,m)

)
= Diag

0≤k≤d(σ0;l)−1

(
γ
(0)
[l,m;2k+δ(σ0;l),−1]

)

+




O1,d(σ0;l)−1 0

Diag
0≤k≤d(σ0;l)−2

(
γ
(0)
[l,m;2k+δ(σ0;l),0]

)
Od(σ0;l)−1,1




+




O2,d(σ0;l)−2 O2,1 O2,1

Diag
0≤k≤d(σ0;l)−3

(
γ
(0)
[l,m;2k+δ(σ0;l),1]

)
Od(σ0;l)−2,1 −γ

(0)
[l,m;l,1]

· e(d(σ0 ;l)−3)
d(σ0;l)−3


 .

When σ0,2 = 0 and (m,σ0,1 + l) ∈ {±1} × (1 + 2Z), the matrix R(Γ0
l,m) is given by

(
On(σ0;l,m),d(σ0;l)

R(Γ0
l,m)

)
=


 Diag

0≤k≤d(σ0;l)−1

(
γ
(0)
[l,m;2k+δ(σ0;l),−1]

)

O2,d(σ0;l)


+




O1,d(σ0;l)

Diag
0≤k≤d(σ0;l)−1

(
γ
(0)
[l,m;2k+δ(σ0;l),0]

)

O1,d(σ0;l)




+




O2,d(σ0;l)

Diag
0≤k≤d(σ0;l)−1

(
γ
(0)
[l,m;2k+δ(σ0;l),1]

)

 .

When σ0,2 = 1, the matrix R(Γ0
l,m) is given by

(
On(σ0;l,m),d(σ0;l)

R(Γ0
l,m)

)
=


 Diag

0≤k≤d(σ0;l)−1

(
γ
(0)
[l,m;2k+δ(σ0;l),−1]

)

O1,d(σ0;l)


+




O1,d(σ0;l)

Diag
0≤k≤d(σ0;l)−1

(
γ
(0)
[l,m;2k+δ(σ0;l),0]

)



+




O2,d(σ0;l)−1 O2,1

Diag
0≤k≤d(σ0;l)−2

(
γ
(0)
[l,m;2k+δ(σ0;l),1]

)
(−1)ε(σ0;l+m)γ

(0)
[l,m;l−1,1] · e

(d(σ0 ;l)−2)
d(σ0;l)−2


 .

Here

γ
(0)
[l,m;p,1] =(ν0,2 + ρ0,2 − l + p)A[2l,2m;2l−p+m−2,0],

γ
(0)
[l,m;p,0] =− 1

3

(
2ν0,1 − ν0,2 + 2ρ0,1 − ρ0,2 + lm− 3 +

m(m+ 1)

2

)
A[2l,2m;2l−p+m,2],

γ
(0)
[l,m;p,−1] =(ν0,2 + ρ0,2 + l − p)A[2l,2m;2l−p+m+2,4],

n(σ0; l,m) =





(2−m)/2 if m ∈ {0, ±2},
(3−m)/2 if (m, l + σ0,2) ∈ {±1} × (2Z),
(1−m)/2 if (m, l + σ0,2) ∈ {±1} × (1 + 2Z),

and δ(σ0; l) ∈ {0, 1} such that δ(σ0; l) ≡ l − σ0,2 mod 2.
In the above equations, we put A[2l,2m;k,i] = 0 for k < 0 or k > 2(l + m), and erase the

symbols Diag
c≤n≤c−1

(f(n)), O0,n, Om,0 and e
(−1)
i .

Proof. Since

s(l; p, q)(13) = 〈(v(2l)∗2l−p + (−1)ε(σ0;l)v(2l)∗p ), v(2l)q 〉 = δ2l−p q + (−1)ε(σ0;l)δpq,

we have

(5.2) S(l; p)(13) = e
(2l)
2l−p + (−1)ε(σ0;l)e(2l)p .
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Hence S(l; p)(13) (p ∈ Z(σ0; l)) are linearly independent over C. Thus we note that it suffices
to evaluate the both side of the equation (5.1) at 13 ∈ G.

First, we compute {π(ν0,σ0)(Xi)s(l; p, q)}(13) for 0 ≤ i ≤ 4, p ∈ Z(σ0; l) and 0 ≤ q ≤ 2l.
Since {s(l; p, q) | 0 ≤ q ≤ 2l} is the standard basis of 〈S(l; p)〉, we obtain

{π(ν0,σ0)(
√
−1K23)s(l; p, q)}(13) = (l − q)s(l; p, q)(13)

= (l − q)(δ2l−p q + (−1)ε(σ0;l)δpq),

{π(ν0,σ0)(K13 +
√
−1K12)s(l; p, q)}(13) = −q · s(l; p, q − 1)(13)

= −q(δ2l−p+1 q + (−1)ε(σ0;l)δp+1 q),

{π(ν0,σ0)(K13 −
√
−1K12)s(l; p, q)}(13) = (2l − q)s(l; p, q + 1)(13)

= (2l − q)(δ2l−p−1 q + (−1)ε(σ0;l)δp−1 q).

Moreover, we obtain

{π(ν0,σ0)(Eα)s(l; p, q)}(13) = 0, α ∈ Σ+,

{π(ν0,σ0)(Hi)s(l; p, q)}(13) = (ν0,i + ρ0,i)s(l; p, q)(13)

= (ν0,i + ρ0,i)(δ2l−p q + (−1)ε(σ0;l)δpq), i = 1, 2,

from the definition of principal series representation. From these computations and Iwasawa
decomposition in Lemma 5.4, we obtain

{π(ν0,σ0)(X0)s(l; p, q)}(13) = (ν0,2 + ρ0,2 + l − q)(δ2l−p q + (−1)ε(σ0;l)δpq),

{π(ν0,σ0)(X1)s(l; p, q)}(13) = −q

2
(δ2l−p+1 q + (−1)ε(σ0;l)δp+1 q),

{π(ν0,σ0)(X2)s(l; p, q)}(13) = −1

3
(2ν0,1 − ν0,2 + 2ρ0,1 − ρ0,2)(δ2l−p q + (−1)ε(σ0;l)δpq),

{π(ν0,σ0)(X3)s(l; p, q)}(13) = −2l − q

2
(δ2l−p−1 q − (−1)ε(σ0;l)δp−1 q),

{π(ν0,σ0)(X4)s(l; p, q)}(13) = (ν0,2 + ρ0,2 − l + q)(δ2l−p q + (−1)ε(σ0;l)δpq).

We set

π(ν0,σ0)(Xi)S(l; p) =
∑

0≤q≤2l

e(2l)q ⊗ (π(ν0,σ0)(Xi)s(l; p, q)).

Then we obtain

{π(ν0,σ0)(X0)S(l; p)}(13) = (ν0,2 + ρ0,2 − l + p)e
(2l)
2l−p + (−1)ε(σ0;l)(ν0,2 + ρ0,2 + l − p)e(2l)p ,

{π(ν0,σ0)(X1)S(l; p)}(13) = −2l − p+ 1

2
e
(2l)
2l−p+1 − (−1)ε(σ0;l)p+ 1

2
e
(2l)
p+1,

{π(ν0,σ0)(X2)S(l; p)}(13) = −1

3
(2ν0,1 − ν0,2 + 2ρ0,1 − ρ0,2)(e

(2l)
2l−p + (−1)ε(σ0;l)e(2l)p ),

{π(ν0,σ0)(X3)S(l; p)}(13) = −p+ 1

2
e
(2l)
2l−p−1 − (−1)ε(σ0;l)2l − p+ 1

2
e
(2l)
p−1,

{π(ν0,σ0)(X4)S(l; p)}(13) = (ν0,2 + ρ0,2 + l − p)e
(2l)
2l−p + (−1)ε(σ0;l)(ν0,2 + ρ0,2 − l + p)e(2l)p .
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Let us compute {Cl,mS(l; p)}(13). By the above equations, we have

{Cl,mS(l; p)}(13) =
∑

0≤i≤4
0≤q≤2l

(R(ι
(l,m)
i ) · e(2l)q )⊗ {(π(ν0,σ0)(Xi)s(l; p, q))}(13)

=
∑

0≤i≤4

R(ι
(l,m)
i ) · {(π(ν0,σ0)(Xi)S(l; p))}(13)

=R(ι
(l,m)
0 ) · {(ν0,2 + ρ0,2 − l + p)e

(2l)
2l−p + (−1)ε(σ0;l)(ν0,2 + ρ0,2 + l − p)e(2l)p }

+R(ι
(l,m)
1 ) ·

{
− 2l − p+ 1

2
e
(2l)
2l−p+1 − (−1)ε(σ0;l)p+ 1

2
e
(2l)
p+1

}

+R(ι
(l,m)
2 ) ·

{
− 1

3
(2ν0,1 − ν0,2 + 2ρ0,1 − ρ0,2)(e

(2l)
2l−p + (−1)ε(σ0;l)e(2l)p )

}

+R(ι
(l,m)
3 ) ·

{
− p+ 1

2
e
(2l)
2l−p−1 − (−1)ε(σ0;l)2l − p+ 1

2
e
(2l)
p−1

}

+R(ι
(l,m)
4 ) · {(ν0,2 + ρ0,2 + l − p)e

(2l)
2l−p+ (−1)ε(σ0;l)(ν0,2 + ρ0,2 − l + p)e(2l)p }.

Since

R(ι
(l,m)
i )e(2l)q = A[2l,2m;i+q+m−2,i]e

(2(l+m))
i+q+m−2, −2 ≤ m ≤ 2,

we obtain

{Cl,mS(l; p)}(13) =
∑

−1≤i≤1

{α[l,m;p,i]e
(2(l+m))
2(l+m)−(p+m+2i) + (−1)ε(σ0;l)β[l,m;p,i]e

(2(l+m))
p+m+2i },(5.3)

where

α[l,m;p,1] =(ν0,2 + ρ0,2 − l + p)A[2l,2m;2l−p+m−2,0],

α[l,m;p,0] =− 1

3
(2ν0,1 − ν0,2 + 2ρ0,1 − ρ0,2)A[2l,2m;2l−p+m,2]

− 2l − p+ 1

2
A[2l,2m;2l−p+m,1] −

p+ 1

2
A[2l,2m;2l−p+m,3],

α[l,m;p,−1] =(ν0,2 + ρ0,2 + l − p)A[2l,2m;2l−p+m+2,4],

β[l,m;p,1] =(ν0,2 + ρ0,2 − l + p)A[2l,2m;p+m+2,4],

β[l,m;p,0] =− 1

3
(2ν0,1 − ν0,2 + 2ρ0,1 − ρ0,2)A[2l,2m;p+m,2]

− p+ 1

2
A[2l,2m;p+m,1] −

2l − p+ 1

2
A[2l,2m;p+m,3],

β[l,m;p,−1] =(ν0,2 + ρ0,2 + l − p)A[2l,2m;p+m−2,0].

By the relations of the coefficients A[2l,2m;k,i] in Lemma 4.3, we see that

α[l,m;p,i] = (−1)mβ[l,m;p,i] = γ
(0)
[l,m;p,i], −1 ≤ i ≤ 1.

Therefore, (5.3) become

{Cl,mS(l; p)}(13) =
∑

−1≤i≤1

γ
(0)
[l,m;p,i]

{e(2(l+m))
2(l+m)−(p+m+2i)

+ (−1)ε(σ0;l)+me
(2(l+m))
p+m+2i }.(5.4)

From the equations (5.2), (5.4) and

ε(σ0; l) +m ≡ ε(σ0; l +m) mod 2,

we obtain the assertion. �
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6. The (g,K)-module structures of the generalized principal series

representations

In this section, we set i = 1 or 2.

6.1. Discrete series representations of SL±(2,R). We set y0 = diag(1,−1) ∈ O(2). Then
a discrete series representation (Dk, VDk

) of SL±(2,R) is uniquely determined by specifying the
G′ = SL(2,R)-module structure together with the action of y0. Since Dk|G′ = D+

k ⊕D−
k and

D+
k ⊕D−

k is identified with G′-submodule of the principal series representation (π(ν,σ),H(ν,σ))

of G′ by Proposition 2.2, we obtain the following realization of (Dk, VDk
):

VDk,O(2) =
⊕

α∈Z≥0

Wk+2α

(
Wp =C · χp +C · χ−p

)

and

Dk(w)χp =
√
−1pχp, Dk(x+)χp = (k + p)χp+2, Dk(x−)χp = (k − p)χp−2,

Dk(κt)χp = e
√
−1ptχp (t ∈ R), Dk(y0)χp =χ−p.

Here we denote differential of Dk again by Dk and the O(2)-finite part of VDk
by VDk,O(2).

6.2. Irreducible decompositions of (π(ν1,σ1)|K ,H(ν1,σ1)) and (π(ν2,σ2)|K ,H(ν2,σ2)) as K-
modules. We analyzes the K-type of the representation space H(νi,σi) of the Pi-principal
series representation. the target space Vσi

of functions f in H(νi,σi) has a decomposition:

Vσi
= VDk

=
⊕̂

α∈Z≥0

Wk+2α.

Denote the corresponding decomposition of f by

f(x) =

∞∑

α=0

(fk+2α(x)⊗ χk+2α + f−(k+2α)(x)⊗ χ−(k+2α)).

From the definition of the space H(νi,σi), we have

f |K(mx) = σi(m)f |K(x) (a.e. x ∈ K, m ∈ Ki = Mi ∩K ≃ O(2)).

For m = mi(κt), mi(y0), comparing the coefficients of χp in the left hand side with those in
the right hand side, we have the equations

fp|K(mi(κt)x) = e
√
−1ptfp|K(x), fp|K(mi(y0)x) = f−p|K(x).

Moreover, from the equality of inner products
∫

K
‖f |K(x)‖2σi

dx =
∑

ε∈{±1}, α∈Z≥0

{∫

K

∣∣fε(k+2α)|K(x)
∣∣ dx

}
‖χε(k+2α)‖2σi

,

we have fp|K ∈ L2(K). Therefore f |K belongs to

⊕̂

α∈Z≥0

L2
i (K;Wk+2α)

where

L2
i (K;Wp) = {f : K → Wp | f(x) = f(x)⊗ χp + f(mi(y0)x)⊗ χ−p, f ∈ L2

(K◦
i ,χp)

(K), x ∈ K},

L2
(K◦

i ,χp)
(K) = {f ∈ L2(K) | f(mi(κt)x) = e

√
−1ptf(x), mi(κt) ∈ K◦

i , x ∈ K}.
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Here K◦
i means the connected component of Ki, which is isomorphic to SO(2). We easily see

that the restriction map

r
(i)
K : H(νi,σi) ∋ f 7→ f |K ∈

⊕̂

α∈Z≥0

L2
i (K;Wk+2α)

is a K-isomorphism.
By the Peter-Weyl’s theorem, we have an irreducible decomposition of L2

(K◦
i ,χp)

(K):

L2
(K◦

i ,χp)
(K) ≃

⊕̂

l∈Z≥0

(V ∗
2l[ξ(i;−p)])⊗C V2l.

Here

ξ(i;p) : K
◦
i ∋ mi(κt) 7→ e

√
−1pt ∈ C×

and V [ξ(i;p)] means the ξ(i;p)-isotypic component in (τ |K◦
i
, V ) for a K-module (τ, V ).

In this section, we denote by {v(2l)1,q | 0 ≤ q ≤ 2l} the standard basis of V2l. We define an

another basis {v(2l)2,q | 0 ≤ q ≤ 2l} of V2l by

v
(2l)
2,q = τ2l(uc)v

(2l)
1,q =

1

2l
(x+ y)q(−x+ y)2l−q (0 ≤ q ≤ 2l)

where

uc =




0 0 −1
0 1 0
1 0 0


 ∈ SO(3).

We note that v ∈ V2l[ξ(i;−p)] if and only if

τ2l(mi(κt))v =ξ(i;−p)(mi(κt))v = e−
√
−1ptv (t ∈ R)

for v ∈ V2l. From the definition of (τ2l, V2l) and

ϕ−1(m1(κt)) = ϕ−1(u−1
c m2(κt)uc) =

{
± diag(e−

√
−1t/2, e

√
−1t/2)

}
,

we have τ2l(mi(κt))v
(2l)
i,q = e

√
−1(q−l)tv

(2l)
i,q . Hence we have

V2l[ξ(i;−p)] =

{
C · v(2l)i,l−p if − l ≤ p ≤ l,

0 otherwise .

By the identification V ∗
2l = V2l in Lemma 4.4, we obtain

L2
(K◦

i ,χp)
(K) ≃

⊕̂

l∈Z≥0

−l≤p≤l

(C · v(2l)∗i,l+p)⊗C V2l.

Moreover, since

ϕ−1(m1(y0)) =

{
±
(

0 1
−1 0

)}
, ϕ−1(u−1

c m2(y0)uc) =

{
±
(

0
√
−1√

−1 0

)}
,

we have

τ∗2l(m1(y0)
−1)v

(2l)∗
1,l+p = (−1)l+pv

(2l)∗
1,l−p, τ∗2l(m2(y0)

−1)v
(2l)∗
2,l+p = (−1)lv

(2l)∗
2,l−p.

For 0 ≤ p ≤ l − k such that p ≡ l − k mod 2, we define the elementary function ti(l; p, q) ∈
H(νi,σi) by

ti(l; p, q) = r
(i)−1
K (t̃i(l; p, q))
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where

t̃1(l; p, q)(x) =〈v(2l)∗1,2l−p, τ2l(x)v
(2l)
1,q 〉 ⊗ χl−p + (−1)p〈v(2l)∗1,p , τ2l(x)v

(2l)
1,q 〉 ⊗ χp−l,

t̃2(l; p, q)(x) =〈v(2l)∗2,2l−p, τ2l(x)v
(2l)
1,q 〉 ⊗ χl−p + (−1)l〈v(2l)∗2,p , τ2l(x)v

(2l)
1,q 〉 ⊗ χp−l.

Let Ti(l; p) be a column vector of degree 2l + 1 with its q + 1-th component ti(l; p, q), i.e.
t( ti(l; p, 0), ti(l; p, 1), · · · , ti(l; p, 2l) ).

Moreover we denote by 〈Ti(l; p)〉 the subspace of H(νi,σi) generated by the functions in

the entries of the vector Ti(l; p), i.e. 〈Ti(l; p)〉 =
⊕2l

q=0C · ti(l; p, q) ≃ V2l. Via the unique

isomorphism between 〈Ti(l; p)〉 and V2l, we identify {ti(l; p, q) | 0 ≤ q ≤ 2l} with the standard
basis.

From above arguments, we obtain the following.

Proposition 6.1. As an unitary representation of K, it has an irreducible decomposition:

H(νi,σi) =
⊕̂

l∈Z≥0, 0≤p≤l−k

p≡l−k mod 2

〈Ti(l; p)〉

for i = 1, 2. Then the τ2l-isotypic component of π(νi,σi) is given by

⊕

0≤p≤l−k
p≡l−k mod 2

〈Ti(l; p)〉.

Corollary 6.2. Let d(σi; l) be the dimension of the space HomK(V2l,H(νi,σi),K) of intertwining
operators. Then

d(σi; l) =





(l − k + 2)/2 if k ≤ l and l − k is even,
(l − k + 1)/2 if k ≤ l and l − k is odd,
0 if k > l.

6.3. The canonical blocks of elementary functions. By the identification introduced in
Subsection 5.3, we identify Ti(l; p) with the injective K-homomorphism

V2l ∋ v
(2l)
1,q 7→ ti(l; p, q) ∈ H(νi,σi),K , 0 ≤ q ≤ 2l

for 0 ≤ p ≤ l − k such that p ≡ l − k mod 2. We note that {Ti(l; p) | 0 ≤ p ≤ l − k, p ≡
l−k mod 2} is a basis of HomK(V2l,H(νi,σi),K) and we call it the induced basis from the standard
basis.

We define a certain matrix of elementary functions corresponding to the induced basis
{Ti(l; p) | 0 ≤ p ≤ l − k, p ≡ l − k mod 2} of HomK(V2l,H(νi,σi),K) for each K-type τ2l of
our Pi-principal series representation π(νi,σi).

Definition 6.3. For l ∈ Z≥0 such that d(σi; l) > 0, the following (2l + 1) × d(σi; l) matrix
Ti(σi; l) is called the canonical block of elementary functions for τ2l-isotypic component: When
l − k is even, we consider the matrix

Ti(σi; l) =( Ti(l; 0), Ti(l; 2), Ti(l; 4), · · · , Ti(l; l − k) ).

When l − k is odd, we consider the matrix

Ti(σi; l) =( Ti(l; 1), Ti(l; 3), Ti(l; 5), · · · , Ti(l; l − k) ).
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6.4. The contiguous relations.

Lemma 6.4. (i) The standard basis {Xj | 0 ≤ j ≤ 4} of pC have the following expressions
according to the decomposition gC = n1,C ⊕ a1,C ⊕m1,C ⊕ kC:

X0 =m1(x−), X1 =− (Ee1−e3 +
√
−1Ee1−e2) +

1

2
(K13 +

√
−1K12),

X2 =− 1

3
H(1), X3 =(Ee1−e3 −

√
−1Ee1−e2)−

1

2
(K13 −

√
−1K12), X4 =m1(x+).

(ii) The basis {X ′
j = ucXju

−1
c | 0 ≤ j ≤ 4} of pC have the following expressions according to

the decomposition gC = n2,C ⊕ a2,C ⊕m2,C ⊕ kC:

X ′
0 =−m2(x−), X ′

1 =(Ee1−e3 −
√
−1Ee2−e3)−

1

2
(K13 −

√
−1K23),

X ′
2 =

1

3
H(2), X ′

3 =− (Ee1−e3 +
√
−1Ee2−e3) +

1

2
(K13 +

√
−1K23), X ′

4 =−m2(x+),

Proof. We obtain the assertion immediately from Lemma 4.1. �

We give the matrix representation of Γi
l,m with respect to the induced basis as follows.

Theorem 6.5. For i = 1, 2 and −2 ≤ m ≤ 2, we have an following equation with the matrix
representation R(Γi

l,m) ∈ Md(σi;l+m),d(σi;l)(C) of Γi
l,m with respect to the induced basis {Ti(l; p) |

0 ≤ p ≤ l − k, p ≡ l − k mod 2}:
(6.1) Cl,mTi(σi; l) = Ti(σi; l +m) · R(Γi

l,m).

Explicit expressions of the matrix R(Γi
l,m) of size d(σi; l +m)× d(σi; l) is given as follows:

The matrix R(Γi
l,m) is given by

(
On(σi;l,m),d(σi;l)

R(Γi
l,m)

)
=


 Diag

0≤j≤d(σi;l)−1

(
γ
(i)
[l,m;2j+δ(σi;l),−1]

)

O1,d(σi;l)


+




O1,d(σi;l)

Diag
0≤j≤d(σi;l)−1

(
γ
(i)
[l,m;2j+δ(σi;l),0]

)



+




O2,d(σi;l)−1 O2,1

Diag
0≤j≤d(σi;l)−2

(
γ
(i)
[l,m;2j+δ(σi;l),1]

)
Od(σi;l)−1,1


 .

Here

γ
(i)
[l,m;p,1] =(−1)i+1(k − l + p)A[2l,2m;2l−p+m−2,0],

γ
(i)
[l,m;p,0] =

(−1)i

3

(
νi + ρi + lm− 3 +

m(m+ 1)

2

)
A[2l,2m;2l−p+m,2],

γ
(i)
[l,m;p,−1] =(−1)i+1(k + l − p)A[2l,2m;2l−p+m+2,4],

n(σi; l,m) =





(2−m)/2 if m ∈ {0, ±2},
(3−m)/2 if (m, l − k) ∈ {±1} × (2Z),
(1−m)/2 if (m, l − k) ∈ {±1} × (1 + 2Z),

and δ(σi; l) ∈ {0, 1} such that δ(σi; l) ≡ l − k mod 2.
In the above equations, we put A[2l,2m;p,j] = 0 for p < 0 or p > 2(l + m), and erase the

symbols Diag
c0≤n≤c1

(f(n)) (c0 > c1), Om,n (m ≤ 0 or n ≤ 0).

Proof. By the similarly computation in the proof of Theorem 5.5 using Lemma 6.4 (i), we
obtain the assertion in the case of i = 1. However, in the case of i = 2, It is difficult to prove
the assertion by the same method since the value of T2(l; p) at 13 ∈ G is not simple. We avoid
this problem as follows.
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We put

t′2(l; p, j) = π(ν2,σ2)(uc)t2(l; p, j) (0 ≤ j ≤ 2l),

T ′
2(l; p) =

t( t′2(l; p, 0), t′2(l; p, 1), · · · , t′2(l; p, 2l) ),

T′
2(σ2; l) =

{
( T ′

2(l; 0), T ′
2(l; 2), T ′

2(l; 4), · · · , T ′
2(l; l − k) ) if l − k is even,

( T ′
2(l; 1), T ′

2(l; 3), T ′
2(l; 5), · · · , T ′

2(l; l − k) ) if l − k is odd,

C′
l,m =

4∑

j=0

R(ι
(l,m)
j )⊗X ′

j.

Then we see that

C′
l,mT′

2(σ2; l) =T′
2(σ2; l +m) ·R(Γ2

l,m),(6.2)

and

T ′
2(l; p)(13) =e

(2l)
2l−p ⊗ χl−p + (−1)le(2l)p ⊗ χp−l.

Thus, by the similarly computation as in Lemma 6.4 (ii), we also obtain the assertion in the
case of i = 2 evaluating the both side of the equation (6.2) at 13 ∈ G. �

7. The action of pC

The linear map Γi
l,m characterize the action of pC. In this section, we give a explicit de-

scription of the action of pC on the elementary functions.

7.1. The projectors for Vl ⊗C V4. For −2 ≤ m ≤ 2, we describe a surjective sl(2,C)-
homomorphism P l

2m from Vl ⊗C V4 to Vl+2m in terms of the standard basis as follows.

Lemma 7.1. Let {v(l)q | 0 ≤ q ≤ l} be the standard basis of Vl for l ∈ Z≥0. We put v
(l)
q = 0

when q < 0 or q > l.
We define linear maps P l

2m : Vl ⊗C V4 → Vl+2m (−2 ≤ m ≤ 2) by

P l
2m(v(l)q ⊗ wr) = B[l,2m;q,r] · v(l+2m)

q+r+m−2,

when Vl+2m-component of Vl ⊗C V4 does not vanish.
Here the coefficients B[l,2m;q,r] = b(l, 2m; q, r)/d′(l, 2m) are defined by following formulae.

Formula 1: The coefficients of P l
4 : Vl ⊗C V4 → Vl+4 are given as follows:

b(l, 4; q, r) =1 (0 ≤ r ≤ 4), d′(l, 4) =1.

Formula 2: The coefficients of P l
2 : Vl ⊗C V4 → Vl+2 are given as follows:

b(l, 2; q, 0) =4q, b(l, 2; q, 1) =− (l − 4q), b(l, 2; q, 2) =− 2(l − 2q),

b(l, 2; q, 3) =− (3l − 4q), b(l, 2; q, 4) =− 4(l − q), d′(l, 2) =l + 4.

Formula 3: The coefficients of P l
0 : Vl ⊗C V4 → Vl are given as follows:

b(l, 0; q, 0) =6q(q − 1), b(l, 0; q, 1) =− 3q(l − 2q + 1),

b(l, 0; q, 2) =l2 − 6lq + 6q2 − l, b(l, 0; q, 3) =3(l − 2q − 1)(l − q),

b(l, 0; q, 4) =6(l − q)(l − q − 1), d′(l, 0) =(l + 3)(l + 2).

Formula 4: The coefficients of I l−2 : Vl−2 → Vl ⊗C V4 are given as follows:

b(l,−2; q, 0) =4q(q − 1)(q − 2), b(l,−2; q, 1) =− q(q − 1)(3l − 4q + 2),

b(l,−2; q, 2) =2q(l − 2q)(l − q), b(l,−2; q, 3) =− (l − 4q − 2)(l − q)(l − q − 1),

b(l,−2; q, 4) =− 4(l − q)(l − q − 1)(l − q − 2), d′(l,−2) =(l + 2)(l + 1)l.



22 TADASHI MIYAZAKI

Formula 5: The coefficients of I l−4 : Vl−4 → Vl ⊗C V4 are given as follows:

b(l,−4; q, 0) =q(q − 1)(q − 2)(q − 3), b(l,−4; q, 1) =− q(q − 1)(q − 2)(l − q),

b(l,−4; q, 2) =q(q − 1)(l − q)(l − q − 1), b(l,−4; q, 3) =− q(l − q)(l − q − 1)(l − q − 2),

b(l,−4; q, 4) =(l − q)(l − q − 1)(l − q − 2)(l − q − 3), d′(l,−4) = (l + 1)l(l − 1)(l − 2).

Then P l
2m is the generator of Homsl(2,C)(Vl ⊗C V4, Vl+2m) such that P l

2m ◦ I l2m = idVl+2m
.

Proof. The composite

Vl ⊗C V4 ≃ V ∗
l ⊗C V ∗

4 ≃ (Vl ⊗C V4)
∗ ∋ f 7→ f ◦ I l2m ∈ V ∗

l+2m ≃ Vl+2m

is a surjective sl(2,C)-homomorphism from Vl ⊗C V4 to Vl+2m, which is unique up to scalar
multiple. Therefore we obtain the assertion from Proposition 4.2 and Lemma 4.4. �

7.2. The action of pC on the elementary functions.

Proposition 7.2. (i) An explicit expression of the action of pC on the basis {s(l; p, q) | l ≥
0, p ∈ Z(σ0; l), 0 ≤ q ≤ 2l} of H(ν0,σ0),K is given by following equation:

π(ν0,σ0)(Xr)s(l; p, q) =
∑

−1≤j≤1
−2≤m≤2

γ
(0)
[l,m;p,j]B[2l,2m;q,r]s(l +m; p+m+ 2j, q +m+ r − 2).

Here we put

γ
(0)
[0,m;0,j] = B[0,2m;0,r] = 0 for m < 2, γ

(0)
[1,m;p,j] = B[2,2m;q,r] = 0 for m < 0,

s(l; p, q) = 0 whenever p ≤ l such that p /∈ Z(σ0; l) or q < 0 or q > 2l,

s(l; p, q) = (−1)ε(σ0;l)s(l; 2l − p, q) for p > l.

(ii) For i = 1, 2, the explicit expression of the action of pC on the basis {ti(l; p, q) | l ≥ k, 0 ≤
p ≤ l − k, p ≡ l − k mod 2, 0 ≤ q ≤ 2l} of H(νi,σi),K is given by following equation:

π(νi,σi)(Xr)ti(l; p, q) =
∑

−1≤j≤1
−2≤m≤2

γ
(i)
[l,m;p,j]B[2l,2m;q,r]ti(l +m; p +m+ 2j, q +m+ r − 2)

Here we put ti(l; p, q) = 0 unless 0 ≤ p ≤ l − k, p ≡ l − k mod 2 and 0 ≤ q ≤ 2l.

Proof. Since

π(ν0,σ0)(Xr)s(l; p, q) =
∑

−2≤m≤2

Γ0
l,m(S(l; p)) ◦ P l

2m(v(2l)q ⊗Xr),

π(νi,σi)(Xr)ti(l; p, q) =
∑

−2≤m≤2

Γi
l,m(Ti(l; p)) ◦ P l

2m(v(2l)q ⊗Xr) (i = 1, 2),

we obtain the assertion from Theorem 5.5, 6.5 and Lemma 7.1. �
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