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SCHUBERT POLYNOMIALS FOR THE AFFINE

GRASSMANNIAN OF THE SYMPLECTIC GROUP

THOMAS LAM, ANNE SCHILLING, AND MARK SHIMOZONO

Abstract. We study the Schubert calculus of the affine Grassmannian Gr of
the symplectic group. The integral homology and cohomology rings of Gr are
identified with dual Hopf algebras of symmetric functions, defined in terms of
Schur’s P and Q functions. An explicit combinatorial description is obtained
for the Schubert basis of the cohomology of Gr, and this is extended to a
definition of the affine type C Stanley symmetric functions. A homology Pieri
rule is also given for the product of a special Schubert class with an arbitrary
one.

1. Introduction

Let G be a simply-connected simple complex algebraic group and let GrG denote
the affine Grassmannian of G. Following Peterson [22] and Lam [15] we study the
homology and cohomology Schubert calculus of GrSp2n(C).

The structure ofH∗(GrG)
1 and H∗(GrG) is particularly rich because of the inter-

action of two phenomena. On the one hand, GrG inherits free Z-module Schubert
bases {ξx ∈ H∗(GrG)} and {ξx ∈ H∗(GrG)} from its presentation GrG = G/P
where G is the affine Kac-Moody group associated to G and P ⊂ G is a maximal
parabolic subgroup. On the other hand, it is a classical result of Quillen [24] (see
also [7] and [23]) that GrG is homotopy equivalent to the based loops ΩK into the
maximal compact subgroup K ⊂ G. The group structure on ΩK endows H∗(GrG)
and H∗(GrG) with the structure of dual Hopf algebras.

The dual Hopf algebras H∗(GrG) and H∗(GrG) were first studied intensively
by Bott [2]. Bott gave an algorithm to compute these Hopf algebras in terms of
the Cartan data of G, essentially by transgressing elements of H∗(K) to obtain
the primitive elements in H∗(GrG). With Q-coefficients, H∗(K,Q) is an exterior
algebra with odd-dimensional generators so H∗(GrG,Q) is a polynomial algebra
on even-dimensional generators. The situation is even more favorable when G =
Sp2n(C) since Sp2n(C) is torsion-free and H∗(GrSp2n(C)) is a polynomial algebra
over Z. Bott comments that his description does not give polynomial generators
for H∗(GrSp2n(C)). We resolve this by producing n special Schubert classes which
are polynomial generators over Z.

Our main result identifies H∗(GrSp2n(C)) and H∗(GrSp2n(C)) with certain dual

Hopf algebras Γ(n) and Γ(n) of symmetric functions, defined in terms of Schur’s

P - and Q-functions [20]. We explicitly describe symmetric functions Q
(n)
w ∈ Γ(n)

which represents the cohomology Schubert basis. These symmetric functions are
constructed using the combinatorics of a remarkable subset Z ⊂ C̃n of the affine

Date: September 2007.
1Our (co)homologies are with Z-coefficients unless otherwise specified.
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Weyl group C̃n of Sp2n(C). In fact the cohomology representatives Q
(n)
w extend

to a larger family of symmetric functions: the type C affine Stanley symmetric
functions.

1.1. Peterson’s work on affine Schubert calculus. Our results rely heavily
on the work of Peterson [22] who defined a Hopf embedding j : HT (GrG) → A

of the T -equivariant cohomology of GrG as a commutative subalgebra of the nil-
Hecke ring A = AG of Kostant and Kumar [12]. Here T ⊂ K is a maximal torus.
Peterson characterizes the image j(ξx) of the Schubert basis of HT (GrG) in terms
of certain identities inside A. In the non-equivariant case, Lam [15] showed that
Peterson’s embedding specializes to a Hopf isomorphism j0 : H∗(GrG)→ B with an
algebra which he called the affine Fomin-Stanley subalgebra. We give an explicit
combinatorial formula for generators of B in the case G = Sp2n(C).

1.2. Earlier work for G = SLn(C). For G = SLn(C), Lam [15] identified the
Schubert basis of H∗(GrSLn(C)) with symmetric functions, called k-Schur functions,
of Lapointe, Lascoux and Morse [18]; these arose in the study of Macdonald poly-
nomials. The Schubert basis of H∗(GrSLn(C)) are the dual k-Schur functions [19]
which are generalized by the affine Stanley symmetric functions [14]. In [16] Pieri
rules were given for the multiplication of Bott’s generators on the Schubert bases
of Bott’s realization of H∗(GrSLn(C)) and H∗(GrSLn(C)). Furthermore, a combi-
natorial interpretation of the pairing between H∗(GrSLn(C)) and H∗(GrSLn(C)) is
given.

1.3. Two Hopf algebras of symmetric functions. Let Λ denote the ring of
symmetric functions over Z. Let Pi and Qi denote the Schur P - and Q-functions
with a single part [20, III.8]. Define the Hopf subalgebras of Λ given by Γ∗ =
Z[P1, P2, . . .] and Γ∗ = Z[Q1, Q2, . . .]. There is a natural pairing (see (2.14)) [·, ·] :
Γ∗ × Γ∗ → Z making Γ∗ and Γ∗ into dual Hopf algebras. For n ≥ 1 the subspace
Γ(n) = Z[P1, P2, . . . , P2n] ⊂ Γ∗ is a Hopf subalgebra and we let Γ∗ ։ Γ(n) be the
dual quotient Hopf algebra.

1.4. Special classes. The affine Weyl group of Sp2n(C), denoted C̃n, has sim-

ple generators s0, s1, . . . , sn with the relations (3.2). Let C̃0
n denote the minimal

length coset representatives of C̃n/Cn, also called the Grassmannian elements of

C̃n. Define ρi ∈ C̃0
n by

(1.1) ρi =

{
si−1si−2 · · · s1s0 for 1 ≤ i ≤ n

s2n+1−is2n+2−i · · · sn−1snsn−1 · · · s1s0 for n+ 1 ≤ i ≤ 2n.

The homology Schubert classes ξρi
∈ H∗(GrSp2n(C)) for 1 ≤ i ≤ 2n, are called

special classes.

1.5. Zee-s. Let Z be the Bruhat order ideal in C̃n generated by the conjugates of
the element ρ2n, that is, the set of w ∈ C̃n which have a reduced word that is a
subword of a rotation of the unique reduced word of ρ2n. An element of Z is called
a Z. Let Zr = {w ∈ Z | ℓ(w) = r} denote the set of Z-s of length ℓ(w) equal to r.

Example 1.1. Let n = 2. Then Z consists of the elements of C̃2 which have a
reduced word that is a subword of one of the words 1210, 2101, 1012, 0121.
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Given a word u with letters in Iaf , its support Supp(u) ⊂ Iaf is by definition

the set of letters appearing in u. For w ∈ C̃n define Supp(w) = Supp(u) for any
reduced word u; this is independent of the choice of u. A component of a subset of
Iaf is by definition a maximal nonempty subinterval. Let c(w) denote the number
of components of Supp(w).

1.6. Affine type C Stanley symmetric functions. For w ∈ C̃n we define the
generating function

(1.2) Q(n)
w [Y ] =

∑

(v1,v2,··· )

∏

i

2c(v
i)y

ℓ(vi)
i ,

where the sum runs over the factorizations v1v2 · · · = w of w such that vi ∈ Z and
ℓ(v1) + ℓ(v2) + · · · = ℓ(w).

Theorem 1.2. The series Q
(n)
w is symmetric and defines an element of Γ(n). The

subset {Q
(n)
v | v ∈ C̃0

n} forms a basis of Γ(n) such that all product and coproduct

structure constants are positive and every Q
(n)
w for w ∈ C̃n is positive in this basis.

The symmetric functions Q
(n)
w are type C analogues of the affine Stanley sym-

metric functions studied in [14]. Some examples for the type C affine Stanley
symmetric functions are given in Appendix B. They have the following geometric
interpretation.

Let LSp(n) and ΩSp(n) denote respectively the space of all loops and based
loops, into the maximal compact subgroup Sp(n) ⊂ Sp2n(C) and let T ⊂ Sp(n) be
the maximal torus. Let p : ΩSp(n)→ LSp(n)/T denote the composition ΩSp(n) →֒
LSp(n) → LSp(n)/T of the inclusion and natural projection. The type C affine

Stanley symmetric functionsQ
(n)
w can be identified via Theorem 1.3 (see below) with

the pullbacks p∗(ξw) of the Schubert classes ξw ∈ H∗(LSp(n)/T ). This follows from

(5.7) and [15, Remark 8.6]. See also [15, Remark 4.6]. For w ∈ C̃0
n, p

∗(ξw) is itself
a Schubert class in H∗(ΩSp(n)) ∼= H∗(GrSp2n(C)) as detailed below.

1.7. (Co)homology Schubert polynomials. The Hopf algebras H∗(GrSp2n(C))
and H∗(GrSp2n(C)) are dual via the cap product. The Schubert bases {ξx ∈
H∗(GrG)} and {ξx ∈ H∗(GrG)} are dual under the cap product and are both

indexed by the Grassmannian elements x ∈ C̃0
n.

Theorem 1.3. There are dual Hopf algebra isomorphisms

Φ : Γ(n) → H∗(GrSp2n(C))

Ψ : H∗(GrSp2n(C))→ Γ(n)

such that

Φ(Pi) = ξρi
for 1 ≤ i ≤ 2n, and

Ψ(ξw) = Q(n)
w for w ∈ C̃0

n.

Since Γ(n) = Z[P1, P3, . . . , P2n−1], we obtain in particular thatH∗(GrSp2n(C)) is a

polynomial algebra on ξρ1 , ξρ3 , . . . , ξρ2n−1 . It also follows that the basis {P
(n)
w | w ∈

C̃0
n} of Γ(n) dual to {Q

(n)
w | w ∈ C̃0

n} ⊂ Γ(n) maps to the homology Schubert classes

ξw ∈ H∗(GrSp2n(C)). The symmetric functions P
(n)
w are Schubert polynomials for
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H∗(GrSp2n(C)) and are the type C analogue of k-Schur functions [15, 18]. Examples
are given in Appendix C.

1.8. Pieri rule for H∗(GrSp2n(C)). We also give a positive formula for the multi-
plication of an arbitrary homology class by a special class.

Theorem 1.4. Let w ∈ C̃0
n. Then in H∗(GrSp2n(C)) we have

ξρi
ξw =

∑

v∈Zi

2c(v)−1 ξvw

where the sum is taken over all v ∈ Zi such that ℓ(vw) = ℓ(v)+ ℓ(w) and vw ∈ C̃0
n.

1.9. Future work and other directions.

1.9.1. Pieri rule for H∗(GrSp2n(C)) and explicit description of homology Schubert

basis. We hope to describe the symmetric functions {P
(n)
w | w ∈ C̃0

n} ⊂ Γ(n) explic-
itly in the future, perhaps in a manner similar to the strong tableaux in [16]. As is

explained in [16], the description of P
(n)
w is essentially equivalent to the description

of a Pieri rule for H∗(GrSp2n(C)).

1.9.2. The special orthogonal groups. A generalization of our work to the special
orthogonal groups G = SOn(C), together with the G = SLn(C) case in [15], would
complete the analysis of the classical groups. The symmetric function description
of H∗(GrSOn(C)) is likely to be more involved as it is not a polynomial algebra over
Z.

1.9.3. Comparison with finite case. We hope to explore the relationship between
our symmetric functions and the “type B” Stanley symmetric functions and classi-
cal type Schubert polynomials of Fomin and Kirillov [6], and of Billey and Haiman
[1]. In particular, specializing An = 0 in Theorem 5.1 we obtain an expression
nearly the same as the formula [6, (4.1)].

1.9.4. Embedding of groups and branching of Schubert classes. We intend to study
the behavior of the affine Schubert classes studied here and in [15] induced by the
inclusions of compact groups:

SU(n) ⊂ SU(n+ 1) Sp(n) ⊂ Sp(n+ 1) Sp(n) ⊂ SU(2n) SU(n) ⊂ Sp(n).

In particular, the symmetric functions P
(n)
w and Q

(n)
w have positivity properties

with respect to expansions involving Schur P -functions, Schur Q-functions, and
ordinary Schur functions.

1.9.5. Work of Ginzburg and Bezrukavnikov, Finkelberg and Mirkovic. The rings
H∗(GrG) and H∗(GrG) were also studied by Ginzburg [8] and by Bezrukavnikov,
Finkelberg and Mirkovic [3] from the point of view of geometric representation
theory. The connection with our point of view is unclear since the Schubert basis
is as yet unavailable in their descriptions, although part of the Schubert basis is
described by Ginzburg.



SCHUBERT POLYNOMIALS FOR AFFINE GRASSMANNIAN OF SYMPLECTIC GROUP 5

1.10. Organization. In section 2 we give notation for symmetric functions and
describe the dual Hopf algebras Γ(n) and Γ(n). In section 3 we fix notation concern-
ing affine root systems and Weyl groups. In section 4 we explain the connection
between the Peterson and the Fomin-Stanley subalgebras, and the homology of the
affine Grassmannian. The material in sections 3–4 are valid for the affine Grass-
mannian of any simply-connected simple complex algebraic group G.

Apart from Proposition 7.1, the remainder of the paper specializes to the case
G = Sp2n(C). In section 5 we prove our main results (Theorems 1.2, 1.3 and
1.4) modulo two nilHecke algebra calculations – Theorems 5.1 and 5.5. Section

6 is devoted to the study of the Bruhat order of C̃n restricted to Z, and to the
proof of Theorem 5.1. Section 7 presents a general formula (Proposition 7.1) for
the coproduct in a nilHecke algebra and uses it to prove Theorem 5.5. Some data,

in particular for the type C affine Stanley symmetric functions Q
(n)
w and k-Schur

functions P
(n)
w , is given in Appendices B and C.

1.11. Acknowledgements. Many thanks to Jennifer Morse for pointing us in the

right direction for finding the leading monomial in a Grassmannian Q
(n)
w . We

thank Mike Zabrocki for discussions at an early stage of this work, and Nicolas
Thiéry and Florent Hivert for their support with MuPAD-Combinat [10]. This
work was partially supported by the NSF grants DMS–0600677, DMS–0501101,
DMS–0652641, DMS–0652648, and DMS–0652652.

2. Symmetric functions

In this section we study a subring Γ(n) and subquotient Γ(n) of the ring of
symmetric functions. Let Λ be the Hopf algebra of symmetric functions over Z. It
has a number of bases indexed by partitions λ:

sλ Schur [20, I.3]

hλ homogeneous [20, I.1]

pλ power sums [20, I.1]

mλ monomial [20, I.1]

Pλ[X ; t] Hall-Littlewood P [20, III.2]

Qλ[X ; t] Hall-Littlewood Q [20, III.2]

The power sums are a basis over Q [20, I.2.12] and the Hall-Littlewood P - and
Q-functions are a basis over Q(t) [20, III.2.7,2.11].

Let 〈·, ·〉 : Λ⊗ Λ→ Z be the pairing defined by

〈hλ,mµ〉 = δλµ.(2.1)

It has reproducing kernel [20, I.4.1,4.2]

Ω :=
∏

i,j≥1

1

1− xiyj

=
∑

λ

hλ[X ]mλ[Y ]

=
∑

λ

z−1λ pλ[X ]pλ[Y ],

(2.2)
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where zλ =
∏

i≥1 i
mi(λ)mi(λ)! and mi(λ) is the number of times the part i occurs

in λ. Here and elsewhere, unless otherwise specified the sum runs over the set of
all partitions.

The Schur P and Q functions are defined by [20, III.8]

Pλ[X ] = Pλ[X ;−1]

Qλ[X ] = Qλ[X ;−1] = 2ℓ(λ)Pλ[X ]
(2.3)

where ℓ(λ) is the number of nonzero parts of λ. We have [20, III.8.7]

(2.4) Pλ[X ] = Qλ[X ] = 0 if λ 6∈ SP

where SP is the set of strict partitions λ, those with λ1 > λ2 > · · · ; see (2.10) and
(2.13).

2.1. Homology ring. Define the Hopf subalgebra Γ∗ ⊂ Λ by

Γ∗ = Z[P1, P3, P5, . . . ].(2.5)

The Pi for i odd, are algebraically independent, so that

Γ∗ =
⊕

λ∈OP

ZPλ1Pλ2 · · ·(2.6)

where OP is the set of partitions with odd parts. The Hopf structure on Γ∗ is given
by

∆(Pr) = 1⊗ Pr + Pr ⊗ 1 + 2
∑

0<s<r

Ps ⊗ Pr−s,(2.7)

where the Pi for i even, satisfy only the relations [20, III.8.2’]

P2i = 2
(
P1P2i−1 − P2P2i−2 + · · ·+ (−1)i−2Pi−1Pi+1

)
+ (−1)i−1P 2

i .(2.8)

Iterating [20, III.8.15] yields the relation

Pλ1Pλ2 · · · =
∑

µ∈SP
µDλ

LµλPµ,(2.9)

where Lµλ ∈ Z≥0 and Lµµ = 1. Here D denotes the dominance partial order on
partitions [20, I.1]. It follows that

Γ∗ =
⊕

λ∈SP

ZPλ.(2.10)

Define the Hopf subalgebra Γ(n) ⊂ Γ∗ by

Γ(n) = Z[P1, P2, . . . , P2n]

= Z[P1, P3, . . . , P2n−1]

=
⊕

λ∈OP
λ1≤2n−1

ZPλ1Pλ2 · · · .
(2.11)
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2.2. Cohomology ring. Define

Γ∗ = Z[Q1, Q2, . . . ] ⊂ Λ.(2.12)

By (2.9) we have

Γ∗ =
⊕

λ∈SP

ZQλ.(2.13)

Define the pairing [·, ·] : Γ∗ × Γ∗ → Z by [20, III.8.12]

[Pλ, Qµ] = δλµ for λ, µ ∈ SP .(2.14)

The pairing [·, ·] has reproducing kernel

Ω−1 :=
∏

i,j≥1

1 + xiyj
1− xiyj

=
∑

λ∈SP

Pλ[X ]Qλ[Y ]

=
∑

λ

Pλ1 [X ]Pλ2 [X ] · · ·Mλ[Y ]

=
∑

λ∈OP

z−1λ 2ℓ(λ)pλ[X ]pλ[Y ],

(2.15)

where Mλ = 2ℓ(λ)mλ. These equalities hold by definition, [20, III.8.13], setting
t = −1 in [20, III.4.2], and [20, III.8.12].

Let Jn ⊂ Γ∗ be the ideal given by the annihilator of Γ(n) ⊂ Γ∗ with respect to
[·, ·]. Define

Γ(n) = Γ∗/Jn(2.16)

which is a Hopf quotient algebra of Γ∗. The pairing [·, ·] descends to a perfect
pairing Γ(n) ⊗ Γ(n) → Z which by (2.15) has reproducing kernel

Ω
(n)
−1 =

∑

λ1≤2n

Pλ1 [X ]Pλ2 [X ] · · ·Mλ[Y ].(2.17)

2.3. Comparing Λ with Γ∗ and Γ∗. Since Λ =
⊕

λ Zhλ [20, I.2.8] one may define
a surjective ring homomorphism θ : Λ → Γ∗ defined by θ(hi) = Qi for i ∈ Z>0.
Over Q it may be defined by θ(p2i) = 0 and θ(p2i−1) = 2p2i−1 for i ∈ Z>0 [20, Ex.
III.8.10].

Let ι : Γ∗ → Λ be the inclusion map.

Lemma 2.1.

〈ι(f), g〉 = [f, θ(g)] for f ∈ Γ∗, g ∈ Λ.(2.18)

Proof. By linearity one may reduce to the case f = pλ and g = pµ for λ, µ ∈ OP .
By (2.2) and (2.15) we have

[pλ, θ(pµ)] = 2ℓ(µ)[pλ, pµ]

= 2ℓ(µ)−ℓ(λ)zλδλµ

= zλδλµ

= 〈ι(pλ), pµ〉.

�
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Lemma 2.1 can be restated as

θY Ω = Ω−1(2.19)

where θY means the operator θ applied to the Y variables.

Lemma 2.2. For ν ∈ SP

Qν =
∑

λ

LνλMλ.

In particular Γ∗ ⊂
⊕

λ ZMλ.

Proof. Since both Ω and Ω−1 are invariant under exchanging theX and Y variables,
by (2.19) and (2.9) we have

θY Ω = Ω−1 = θXΩ

= θX
∑

λ

hλ[X ]mλ[Y ]

=
∑

λ

Qλ1 [X ]Qλ2 [X ] · · ·mλ[Y ]

=
∑

λ

Pλ1 [X ]Pλ2 [X ] · · ·Mλ[Y ]

=
∑

λ

∑

ν∈SP

LνλPν [X ]Mλ[Y ]

=
∑

ν∈SP

Pν [X ]
∑

λ

LνλMλ[Y ].

By (2.15) and (2.10), taking the coefficient of Pν [X ], the Lemma follows. �

2.4. A monomial-like basis for Γ(n). For a partition λ, define Tλ = θ(mλ). We
shall give a “monomial” basis of Γ(n) using the Tλ. Let χ(true) = 1 and χ(false) = 0.

Lemma 2.3. For every partition λ,

Tλ ∈ χ(λ ∈ OP)Mλ +
∑

µ⊲λ

ZMµ.

Proof. Define yλ =
∏

i≥1 mi(λ)! where mi(λ) is the multiplicity of the part i in λ.

By expanding pλ it is easy to see that pλ ∈ yλmλ +
∑

µ⊲λ Zyµmµ. It follows that

mλ ∈ y−1λ pλ +
∑

µ⊲λ Qpµ and

Tλ ∈ y−1λ θ(pλ) +
∑

µ⊲λ

Qθ(pµ)

= χ(λ ∈ OP)y−1λ 2ℓ(λ)pλ +
∑

µ⊲λ
µ∈OP

Qpµ

= χ(λ ∈ OP)Mλ +
∑

µ⊲λ

Qmµ.

(2.20)

By Lemma 2.2, Tλ = θ(mλ) ∈ Γ∗ is a Z-linear combination of the Mµ. Since by
definition the Mµ are integer multiples of the mµ, (2.20) expresses Tλ as a Q-linear
combination of the Mµ. Since the Mµ are independent, the coefficients must then
be integers. �
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Lemma 2.4. For λ, µ ∈ OP,

[Pλ1Pλ2 · · · , Tµ] = 0 unless λ D µ,(2.21)

[Pλ1Pλ2 · · · , Tλ] = 1.(2.22)

Proof. Let A = (aλν) and B = (bλν) be the change of basis matrices

hλ =
∑

νEλ

aλνpν and pν =
∑

ρEν

bνρhρ.

They are unitriangular and mutually inverse. We have

Pλ1Pλ2 · · · = 2−ℓ(λ)θ(hλ)

=
∑

νEλ
ν∈OP

∑

ρEν

2ℓ(ν)−ℓ(λ)aλνbνρhρ.

For any partition µ, by Lemmata 2.1 and 2.3 we have

[Pλ1Pλ2 · · · , Tµ] = 〈Pλ1Pλ2 · · · ,mµ〉

=
∑

νEλ
ν∈OP

∑

ρEν

2ℓ(ν)−ℓ(λ)aλνbνρδµρ

by (2.1). But this sum is zero unless λ D µ, proving (2.21). When µ = λ we have
[Pλ1Pλ2 · · · , Tλ] = aλλbλλ = 1, since AB = I. �

Proposition 2.5. We have

Γ∗ =
⊕

λ∈OP

ZTλ, Γ(n) =
⊕

λ∈OP
λ1≤2n

ZTλ, Jn =
⊕

λ∈OP
λ1≥2n+1

ZTλ.

Proof. This follows from Lemma 2.4, which says that {Tµ | µ ∈ OP} is unitrian-
gularly related (over Z) to the Z-basis of Γ∗ that is [·, ·]-dual to the Z-basis of Γ∗
given by {Pλ1Pλ2 · · · | λ ∈ OP}. �

2.5. Another realization of Γ(n). Let Ik ⊂ Λ be the ideal generated by mλ for
λ1 ≥ k. There is a natural ring isomorphism

Γ∗/(Γ∗ ∩ I2n+1) ∼= (Γ∗ + I2n+1)/I2n+1.

By Proposition 2.5, we have Γ∗ ∩ I2n+1 = Jn. Therefore

Γ(n) ∼= (Γ∗ + I2n+1)/I2n+1.(2.23)

It follows from (2.23) and Lemma 2.1 that

(2.24) [Pλ1Pλ2 · · · , f ] is the coefficient of Mλ in f

for f ∈ Γ(n) and λ satisfying λ1 ≤ 2n.
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3. Affine root systems

3.1. Weyl group. A Cartan datum is a pair (I, A) where I is a finite set (the set
of Dynkin nodes) and A = (aij | i, j ∈ I) is a generalized Cartan matrix, which by
definition satisfies aii = 2 for i ∈ I, aij ≤ 0 for i 6= j, and aij < 0 if and only if
aji < 0. The Cartan datum (I, A) is of finite type if A is nonsingular and of affine
type if A has corank one.

Given a Cartan datum (I, A), for i, j ∈ I with i 6= j, define the integers mij =
2, 3, 4, 6,∞ according as aijaji is 0, 1, 2, 3, or ≥ 4. The Weyl group W = W (I, A)
is the Coxeter group with generators si for i ∈ I such that s2i = 1 for all i ∈ I and
braid relations

sisjsi · · ·︸ ︷︷ ︸
mij times

= sjsisj · · ·︸ ︷︷ ︸
mij times

for i 6= j.(3.1)

The length function ℓ : W → Z is given by ℓ(w) = l if a shortest expression
w = si1si2 · · · sil of w as a product of the si, is of length l. We call such an
expression w = si1si2 · · · sil a reduced expression. The word i1i2 · · · il consisting of
the indices of a reduced expression is called a reduced word for w. We denote by
R(w) the set of reduced words for w. We write u ≡ u′ if u, u′ ∈ R(w) for some
w ∈ W .

An element s ∈W is a reflection if s = wsiw
−1 for some i ∈ I and w ∈ W .

The Bruhat order onWaf is defined by v ≤ w if some (equivalently every) reduced
word of w has a subword that is a reduced word for v. Alternatively v⋖w if v−1w
is a reflection and ℓ(w) = ℓ(v) + 1.

We now fix notation for an affine Cartan datum. Let (I, A) be the finite Cartan
datum associated with the Lie algebra g of a simple simply-connected complex
algebraic group G. Let I = {1, 2, . . . , n} where n is the rank of g. Let (Iaf , Aaf) be
the affine Cartan datum for the untwisted affine algebra gaf = (C[t, t−1] ⊗C g) ⊕
CK⊕Cd [11, §7.2]. We write Iaf = {0}⊔I where 0 ∈ Iaf is the distinguished Kac 0
node [11, §4.8]. Let W = W (I, A) be the finite Weyl group and Waf = W (Iaf , Aaf)
the affine Weyl group. We denote by W 0

af ⊂Waf the set of Grassmannian elements,
which by definition are the minimal length coset representatives of Waf/W .

Example 3.1. If g = sp2n(C), the Cartan matrix for gaf is given by aii = 2 for
i ∈ Iaf , ai,i+1 = ai+1,i = −1 for 1 ≤ i ≤ n− 2, a01 = −1, a10 = −2, an−1,n = −2,

an,n−1 = −1, and aij = 0 if |i − j| ≥ 2. The affine Weyl group Waf = C̃n has
generators {s0, s1, . . . , sn} and relations

s2i = 1

sisj = sjsi if |i− j| > 1

sisi+1si = si+1sisi+1 if 1 ≤ i ≤ n− 2(3.2)

s0s1s0s1 = s1s0s1s0

sn−1snsn−1sn = snsn−1snsn−1.

For Waf = C̃n, we use the notation W 0
af = C̃0

n and W = Cn.

3.2. Affine root, coroot, and weight lattices. Let Paf = Zδ ⊕
⊕

i∈Iaf
ZΛi be

the affine weight lattice, where δ is the null root and the Λi are the fundamental
weights. Let P ∗af = HomZ(Paf ,Z) be the dual weight lattice and 〈·, ·〉 : P

∗
af×Paf → Z
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the natural perfect pairing. Let {d} ∪ {α∨i | i ∈ Iaf} be the basis of P ∗af dual to the
above basis of Paf ; in particular,

〈α∨i ,Λj〉 = δij for i, j ∈ Iaf

〈α∨i , δ〉 = 0 for i ∈ Iaf

where δij is the Kronecker delta. The α∨i are called simple coroots. For j ∈ Iaf
define the simple root αj ∈ Paf by

αj =
∑

i∈Iaf

aijΛi + δj0δ.(3.3)

Note that

〈α∨i , αj〉 = aij for all i, j ∈ Iaf .(3.4)

Due to a linear dependence among the columns of the Cartan matrix, we have

δ = α0 + θ(3.5)

where θ is the highest root of g. Let Qaf =
⊕

i∈Iaf
Zαi ⊂ Paf and Q∨af =

⊕
i∈Iaf

Zα∨i
be the affine root and coroot lattices. The nullroot satisfies

〈µ, δ〉 = 0 for all µ ∈ Q∨af .(3.6)

Similarly a dependence among the rows of the Cartan matrix, yields the canonical
central element K ∈ Q∨af defined by

K = α∨0 + θ∨(3.7)

where θ∨ is the coroot associated to θ (defined in the next subsection). K satisfies

〈K,λ〉 = 0 for all λ ∈ Qaf .(3.8)

Example 3.2. For g = sp2n(C), gaf has nullroot δ = α0 +2(α1 + · · ·+αn−1) +αn

and canonical central element K = α∨0 + · · ·+ α∨n .

The affine Weyl group Waf acts on Paf and P∨af by

siλ = λ− αi〈α
∨
i , λ〉 for λ ∈ Paf(3.9)

siµ = µ− α∨i 〈µ, αi〉 for µ ∈ P∨af .(3.10)

One may show that

〈wµ,wλ〉 = 〈µ, λ〉 for w ∈ Waf , λ ∈ Paf , µ ∈ P∨af .(3.11)

By (3.6) and (3.8) we have

wδ = δ, wK = K for all w ∈ Waf .(3.12)

3.3. Finite root, coroot, and weight lattices. The finite coroot lattice is de-
fined by Q∨ =

⊕
i∈I Zα

∨
i ⊂ Q∨af . The finite root and weight lattices Q and P are

quotients of their affine counterparts Qaf and Paf , but by abuse we will define them
as sublattices. The finite root lattice is defined by Q =

⊕
i∈I Zαi ⊂ Qaf ⊂ Paf .

The finite weight lattice is defined by P =
⊕

i∈I Zωi ⊂ Paf where

ωi = Λi − 〈K,Λi〉Λ0(3.13)

for i ∈ I; these are the fundamental weights of g. We have

〈α∨i , ωj〉 = δij for i, j ∈ I.(3.14)
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3.4. Roots. The root system of g may be defined by

R = W · {αi | i ∈ I}.(3.15)

Given α ∈ R with α = uαi for some u ∈ W and i ∈ I, its associated coroot is
defined by α∨ = uα∨i ∈ Q∨. Its associated reflection is sα = usiu

−1. Both are
independent of the choice of u and i. There is a decomposition R = R+ ∪ −R+

where R+ = R ∩
⊕

i∈I Z≥0αi is the set of positive roots.
The set of affine roots Raf ⊂ Qaf is given by the set of nonzero elements in the

set R+Zδ. We have Raf = R+
af ∪−R

+
af where R

+
af is the set of positive affine roots,

which have the form α + mδ where either m > 0 or both m = 0 and α ∈ R+.
Equivalently, R+

af = Raf ∩
⊕

i∈Iaf
Z≥0αi.

The set of real affine roots is defined by

Rre
af = Waf · {αi | i ∈ Iaf}.

For α = uαi ∈ Rre
af for u ∈Waf and i ∈ Iaf define the associated coroot by α∨ = uα∨i

and associated reflection sα ∈ Waf by sα = usiu
−1; as before one may show these

definitions are independent of u and i.
Let v⋖w in Waf . Then s = v−1w is a reflection s = usiu

−1 for some i ∈ Iaf and
u ∈ Waf . Let u be shortest so that α = uαi is a positive real root. For later use we
denote this root α by αvw and its associated coroot by α∨vw.

Example 3.3. Let Waf = C̃3, w = s1s2s3s2s1s0, and v = s1s3s2s1s0; this defines
a cover v ⋖ w = vsα. Then sα = (s0s1s2s3)s2(s3s2s1s0) and

α∨vw = s0s1s2s3(α
∨
2 )

= 2α∨0 + α∨1 + α∨2 + 2α∨3 .

3.5. Level 0 action. There is a surjective group homomorphism Waf →W given
by si 7→ si for i ∈ I and s0 7→ sθ where θ ∈ R+ is the highest root. Since W acts on
P , Waf acts on P via the above homomorphism; this is called the level zero action.
It is not faithful since s0 and sθ are different elements of Waf .

4. NilHecke algebra and affine Grassmannian

4.1. (Co)homology of affine Grassmannian. For this section we fix G a simple
and simply-connected complex algebraic group with Weyl group W , and Cartan
datum (I, A) as in section 3.1. Let K denote a maximal compact subgroup of G
and T denote a maximal torus in K.

Let F = C((t)) and O = C[[t]]. The affine Grassmannian GrG is the ind-scheme
G(F)/G(O) (see [13]). It is a homogeneous space for the affine Kac-Moody group
G associated to Waf . It is a classical result due to Quillen that the space GrG is
homotopy-equivalent to the space ΩK of based loops in K; see for example [7, 23].

The group G possesses a Bruhat decomposition G =
⋃

w∈Waf
BwB where B de-

notes the Iwahori subgroup. The Bruhat decomposition induces a decomposition
of GrG into Schubert cells Ωw = BwG(O) ⊂ G(F)/G(O). Thus the equivariant ho-
mology HT (GrG) and cohomology HT (GrG) of GrG are free S = HT (pt)-modules
with Schubert bases ξTx ∈ HT (GrG) and ξxT ∈ HT (GrG). Similarly, the homol-
ogy HT (GrG) and cohomology HT (GrG) of GrG are free Z-modules with Schubert
bases ξx ∈ HT (GrG) and ξx ∈ HT (GrG). The index x varies over the Grassman-
nian elements W 0

af . We refer the reader to [12, 13] for the general construction and
properties of Schubert bases in the Kac-Moody setting.
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The pointwise multiplication of loops on K induces the structure of dual Hopf
algebras over Z to H∗(GrG) and H∗(GrG), and the structure of dual Hopf algebras
over S to HT (GrG) and HT (GrG). This is a special feature of the affine Grassman-
nian unavailable in the more general Kac-Moody setting.

4.2. NilCoxeter algebra. The nilCoxeter algebra A0 is the associative Z-algebra
with generators Ai for i ∈ I and relations A2

i = 0 for i ∈ I and braid relations

AiAjAi · · ·︸ ︷︷ ︸
mij times

= AjAiAj · · ·︸ ︷︷ ︸
mij times

for i 6= j.(4.1)

Since these are the same braid relations (3.1) satisfied by si ∈ W , for w ∈ W one
may define Aw = Ai1Ai2 · · ·Ail for any i1i2 · · · il ∈ R(w).

The algebra A0 is a free Z-module with basis {Aw | w ∈ W}. In this basis, the
multiplication is given by

AvAu =

{
Avu if ℓ(v) + ℓ(u) = ℓ(vu)

0 otherwise.

Example 4.1. For the affine Cartan datum of Example 3.1, A0 has generators Ai

for i ∈ Iaf and relations

A2
i = 0

AiAj = AjAi if |i− j| > 1

AiAi+1Ai = Ai+1AiAi+1 if 1 ≤ i ≤ n− 2

A0A1A0A1 = A1A0A1A0

An−1AnAn−1An = AnAn−1AnAn−1

4.3. Kostant and Kumar’s NilHecke algebra. Let P be the weight lattice of g
and S = Sym(P ) the symmetric algebra. The Peterson affine nilHecke algebra A is
by definition2 the associative Z-algebra generated by S and the nilCoxeter algebra
A0 for the affine Cartan datum (Iaf , Aaf) with

Aiλ = (si · λ)Ai + 〈α
∨
i , λ〉1 for i ∈ Iaf and λ ∈ P .(4.2)

Consequently A is a free left S-module with basis {Aw | w ∈Waf}.
Iterating (4.2) produces the following relation.

Lemma 4.2. For x ∈Waf and λ ∈ P ,

Axλ = (x · λ)Ax +
∑

y⋖x

〈α∨yx, λ〉Ay(4.3)

where α∨yx is defined in section 3.4.

Proposition 4.3. [22] Let M and N be left A-modules. Define M ⊗S N = (M ⊗Z

N)/〈sm⊗ n −m⊗ sn | s ∈ S;m ∈ M ;n ∈ N〉. Then M ⊗S N is a left A-module
via

Ai · (m⊗ n) = (Ai ·m)⊗ n+m⊗ (Ai · n)− αi(Ai ·m)⊗ (Ai · n)

s · (m⊗ n) = sm⊗ n.
(4.4)

2The nilHecke algebra of Kostant and Kumar [12] for the affine Cartan datum, uses a larger
weight lattice than Peterson’s nilHecke algebra. See [15] for a comparison of the two.
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Since the proof of this proposition is not readily available in the literature, we
include a proof.

Proof. We verify (4.2).

Ai · (λ · (m⊗ n))

= (Ai · λm)⊗ n+ λm⊗ (Ai · n)− αi(Ai · λm)⊗ (Ai · n)

= (siλ)(Aim⊗ n) + 〈α∨i , λ〉m⊗ n+ λm⊗Ain

− αi(siλ)Aim⊗Ain− αi〈α
∨
i , λ〉m⊗Ain

= (siλ)(Aim⊗ n) + (λ − αi〈α
∨
i , λ〉)m⊗Ain

− (siλ)αiAim⊗Ain+ 〈α∨i , λ〉m⊗ n

= (siλ) ·Ai · (m⊗ n) + 〈α∨i , λ〉m⊗ n.

We verify A2
i = 0.

Ai · (Ai · (m⊗ n)) = 2Aim⊗Ain− (AiαiAim)⊗ n

= 2Aim⊗Ain+ αiA
2
im⊗ n− 〈α∨i , αi〉Aim⊗Ain = 0.

To verify the braid relations, it is convenient to introduce the elements ri = 1 −
αiAi ∈ A. It is not difficult to see that given (4.2) the relation (AiAj)

mij =
(AjAi)

mij is equivalent to (rirj)
mij = (rjri)

mij . An easy calculation shows that
the ri act on M⊗SN by ri ·(m⊗n) = rim⊗rin. It is clear that this action satisfies
the braid relations for the ri. �

Thus there is a left S-module homomorphism ∆ : A→ A⊗S A defined by

∆(a) = a · (1⊗ 1) for a ∈ A.(4.5)

By (4.4) we have

∆(Ai) = Ai ⊗ 1 + 1⊗Ai −Ai ⊗ αiAi(4.6)

∆(s) = s⊗ 1.(4.7)

The map ∆ is injective so there is a linear map ∆(A) ⊗ (A ⊗S A) → (A ⊗S A)
defined by

∆(a)⊗ (x⊗ y) 7→ a · (x⊗ y)(4.8)

using the left A-module structure on A⊗SA afforded by Proposition 4.3. We deduce
that this map yields a ring structure on ∆(A) and an action of ∆(A) on A⊗S A.

It follows by induction using Proposition 4.3 that this action is computed explic-
itly as follows. Let a ∈ A and ∆(a) =

∑
w,v Aw ⊗ awvAv. Then

∆(a) · (x⊗ y) =
∑

w,v

Awx⊗ awvAvy.(4.9)

In particular, if b ∈ A and ∆(b) =
∑

w,v Aw ⊗ bwvAv for bwv ∈ S, then

∆(ab) = ∆(a)∆(b) =
∑

w,v,w′,v′

AwAw′ ⊗ awvAvbw′v′Av′ .(4.10)

The ring structure on ∆(A) does not extend to all of A ⊗S A by the formula
(a⊗ b)(c ⊗ d) = ac⊗ bd, because if it did, then since s⊗ 1 = 1⊗ s we would have
fs ⊗ g = (f ⊗ g)(s ⊗ 1) = (f ⊗ g)(1 ⊗ s) = f ⊗ gs, which is false in general (say,
for g = 1 and fs 6= sf). Equation (4.10) says that when this “obvious” generally
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ill-defined multiplication formula is applied to expressions coming from the action
of ∆(A) on A⊗S A, the result is well-defined.

4.4. The Peterson subalgebra and equivariant cohomology of affine Grass-
mannian. The Peterson subalgebra of A is the centralizer ZA(S) of S. It is a Hopf
algebra over S since the factorwise product on ZA(S)⊗SZA(S) gives it an S-algebra
structure under which the restriction of ∆ to ZA(S), is an S-algebra homomorphism.

Theorem 4.4. [22] [15, Theorem 4.4] There is an S-Hopf algebra isomorphism

j : HT (GrG)→ ZA(S)

which is characterized by the property that for all x ∈ W 0
af , j(ξTx ) is the unique

element of ZA(S) ∩ (Ax +
∑

y∈Waf\W 0
af
S Ay).

For x ∈W 0
af and y ∈Waf let j

y
x ∈ S be defined by

j(ξTx ) =
∑

y∈Waf

jyxAy.(4.11)

Proposition 4.5. [22] [17, Theorem 6.3]

(1) For x ∈ W 0
af and y ∈Waf , the polynomial jyx is either zero or homogeneous

of degree ℓ(y)− ℓ(x); in particular it is zero if ℓ(y) < ℓ(x).
(2) For x, z ∈W 0

af we have

ξTx ξ
T
z =

∑

y

jyxξ
T
yz(4.12)

where y runs over the y ∈ Waf such that yz ∈W 0
af and ℓ(yz) = ℓ(y) + ℓ(z).

We wish to compute jyx in the “nonequivariant case” ℓ(x) = ℓ(y), when jyx ∈ Z≥0.
For this purpose we consider the maps that forget the T -equivariance.

4.5. Affine Fomin-Stanley subalgebra. Let φ0 : S → Z be the map that sends
a polynomial to its evaluation at 0. By abuse of notation define φ0 : A → A0 by
φ0(

∑
w swAw) =

∑
w φ0(sw)Aw for sw ∈ S. Peterson’s j-map induces an injective

ring homomorphism j0 : H∗(GrG)→ A0 such that the diagram commutes:

HT (GrG)
j

−−−−→ A

ǫ

y
yφ0

H∗(GrG) −−−−→
j0

A0

(4.13)

where ǫ : HT (GrG)→ H∗(GrG) is obtained by ξTx 7→ ξx and the evaluation φ0.
By (4.11) and (4.13) we have

j0(ξw) =
∑

u∈Waf

ℓ(u)=ℓ(w)

juwAu for w ∈ W 0
af .(4.14)

The affine Fomin-Stanley subalgebra is defined in [15] by

B = {a ∈ A | φ0(s)a = φ0(as) for every s ∈ S}.(4.15)
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Define φ
(2)
0 : A⊗S A→ A0 ⊗Z A0 by

φ
(2)
0


 ∑

w,v∈Waf

aw,vAw ⊗ Av


 =

∑

w,v∈Waf

φ0(aw,v)Aw ⊗Av

for aw,v ∈ S. Then B is a Hopf algebra with coproduct given by the restriction of

φ
(2)
0 ◦∆ to B.

Theorem 4.6 ([15, Prop. 5.4, Thm. 5.5]). The map j0 is a Hopf algebra isomor-
phism H∗(GrG) ∼= B. Moreover, for every w ∈ W 0

af , j0(ξw) is the unique element
of B ∩ (Aw +

∑
u∈Waf\W 0

af
ZAu).

B has a basis {Pw | w ∈ W 0
af} defined by

Pw = j0(ξw) for w ∈ W 0
af .(4.16)

For G = SLn(C) these are the noncommutative k-Schur functions of [15]. The
following Lemma is an aid for computing the elements Pw.

Lemma 4.7. Let a =
∑

w∈Waf
cwAw ∈ A0 with cw ∈ Z. Then a ∈ B if and only if∑

w⋗v cwα
∨
vw ∈ ZK for all v ∈ Waf .

Proof. The following are equivalent:

(1) Equation (4.15) holds for a.
(2) φ0(aλ) = 0 for all λ ∈ P .
(3)

∑
w cw

∑
v⋖w〈α

∨
vw, λ〉Av = 0 for all λ ∈ P .

(4)
∑

w⋗v cw〈α
∨
vw , λ〉 = 0 for all v ∈Waf and all λ ∈ P .

(5)
∑

w⋗v cwα
∨
vw ∈ ZK for all v ∈ Waf .

(1) and (2) are easily seen to be equivalent. The equivalence of (2) and (3) follows
from equation (4.2). (3) and (4) are equivalent because the Av form a basis of A0.
(4) and (5) are equivalent because ZK = {µ ∈ Q∨af | 〈µ, P 〉 = 0}. �

5. Schubert polynomials for H∗(GrSp2n(C)) and H∗(GrSp2n(C))

In this section we outline the proofs of Theorems 1.2, 1.3 and 1.4, relegating two
technical calculations to sections 6 and 7.

5.1. Special generators of Fomin-Stanley subalgebra. Recall the special el-
ements ρi defined in (1.1). For 1 ≤ i ≤ 2n define

Pi = Pρi
(5.1)

where Pw is defined in (4.16).
We now state the explicit expansion of the elements Pi ∈ B that correspond to

homology generators. Recall the set Z defined in section 1.5. Note that ρr is the
unique Grassmannian element in Zr for 1 ≤ r ≤ 2n.

Theorem 5.1. For 1 ≤ r ≤ 2n,

Pr =
∑

w∈Zr

2c(w)−1Aw.(5.2)

This result is proved in section 6. Some examples for Pr are given in Appendix A.

Remark 5.2. It follows from Theorem 1.3 that the elements Pr ∈ B generate the
affine Fomin-Stanley subalgebra B.
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5.2. Relations among special generators. Let Pn
C be the set of partitions λ

with λ1 ≤ 2n, which have at most one part of size i for all i ≤ n. We first note
the following result which is essentially [4, Lemma 24]. The bijection of Lemma 5.3
was first brought to our attention by Morse [21] who discovered it independently.

Lemma 5.3. Let w ∈ C̃n
0 . Then w has a unique length-additive factorization

w = ρλl
· · · ρλ2ρλ1

into Grassmannian Z-s such that every left factor ρλl
· · · ρλi

is Grassmannian. Fur-

thermore the map w 7→ λ(w) is a bijection C̃n
0 → P

n
C such that ℓ(w) = |λ(w)|.

Proof. The result follows nearly immediately from [4, Lemma 24]. In [4] one asso-

ciates to w ∈ C̃n the window

[−wn, . . . ,−w1, 0, w1, . . . , wn]

of an affine permutation. This corresponds to the embedding of C̃n into the
affine symmetric group S̃2n+2. In [4] the parabolic subgroup is generated by
{s0, . . . , sn−1} rather than by {s1, . . . , sn} so we must apply the notational in-
volution si ↔ sn−i to be compatible with [4].

In any case, for w ∈ C̃0
n it is shown in [4, Lemma 24] that the window of w can be

successively sorted to become the identity. Each sorting operation corresponds to
right multiplication by a factor ρλi

. The requirement that every left factor ρλl
· · · ρλi

is Grassmannian corresponds to asking for the window of w to be completely sorted
at each step. The rest of the statement now follows from [4]. �

Proposition 5.4. The elements Pi ∈ B satisfy

P2m = 2
(
P1P2m−1 − P2P2m−2 + · · ·+ (−1)m−2Pm−1Pm+1

)
+ (−1)m−1P2

m

for 1 ≤ m ≤ n.

Proof. We use the explicit computation of the Pi given in Theorem 5.1. By evalu-
ating the statement of Proposition 4.5 at 0, we observe that

(5.3) Pi Pj =
∑

w=vρj

2c(v)−1Pw

where the summation is over all w = vρj such that (a) v ∈ Zi, (b) ℓ(w) = i + j,

and (c) w ∈ C̃0
n. Now any reduced expression for v ∈ Zi can have at most one

occurrence of s0, so by Lemma 5.3, we deduce that the set of w such that Pw can
occur in a product of the form Pi Pj has the form ρa ρb where a+ b = i+ j.

Now fix 1 ≤ m ≤ n and let us compute

S = 2
(
P1P2m−1 − P2P2m−2 + · · ·+ (−1)m−2Pm−1Pm+1

)
+ (−1)m−1P2

m.

First via a direct calculation we note that ρmρm /∈ C̃0
n for 1 ≤ m ≤ n. We claim

that for 1 ≤ j ≤ m and w = ρiρ2m−i satisfying w ∈ C̃0
n and ℓ(w) = 2m we have

[Pw]PjP2m−j =





0 if i > j

1 if i = j

2 if 0 < i < j

1 if i = 0.
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where [Pw]b denotes the coefficient of Pw in b ∈ B. The case i > j follows from
Lemma 5.3. The case i = j is immediate since c(ρi) = c(ρ2m−i) = 1. For the case
i < j we must consider v = ρiρ2m−iρ

−1
2m−j . We observe that

Supp(v) = [0, i− 1] ∪ Supp(ρ2m−i ρ
−1
2m−j)

and i is smaller than all elements of Supp(ρ2m−iρ
−1
2m−j) (we use the inequality

2m− j > i). Thus v, being a product two “non-touching” Z-s, is itself a Z and we
have c(v) = 2. The final case i = 0 is trivial.

Now it follows that the S = P2m, as required. �

5.3. Coproduct formula for special generators. The following result is proved
in section 7.

Theorem 5.5. For 1 ≤ r ≤ 2n

φ
(2)
0 (∆(Pr)) = 1⊗ Pr + Pr ⊗ 1 + 2

∑

0<s<r

Ps ⊗ Pr−s.

Remark 5.6. An alternative formulation of Theorem 5.5 is that the coefficient of
ξρr in ξρs ξρr−s ∈ H∗(GrSp2n(C)) is equal to 2, for 1 ≤ s ≤ r − 1.

5.4. Affine type C Cauchy kernel. Define Φ : Γ(n) → H∗(GrSp2n(C)) by Pi 7→
ξρi

for 1 ≤ i ≤ 2n as in Theorem 1.3. By Proposition 5.4 and Theorem 4.6 this

map is well-defined. Define ΩB
−1 ∈ B⊗̂Γ(n) by taking the image of Ω

(n)
−1 under the

composition ΦB = j0 ◦ Φ : Γ(n) → B:

ΩB
−1 =

∑

λ1≤2n

Pλ1Pλ2 · · · ⊗Mλ[Y ]

=
∑

α
αi≤2n

Pα1Pα2 · · · ⊗ 2ℓ(α)yα
(5.4)

where α runs over compositions whose parts have size at most 2n. The second
equality holds since B is a commutative ring. For w ∈ C̃n, the type C affine

Stanley function Q
(n)
w is defined by

(5.5) ΩB
−1 =

∑

w∈C̃n

Aw ⊗Q(n)
w [Y ].

A straightforward computation shows that this definition agrees with (1.2). Note
that (1.2) defines an element of the ring Γ(n) via (2.23). By Theorem 4.6 we have

ΩB
−1 =

∑

w∈C̃0
n

Pw ⊗Q(n)
w [Y ](5.6)

where Pw is defined by (4.16).

5.5. Proof of Theorem 1.4. Theorem 1.4 follows immediately from applying the
non-equivariant part of Proposition 4.5 to Theorem 5.1.
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5.6. Proof of Theorem 1.3. It follows from Proposition 5.4, Theorem 5.5 and
Theorem 4.6 that Φ : Γ(n) → H∗(GrSp2n(C)) is a bialgebra morphism. Since both
Γ(n) and H∗(GrSp2n(C)) are graded commutative and cocommutative Hopf algebras,
Φ must in addition be a Hopf morphism. Recall that we define Ψ : H∗(GrSp2n(C))→

Γ(n) by the linear map ξw 7→ Q
(n)
w for w ∈ C̃0

n.
We first show that Ψ : H∗(GrSp2n(C))→ Γ(n) and Φ : Γ(n) → H∗(GrSp2n(C)) are

dual with respect to the pairing 〈., .〉 : H∗(GrSp2n(C))×H∗(GrSp2n(C))→ Z induced

by the cap product and the pairing [., .] : Γ(n) × Γ(n) → Z of section 2.4. It suffices

to show that for each w ∈ C̃0
n we have 〈Φ(f), ξw〉 = [f,Ψ(ξw)] as f varies over the

spanning set {Pλ1 · · ·Pλl
| λ1 ≤ 2n} of Γ(n). Identifying B with H∗(GrSp2n(C)) via

the map j0 of Theorem 4.6, we calculate

[Pλ1 · · ·Pλl
,Ψ(ξw)] = [Pλ1 · · ·Pλl

, Q(n)
w ]

= [Pλ1 · · ·Pλl
, 〈ΩB
−1, ξ

w〉]

= 〈[Pλ1 · · ·Pλl
,ΩB
−1], ξ

w〉

= 〈Pλ1 · · ·Pλl
, ξw〉

= 〈ΦB(Pλ1 · · ·Pλl
), ξw〉.

The second equality holds by (5.6). The fourth holds by (5.4) and (2.24). The
other equalities hold by definition.

Since Φ is a Hopf-morphism, we deduce that Ψ is also a Hopf-morphism. It only
remains to prove that Ψ is a bijection. For surjectivity, since the Qr generate Γ(n)

as an algebra, it suffices to show that Q
(n)
cr = Qr in Γ(n), where cr ∈ C̃0

n is the
length r element of the form

cr = · · · s1 s0 s1 · · · sn−1 sn sn−1 · · · s2 s1 s0.

It is easy to see that cr has a unique reduced word. So a length-additive factorization
of cr into a product cr =

∏
i v

i with each vi ∈ Z, is equivalent to a composition
(α1, α2, . . . , αs) of r into parts of size less than 2n, where each vi is either the
identity or has one component. After multiplying by 2t where t = #{i | αi > 0},

we see that Q
(n)
cr is the generating function of shifted tableaux T whose shape is a

single row of length r where no letter can be used more than 2n times. The tableau
T is obtained from the composition α by setting αi letters equal to i. The factor 2t

comes from the two possible choices of marking for the leftmost occurrence of each

letter. This matches Q
(n)
cr to the combinatorial definition of Qr using tableaux [20,

III.8.16].

For injectivity, it suffices to show that {Q
(n)
w | w ∈ C̃0

n} is linearly independent.
We shall establish the triangularity property

Q(n)
w =

∑

µ≤λ(w)

aµ,wMµ

where w 7→ λ(w) is the bijection between C̃0
n and Pn

C of Lemma 5.3, and ≤ is the
lexicographic order on partitions. Furthermore aµ,w is unitriangular.

We first observe that if w ∈ C̃0
n and w = vs · · · v1 is a factorization into

Z’s then v1 must be Grassmannian, so it is one of the ρr’s for r ∈ [1, 2n]. But
if w = ρλl

· · · ρλ2ρλ1 where ρλl
· · · ρλ2 is Grassmannian then w (ρr)

−1 cannot be
length subtractive for 2n ≥ r > λ1. This is because every reduced expression for
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ρλl
· · · ρλ2 ends in s0. Repeating this, we see that the matrix of coefficients aµ,w

is triangular with respect to the lexicographic order. We are using the fact that if
aµ,w 6= 0 then the factorization w = vs · · · v1 can be chosen so that ℓ(vi) = µi.

Finally, the factorization w = ρλl
· · · ρλ2ρλ1 of Lemma 5.3 shows that aλ(w),w = 1

since c(ρi) = 1.

5.7. Proof of Theorem 1.2. The fact that Q
(n)
w is symmetric and defines an

element of Γ(n) follows from the definition (5.5) via the affine type C Cauchy kernel.

The statement that {Q
(n)
w | w ∈ C̃0

n} forms a basis follows from Theorem 1.3 and

the fact that {ξw | w ∈ C̃0
n} is a basis for H∗(GrSp2n(C)). The positivity of the

product structure constants is a general theorem due to Graham [9] and Kumar
[13].

The coproduct structure constants of {Q
(n)
w | w ∈ C̃0

n} are the same as those

of {ξw | w ∈ C̃0
n}. By the duality of H∗(GrSp2n(C)) and H∗(GrSp2n(C)) and their

Schubert bases, the above constants are the same as the product structure constants
for the homology classes {ξw | w ∈ C̃0

n}. Using the nonequivariant case ℓ(y) = ℓ(x)
of (4.12), these constants are given by the coefficients jyx of (4.11). But these are
known to be nonnegative from the work of Peterson [22] and Lam and Shimozono
[17]; they are equal to certain three-point genus zero Gromov-Witten invariants of
the (finite) flag variety.

For the final positivity statement we claim that

(5.7) the coefficient of Q(n)
v where v ∈ C̃0

n in Q(n)
w is equal to jwv

that is, the coefficient of Aw in Pv. But this follows from expanding (5.6) using the
definition of Pw.

6. The combinatorics of Zee-s

It is obvious that Zr contains a unique Grassmannian element, namely, ρr, and
that c(ρr) = 1. To prove Theorem 5.1, by Theorem 4.6 it remains to show that
the right hand side of (5.2) is an element of B. By Lemma 4.7 and Example 3.2 it
suffices to prove the following result, whose proof occupies the rest of this section.

Proposition 6.1. For any v ∈ Z with ℓ(v) < 2n, let Cv = {w ∈ Z | w ⋗ v}. Then
∑

w∈Cv

2c(w)−1α∨vw = 2c(v)K.(6.1)

Example 6.2. Let n = 3 and v = s0s2s3s2 ∈ Z. Every w ∈ Cv is obtained by
putting a 1 into some reduced word for v. For each w ∈ Cv, a reduced word and
the coroot α∨vw is given below. They may be computed as in Example 3.3.

red. word α∨vw
10232 2α∨0 + α∨1 + 2α∨2 + 2α∨3
01232 α∨1 + 2α∨2 + 2α∨3
23210 2α∨0 + α∨1
23201 α∨1

The sum of these coroots is 4K, which agrees with the fact that Supp(v) has two
components, {0} and {2, 3}.
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Let w ∈ Z. Since sisj = sjsi for i and j in different components of Supp(w),
there exists a factorization w = wI1 · · ·wIc where I1, I2, . . . , Ic are the components
of Supp(w) and Supp(wIp) = Ip. Let us index the components so their elements
are ordered consistently with the total order on Iaf . Then the above factorization
is unique. For a component C = Ip of Supp(w) define wC = wIp , which is called
the C-component of w.

Example 6.3. Let n = 9 and u = 4689852102; we have u ∈ R(w) for some
w ∈ Z. We have I1 = {0, 1, 2}, I2 = {4, 5, 6}, and I3 = {8, 9}, and wI1 = s2s1s0s2,
wI2 = s4s6s5, and wI3 = s8s9s8.

6.1. Bruhat covers in Z. To prove Proposition 6.1 we study in detail the Bruhat
order of C̃n when restricted to the subset Z. The results in these subsections may
be of independent combinatorial interest.

We construct the set of covers Cv in Z, of a fixed element v ∈ Z. For k′, k ∈ Iaf
with k′ < k let

Nk,k′ = k(k + 1) · · · (n− 1)n(n− 1) · · · 101 · · · (k′ − 1)k′

←−
N k′,k = k′(k′ − 1) · · · 101 · · · (n− 1)n(n− 1) · · · (k + 1)k.

For w ∈ Z, we define

RN (w) = {u ∈ R(w) | u ⊂ Nk,k−1 for some 1 ≤ k ≤ n}

R
←−
N (w) = {u ∈ R(w) | u ⊂

←−
N k−1,k for some 1 ≤ k ≤ n}

where u ⊂ u′ denotes a specific embedding of a word u as a subword of a word u′.

Then by definition w ∈ Z if and only if RN (w) ∪R
←−
N (w) 6= ∅.

Therefore w ∈ Cv if and only if either (1) there is a word u ∈ RN (v) with an
embedding of the form u ⊂ Nk,k−1 and a letter j ⊂ Nk,k−1 that is missing from
u, such that the word ũ obtained by inserting j into u, is a reduced word of w, or

(2) there is a u ∈ R
←−
N (v) with an embedding of the form u ⊂

←−
Nk−1,k and a letter

j ∈
←−
N k−1,k missing from u, such that inserting j into u yields ũ ∈ R(w).

Lemma 6.4. Let v ∈ Z and u ∈ RN (v) with u ⊂ Nk,k−1 (resp. u ∈ R
←−
N (v) with

u ⊂
←−
N k−1,k). Let j ⊂ Nk,k−1 (resp. j ⊂

←−
N k−1,k) be a letter that is not in u. Then

adding this copy of j to u, produces a word in RZ(w) for some w ∈ Cv, if and only
if (1) j 6∈ Supp(u) or (2) j+1 ∈ Supp(u) for j ≥ k or j−1 ∈ Supp(u) for j ≤ k−1.

Proof. This follows directly from the Coxeter relations for C̃n. �

We define the reduced words

V k,k′

= k(k − 1) · · · 101 · · · (k′ − 1)k′ for k, k′ < n

Λk,k′ = k(k + 1) · · · (n− 1)n(n− 1) · · · (k′ + 1)k′ for k, k′ > 0

I↑kk′ = k′(k′ + 1) · · · (k − 1)k for k′ ≤ k

I↓kk′ = k(k − 1) · · · (k′ + 1)k′ for k′ ≤ k

A word is an N if it is a subword of Nk,k−1 for some 1 ≤ k ≤ n and a reverse N

(abbreviated by the symbol
←−
N) if it is a subword of

←−
N k−1,k for some 1 ≤ k ≤ n.

The name N is suggested by the definition: the values in such a word go up, then

down, and then up, like the letter N. A word v is a Z if it is an N or a
←−
N. For
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w ∈ C̃n letRZ(w) be the set of reduced words for w that are Zs. Then by definition,

w ∈ C̃n is a Z if and only if RZ(w) 6= ∅. Let RN (w) (resp. R
←−
N (w)) be the subset

of reduced words of w that are Ns or (resp.
←−
Ns).

A saturated N (resp.
←−
N) is a word of the form Nk,k′ (resp.

←−
N k′,k). An N or

←−
N is

proper if it contains both the letters 0 and n. We emphasize the important fact that
if u is a proper N, then first(u) > last(u), where first(u) and last(u) are the first and

last letters of u respectively. Similarly if u is a proper
←−
N then first(u) < last(u).

Let u = i1i2 · · · iM be a word with letters in Iaf . We say that u has a peak at
p if 1 < p < M and ip−1 < ip > ip+1 or if p = 1 and i1 > i2 or if p = M and
pM−1 < pM or if M = 1. We say that u has a valley at p if 1 < p < M and
ip−1 > ip < ip+1 or if p = 1 and i1 < i2 or if p = M and pM−1 > pM or if M = 1.

We say that a word is a V (resp. Λ) if it is either empty or has exactly one
valley (resp. peak). Note that only the empty word has no valleys (resp. peaks).

Note that Vs and Λs are both Ns and
←−
Ns. Write RV (w) and RΛ(w) for the sets

of reduced words of w that are respectively Vs and Λs. A saturated V (resp. Λ) is

one of the form V k,k′

(resp. Λk,k′ ).

Example 6.5. Let n = 4. Then 234101 is a proper N , 20143 is a proper
←−
N, 312

is a V, and 24321 is a Λ.

6.2. Equivalences for reduced words and rotation. The following Lemma is
essentially a special case of Edelman-Greene insertion [5]. It says that a Λ with no
(n− 1)n(n− 1) is equivalent to a V. Similarly a V with no 101 is equivalent to a Λ.

Lemma 6.6. Suppose i1i2 · · · ipj1j2 · · · jq ∈ R(w) for some w ∈ Z such that i1 <
i2 < · · · < ip < j1 > j2 > · · · > jq and (n − 1)n(n − 1) is not a subword. Then
there is a k1k2 · · · kql1l2 · · · lp ∈ R(w) such that i1 occurs in k1k2 · · · kq, k1 > k2 >
· · · > kq < l1 < l2 < · · · < lp and ks ≤ js for 1 ≤ s ≤ q and is < ls for 1 ≤ s ≤ p.

i1 i2 · · · ip j1
j2
...
jq

k1
k2
...
kq l1 l2 . . . lp

Proof. The result is trivial if p = 0 or q = 0. Suppose p = 1. If both i1 + 1 and
i1 occur in j1j2 · · · jq then i1 > 0 and i1j1 · · · jq ≡ j1 · · · jq(i1 + 1) using the braid
relations. We take ks = js for 1 ≤ s ≤ q and l1 = i1+1, which satisfies l1 > i1 ≥ jq.
Otherwise let r be maximal such that i1 < jr. It cannot be the case that jr+1 = i1
for then i1j1 · · · jq is not reduced. We have i1j1 · · · jq ≡ (j1 · · · jr−1i1jr+1 · · · jq)jr
and the latter word has the desired form. Note that in the case p = 1, i1 occurs
in k1 · · · kq. Finally suppose p > 1. By induction i2 · · · ipj1 · · · jq ≡ k′1 · · · k

′
ql2 · · · lp

with k′1 > · · · > k′q < l2 < · · · < lp with js ≤ k′s for 1 ≤ s ≤ q and is > ls for
2 ≤ s ≤ p. Since i1 < i2 and i2 occurs in k′1 · · · k

′
q, we may apply the p = 1 case and

obtain i1k
′
1 · · · k

′
q ≡ k1 · · · kql1 with k1 > · · · > kq < l1 and ks ≤ k′s for 1 ≤ s ≤ q.

Since i2 was in k′1 · · · k
′
q and i1 < i2, it follows by considering the p = 1 case that

l1 ≤ i2 < l2. It follows that k1 · · · kql1 · · · lp is the desired reduced word. �

Lemma 6.7. Suppose u and u′ are two Vs (resp. Λs) such that all letters of u are
greater than those in u′. Then uu′ and u′u are both equivalent to a V (resp. Λ).
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Proof. Let u and u′ be Vs with u = u1mu2 where m is the valley of u. Then
u1mu′u2 and u1u

′mu2 are Vs that are equivalent to uu′ and u′u respectively. The
proof for Λs is similar. �

Given a word u, let u+ (resp. u−) be the word obtained by adding (resp. sub-
tracting) one from each letter in u.

Lemma 6.8. Let w ∈ Z and J = Supp(w).

(1) Suppose n 6∈ J . Then RV (w) 6= ∅. Moreover if J is an interval then
RV (w) is a singleton.

(2) Suppose 0 6∈ J . Then RΛ(w) 6= ∅. Moreover if J is an interval then RΛ(w)
is a singleton.

(3) Suppose J is an interval [m,M ] with 0 < m ≤M < n. Let u1Mu2 ∈ R
Λ(w)

and u′2mu′1 ∈ R
V (w). Then u′2 = u+

2 and u′1 = u+
1 .

Proof. We shall prove (1) as (2) is similar. Let u ∈ RZ(w). Suppose that n 6∈ J

and that u is an N ; the case of a
←−
N is similar. Say u is embedded in Nk,k−1.

Then u = u1u2 where u1 is a Λ such that Supp(u1) ⊂ [k, n− 1] and u2 is a V with
Supp(u2) ⊂ [0, k − 1]. Then RV (w) 6= ∅ by Lemmata 6.6 and 6.7.

Let u ∈ RV (w) with J an interval. We prove its uniqueness by induction on
ℓ(w). For ℓ(w) ≤ 3 this is evident from (3.2). Let M = max(J) < n. Suppose
first that u contains a single M . Then u has the form u = Mû or u = ûM . We
assume the former as the latter has an analogous proof. We have û ∈ RV (sMw)
and sMw ∈ Z. By induction û is unique. Now let u′ ∈ RV (w). Since R(w) is
connected by the braid relations (3.2), every reduced word for w (and in particular
u′) has a single M which precedes every M − 1. Since u′ is a V it must start with
M . Therefore u′ = Mû = u by the uniqueness of û.

Otherwise u must have the form u = MûM . Let u′ ∈ RV (w). Clearly u′ must
contain an M which must be at the beginning or end. We suppose u′ has the form
u′ = Mu′′ as the case u′ = u′′M is similar. By induction RV (sMw) is a singleton.
Therefore u′′ = ûM and u′ = u as desired.

(3) is proved by induction on the length of u1Mu2. If either u1 or u2 is empty
then the result certainly holds. Write u1 = u3x and u2 = yu4 where x and y
are letters. Since Supp(u1Mu2) = [m,M ], x = M − 1 or y = M − 1. Suppose
x = y = M − 1. By induction we have u1Mu2 ≡ u3(M − 1)M(M − 1)u4 ≡
u3M(M − 1)Mu4 ≡ Mu3(M − 1)u4M ≡ Mu+

4 mu+
3 M = u+

2 mu+
1 . Suppose next

that x = M − 1 > y. Then again by induction we have u1Mu2 = u3(M − 1)Mu2 ≡
u3(M − 1)u2M ≡ u+

2 mu+
3 M = u+

2 mu+
1 . The case y = M − 1 > x is similar. �

Example 6.9. For n > 7 the N 676545 is equivalent to a V: 676545 ≡ 767545 ≡
765457.

Suppose u ⊂ Nk,k−1 is a subword and ℓ ⊂ Nk,k−1 is a subletter (resp. u ⊂
←−
N k−1,k is a subword and ℓ ⊂

←−
N k−1,k is a subletter) with ℓ missing from u. We

give an explicit way to obtain another embedded word u′ ∈ RZ(v) such that ℓ is

at the beginning or end of the ambient N or
←−
N. We call this process rotation. The

only cases not treated in Lemma 6.10 are ℓ = 0 or ℓ = n, in which case we may use
Lemma 6.8 to obtain an equivalent reduced word that is a Λ or V respectively, and

these can be embedded into an N or
←−
N with the missing letter at the beginning or

end.
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Lemma 6.10. Suppose w ∈ Z and u ∈ RN (w) (resp. u ∈ R
←−
N (w)) with u ⊂ Nk,k−1

(resp. u ⊂
←−
N k−1,k).

(1) If there is an ℓ such that k ≤ ℓ < n and ℓ does not appear in the part of

u that is embedded in I↑nk⊂ Nk,k−1 (resp. I↓nk⊂
←−
N k−1,k), then there is a

u′ ∈ RN (w) (resp. u′ ∈ R
←−
N (w)) such that u′ ⊂ Nℓ+1,ℓ (resp. u

′ ⊂
←−
N ℓ,ℓ+1).

(2) If there is an ℓ such that 0 < ℓ ≤ k − 1 and ℓ does not appear in the part

of u that is embedded in I ↑k−10 ⊂ Nk,k−1 (resp. I ↓k−10 ⊂
←−
N k−1,k), then

there is a u′ ∈ RN (w) (resp. u′ ∈ R
←−
N (w)) such that u′ ⊂ Nℓ,ℓ−1 (resp.

u′ ⊂
←−
N ℓ−1,ℓ).

(3) If there is an ℓ such that 0 < ℓ < n and ℓ does not appear in the part of

u that is embedded in I↓n0⊂ Nk,k−1 (resp. I↑n0⊂
←−
N k−1,k) then there is a

u′ ∈ R
←−
N (w) (resp. u′ ∈ RN (w)) such that u′ ⊂

←−
N ℓ−1,ℓ (resp. u

′ ⊂ Nℓ,ℓ−1).
Moreover k − 1 or k is missing in the increasing (resp. decreasing) part of
u′, according as ℓ < k or ℓ ≥ k.

Proof. We prove (1) for u ∈ RN (w); the other cases of (1) and (2) are similar. Let

u = u1u2u3u4 where u1 ⊂ I↑ℓ−1k , u2 ⊂ Λℓ+1,ℓ+1, u3 ⊂ I↓ℓk, and u4 ⊂ V k−1,k−1. We
have u ≡ u2u1u3u4. u1u3 is reduced since it is a factor of a reduced word. Since
u1u3 is a Λ with no n, by Lemma 6.8 it is equivalent to a V: u1u3 ≡ u′3u

′
1 where

u′3u
′
1 is a V with valley last(u′3) such that u′3 ⊂ I↓ℓk and u′1 = u+

1 ⊂ I↑ℓk+1. Then
u ≡ u2u1u3u4 ≡ u2u

′
3u
′
1u4 ≡ u2u

′
3u4u

′
1 ⊂ Nℓ+1,ℓ.

We prove (3) for u ∈ RN (w) and ℓ < k; the cases that ℓ ≥ k and u ∈ R
←−
N (w),

are similar. Let u = u1u2u3u4 where u1 ⊂ Λk,k, u2 ⊂ I ↓k−1ℓ+1 , u3 ⊂ V ℓ−1,ℓ−1,

and u4 ⊂ I↑k−1ℓ . We have u ≡ u1u3u2u4. u2u4 is a reduced word supported on
[ℓ, k − 1] that is a V. By Lemma 6.8 there is an equivalent Λ: u2u4 ≡ u′4u

′
2 where

u′4u
′
2 is a Λ with peak first(u′2) such that u′4 ⊂ I ↑k−2ℓ and u′2 ⊂ I ↓k−1ℓ . Then

u ≡ u1u3u2u4 ≡ u1u3u
′
4u
′
2 ≡ u3u

′
4u1u

′
2 ⊂
←−
N ℓ−1,ℓ. �

Example 6.11. Let n = 6. We start with a reduced word for an element of w ∈ Z
and apply rotations, choosing ℓ to be the first break from the left, indicated by the
symbol •, in the given reduced word.

5
·
·
·

1
6 5 4 • 2 · 0

6 5 4 ·
·

4
·
·

1
2 • 0

6 5 4 · · 1
·

4
·

2
•

0

1
6 5 4 · · · 0
·

4
•

2

·
·

1
6 5 4 · 2 · 0
•

4
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Rotating the last word yields the first one. There are two other words in RZ(w),
which are obtained from the first and third words above, by commutations.

5
4
·
·

1
6 5 · · 2 · 0

6 5 4 · 2 1
·

4
·
·
·

0

6.3. Normal words. The set Z has a partition into three subsets: the elements

w with R
←−
N (w) = ∅, those with RN (w) = ∅, and those with both RN (w) 6= ∅ and

R
←−
N (w) 6= ∅. We give a criterion for membership in these subsets.

Lemma 6.12. Let w ∈ Z.

(1) R
←−
N (w) = ∅ (resp. RN (w) = ∅) if and only if some word in RN (w) (resp.

R
←−
N (w)) contains I↓n0 (resp. I↑n0 ) as a factor, if and only if every word in

RN (w) (resp. R
←−
N (w)) does.

(2) There is a u ∈ RN (w) that does not contain I↓n0 as a factor, if and only if

there is a u′ ∈ R
←−
N (w) that does not contain I↑n0 as a factor.

Proof. (2) follows from Lemma 6.10(3).
For (1) we observe that the property of having I↓n0 as a subword, is invariant

under the braid relations, which connect R(w).
Suppose RN (w) contains a word with factor I↓n0 . In particular it contains I↓n0 as

a subword. Therefore the same is true for all of R(w). Now every N that contains
I↓n0 as a subword must contain it as a factor. This proves the second equivalence

in (1). Moreover no
←−
N contains I↓n0 as a subword, so R

←−
N (w) = ∅. Conversely,

suppose R
←−
N (w) = ∅. Then ∅ 6= RZ(w) = RN (w). Let u ∈ RN (w). Then u must

contain I↓n0 as a factor, for otherwise (2) yields a contradiction. �

Let w ∈ Z satisfy Supp(w) = Iaf . A normal word for w ∈ Z is an element
u ∈ RZ(w) such that:

(1) If RN (w) 6= ∅ then u has the form u = I↑nk · · · .

(2) If RN (w) = ∅, then u ∈ R
←−
N (w) has the form u = I↓k0 · · · .

Lemma 6.13. Let v ∈ Z be such that Supp(v) = Iaf . Then v has a unique normal
word, denoted vnor.

Proof. Existence holds by Lemma 6.10. Suppose that RN (v) 6= ∅. The case
RN (v) = ∅ is analogous. Let u = I↑nk u1 and u′ = I↑nk′ u′1 be normal words for v.

Suppose first that k′ < k. We cannot have k = n, because the form of u
implies that snv < v while that of u′ implies snv > v. So k < n. We have
v′ = skv < v. By the Exchange Property there is a letter in u′ whose removal gives
a reduced word u′′ for v′. Since kI↑nk′ is a reduced word, the removed letter does
not occur in I↑nk′ . In particular k ∈ Supp(v′). But Supp(I↑nk+1) ⊃ (Iaf \ {k}) so
Supp(v′) = Supp(v) = Iaf . By induction on length, u′′ = I ↑nk+1 u1, which is a
contradiction. Similarly k < k′ leads to a contradiction. Therefore k = k′. But
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then u1 and u′1 are reduced words and Vs for the same element of Z, so by Lemma
6.8, u1 = u′1 and therefore u = u′. �

6.4. Special words. In this section we assume that v ∈ Z is such that Supp(v) =
Iaf . By Lemma 6.13, v has a unique normal word vnor. We say that an embedded

subword u ⊂ Nk,k−1 (resp. u ⊂
←−
N k−1,k) is normally embedded if u = vnor for some

v ∈ Z with Supp(v) = Iaf and u = I↑nk · · · ⊂ Nk,k−1 (resp. u = I↓k−11 I↑n0 · · · ⊂←−
N k−1,k).

Suppose u ⊂ u′ and u 6= u′. Define firstgap(u ⊂ u′) (resp. lastgap(u ⊂ u′)) to
be the first (resp. last) letter j ⊂ u′ that is not in u.

We say that u ∈ RZ(v) is special if it has a special embedding, that is, an

embedding of the form u ⊂ u′ where u′ = Na,a−1 or u
′ =
←−
Na−1,a for some 1 ≤ a ≤ n

such that, if j = firstgap(u ⊂ u′), then adding j to u produces the normally
embedded word wnor ⊂ u′ for some w ∈ Cv. More specifically, one of the following
holds:

(1) u ∈ RN (v) and u ⊂ Na,a−1 for some 1 ≤ a ≤ n such that u contains all
but exactly one of the letters in I↑na⊂ Na,a−1, or

(2) u ∈ R
←−
N (v) with u ⊂

←−
Na−1,a for some 1 ≤ a ≤ n and u contains all but

exactly one of the letters in I↓a−11 I↑n0⊂
←−
Na−1,a.

Lemma 6.14. Let v ∈ Z with Supp(v) = Iaf and ℓ(v) < 2n. Then v has a
unique specially embedded word, denoted vsp ⊂ u′′, which is obtained by rotating the
normal embedding vnor ⊂ u′ at p = lastgap(vnor ⊂ u′). This given, we define the
special cover v∗ ∈ Cv of v, to be the unique cover w ∈ Cv such that the normally
embedded word wnor is obtained from the specially embedded word vsp ⊂ u′′ by
inserting firstgap(vsp ⊂ u′′). Moreover, if ℓ = firstgap(vnor ⊂ u′) and ℓ(v) < 2n− 1
then ℓ = firstgap(v∗nor ⊂ u′′), except when u′ = Nk,k−1 and lastgap(vnor ⊂ u′) <
ℓ ≤ k − 1, in which case firstgap(v∗nor ⊂ u′′) = ℓ− 1.

Proof. Suppose vnor ⊂ Nk,k−1. Let ℓ = firstgap(vnor ⊂ Nk,k−1).

Suppose p ⊂ I ↑k−11 ⊂ Nk,k−1 is missing from vnor. Let vnor = u1u2pu3u4 ⊂

Nk,k−1 where u1 ⊂ Λk,k, u2 ⊂ I↓k−1p+1 , u3 ⊂ V p−1,p−1, and u4 ⊂ I↑k−1p+1 . Then using

Lemma 6.8(3) we have vnor ≡ u1u2pu4u3 ≡ u1u
−
4 (k−1)u

−
2 u3 ≡ u−4 u1(k−1)u

−
2 u3 =:

u ⊂ Np,p−1. Now u−4 ⊂ I↑k−2p . In this case, u is special if and only if u4 = I↑k−1p+1 ,

that is, p = lastgap(vnor ⊂ Nk,k−1). Suppose so. Then firstgap(v∗nor ⊂ Np,p−1) is ℓ

unless ℓ ⊂ I↓k−1p+1⊂ Nk,k−1, in which case the answer is ℓ− 1.

Suppose p ⊂ I↓k−11 ⊂ Nk,k−1 is missing from vnor. Let vnor = u1u2u3pu4 where

u1 ⊂ Λk,k, u2 ⊂ I↓k−1p+1 , u3 ⊂ V p−1,p−1, and u4 ⊂ I↑k−1p+1 . Then vnor ≡ u3u1u2pu4 ≡

u3u1u
−
4 (k − 1)u−2 ≡ u3u

−
4 u1(k − 1)u−2 =: u ⊂

←−
Np−1,p. In this case u is special if

and only if u3 = V p−1,p−1 and u4 = I↑k−1p+1 , that is, p = lastgap(vnor ⊂ Nk,k−1).

Suppose so. Then firstgap(v∗nor ⊂
←−
N p−1,p) is ℓ unless ℓ ⊂ I↓k−11 ⊂ Nk,k−1 and ℓ > p

(ℓ = p cannot happen if ℓ(v) < 2n− 1), in which case the answer is ℓ− 1.

Suppose p ⊂ I↓n−1k ⊂ Nk,k−1 is missing from vnor. Let vnor = I↑p−1k pu1u2u3 ⊂

Nk,k−1 where u1 ⊂ Λp+1,p+1, u2 ⊂ I↓p−1k , and u3 ⊂ V k−1,k−1. We have vnor ≡

I↑p−1k pu2u3u1 ≡ u+
2 kI↑

p
k+1 u3u1 ≡ u+

2 ku3I↑
p
k+1 u1 =: u ⊂

←−
Np,p+1. In this case u

is special if and only if u2 = I↓p−1k and u3 = V k−1,k−1, that is, p = lastgap(vnor ⊂

Nk,k−1). Suppose so. Then ℓ ⊂ I↓n−1p+1⊂ Nk,k−1, and ℓ = firstgap(v∗nor ⊂
←−
N p,p+1).
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Suppose vnor ⊂
←−
N k−1,k. Let ℓ = firstgap(vnor ⊂

←−
Nk−1,k). Let p ⊂

←−
Nk−1,k

be missing for vnor. Then from the definitions we have p ⊂ I ↓n−1k ⊂
←−
N k−1,k.

Write vnor = I ↓k−11 I ↑n0 u1u2 where u1 ⊂ I ↓n−1p+1 and u2 ⊂ I ↓p−1k . Therefore

vnor ≡ u+
2 I↓

k−1
1 I↑n0 u1 =: u ⊂

←−
N p,p+1. u is special if and only if u2 = I↓p−1k , that

is, p = lastgap(vnor ⊂
←−
Nk−1,k). Suppose so. Then ℓ = firstgap(v∗nor ⊂

←−
N p,p+1).

Thus rotation at lastgap(vnor ⊂ u′) creates a particular specially embedded
word which we shall denote by vsp ⊂ u′′. It remains to show that vsp is unique.
Suppose u ∈ R(v) is such that u ⊂ u′ is a special embedding. Rotating u ⊂ u′ at
firstgap(u ⊂ u′), we obtain the normal embedding of vnor, which is unique. The
explicit computation of this rotation shows that it is the inverse of the rotation at
the last gap of the normal embedding of vnor (which was given above explicitly in
all cases). It follows that there is a unique specially embedded word for v. �

For later use we summarize the construction of Lemma 6.14 in the following
table, where p is the last gap. We have indicated the form of vsp, and used the
symbol ∗ to indicate where a letter (either k or k− 1) can be added to obtain v∗nor.

p ⊂ vsp u1 ⊂ u2 ⊂ u3 ⊂

I↑k−11 ⊂ Nk,k−1 I↑k−2p ∗u1(k − 1)u−2 u3 Λk,k I↓k−1p+1 V p−1,p−1

I↓k−11 ⊂ Nk,k−1 I↓p−11 I↑k−20 ∗u1(k − 1)u−2 Λk,k I↓k−1p+1

I↓n−1k ⊂ Nk,k−1 I↓p1 I↑k−10 ∗I↑pk+1 u1 Λp+1,p+1

I↓n−1k ⊂
←−
N k−1,k I↓p−1k+1 ∗I↓

k−1
1 I↑n0 u1 I↓n−1p+1

Example 6.15. Take n = 7 and vnor = 56754310124 ⊂ N5,4. In this case p = 3,
vsp = 35675431012, and v∗nor = 345675431012.

6.5. Kinds of covers. Let v ∈ Z be fixed. The set Iaf is divided into four kinds
of letters. Let j be v-internal if j ∈ Supp(v). If j 6∈ Supp(v), let j be v-isolated,
v-adjoining, and v-merging if the number of components of Supp(v) adjacent to j
is 0, 1, or 2, that is, |{j − 1, j + 1} ∩ Supp(v)| is 0, 1, or 2.

Let w ∈ Cv with a reduced word ũ ∈ RZ(w) and a letter j ⊂ ũ whose omission
leaves a reduced word u ∈ RZ(v). Then we call the cover w internal, isolated,
adjoining, or merging, according as j is (with respect to v). Such w have c(w)
equal to c(v), c(v) + 1, c(v), and c(v)− 1 respectively.

In the case of an internal cover the omitted letter j may vary if the reduced
word ũ is changed; however the component C of j ∈ Supp(v) depends only on w.
Moreover wC ⋗ vC and wC′ = vC′ for components C′ of Supp(v) with C′ 6= C.

If j 6∈ Supp(v) then the omitted letter j is uniquely determined by w.

Lemma 6.16. Let v ∈ Z with ℓ(v) < 2n.

(1) For each v-isolated letter j ∈ Iaf there is a unique cover w in Cv that omits
j, namely, sjv.

(2) For each v-adjoining letter j ∈ Iaf there are exactly two covers w ∈ Cv that
omit j, namely, sjv and vsj .

(3) For each v-merging letter j ∈ Iaf there are exactly four covers w ∈ Cv
that omit j. Let u ∈ R(v) and u+ and u− the subwords of u given by the
restriction to the letters greater and less than j respectively and let v+ and
v− be the corresponding elements of Z. Then the four covers of v that omit
j are sjv+v−, v+sjv−, v+v−sj, and v−sjv+.
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Proof. We prove (3) as the other cases are easier. We observe that v+ and v− are

defined independent of the reduced word u. The four given elements of C̃n are all
covers of v that omit j, and are distinct since j−1 ∈ Supp(v−) and j+1 ∈ Supp(v+).
We now realize each of them by reduced words that are Zs. By Lemma 6.8 let
u+ ∈ RΛ(v+) and u− ∈ RV (v−). Then ju+u−, u+ju−, and u+u−j are all Ns,

and u−ju+ is a
←−
N, and they are reduced words for the above elements of C̃n. It

remains to show that if w ∈ Cv omits j then w is one of the four given covers.
Let ũ ∈ RZ(w) and j ∈ ũ such that the omission of j from ũ leaves u ∈ RZ(v).
Suppose ũ ⊂ Nk,k−1. Suppose j ≥ k. Let u = u1u2u3 where u2 ⊂ Λj+1,j+1, so that
ũ = u1ju2u3 or u1u2ju3. Here Supp(u1) ⊂ [0, j− 1] and Supp(u3) ⊂ [0, j− 1] while
Supp(u2) ⊂ [j + 1, n]. If ũ = u1ju2u3 then ũ ≡ u1ju3u2. But not both u1 and u3

can contain j − 1, for if they did then u1 ends with j − 1 and u3 starts with j − 1
and u ≡ u1u3u2 is not reduced. If u1 does not contain j − 1 then ũ ≡ ju1u3u2 and
w = sjv−v+. If u2 does not contain j − 1 then ũ ≡ u1u3ju2 and w = v−sjv+. The

cases that ũ = u1u2ju3, j < k and ũ ⊂
←−
N k−1,k are similar. �

We now classify the internal covers of v. For this purpose we may assume Supp(v)

has a single component. For k, ℓ ≤ M let ΛM
k,ℓ = I↑Mk I↓M−1ℓ and for m ≤ k, ℓ let

V k,ℓ
m = I↓km I↑ℓm+1.

Lemma 6.17. Suppose v ∈ Z is such that Supp(v) consists of a single component
[m,M ].

(1) If M < n (resp. m > 0) then the internal covers of v are precisely those
obtained by inserting missing letters into u ⊂ V M,M

m (resp. u ⊂ ΛM
m,m)

where u is the unique element of RV (v) (resp. RΛ(v)).
(2) If m = 0 and M = n, consider the normal embedding vnor ⊂ u′. Then the

internal covers of v are precisely those obtained by inserting missing letters
into vnor ⊂ u′ (normal covers), plus the special cover, which is obtained
from the special embedding of vsp by inserting the first missing letter.

Proof. Since internal covers do not change the support and the support is assumed
to be an interval, by Lemma 6.4 adding any missing letter of [m,M ] creates a
cover. Any internal cover w ∈ Cv has the same support as v. If M < n then w has
a reduced word that is a V, and removing one of its letters yields a reduced word
for v that is a V. By uniqueness this word must be u. This proves (1) for M < n,
and m > 0 is similar. For (2) suppose Supp(v) = Iaf . Let w ∈ Cv. Consider the
normal embedding of wnor, which is unique since Supp(w) = Iaf . There is a unique
letter in wnor whose removal yields an embedded reduced word u for v. It is easy
to check that u is either vnor normally embedded or vsp specially embedded. �

6.6. Associated coroots. Let v ≤ v′ with v, v′ ∈ C̃n and let u ∈ R(v) and u′ ∈
R(v′) be such that u ⊂ u′. For j ⊂ u′, define α∨(u ⊂ u′, j) to be α∨vw if adding the
given occurrence of j to u creates a reduced word for a cover w⋗v, and 0 otherwise.
In particular the value is 0 if j ⊂ u. Define α∨(u ⊂ u′) =

∑
j⊂u′ α∨(u ⊂ u′, j). The

following Lemma holds by the definitions.

Lemma 6.18. Let v1 ≤ v′1, v2 ≤ v′2, u1, u
′
1, u2, u

′
2 reduced words for v1, v

′
1, v2, v

′
2

such that u1 ⊂ u′1 and u2 ⊂ u′2. Then

α∨(u1u2 ⊂ u′1u
′
2) = v−12 α∨(u1 ⊂ u′1) + α∨(u2 ⊂ u′2).
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It is straightforward to compute sums of associated coroots for subwords of
increasing or decreasing reduced words.

Lemma 6.19. Let 0 ≤ m ≤M ≤ n and u ⊂ I↑Mm or u ⊂ I↓Mm . Then

(6.2)

α∨(u ⊂ I↑Mm ) = α∨k + α∨k+1 + · · ·+ α∨M if M < n

α∨(u ⊂ I↑nm) = α∨k + α∨k+1 + · · ·+ α∨n−1 + 2α∨n

α∨(u ⊂ I↓Mm ) = α∨k + α∨k−1 + · · ·+ α∨m if m > 0

α∨(u ⊂ I↓M0 ) = α∨k + α∨k−1 + · · ·+ α∨1 + 2α∨0

where k = firstgap(u ⊂ u′) for u′ = I↑Mm or u′ = I↓Mm . If k does not exist (that is,
u = u′) then the sum is 0.

Next we compute sums of associated coroots for subwords of Vs and Λs whose
support are intervals. We assume there is a letter missing in the initial monotonic
part of the embedded word; otherwise the result is given by Lemma 6.19.

Lemma 6.20. Let v ∈ Z have Supp(v) = [m,M ] ( Iaf . Suppose u ∈ RV (v) with
M < n (resp. u ∈ RΛ(v) with m > 0) of the form u = u1u2 with u1 ⊂ I ↓Mm
(resp. u1 ⊂ I ↑Mm ) and u2 ⊂ I ↑Mm+1 (resp. u2 ⊂ I ↓M−1m ) so that u ⊂ V M,M

m

(resp. u ⊂ ΛM
m,m). Suppose that u1 6= u′ for u′ = I↓Mm (resp. u′ = I↑Mm ) so that

k = firstgap(u1 ⊂ u′) is well-defined. Let k′ = firstgap(u2 ⊂ u′′) where u′′ = I↑Mm+1

(resp. u′′ = I↓M−1m ); if u2 = u′′ then set k′ = M + 1 (resp. k′ = m− 1). Then

(6.3)

α∨(u ⊂ V M,M
m ) = (α∨m + · · ·+ α∨k−1) + (α∨k′ + · · ·+ αM ) if m > 0

α∨(u ⊂ V M,M
0 ) = 2(α∨0 + · · ·+ α∨k−1) + (α∨k + · · ·+ α∨M )

α∨(u ⊂ ΛM
m,m) = (α∨m + · · ·+ α∨k′) + (α∨k+1 + · · ·+ α∨M ) if M < n

α∨(u ⊂ Λn
m,m) = (α∨m + · · ·+ α∨k ) + 2(α∨k+1 + · · ·+ α∨n)

Proof. Since Supp(v) is an interval and we are adding letters in that same interval,
adding any missing letter creates a reduced word by Lemma 6.4. Let v2 ∈ Z be
such that u2 ∈ R(v2).

Let M < n and u ⊂ V M,M
m . Suppose m > 0. We have

α∨(u1 ⊂ I↓Mm ) = α∨m + · · ·+ α∨k−1 + α∨k .

By the assumption on support, since k /∈ Supp(u1) we have k ∈ Supp(u2) and
k 6= k′. Therefore

v−12 α∨(u1 ⊂ I↓Mm ) = α∨m + · · ·+ α∨k−1.

By Lemma 6.18 the desired expression is obtained.
Suppose m = 0. Since 0 ∈ Supp(w) we have

α∨(u1 ⊂ I↓M0 ) = α∨k + α∨k−1 + · · ·+ α∨1 + 2α∨0

v−12 α∨(u1 ⊂ I↓M0 ) =

{
2(α∨0 + · · ·+ α∨k′−1) + (α∨k′ + · · ·+ α∨k−1) if k > k′

2(α∨0 + · · ·+ α∨k−1) + (α∨k + · · ·+ α∨k′−1) if k < k′.

By Lemma 6.18 we obtain the desired formula.
The other computations are similar. �
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Lemma 6.21. Suppose v ∈ Z is such that Supp(v) = Iaf with normal embedding
vnor ⊂ Nk,k−1, vnor does not contain I↓n0⊂ Nk,k−1, and ℓ = firstgap(vnor ⊂ Nk,k−1).
Then

α∨(u ⊂ Nk,k−1) =

{
2(α∨0 + · · ·+ α∨k−1) + (α∨k + · · ·+ α∨ℓ ) if ℓ ≥ k

2(α∨0 + · · ·+ α∨ℓ−1) + (α∨ℓ + · · ·+ α∨k−1) if ℓ < k.

Proof. Follows from Lemmata 6.18, 6.19 and 6.20. �

Lemma 6.22. Suppose v ∈ Z is such that ℓ(v) < 2n and Supp(v) = [m,M ] is an
interval. Then the sum of α∨vw as w runs over the internal covers in Cv, is given by

2(α∨m + α∨m+1 + · · ·+ α∨M )

− χ(M < n)(−α∨M+1 + v−1α∨M+1)

− χ(m > 0)(−α∨m−1 + v−1α∨m−1).

Proof. We begin with the most involved case, when Supp(v) = Iaf . In this case
we must show that

∑
w∈Cv

α∨vw = 2(α∨0 + · · · + α∨n) = 2K. By Lemma 6.17,∑
w∈Cv

α∨vw = α∨(vnor ⊂ u′) + α∨vv∗ where vnor ⊂ u′ is the normal embedding.

For the computation of the special coroot α∨vv∗ we shall refer back to the proof of
Lemma 6.14 without further mention, for the explicit computations of the special
embedding vsp ⊂ u′′ given by rotating the normal embedding vnor ⊂ u′ at p =
lastgap(vnor ⊂ u′). The reader may find the table after Lemma 6.14 helpful.

Suppose that vnor ⊂ Nk,k−1 is the normal embedding for some 1 ≤ k ≤ n. Let
ℓ = firstgap(vnor ⊂ Nk,k−1) and p = lastgap(vnor ⊂ Nk,k−1).

Suppose ℓ ⊂ I ↑k−11 ⊂ Nk,k−1. We have p ⊂ I ↑k−1ℓ ⊂ Nk,k−1, v∗nor ⊂ Np,p−1

is normally embedded, and ℓ = firstgap(v∗nor ⊂ Np,p−1). We compute α∨vv∗ =
sℓ−1 · · · s1s0s1 · · · sn−1snsn−1 · · · sk(α

∨
k−1) = 2(α∨0 + · · ·+ α∨n)− (α∨ℓ + · · ·+ α∨k−1).

Combining this with α∨(vnor ⊂ Nk,k−1) = α∨ℓ + · · · + α∨k−1 from Lemma 6.19 we
obtain the total 2K.

Suppose ℓ ⊂ I↓k−11 ⊂ Nk,k−1. Since Supp(v) = Iaf , ℓ ⊂ I↑k−11 ⊂ Nk,k−1 appears

in vnor. Suppose p ⊂ I ↑k−11 ⊂ Nk,k−1. Suppose first that p > ℓ. Then v∗nor ⊂
Np,p−1 is normally embedded with firstgap(v∗nor ⊂ Np,p−1) = ℓ. We have α∨vv∗ =
sℓ · · · sℓ+1 · · · sn−1snsn−1 · · · skα∨k−1 = 2(α∨ℓ + · · · + α∨n) − (α∨ℓ + · · · + α∨k−1). By
Lemma 6.21 for ℓ < k we have α∨(vnor ⊂ Nk,k−1) = 2(α∨0 + · · · + α∨ℓ−1) + (α∨ℓ +
· · ·+ α∨k−1), and the total is 2K. Suppose next that p < ℓ. Again v∗nor ⊂ Np,p−1 is
normally embedded and firstgap(v∗nor ⊂ Np,p−1) = ℓ − 1. The coroot computation
is similar to the previous case. By definition p occurs after ℓ in Nk,k−1 so the

remaining subcase is p ⊂ I↓ℓ1⊂ Nk,k−1. Then v∗nor ⊂
←−
N p−1,p is normally embedded

and firstgap(v∗nor ⊂
←−
N p−1,p) = ℓ− 1 ⊂ I↓n−1p . The coroot computation is similar.

Suppose ℓ ⊂ I ↓n−1k ⊂ Nk,k−1. Since Supp(v) = Iaf , k − 1 must occur in vsp
after ℓ. In all cases firstgap(v∗nor ⊂ u′′) = ℓ. If p ⊂ I↑k−11 ⊂ Nk,k−1 then v∗nor ⊂
Np,p−1 is normally embedded with α∨vv∗ = sk−1sℓ+1 · · · sn−1snsn−1 · · · sk(α∨k−1) =
sk−1(2(α

∨
ℓ+1+ · · ·+α∨n)+(α∨k−1+ · · ·+α∨ℓ )) = 2(α∨ℓ+1+ · · ·+α∨n)+(α∨k + · · ·+α∨ℓ ).

Combined with α∨(vnor ⊂ Nk,k−1) = 2(α∨0 + · · · + α∨k−1) + (α∨k + · · · + α∨ℓ ) from

Lemma 6.21 we obtain a total of 2K. If p ⊂ I↓k−11 ⊂ Nk,k−1 then v∗nor ⊂
←−
Np−1,p is

the normal embedding with coroot computation proceeding as in the previous case.

If p ⊂ I↓ℓk⊂ Nk,k−1 then v∗nor ⊂
←−
N p,p+1 and the coroot computation proceeds in

the same way.
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The case vnor ⊂
←−
N k−1,k is very similar to the case vnor ⊂ Nk,k−1 with ℓ ⊂

I↑k−11 ⊂ Nk,k−1 and p ⊂ I↑k−1ℓ .
This finishes the case Supp(v) = Iaf .
Next we consider the casem = 0 and M < n. Let u ∈ RV (v) with u ⊂ V M,M . In

this case the sum of α∨vw for w ∈ Cv an internal cover of v, is equal to α∨(u ⊂ V M,M ).
Let u = u10u2 where u1 ⊂ I↓M1 and u2 ⊂ I↑M1 . Let a ⊂ I↓M1 (resp. b ⊂ I↑M1 ) be the
first missing letter from u1 (resp. u2), which exists if u1 6= I↓M1 (resp. u2 6= I↑M1 ).
By Lemma 6.20 we have

α∨(u ⊂ VM,M ) =




2(α∨0 + · · ·+ α∨a−1) + (α∨a + · · ·+ α∨M ) if u1 6= I↓M1
α∨b + · · ·+ α∨M if u1 = I↓M1 and u2 6= I↑M1
0 if u1 = I↓M1 and u2 = I↑M1 .

Consider β = −α∨M+1 + v−1α∨M+1. Suppose first that u1 6= I↓M1 . Since a is missing
from u1 and Supp(v) = [0,M ] is an interval, a ∈ u2. Therefore β = −α∨M+1 +
sasa+1 · · · sMα∨M+1 = α∨a + · · · + α∨M , which yields the desired total. Suppose

u1 = I ↓M1 and u2 6= I ↑M1 . Then β = −α∨M+1 + sb−1 · · · s1s0s1 · · · sMα∨M+1 =

2(α∨0 + · · ·+ α∨b−1) + (α∨b + · · ·+ α∨M ) as desired. If u1 = I↓M1 and u2 = I↑M1 then
β = −α∨M+1 + sM · · · s1s0s1 · · · sMα∨M+1 = 2(α∨0 + · · ·+ α∨M ) as desired.

The case that m > 0 and M = n is entirely similar to the previous case. The
remaining case is 0 < m and M < n. Using u ∈ RV (v) and u1mu2 = u ⊂ V M,M

m ,
the proof is similar to the case for m = 0 and M = n except that one must also
compute −α∨m−1 + v−1α∨m−1, which equals α∨m + · · · + α∨b−1 if u2 6= I ↑Mm+1 and

equals α∨m + · · ·+ α∨M if u2 = I↑Mm+1. �

6.7. Proof of Proposition 6.1. We fix v ∈ Z with ℓ(v) < 2n and i ∈ Iaf . Let

C′v = {w ∈ Cv | α
∨
i occurs in α∨vw}.

Case 1. i 6∈ Supp(v). Let w ∈ C′v. Since α∨i occurs in α∨vw and i 6∈ Supp(v) it
follows that i ∈ Supp(w). It is easy to check that α∨i occurs in α∨vw with coefficient
1. The desired multiplicity is obtained by Lemma 6.16.

Case 2. i ∈ Supp(v). Let C = [m,M ] be the component of i in Supp(v). The
covers in C′v add letters that are either in C or adjacent to C.

Case 2a. C = Iaf . In this case there are only internal covers. Therefore∑
w∈Cv

α∨vw = 2(α∨0 + · · ·+ α∨n) by Lemma 6.22. Since c(w) = c(v) for all such w,
Proposition 6.1 is verified in this case.

Case 2b. C = [0,M ] with M < n. (The case C = [m,n] with m > 0 is similar.)
Write v = vCv

′ where v′ is the product of the components of v other than vC . Then
the internal covers in C′v consist of the w ∈ Cv such that wC ⋗ vC and wC′ = vC′

for components C′ of Supp(v) with C′ 6= C. The sum of α∨vw for internal covers
of v in C′v, is given by Lemma 6.22. For such w we have c(w) = c(v). Suppose
M + 2 6∈ Supp(v), so that M + 1 is v-adjoining. Then all the noninternal covers
w ∈ C′v adjoin the letter M + 1 to C; such w satisfy c(w) = c(v) also. By Lemma
6.16 there are exactly two adjoining covers in Cv, namely, sM+1v = v′sM+1vC and
vsM+1. The latter has associated coroot α∨M+1 and therefore does not contribute

α∨i for i ∈ C. For w = sM+1v we have α∨vw = v−1C α∨M+1. Combining this with the
sum of coroots for internal covers associated to the component C of Supp(v), by
Lemma 6.22 the coefficient of α∨i is 2 as desired. Suppose M + 2 ∈ Supp(v). Then
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M + 1 is v-merging. By Lemma 6.16 there are four covers w ∈ Cv that add M + 1;
each has c(w) = c(v)− 1. Their associated coroots are

α∨v,vsM+1
= α∨M+1

α∨v,v′sM+1vC
= v−1C α∨M+1

α∨v,sM+1v′vC
= −α∨M+1 + v−1C α∨M+1 + (v′)−1α∨M+1

α∨v,vCsM+1v′ = (v′)−1α∨M+1.

The sum of these coroots, forgetting the α∨j for j 6∈ C, is 2(−α∨M+1 + v−1C α∨M+1).
Together with the coroots corresponding to internal covers given by Lemma 6.22,
which receive a relative factor of 2 since c(w) = c(v) for internal covers and c(w) =
c(v)− 1 for merging covers, gives the desired result.

Case 2c. 0 < m < M < n. The computations for this case are similar to those
above.

This completes the proof of Proposition 6.1.

7. Hopf property of Φ

In this section we prove Theorem 5.5.

7.1. A coproduct formula for nilHecke algebras. In Proposition 7.1 below,

we give a complicated but explicit formula for φ
(2)
0 (∆(Aw)) for w ∈ Waf . This

formula is valid for the nilHecke algebra for any Cartan datum.
Let v ∈ R(w) and consider the tuples v = [v(1), v(2), . . . , v(k)] consisting of

subwords v(i) ⊂ v (the embedding of the v(i) are fixed). Let xi (resp. yi) be the
first (resp. last) letters of v(i), considered as subletters of v via the embedding
xi ⊂ v(i) ⊂ v. Define Sv to be the set of (possibly empty) tuples v = [v(1), . . . , v(k)]
such that:

(1) v(i) is a subword of length at least two of v \ {x1, . . . , xi−1}, which is the
word v with the letters x1, . . . , xi−1 removed;

(2) y = y1y2 · · · yk is a subword of v; and
(3) the letters xi are distinct from the letters yj as subwords in v.

For a word u = u1u2 · · ·uℓ and a tuple v = [v(1), . . . , v(k)] let

bu =

ℓ−1∏

i=1

buiui+1 and bv =

k∏

i=1

bv(i) ,

where bij = −〈α
∨
i , αj〉 = −aij is the negative of the entry of the Cartan matrix.

For a given v = [v(1), . . . , v(k)] ∈ Sv let x = {x1, . . . , xk} and y = {y1, . . . , yk}.
Then set v \ (x ∪ y) to be the word v with the letters in x and y removed. For a
subword u ⊂ v \ (x ∪ y) (again with a fixed embedding), define u.y to be the word
u with the letters in y added in the correct order of v.

Proposition 7.1. For w ∈Waf and v ∈ R(w),

(7.1) φ
(2)
0 ∆(Aw) =

∑

v=[v(1),...,v(k)]∈Sv

bv
∑

u⊂v\(x∪y)

Au.y ⊗Au⊥.y

where u⊥ is the complement word of u in v \ (x ∪ y).
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Example 7.2. Take v = ijkl and v = [v(1)] with v(1) = v, so that v \ (x∪ y) = jk.
Take the subword u = j of v \ (x ∪ y). Then u.y = jl and u⊥.y = kl, so that the
term Au.y ⊗Au⊥.y = Ajl ⊗Akl appears with coefficient bijbjkbkl for this particular
v and u in the sum. Of course such a term can appear in other summands. For
example taking v = [ikl], we also have v \ (x∪ y) = jk. Taking again u = j, we get
the term Ajl ⊗Akl with a coefficient of bikbkl.

Proof of Proposition 7.1. The proof proceeds by induction on ℓ(w). For ℓ(w) = 1,

let v = i ∈ R(w). We have Sv = {[ ]}, so that φ
(2)
0 ∆(Aw) =

∑
u⊂v Au ⊗ Au⊥ =

Ai ⊗ 1 + 1⊗Ai.
Now suppose ℓ(w) > 1 and let v = v′i ∈ R(w) where i ∈ Iaf . By induction, (4.6)

and (4.10) we have

φ
(2)
0 (∆Av) = φ

(2)
0 (φ

(2)
0 (∆Av′ )∆Ai)

= φ
(2)
0




 ∑

v
′=[v′(1),...,v

′(k)]∈Sv′

bv′

∑

u′⊂v′\(x′∪y′)

Au′.y′ ⊗A(u′)⊥.y′




(Ai ⊗ 1 + 1⊗Ai −Ai ⊗ αiAi)]

=
∑

v
′=[v′(1),...,v

′(k)]∈Sv′

bv′

∑

u⊂v\(x′∪y′)

Au.y′ ⊗Au⊥.y′

− φ
(2)
0


 ∑

v
′=[v′(1),...,v

′(k)]∈Sv′

bv′

∑

u′⊂v′\(x′∪y′)

Au′.y′i ⊗A(u′)⊥.y′αiAi




(7.2)

where to obtain the first term in the last equation we have merged the terms
obtained from Ai ⊗ 1 and 1⊗Ai which correspond to i ∈ u and i /∈ u respectively.
From (4.3) and (3.9) we have, for an element w with reduced word z = z1z2 · · · zk

φ0 [Aw(−αi)] =
∑

wsβ⋖w

−〈β∨, αi〉Awsβ

= −
k∑

j=1

〈zk · · · zj+1 · α
∨
zj
, αi〉Az\zj

=
k∑

j=1


 ∑

r1···rl⊂zj+1···zk

bj,r1br1,r2 · · · brl,i Az\zj




=

k∑

j=1

∑

p⊂zi

bpAz\zj

where in the last equation p = p1 · · · pℓ is a subword of zi satisfying: (a) ℓ ≥ 2, (b)
pℓ = i, and (c) p1 = zj. Applying this equation to the last summand of (7.2) with
z = (u′)⊥.y we see that it suffices to find a bijection Φ from the set of triples

(v′ = [v
′(1), . . . , v

′(k)], u′, p)

such that (a) v′ ∈ Sv′ , (b) u′ ⊂ v′ \ (x′ ∪ y′), and (c) p = p1 · · · pℓ is a subword of
((u′)⊥.y′)i satisfying pℓ = i and ℓ ≥ 2, to the set of pairs

(v = [v(1), . . . , v(r)], u)
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such that (a) v ∈ Sv, (b) u ⊂ v \ (x ∪ y), and (c) yr = i. Furthermore under Φ we
must have (a) bv = bv′ , (b) u.y = u′.y′i and (c) u⊥.y equal to the word (u′)⊥y′i
with the letter p1 removed.

Given (v′ = [v
′(1), . . . , v

′(k)], u′, p) we consider two cases. If p1 /∈ y′ we define

v = [v
′(1), . . . , v

′(k), p] and u = u′. It is clear then that v ∈ Sv and we have
x = x′ ∪ {p1} and y = y′ ∪ {i}. Since p1 ∈ (u′)⊥ we see that u ⊂ v \ (x ∪ y) and
that u⊥ is (u′)⊥ with p1 removed.

Now suppose p1 = yj for some 1 ≤ j ≤ k. We define the fusion of two words zi
and iz′, where z, z′ are words and i is a letter to be zi ⋆ iz′ = ziz′. Here, all words
and letters are considered subwords of v. Let ṽ = v

′(j) ⋆ p be the fusion of v
′(j)

and p, which is defined since the last letter of v
′(j) and the first letter of p are the

same. Define ṽ = [v
′(1), . . . , v̂′(j), . . . , v

′(k), ṽ] where the hat denotes omission. Now
ṽ satisfies all the conditions of Sv except possibly condition (1). We produce v
from ṽ by the following shuffling procedure. Suppose ṽ = ṽ1 · · · ṽs and let t ∈ (1, s)
be the maximal index (if it exists) such that ṽt ∈ x′, say ṽt = x′m where m ∈ (j, k).

We now define v(k) = ṽtṽt+1 · · · ṽs and replace v
′(m) with ṽ = (ṽ1 · · · ṽt−1ṽt) ⋆ v

′(m).
Now repeat the procedure with the new ṽ, searching for some m′ ∈ (j,m) such that
ṽt′ = x′m′ for t′ ∈ (1, t− 1). When no more shuffling occurs, we label the subwords

v(1), . . . , v(k) in order. Note that the y′r for r 6= j are always kept in order. By
construction v ∈ Sv and we have x = x′ and y = (y′ \ {yj}) ∪ {i}. We define
(u = u′ ∪ {yj}) ⊂ v \ (x ∪ y) and check that u.y = u′.y′i and u⊥ = (u′)⊥. We now

make the crucial observation: shuffling is invertible if the letter yj ∈ v(k) is given –
we will call this “performing inverse shuffling at yj”. This completes the definition
of Φ.

We now define Φ−1. Given (v = [v(1), . . . , v(r)], u) we consider again two cases.

If v(r) ∩ u = ∅ we proceed by defining (v′ = [v
′(1), . . . , v

′(r−1)], u′ = u, p = v(r)).

Otherwise, suppose v(r) = v
(r)
1 · · · v

(r)
s and let t ∈ (1, s) be the maximal index such

that v
(r)
t ∈ u. We define p = v

(r)
t v

(r)
t+1 · · · v

(r)
s , u′ = u \ {v

(r)
t } and to produce v′

we perform inverse shuffling at v
(r)
t . It is straightforward to show that this process

well-defines a map that is inverse to Φ. �

7.2. Proof of Theorem 5.5. Recall that by Theorem 5.1,

Pr = Aρr
+ non-Grassmannian terms.

By Theorems 4.6 and 5.1, in order to prove Theorem 5.5 it suffices to show that

φ
(2)
0 (∆(Aρr

)) = 1⊗Aρr
+Aρr

⊗1+2
∑

1≤s<r

Aρs
⊗Aρr−s

+non-Grassmannian terms.

We have used the fact that if w is not Grassmannian then any term Ax ⊗ Ay

occurring in φ
(2)
0 (∆(Aw)) has either x or y non-Grassmannian.

We apply Proposition 7.1 to the case w = ρr and v the unique reduced word of
ρr, which by (1.1) is given by

v =

{
(r − 1) (r − 2) · · · 1 0 for 1 ≤ r ≤ n,

2n+ 1− r 2n+ 2− r · · ·n− 1 n n− 1 · · · 1 0 for n < r ≤ 2n,

where, by convention, if a letter occurs twice in ρr the left occurrence is distin-
guished by a bar.
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The terms 1⊗Aρr
+Aρr

⊗1 come from v = [ ] ∈ Sv and u = ∅ and u = v in (7.1).
All other u ⊂ v yield non-Grassmannian terms.

Now we calculate the coefficient of the term Aρs
⊗ Aρr−s

for s ≥ 1. Since the

operation φ
(2)
0 ◦∆ is cocommutative, it suffices to consider the case s ≤ r − s.

Define R to be the set of letters occurring in ρrρ
−1
r−s (together with the bars, if

any). If r − s− 1 ∈ R (in particular r− s− 1 < n) define R to be R with r − s− 1
replaced by r − s − 1; otherwise set R = R. If s− 1 ∈ R define R− to be R with
s− 1 removed. If r − s− 1 ∈ R− define R− to be R− with r − s− 1 replaced by
r − s− 1; otherwise set R− = R−.

Lemma 7.3. Suppose s ≤ r − s. The terms in Proposition 7.1 which give Aρs
⊗

Aρr−s
are exactly the following tuples v ∈ Sv and u ⊂ v \ (x ∪ y):

Case 1: r ≤ n or r > n and s ≤ 2n+ 1− r:
y = s − 1 s − 2 · · · 1 0, x = x1x2 · · ·xs is a permutation of the letters in R
or R, and u = ∅;

Case 2: r > n, s < r − s and s > 2n+ 1− r:
In addition to the possibilities in Case 1 we may also have y = s−2 · · · 1 0,
x = x1x2 · · ·xs−1 is a permutation of the letters in R− or R−, and u =
s− 1;

Case 3: r > n, s = r − s and s > 2n+ 1− r:
We have either y = s − 1 s − 2 · · · 1 0, u = ∅, and x is a permutation
of R; or y = s− 1 s − 2 · · · 1 0, u = ∅, and x is a permutation of R; or
y = s−2 · · · 1 0, u = s−1, u⊥ = s− 1, and x is a permutation of R− = R−;
or y = s − 2 · · · 1 0, u = s− 1, u⊥ = s − 1, and x is a permutation of
R− = R−.

Proof. u.y = ρs is embedded as a subword of ρr in two ways: s− 1 s− 2 · · · 1 0 or
s− 1 s− 2 · · · 1 0. Similarly if r − s > n then u⊥.y = ρr−s ⊂ ρr and if r − s ≤ n
then u⊥.y is either r − s− 1 r − s− 2 · · · 1 0 or r − s− 1 r − s− 2 · · · 1 0.

Suppose 0 ≤ p ≤ s − 2 is such that p 6∈ y. Then p ∈ u and p 6∈ u⊥, so that
p 6∈ u⊥.y, a contradiction. Therefore y ⊃ s− 2 · · · 1 0. This gives four cases.

(1) u = ∅ and y = s− 1 s− 2 · · · 1 0.
Here x can be a permutation of R or also of R provided r − s− 1 ∈ R.

(2) u = ∅ and y = s− 1 s− 2 · · · 1 0.
Suppose r− s > n. Since u⊥.y contains s− 1 we have 2n+1− (r− s) < s,
giving the contradiction 2n+1 < r. Therefore r− s ≤ n. Again since u⊥.y
contains s− 1 we must have r−s = s and u⊥ = ∅. Then x is a permutation
of R.

(3) u = s− 1 and y = s− 2 · · · 1 0.
s − 1 6∈ u⊥.y. This can only occur if r − s = s, u⊥.y = s− 1 s − 2 · · · 1 0,
and u⊥ = s− 1. Then x is a permutation of R− = R−.

(4) u = s− 1 and y = s− 2 · · · 1 0.
If r − s > n then x is a permutation of R−. Suppose s < r − s ≤ n. If
u⊥.y = r − s − 1 r − s − 2 · · · 1 0 then x is a permutation of R− and if
u⊥.y = r − s− 1 r−s−2 · · ·1 0 then x is a permutation of R−. If s = r−s
then u⊥ = s− 1 and x is a permutation of R− = R−.

In particular the last three cases only occur if s− 1 ∈ ρr, that is, 2n + 1 − r < s.
This given, the Lemma follows. �
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By Lemma 7.3 the possibilities for the tuples v ∈ Sv which contribute to the

coefficient of Aρs
⊗Aρr−s

in φ
(2)
0 (∆(Aρr

)) are determined by whether u = ∅, u = s−1
and u = s− 1. We denote the corresponding subsets of Sρr

by Su. Note that
Ss−1 = Ss−1. Define

T ′u =
∑

v∈Su

bv.

Proposition 7.4. Depending on the case of Lemma 7.3, we have T ′∅ = 2 or T ′∅ +
T ′
s−1

= 2 or T ′∅ + T ′s−1 + T ′
s−1

= 2.

Proposition 7.4 shows that the coefficient of Aρs
⊗Aρr−s

in φ
(2)
0 (∆(Aρr

)) is equal
to 2, thereby proving Theorem 5.5.

The proof of Proposition 7.4 is given in Section 7.9, after first preparing some
technical preliminary results in Sections 7.3-7.8.

7.3. Notation. For the evaluation of T ′u we require slightly more general functions.
Let x̂Iŷ be an embedded subword of ρr with x̂ and ŷ subletters, and I a subword.

Let S x̂ŷI be the set of all subwords p of ρr with first letter x̂ and last letter ŷ such
that p ∩ I = ∅. Then define

T x̂ŷ
I :=

∑

p∈Sx̂ŷ
I

bp.

Given sequences x = x1x2 · · ·xk and y = y1y2 · · · yk of subletters of ρr we define

T ′(x, y) =

k∏

i=1

T xi,yi

{x1,...,xi−1}∩(xi,yi)

where (xi, yi) denotes the subword of ρr occurring between the letters xi and yi.
Finally, let T (x, y) be obtained from T ′(x, y) by ignoring the extra power of 2 (if
any) which arises when yk = 0.

Given an interval [t, q] of unbarred letters and a set X of barred letters, let
f(t, q,X) denote the sum of T (x, y) as x varies over all permutations of X and
y = q(q − 1) · · · t. We always assume |[t, q]| = |X |, and write k = |X |. Given
(t, q,X), we partition X into subsets A, B, C where

(1) A ⊂ X consists of letters greater than q,
(2) B ⊂ X is a subset of [t, q],
(3) C ⊂ X consists of letters less than t.

Thus X is the disjoint union of A, B, and C. In the following we will write X − a
to mean the set X − {a} with the element a ∈ X removed. For a set S of (barred)
integers let S− denote S with its maximum element removed.

Now let us suppose that we are given a set X of barred and unbarred letters,
such that X is the disjoint union of sets A, B, C, U , and U ′, satisfying:

(1) U ′ is a set of unbarred letters including n,
(2) A consists of some barred letters in X greater than q,
(3) B consists of the barred letters in X in the interval [t, q],
(4) C consists of the barred letters in X less than t,
(5) U consists of some barred letters in X greater than q,
(6) every letter in U or in U ′ is greater than every letter in A, B, and C,
(7) the minimum element of U is smaller than or equal to the minimum element

of U ′.
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Denote by g(t, q,X) the sum of T (x, y) as x varies over all permutations of X
such that all letters in U occur to the left of all letters in U ′ and y = q(q − 1) · · · t.
Let us call X balanced if min(U ′) = min(U). Note that if X is unbalanced it will
stay unbalanced if min(U ′) is removed from it.

Let us now suppose that y1 = q̄ (instead of q), but the rest of y is as before.
Denote the answers by f ′(t, q,X) and g′(t, q,X) and use all the same conventions
as before.

Results about these various functions are proven in Sections 7.4-7.7. We are
ultimately interested in the case that X is one of R, R̄, R−, or R̄− and y is one of
the words described in Lemma 7.3. In Section 7.8 we explain how to construct the
various subsets A, B, C, U , and U ′, before proving Proposition 7.4 in Section 7.9.

7.4. Results for T x̂ŷ
I . In this section we calculate T x̂ŷ

I , which gives the contribu-
tion from a single pair of letters x̂ and ŷ.

Lemma 7.5. Let x̂Iŷ be an embedded subword of ρr with x̂ and ŷ subletters, I a
subword, and ŷ < n. Then

T x̂ŷ
I =

∑

p∈Sx̂ŷ

I

bp = −χ(x̂ = ŷ) + 2χ(ŷ=0)





1 if I = ∅ or min(I) = max(x̂, ŷ)

−1 if I = {n} or min(I) = {i, ī}

0 else

where min(I) consists of the 0,1, or 2 smallest letters of I and in the comparison
min(I) = max(x̂, ŷ) we ignore bars.

Proof. Let p = p1p2 · · · pℓ ∈ S
x̂ŷ
I be such that bp 6= 0. Then pi − pi+1 ∈ {±1, 0}

for all 1 ≤ i < ℓ. Since 0 never occurs in ρr, ŷ = 0 and x̂ = ŷ cannot both hold.
If ŷ = 0 then since b10 = 2, bp contains a factor of two, giving rise to the overall

factor 2χ(ŷ=0).
Since p is a subword of the unique reduced word of ρr and the latter word is a Λ

(see subsection 6.1), p crosses at most once from barred to unbarred letters. Suppose
īj are consecutive letters in p. Then j ∈ {i−1, i, i+1} and the corresponding values
of bij are 1,−2, 1 provided that j 6= n.

The contributions of the paths that only differ by . . . i i − 1 . . ., . . . i i i − 1 . . .
and . . . i i + 1 i i − 1 . . . all cancel out. For ŷ > x̂, the contributions of the paths
which differ in . . . ŷ − 1 ŷ . . ., . . . ŷ − 1 ŷ ŷ . . ., and . . . ŷ − 1 ŷŷ + 1 ŷ . . . all cancel
out. For x̂ = ŷ the paths ŷ ŷ and ŷ ŷ + 1 ŷ leave a net contribution of −1.

The case īj = n− 1n is special since bn−1n = 2. Given the above discussion, it
is tedious but not difficult to check all cases claimed in the lemma explicitly. �

In the following sections, we will use Lemma 7.5 repeatedly without mention.

7.5. Results for f(t, q,X): Barred letters only. In this section we derive results
for f(t, q,X), which is defined for a pair of unbarred letters t, q and a setX of barred
letters. It follows from its definition that f(t, q,X) only depends on B and the sizes
|A| and |C|. By definition f(q, q, ∅) = 0.

Let ǫ(n) denote the function which is 1 when n is even and 0 when n is odd.

Lemma 7.6. If |B| = 0 then f(t, q,X) = 1.

Proof. By Lemma 7.5 the only nonzero contributions to f(t, q,X) occur when I =
{x1, . . . , xi−1} ∩ (xi, yi) = ∅ for all i. For this to hold for all i ∈ [1, q − t + 1], the



38 THOMAS LAM, ANNE SCHILLING, AND MARK SHIMOZONO

letters in x = (x1, x2, . . . , xq−t+1) must occur in the same order as in ρr. This term
gives contribution 1 to f(t, q,X). �

Lemma 7.7. Suppose X 6= ∅. If t /∈ B then f(t, q,X) = f(t+ 1, q,X−).

Lemma 7.8. Suppose |C| > 0. Then f(t, q,X) = f(t+ 1, q,X−).

Proof. By Lemma 7.7, this holds if t /∈ B. Suppose t ∈ B. We have two cases
t = max(X) or t 6= max(X). In the first case, a sequence x can only contribute to
f(t, q,X) if xk = max(C). But f(t + 1, q,X −max(C)) = f(t + 1, q,X−) = 1 by
Lemma 7.6. In the second case xk may be max(X), t or max(C), all of which are
distinct. Hence we have f(t, q,X) = f(t + 1, q,X−) + f(t + 1, q,X − max(C)) −
f(t+1, q,X − t) by Lemma 7.5. Since f(t+1, q,X − t) = f(t+1, q,X −max(C)),
we conclude that f(t, q,X) = f(t+ 1, q,X−). �

Lemma 7.9. Suppose |C| > 0. Then f(t, q,X) = 1.

Proof. This follows from Lemmas 7.6 and 7.8 by induction. �

Lemma 7.10. Suppose |C| = 0. Then f(t, q,X) = ǫ(|B|).

Proof. We proceed by induction on the size of X . Suppose t /∈ B. Then |A|
must be non-empty. The inductive step holds by Lemma 7.7. Suppose t ∈ B. If
t = max(X) then |X | = 1 and the result is trivial. Thus we may assume that
t 6= max(X). Then f(t, q,X) = f(t+1, q,X−)− f(t+ 1, q,X − t). By Lemma 7.9,
f(t+1, q,X−) = 1. Also by the induction hypothesis f(t+1, q,X− t) = ǫ(|B|−1).
The result follows. �

7.6. Results for g(t, q,X): Unbarred letters as well. In this section we prove
results for the function g(t, q,X), where X is a set of barred and unbarred letters.

Lemma 7.11. Suppose |A| = |B| = |C| = 0. Then g(t, q,X) = 1.

Proof. Since by assumption all letters in U occur to the left of U ′, again by
Lemma 7.5 the only contribution to g(t, q,X) occurs when all letters in x occur
in the same order as in ρr. �

Lemma 7.12. Suppose X is unbalanced and |C| > 0. Then g(t, q,X) = 1.

Proof. We proceed by induction on |X |. If t /∈ B then for a non-zero contribution we
must have xk = min(U ′). If |U ′| = 1 the result follows from Lemma 7.9. Otherwise
it is the inductive hypothesis. If t ∈ B then xk may be equal to max(C), t, or
min(U ′), which are distinct. Hence we have g(t, q,X) = g(t+ 1, q,X −min(U ′)) +
g(t+1, q,X−max(C))− g(t+1, q,X− t) by Lemma 7.5. Since g(t+1, q,X− t) =
g(t+1, q,X−max(C)), we conclude that g(t, q,X) = g(t+1, q,X−min(U ′)). The
argument now proceeds as for t /∈ B. �

Lemma 7.13. Suppose X is unbalanced and |C| = 0. Then g(t, q,X) = ǫ(|B|).

Proof. We proceed by induction on |X |. If t /∈ B the argument is as for Lemma 7.12.
If t ∈ B, we may have xk ∈ {t,min(U ′)}. Thus g(t, q,X) = g(t+1, q,X−min(U ′))−
g(t+ 1, q,X − t). By induction and Lemma 7.12 this is equal to 1 − ǫ(|B| − 1), as
required. �

Lemma 7.14. Suppose X is balanced and |C| > 0. Then g(t, q,X) = ǫ(|A|+ |B|+
|C|).



SCHUBERT POLYNOMIALS FOR AFFINE GRASSMANNIAN OF SYMPLECTIC GROUP 39

Proof. We proceed by induction on |X |. Let a = max(A ∪ B ∪ C). If t /∈ B
then g(t, q,X) = g(t + 1, q,X − min(U ′)) − g(t + 1, q,X − a). By Lemma 7.12,
g(t + 1, q,X − min(U ′)) = 1. If a ∈ C and |C| = 1 then the result follows from
Lemma 7.11, otherwise it follows by induction. If t ∈ B then g(t, q,X) =

g(t+1, q,X−min(U ′))−g(t+1, q,X−a)−g(t+1, q,X−t)+g(t+1, q,X−max(C)).

Note that this formula holds even if t = a. Clearly, the last two terms cancel, so
the result follows by induction and Lemma 7.12. �

Let θ(n) be the function with values 1,−1, 2,−2, 3,−3, . . . on the nonnegative
integers.

Lemma 7.15. Suppose X is balanced, |C| = 0 = |A|, and t ∈ B. Then g(t, q,X) =
θ(|B|).

Proof. We proceed by induction on |X |. We have

g(t, q,X) = g(t+ 1, q,X −min(U ′))− g(t+ 1, q,X − t)− g(t+ 1, q,X − b)

where b = max(B). Again this holds even if t = b. By Lemma 7.12, g(t+ 1, q,X −
min(U ′)) = 1. The result follows from induction if t = b since g(t + 1, q,X − t) =
θ(0) = 1. Assume t 6= b. By Lemma 7.14, g(t + 1, q,X − b) = ǫ(|B| − 1). By the
inductive hypothesis, g(t+ 1, q,X − t) = θ(|B| − 1). But θ(|B|) = 1− θ(|B| − 1)−
ǫ(|B| − 1), proving the lemma. �

Lemma 7.16. Suppose X is balanced and |C| = 0. Furthermore suppose that either
we have |B| = 0 or we have B = [t′, t′′] for some t′ ≥ t and |A| ≤ t′ − t. Then
g(t, q,X) = (−1)|A|θ(|B|) + ǫ(|B|)ǫ(|A| − 1).

Proof. First suppose |A| = 0. If |B| = 0 then g(t, q,X) = g(t+ 1, q,X −min(U ′))
and we are done by Lemma 7.13. Otherwise let t′ = min(B). If t = t′ we are done
by Lemma 7.15. So let t′ > t. We proceed by induction on t′ − t ≥ 1. Thus t /∈ B
and g(t, q,X) = g(t+1, q,X −min(U ′))− g(t+1, q,X − b) where b = max(B). By
inductive hypothesis and Lemma 7.13, g(t, q,X) = ǫ(|B|)− θ(|B| − 1) = θ(|B|), as
required.

Now suppose that |A| > 0. Then t /∈ B and by Lemma 7.13 and induction we
have

g(t, q,X) = g(t+ 1, q,X −min(U ′)) − g(t+ 1, q,X −max(A))

= ǫ(|B|)−
(
(−1)|A|−1θ(|B|) + ǫ(|B|)ǫ(|A| − 2)

)

= (−1)|A|θ(|B|) + ǫ(|B|)ǫ(|A| − 1)

as required. �

For the next lemma we assume that min(U) > min(U ′). Suppose that min(U) ∈
U ′ (though one is barred and the other unbarred). Define U ′− = {u ∈ U ′ | u <
min(U)}.

Lemma 7.17. If |C| = 0, B = [t′, t′′] and |U ′−| + |A| ≤ t′ − t, then Lemma 7.16
holds as stated.

Proof. The statements follow from the fact that a non-zero contribution only occurs
with xk = min(U ′−). When |U ′−| becomes zero, X is balanced and we are in the
situation of Lemma 7.16. �



40 THOMAS LAM, ANNE SCHILLING, AND MARK SHIMOZONO

7.7. Results for f ′(t, q,X) and g′(t, q,X): One barred letter in y. Let us now
suppose that y1 = q̄ (instead of q), but the rest of y is as before. Denote the answers
by f ′(t, q,X) and g′(t, q,X) and use all the same conventions as before. We state
the relevant results. The proofs are identical to before. Let ǫ′(n) = 1 − ǫ(n) and
θ′(n) be defined on nonnegative integers by the sequence 0, 1,−1, 2,−2, . . ..

Lemma 7.18. Suppose |C| > 0. Then f ′(t, q,X) = 1.

Lemma 7.19. Suppose |C| = 0. Then f ′(t, q,X) = ǫ′(|B|).

Lemma 7.20. Suppose X is unbalanced and |C| > 0. Then g′(t, q,X) = 1.

Lemma 7.21. Suppose X is unbalanced and |C| = 0. Then g′(t, q,X) = ǫ′(|B|).

Lemma 7.22. Suppose X is balanced and |C| > 0. Then g′(t, q,X) = ǫ′(|A| +
|B|+ |C|).

Lemma 7.23. Suppose X is balanced and |C| = 0 = |A|. Then g′(t, q,X) =
θ′(|B|).

7.8. Defining U , U ′, A, B, C. Let us set X to be one of R, R̄, R−, or R̄− and pick
y to be one of the words described in Lemma 7.3. Thus t = 0 and q ∈ {s−1, s−2}.
We describe how to construct U , U ′, A, B, and C. First we must have C = ∅ and
there is no choice for B and U ′. We let A be the set of barred letters in X which are
greater than q and less than all unbarred letters in X . We let U be any remaining
barred letters in X .

For example, in Case 1 of 7.3 when X = R, r > n, and 2n + 1 − r ≤ r − s, we
would have B = ∅ and

U ′ = {r − s, r − s+ 1, . . . , n}

U = {r − s, r − s+ 1, . . . , n− 1}

A = {r − s− 1, r − s− 2, . . . , 2n+ 1− r}.

We claim that the sum g(t, q,X) of subsection 7.6 is equal to the same sum, but
without the assumption that letters in U occur to the left of letters in U ′.

This is proved as follows. In the case that X ∈ {R, R̄, R−, R̄−}, the letters in
U are all present in U ′. Let us take a permutation x of X such that T (x, y) 6= 0.
Then it is clear that unbarred letters of X occur in x in the same order as in ρr.
Suppose xi = n and there is a barred letter j̄ ∈ U occurring to the right of xi,
say xp = j̄ where p > i. Then one checks that in x, (a) barred letters greater

than j occur before xi, (b) letters in {n − 1, . . . , j + 1} occur between xi and xp

and (c) no unbarred letter less than j occurs between xi and xp. We now define a
sign-reversing involution: let x̃ be obtained from x by swapping the locations of j
with j. By Lemma 7.5, T (x, y) = −T (x̃, y). In other words, to calculate the sum of
T (x, y) as x varies over all permutations of X we need only consider permutations
x such that letters in U occur to the left of letters in U ′.

7.9. Proof of Proposition 7.4.

7.9.1. Notation. Since t = 0 and q ∈ {s − 1, s − 2} are known for the cases of
Lemma 7.3, from now on we will denote the total contributions by f(X), g(X),
f ′(X), g′(X), where X ∈ {R,R,R−, R−} is one of the sets in Lemma 7.3. We
prove Proposition 7.4 by splitting into the cases of Lemma 7.3. Note that the
terms T ′u of Proposition 7.4 always differ from the corresponding numbers f(X)
and g(X) by a factor of 2 (arising from yk = 0).
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7.9.2. Case 1. If R = R then T ′∅ = 2f(R). The result follows from Lemma 7.17.

Suppose R 6= R. By Lemma 7.17 we have g(R) = (−1)a+ǫ(a−1), where a = |A|
for X = R. Similarly, we have g(R) = (−1)a−1 + ǫ(a). Thus g(R) + g(R) = 1, so
T ′∅ = 2.

7.9.3. Case 2. If R consists only of barred letters, then we have f(R) + f(R−) = 1
by Lemma 7.10.

Otherwise we need to calculate g(R) + g(R−) + g(R) + g(R−). Let a and b be
the sizes of |A| and |B| when X = R. Then by Lemma 7.17

g(R) = (−1)aθ(b) + ǫ(b)ǫ(a− 1)

g(R) = (−1)a−1θ(b) + ǫ(b)ǫ(a)

g(R−) = (−1)aθ(b − 1) + ǫ(b− 1)ǫ(a− 1)

g(R−) = (−1)a−1θ(b − 1) + ǫ(b− 1)ǫ(a)

and the sum is 1.
In both cases T ′∅ + T ′

s−1
= 2 as required.

7.9.4. Case 3. Let b = 3s − 2n − 1 be the size of B in R. Then g(R) = θ(b)
and g(R−) = θ(b − 1) by Lemma 7.17.For the case y = s− 1s − 2 · · · 0 we have a
contribution of g′(R) = θ′(b− 1) by Lemma 7.23. We calculate T ′∅+T ′

s−1
+T ′s−1 =

2(θ(b) + θ′(b− 1)) + 2θ(b− 1) + 2θ(b− 1) = 2.

Appendix A. Pi

In the data that follows, elements of C̃n are indicated by reduced words.
Some Pi are expressed in the Aw basis of A0.

A.1. n = 2.

P1 = A0 +A1 +A2

P2 = A01 +A10 +A12 + 2A20 +A21

P3 = A012 +A101 +A120 +A121 +A201 +A210

P4 = A0121 +A1012 +A1210 +A2101

A.2. n = 3.

P1 = A0 +A1 +A2 +A3

P2 = A01 +A10 +A12 + 2A20 +A21 +A23 + 2A30 + 2A31 +A32

P3 = A012 +A101 +A120 +A121 +A123 +A201 +A210 + 2A230

+A231 +A232 + 2A301 + 2A310 +A312 + 2A320 +A321

P4 = A0121 +A0123 +A1012 +A1210 +A1230 +A1231

+A1232 +A2101 +A2301 +A2310 + 2A2320 +A2321

+A3012 + 2A3101 +A3120 +A3121 +A3201 +A3210

P5 = A01231 +A01232 +A10123 +A12310 +A12320 +A12321 +A21012

+A23101 +A23201 +A23210 +A30121 +A31012 +A31210 +A32101

P6 = A012321 +A101232 +A123210 +A210123 +A232101 +A321012
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A.3. n = 4.

P1 = A0 +A1 +A2 +A3 +A4

P2 = A01 +A10 +A12 + 2A20 +A21 +A23 + 2A30 + 2A31 +A32 +A34

+ 2A40 + 2A41 + 2A42 +A43

P3 = A012 +A101 +A120 +A121 +A123 +A201 +A210 + 2A230 +A231

+A232 +A234 + 2A301 + 2A310 +A312 + 2A320 +A321 + 2A340

+ 2A341 +A342 +A343 + 2A401 + 2A410 + 2A412 + 4A420 + 2A421

+A423 + 2A430 + 2A431 +A432

P4 = A0121 +A0123 +A1012 +A1210 +A1230 +A1231 +A1232 +A1234

+A2101 +A2301 +A2310 + 2A2320 +A2321 + 2A2340 +A2341 +A2342

+A2343 +A3012 + 2A3101 +A3120 +A3121 +A3201 +A3210 + 2A3401

+ 2A3410 +A3412 + 2A3420 +A3421 + 2A3430 + 2A3431 +A3432 + 2A4012

+ 2A4101 + 2A4120 + 2A4121 +A4123 + 2A4201 + 2A4210 + 2A4230 +A4231

+A4232 + 2A4301 + 2A4310 +A4312 + 2A4320 +A4321

Appendix B. Q
(n)
w

In the following tables, for w ∈ C̃0
n and λ a partition, the (w, λ)-th entry is the

coefficient of Mλ = 2ℓ(λ)mλ in Q
(n)
w . We work in the quotient in (2.23) and hence

we expand in Mλ for λ1 ≤ 2n.

B.1. n = 2.

1

0 1

2 11

10 1 1

3 21 111

010 1 1

210 1 1 1

4 31 22 211 14

0210 1 2 2 2

1210 1 1 1 1 1

41 32 311 221 213 15

10210 1 1 2 2 2

01210 1 1 1 1 1 1

42 411 33 321 313 222 2211 214 16

010210 1 1 2 2 2 2

210210 1 1 1 2 2 2 2

101210 1 1 1 1 1 1 1 1 1

43 421 413 331 322 3211 314 231 2213 215 17

0210210 1 2 2 2 4 4 4 4

0101210 1 1 1 2 2 2 3 3 3 3

2101210 1 1 1 1 1 1 1 1 1 1 1
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B.2. n = 3.

1

0 1

2 11

10 1 1

3 21 111

010 1 1

210 1 1 1

4 31 22 211 14

0210 1 2 2 2

3210 1 1 1 1 1

5 41 32 311 221 213 15

10210 1 1 2 2 2

03210 1 2 2 3 3 3

23210 1 1 1 1 1 1 1

6 51 42 411 33 321 313 222 2211 214 16

010210 1 1 2 2 2 2

103210 1 1 2 3 3 5 5 5 5

023210 1 2 2 2 3 3 4 4 4 4

123210 1 1 1 1 1 1 1 1 1 1 1

61 52 511 43 421 413 331 322 3211 314 231 2213 215 17

0103210 1 1 2 4 4 4 7 7 7 7

2103210 1 1 1 2 3 3 3 5 5 5 5

1023210 1 1 1 2 2 2 3 3 3 4 4 4 4

0123210 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Appendix C. P
(n)
w

In the following tables, for w ∈ C̃0
n and λ a strict partition, the (w, λ)-th entry

is the coefficient of the Schur P -function Pλ in P
(n)
w . Again w is given as a reduced

word.

C.1. n = 2.

1

0 1

2

10 1

3 21

010 1

210 1

4 31

0210 1

1210 1

5 41 32

10210 1 1

01210 1 1

6 51 42 321

010210 1 1 1

210210 1

101210 1 2 1

7 61 52 43 421

0210210 1 1 1

0101210 1 1 1

2101210 1 2 2 1
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C.2. n = 3.

∅ 1
1

0 1

2

10 1

3 21

010 1

210 1

4 31

0210 1

3210 1

5 41 32

10210 1

03210 1

23210 1

6 51 42 321

010210 1

103210 1

023210 1

123210 1

7 61 52 43 421

0103210 1

2103210 1 1

1023210 1 1

0123210 1 1
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[10] F. Hivert, N. M. Thiéry, MuPAD-Combinat, an Open-Source Package for Research in Alge-
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