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INTRODUCTION

A central problem in Algebraic Geometry is the classification of several isomorphism classes
of objects by considering their deformations and studying the naturally related moduli problems,
see [33], [34]. This general strategy has also been applied to singularities. Some classes of
singularities with fixed numerical invariants are studied from the moduli point of view, i.e.
proving the existence of moduli spaces or giving obstructions to their existence. See for instance
[17], [28], [29] and [42].

The main purpose of this paper is to prove the existence of themoduli spaceHN,p parameter-
izing the embedded curve singularities of(kN, 0) with an admissible Hilbert polynomialp and
to study its basic properties. The main difference between the classical projective moduli prob-
lems and the case studied here is thatHN,p is not a locally finite type scheme. Hence the general
techniques of construction of moduli spaces of projective objects do not apply to our problem
and we need to develop specific ones. SinceHN,p is a projective limit ofk-schemes of finite type
we define a measureµp in HN,p valued in the completion̂M of the ringM = K0(Sch)[L

−1]
whereL is the class ofK0(Sch) defined by the affine line overk. This measure induces a
motivic integration onHN,p and enable us to consider a motivic volume for singularitiesof
arbitrary dimension. See [27], [7], and [30] for the motivicintegration on jet schemes.

In [11], see also [14], we characterized the Hilbert-Samuelpolynomials of curve singularities:
we proved that there exists a curve singularityC with embedding dimensionb and Hilbert
polynomialp = e0T − e1 if, and only if, eitherb = e0 = 1 ande1 = 0, or 2 ≤ b ≤ e0,
andρ0,b,e0 ≤ e1 ≤ ρ1,b,e0, see Theorem 3.1 for the definitions ofρ0,b,e0 andρ1,b,e0. Moreover,
for each triplet(b, e0, e1) satisfying the above conditions there is a reduced curve singularity
C ⊂ (kN , 0) with k an algebraically closed field. From this result and the main result of this
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2 JUAN ELIAS

paper, Theorem 3.8, we deduce that the moduli spaceHN,p is nonempty for the polynomials
p = e0T − e1 with ρ0,b,e0 ≤ e1 ≤ ρ1,b,e0 for someb ≤ N .

The contents of the paper is the following. The main purpose of Section 1 is to characterize
the zero dimensional closed subschemesZ ⊂ (kN, 0) for which there exists a curve singularity
C ⊂ (kN, 0) such thatZ is a truncation ofC. In other words we characterize which zero-
dimensional schemes can be lifted to a curve singularity, Theorem 1.9. The key idea in the
proof of Theorem 1.9 is the control of the dimension of some lifting of Z obtained by applying
Artin’s approximation theorem to the system of equations defined by some syzygy conditions
deduced from Robbiano-Valla’s characterization of standard basis.

It is well known that some propertiesP defined in the set of curve singularities are finitely
determined, i.e. determined by then-th truncationCn of C for n ≥ n0 = n0(P). The most
studied finitely determined property is the analytic type. In [10] we prove that analytic type is
finitely determined forn ≥ n0 = 2µ + 1, whereµ stands for the Milnor number ofC, as a
corollary we get that if a property of curve singularities isinvariant by analytic transformations
then is finitely determined. In [10] we also prove that ”to have the same tangent cone” or ”to
have the same Hilbert function” are finitely determined properties. In the section 3 we attach to
any finitely determined propertyP a rational power seriesMPSP ∈M[T ]loc, Proposition 3.22.

In the second section we introduce the algebraic families ofcurve singularities over a scheme
S. Notice that the concept of family is a key ingredient in a moduli problem. We analyze the
relationship between families and normally flat morphisms and we also give several explicit
examples of families of curve singularities with fixed Hilbert polynomial.

The purpose of Section 3 is to construct a moduli schemeHN,p parameterizing the embedded
curve singularities of(kN, 0) with fixed Hilbert polynomialp. In the main result of this section,
Theorem 3.8, we establish the existence of ak−schemeHN,p pro-representing the functor of
familiesHN,p. We will obtainHN,p as an inverse limit ofk−schemesΞn of finite type with
affine morphismsan : Ξn → Ξn−1. Notice that in Proposition 3.6 we prove some properties of
Ξn as a corollary of Theorem 1.9; in particular we prove thatΞn contains then-th truncations of
all curve singularities with Hilbert polynomialp. The key point in the existence ofHN,p is the
control of the behavior of the degree one superficial elements given in [10]; this enables us to
prove thatan is affine for a big enoughn. As a corollary we get that the cohomological dimen-
sion ofHN,p is finite, and that there exists a universal family overHN,p. We end section three
by constructing the Hilbert strata ofHN,p for each admissible Hilbert function, in particular we
prove the existence of a moduli space parameterizing normally flat families.

In the second part of section three we introduce a motivic measureµp defined in the algebra
of cylindersHN,p valued inM. By means ofµp we define for a singularityX of arbitrary
dimension a motivic volumevol(X) ∈ M̂. Given a propertyP defined on the set of curve
singularities with Hilbert polynomialp we define a motivic Poincare seriesMPSP ∈ M[[T ]].
We prove that ifP is a finitely determined property thenMPSP ∈ M[T ]loc. In particular we
proveMPSHN,p

∈M[T ]loc.
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In the section 4 we compute the tangent space ofHN,p at a closed point, for this we determine
families that are first order deformations. We apply these results to the moduli space of singu-
larities with maximal Hilbert function, in particular to plane curve singularities. By considering
HN,p as object of the category of pro-schemes we define a topology on its sheaf of rings. Taking
dual spaces with respect this topology we obtain the reflexivity of the tangent space at the closed
points ofHN,p and also the reflexivity of the normal space of the curve singularities parame-
terized byHN,p. We end the paper studying the obstructiveness of the closedpoints ofHN,p.
We prove that plane curve singularities and space curve singularities with maximal numbers of
generators with respect to their multiplicity define non-obstructed closed points.

ACKNOWLEDGEMENTS: The author would like to thank O.A. Laudal for the comments and
suggestions that improved this paper.

1. TRUNCATIONS OF CURVE SINGULARITIES.

Throughout this paperk is an algebraically closed field. We setR = k[[X1, ..., XN ]], M =

(X1, ..., XN) is the maximal ideal ofR, and we denote by(kN, 0) thek−schemeSpec(R).
A curve singularity of(kN, 0) is a one-dimensional Cohen-Macaulay, closed subschemeC

of (kN, 0). We denote bym the maximal ideal ofOC = R/I, and byH1
C (resp. h1

C(T ) =
e0(T + 1) − e1) the first Hilbert function (resp. Hilbert polynomial) ofC, i.e. H1

C(t) :=

lengthR(OC/m
t+1) andH1

C(t) = h1
C(t) for t ≥ e0− 1; e0 is the multiplicity ofC. An element

x ∈ OC is a degree one superficial element if(mn+1 : x) = mn for all n≫ 0, see for instance
[35].

From now on we fix a degree-one polynomialp(T ) = e0(T + 1) − e1 for which there exist
a curve singularityC ⊂ (kN, 0) of embedding dimensionb ≤ N with h1

C = p, see Proposi-
tion 3.1.

Given a curve singularityC we denote byCn the closed sub-scheme of(kN, 0) defined by
the idealI(C) +Mn, we say thatCn is then−th truncation ofC, n ≥ 1. First we recall some
necessary conditions for the idealsJ ⊂ R to being a truncation of a curve singularity.

Lemma 1.1. Let C ⊂ (kN, 0) be a curve singularity of multiplicitye0. There exists a linear
formL ∈M \M2 such that for alln ≥ e0 + 1 such that the following conditions hold:

(1) lengthR(R/I(C) +Mn + (L)) = e0,
(2) if n is the maximal ideal ofR/I(C)+Mn then for allt, n−2 ≥ t ≥ e0−1, the product

byL defines an isomorphism ofk-vector spaces of dimensione0:

nt

nt+1

.L
−→

nt+1

nt+2

Proof. Sincek is infinite andOC is a Cohen-Macaulay local ring we may assume that there
exists a linear formL ∈M \M2 such that its coset defines a degree one superficial element of
OC , [31] Proposition 3.2. Then we havelengthR(R/I(C) + (L)) = e0 andMn ⊂ I(C) + (L)

for all n ≥ e0. From this we deduce the first equality.
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From [26], Theorem 2, we have

dimk

(
mn

mn+1

)
= e0

for all n ≥ e0 − 1. Hence from [10], Proposition 1, we deduce

mt

mt+1

.L
−→

mt+1

mt+2

is an isomorphism ofk-vector spaces of dimensione0 for all n− 2 ≥ t ≥ e0 − 1. Since

mt

mt+1
∼=

nt

nt+1

for all n− 2 ≥ t ≥ e0 − 1, we get(2). �

Next we define a set of idealsTn containing then-th truncation of curve singularities of
multiplicity e0. Since we want to consider in Section 3 a scheme structure on some subsets of
Tn, we replace the identity of Lemma 1.1(1) by an inequality that will define an open condition
on a suitable Grassmanian.

Definition 1.2. Letn ≥ e0 + 1 be an integer,Tn is the set of idealsJ ⊂ R such thatMn ⊂ J
and such that there exists a linear formL ∈M \M2 such that

(1) lengthR(R/J + (L)) ≤ e0, and
(2) if n is the maximal ideal ofR/J then the product byL is an isomorphism ofk-vector

spaces
nt

nt+1

.L
−→

nt+1

nt+2

of dimensione0, for all t = e0 − 1, . . . , n− 2.

From the condition(2) it is easy to prove that there exist a linear polynomialqJ(T ) = e0(T +
1)− b, b ∈ Z, such that

qJ(t) = lengthR(R/J +M t+1)

for all t = e0 − 2, . . . , n − 1. From the characterization of Hilbert functions due to Macaulay,
see for instance [40], we get

qJ (t) ≥ e0(t+ 1)−

(
e0
2

)
.

For alln1 ≤ n2 we denote byan2,n1 : Tn2 −→ Tn1 the projection mapan2,n1(J) = J +Mn1 .

For allf ∈ R we denote byf ∗ ∈ S = k[X1, . . . , XN ] the initial form off . If J is an ideal ofR
we will denote byJ∗ the homogeneous ideal ofS generated by the initial forms of the elements
of J , we putGr(R/J) = S/J∗ for the associated graded ring toR/J . A set of elements of
J such that their initial forms is a (minimal) set of generators of J∗ is known as a (minimal)
standard basis ofJ . We will denote bySn, resp.J∗

n, the degreen component ofS, resp.J∗.
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Proposition 1.3. Let J be an element of Tn, n ≥ e0 + 2, then every minimal homogeneous
basisF1, . . . , Fs of J∗ satisfies

deg(Fi) 6∈ {e0 + 1, . . . , n− 1}

for all i = 1, . . . , s.

Proof. Let n be the maximal ideal ofR/J . L is a linear form, satisfying the conditions(1) and
(2) of the definition ofTn, so that

St

J∗
t

=
nt

nt+1

.L
−→

St+1

J∗
t+1

=
nt+1

nt+2

is an isomorphism ofk-vector spaces for allt = e0 − 1, . . . , n − 2. From the surjectivity of
these morphisms we getSt = LSt−1 + J∗

t for t = e0, · · ·n− 1. Hence we deduce

J∗
t ⊂ S1J

∗
t−1 + LSt−1

t = e0+1, · · ·n− 1. Leta be an element ofJ∗
t , then there existb ∈ S1J

∗
t−1 ⊂ J∗

t andα ∈ St−1

such thata = b + Lα. In particularLα = a − b ∈ J∗
t . From the injectivity of the above

morphisms we getα ∈ J∗
t−1, soa ∈ S1J

∗
t−1. HenceJ∗

t ⊂ S1J
∗
t−1 and then

J∗
t = S1J

∗
t−1

for t = e0 + 1, · · · , n− 1. From this we get the claim. �

Definition 1.4. Let J ∈ Tn be an ideal,n ≥ e0 + 2, and letF1, . . . , Fs be a minimal homo-
geneous basis ofJ∗. We may assume thatdeg(Fi) ≤ e0 for i = 1, . . . , v anddeg(Fi) ≥ n for
i = v + 1, . . . , s. We denote bỹJ the homogeneous ideal ofS generated byFi, i = 1, . . . , v.

Next we will recall a result of G. Hermann, [23], quoted by M. Artin in [1], Theorem
6.5. We need some additional definitions. The degreedeg(f) of a r-pla of polynomials
f = (f1, . . . , fr) ∈ Sr is by definition the sum of the degrees off1, . . . , fr. The degree of
F = {f1, . . . , fs}, fi ∈ Sr, is the sum of the degrees off1, . . . , fs. Let B ⊂ Sr be aS-sub-
module, the degreedeg(B) of B is the minimum of the degrees of its systems of generators.

Proposition 1.5([23], [1]). There exists an integer valued functionγ : N2 −→ N such that for
all idealsK ⊂ S of degree≤ d there exists a primary decomposition ofK = K1 ∩ · · · ∩ Kr

such that the following integers are bounded byγ(N, d):

(1) The numberr, and the degree of each primary idealKi.
(2) The degree of the associated prime idealpi = rad(Ki) and the exponentsmi such that

pmi

i ⊂ Ki, i = 1, · · · , r.

We will apply the last proposition to our setting.

Definition 1.6. LetK be a heightN − 1 homogeneous ideal ofS. Given a minimal primary
decompositionK = K1 ∩ · · · ∩Kr under the conditions(1) and(2) of Proposition 1.5, we can
split this decomposition, after a suitable permutation, intwo piecesKemb = Kw+1 ∩ · · · ∩Kr,
such thatrad(Kemb) = M andKno−emb = K1 ∩ · · · ∩Kw is a perfect heightN − 1 ideal ofS.
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Proposition 1.7. There exists a functionδ : N2 −→ N such that: letJ be an ideal of Tn,
n ≥ δ(N, e0), then the following conditions hold:

(1) S/J̃ is a one-dimensional graded ring of multiplicitye0, deg(J̃) ≤ δ(N, e0), and J̃ +
Mn = J∗.

(2) If J is the ideal defining then-th truncation of a curve singularityC of multiplicity e0
thenS/J̃ is the associated graded ring toOC , i.e. J̃ = I(C)∗.

(3) If Syz1(J̃) is the first syzygy module ofF1, . . . , Fv then it holdsdeg(Syz1(J̃)) ≤
δ(N, e0).

Proof. (1) from the definition ofJ̃ we getJ̃ + Mn = J∗. Let us assume thatS/J̃ is a zero
dimensional ring. SincẽJ is generated by homogeneous forms of degree≤ e0 we have

deg(J̃) ≤ e0

(
N + e0

N

)
= d,

so from Proposition 1.5(2) we get that

lengthS(S/J̃) ≤

(
N − 1 + γ(N, d)

N − 1

)
= η(N, e0).

We defineδ(N, e0) = η(N, e0) +
(
e0
2

)
+ 1. SincelengthS(S/J̃) ≥ e0(n) −

(
e0
2

)
then for

n ≥ δ(N, e0) we get a contradiction, sodim(S/J̃) ≥ 1.
Let n be the maximal ideal ofS/J̃ . From the definition ofJ̃ and condition(2) of the

definition of Tn we get thatnt+1 = Lnt for all t ≥ e0 − 1, so dim(S/J̃) ≤ 1. Since
dim(S/J̃) ≥ 1 we have thatS/J̃ is a one-dimensional graded ring of multiplicity less or
equal thane0. Let J̃ = Kno−emb ∩Kemb be a primary decomposition of̃J satisfying Proposi-
tion 1.5, whereKno−emb is a perfect heightN − 1 ideal andKemb is aM−primary ideal. Since
δ(N, e0) ≥ γ(N, d) from Proposition 1.5 we haveMn ⊂ Kemb and then

H1
S/J̃

(n) = H1
S/Kno−emb

(n) + lengthS

(
Kno−emb +Kemb

Kemb

)
.

From this we deduce thatH0
S/J̃

(n) = H0
S/Kno−emb

(n) for all n ≥ δ(N, e0). SinceS/Kno−emb is a

one-dimensional Cohen-Macaulay graded ring of multiplicity e0(S/Kno−emb) = e0(S/J̃) ≤ e0
andH0

S/J̃
(e0−1) = e0, second condition of the definition ofTn, we get thatS/J̃ has multiplicity

e0.
(2) see [10], Proposition 2;(3) follows from [39]. �

We denote byβArtin : N4 −→ N the so-called beta function of Artin, see [1], Theorem 6.1.

Proposition 1.8. There exists a numerical functionβ : N3 −→ N such that for all idealsJ of
Tn, n ≥ δ(N, e0),

β(N, e0, n) ≥ βArtin(N, v(r + 1), 2r, n)

with v the minimal number of generators of̃J , and r the minimal number of generators of
Syz1(J̃).
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Proof. From the last result we know thatv ≤ deg(J̃) ≤ δ(N, e0) andr ≤ deg(Syz1(J̃)) ≤
δ(N, e0). From these inequalities we deduce the claim. �

Theorem 1.9.For all n ≥ δ(N, e0) the set of the associated ideals ton-th truncations of curve
singularities of multiplicitye0 coincides with

T
′

n = aβ(N,e0,n),n(Tβ(N,e0,n)).

Moreover, givenJ ∈ T
′

n there exists a curve singularityC of multiplicity e0 such thatOCn
=

R/J , andS/J̃ is the associated graded ring toOC .

Proof. Let us consider an idealJ = (f1, . . . , fs) of Tn, n = β(N, e0, n), such thatFi = f ∗
i ,

i = 1, · · · , s, form a minimal basis ofJ∗. We may assume thatdeg(Fi) ≤ e0 for i = 1, . . . , v

anddeg(Fi) ≥ n for i = v + 1, . . . , s, Proposition 3.7. We denote bỹJ the homogeneous ideal
of S generated byFi, i = 1, . . . , v.

Let Z be the first syzygy module off1, . . . , fs, and letZ∗ be the first syzygy module of
F1 = f ∗

1 , . . . , Fs = f ∗
s . Let us recall that there exists a mapΦ : Z −→ Z∗, see proof of [37]

Theorem 1.9, such that for all(a1, . . . , as) ∈ Z we haveΦ(a1, . . . , as) = (b1, . . . , bs) with bi the
initial form of ai if deg(ai) = p− di, with di = deg(Fi), p = Min{deg(ai)+ d1, i = 1, . . . , s},
and zero otherwise.

Let R1, . . . , Rr be a minimal system of generators of syzygy module ofF1, . . . , Fv. From
[37], Theorem 1.9, there exist elementsR̂1, . . . , R̂r of Z such thatΦ(R̂i) = Ri, i = 1, . . . , r.

Let R̃i the projection on the firstv components of̂Ri, i = 1, . . . , r. Then we have,i = 1, . . . , r,
v∑

j=1

R̃i
jfj = 0 mod(X1, . . . , XN)

n.

Let us consider the following system of equations attached to these syzygy conditions

(Syz) :





∑v
j=1X

i
jYj = 0

i = 1, . . . , r

considered in the polynomial ringk[X1, . . . , XN ; Y1, . . . , Yv, X
1
1 , . . . , X

r
v ].

Sincen = β(N, e0, n) ≥ βArtin(N, v(r + 1), 2r, n), from the approximation theorem of
Artin, [1] Theorem 6.1, there exists a solution of the systemof equations(Syz)

v∑

j=1

R
i

jgj = 0

i = 1, . . . , r, and such that 



gj = fj modMn i = 1, . . . , v

R
i
= R̃i modMn i = 1, . . . , r

Let us defineI = (g1, . . . , gv)R. Next step is to prove thatg1, . . . , gv is a standard basis of
I. We will prove it by means of [37] Theorem 1.9. Notice thatI = J mod(X1, . . . , XN)

n,



8 JUAN ELIAS

g∗i = f ∗
i = Fi, i = 1, . . . , v. HenceR1, . . . , Rr is also a minimal system of generators of the

first syzygy module of{g∗1, . . . , g
∗
v}. SinceΦ(R

i
) = Φ(R̃i) = Ri, i = 1, . . . , r, andR

1
, . . . , R

r

verifies (Syz), from [37] Theorem 1.9, we get that{g1, . . . , gv} is a standard basis ofI, i.e.
I∗ = (g∗1, . . . , g

∗
v) = (F1, . . . , Fv) = J̃ . In particularR/I is a one-dimensional local ring of

multiplicity e0, Proposition 1.7(1).
From the condition(1) of the definition ofTn we get that there exists a linear formL such that

dimk(R/I+(L)) = e0, soR/I is a one-dimensional Cohen-Macaulay local ring of multiplicity
e0. If we defineC = Spec(R/I) then we deduce the claim. �

2. FAMILIES OF EMBEDDED CURVE SINGULARITIES.

For allk-scheme of finite typeS = Spec(A) we will denote by(kN , 0)S the affinek-scheme
Spec(A[[X1, ..., XN ]]). We denote byπ : (kN , 0)S −→ S the morphism ofk-schemes induced
by the natural morphism ofk-algebrasA −→ A[[X]] = A[[X1, ..., XN ]]. Given a closed sub-
schemeZ ⊂ (kN , 0)S we will denote byZn the closed sub-scheme of(kN , 0)S defined by the
idealI(Zn) = I(Z) + (X)n, for all n ≥ 1.

Let us denote byHN,p : Aff −→ Set the contravariant functor such that for all affinek-
scheme of finite typeS

HN,p(S) =





closed subschemesZ ⊂ (kN , 0)S such thatπ : Z −→ S
is flat and

(i) for all n ≥ e0 + 1 the morphismπn : Zn −→ S is flat with
fibers of lengthp(n− 1),

(ii) for all closed pointss ∈ S the fiberZs = Z ⊗S k(s) is a
curve singularity of(kN , 0) with Hilbert polynomialp.





we say thatHN,p(S) is the set of families of curves overS with Hilbert polynomialp.

Proposition 2.1. (1) HN,p(Spec(k)) is the set of curve singularities of(kN , 0) with Hilbert
polynomialp.

(2) Given a schemeZ ⊂ (kN , 0)S the following conditions hold
(2.1) ifZ verifies the condition(i) of the definition of family of curve singularities over
S thenZ is flat overS,
(2.2) ifS is reduced and if for all closed pointss ∈ S the fiberZs is a curve singularity
with Hilbert polynomialp thenZ is a family of curves overS.

Proof. (1) From the definition of family of curve singularities it iseasy to see that
HN,p(Spec(k)) is a set of curve singularities with Hilbert polynomialp(T ). Let C be a
curve singularity of(kN , 0) with Hilbert polynomialp(T ). From [26], Theorem 2, we have
h1
C(n) = H1

C(n) for n ≥ e0 − 1, so we haveC ∈ HN,p(Spec(k)).
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(2.1) follows the main ideas of the proof of [32], Theorem 55.Let Z = Spec(A[[X ]]/J) be a
closed subscheme of(kN , 0)S, with S = Spec(A), such that for alln ≥ e0 + 1 the morphism
πn : Zn −→ S is flat with fibers of lengthp(n− 1). We have to prove that the morphism

A −→ B :=
A[[X ]]

J
is flat. Letf : L −→ P be a monomorphism of finitely generatedA-modules, we have to prove
thatf ⊗ IdB : L⊗A B −→ P ⊗A B is also a monomorphism.

Since the morphismA −→ Bn := A[[X]]
J+(X)n

is flat for alln ≥ e + 1, we have that

f ⊗ IdBn
: L⊗A Bn −→ P ⊗A Bn

is also a monomorphism,n ≥ e0 + 1. Hence

lim←−f ⊗ IdBn
: lim←− (L⊗A Bn) −→ lim←− (P ⊗A Bn)

is a monomorphism. Since theA-modulesL andP are finitely generated it is well known that

lim←− (L⊗A Bn) ∼= L⊗A B, lim←− (P ⊗A Bn) ∼= P ⊗A B

from this we deduce(2.1). The statement (2.2) follows from [26], Theorem 2. �

Remark 2.2. Notice that the condition(i) implies that for all closed pointss ∈ S the fiberZs

is a1−dimensional closed sub-scheme of(kN , 0) with Hilbert polynomialp. Hence(ii) can be
changed to

(ii)’ for all closed pointss ∈ S the fiberZs is a Cohen-Macaulay scheme.

Remark 2.3. There exist flat morphisms that are not families. See Example4.4 for a first order
deformation of a plane curve singularity that is not a family.

In the following examples we will construct families of curve singularities with a closed fiber
C by deforming the idealI(C), by deforming a first syzygy matrix ofI(C) and by deforming
a parametrization ofC.

Example 2.4. Let F,G1, ..., Gr be power series in the variablesX1, X2. We assume that
order(F ) = e0 andorder(Gi) ≥ e0+1 for i = 1, ..., r. We putA = k[T1, ..., Tr], S = Spec(A),
I = (F +

∑r
i=1 TiGi) ⊂ A[[X1, X2]], andZ = Spec(A[[X1, X2]]/I). Notice that for all points

of S the fiberZs is a plane singularity of multiplicitye0. From Proposition 2.1 (2.2) we deduce
thatZ is a family of plane curve singularities with Hilbert polynomial p = e0T − e0(e0− 1)/2.

Example 2.5.Let us consider the curve singularity of(k3, 0) defined by the ideal generated by
the maximal minors of the matrix ([9])



X3 0

Xe0−1
1 X3

0 X2



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An straightforward computation shows thath1
C = e0T − (e20 − 3e0 + 4)/2, and

H1
C = {1, 3, 4, 5, 6, ..., e0 − 1, e0, e0, ...}.

Let us consider the closed subschemeZ of (kN , 0)S, S = Spec(k[U ]), defined by the ideal
generated by the maximal minors of the matrix




X3 +Q1U 0

Xe0−1
1 +Q4U X3 +Q2U

0 X2 +Q3U




whereQ1, Q2, Q3 are formal power series inX1, X2, X3 of order at least2, andQ4 is a power
series in the same set of variables of order at leaste0. We know thatZ is a flat deformation of
C with baseS, see [2]. We have a better result: from [37], Theorem 1.9, thetangent cone of
the fiberZs coincides withZ0 = C for all closed points ∈ S. Hence the Hilbert function is
constant on the fibers, from Proposition 2.1 we get thatZ is a family of curve singularities with
Hilbert polynomialp = e0T − (e20 − 3e0 + 4)/2.

Example 2.6. Notice that in the previous example we have deformed the matrix of syzygies
of the curve singularity obtaining a family of curve singularities. We can also deform the
parametrization, i.e. the normalization morphism, in order to obtain families. In this case the
families verify a stronger condition the singularity orderof the fibers is constant, see [41]. Let
C the curve singularity of(k4, 0) with normalization morphismOC −→ OC

∼= k[[t]], defined
by

X1 = t6, X2 = t7, X3 = t10, X4 = t15.

Recall that we can compute the Hilbert function ofC by two different methods. First we can
compute the ideal ofC eliminatingt and then computing the Hilbert ofOC . In our setting we
can also compute the Hilbert function ofC using the fact

δ(C) = #(N \ Γ(C))

whereΓ(C) =< 6, 7, 10, 15 > is the semi-group generated byC. Hence we haveδ(C) = 8.
On the other hand we can desingularizeC by an unique Blow-up, so from [25] we get that
δ(C) = ρ = 8. Hence we haveh1

C = 6T − 8. Let us consider the family of parameterizations

β(U) : X1 = t6, X2 = t7, X3 = t10, X4 = t15 + Ut16.

Then we can consider the closed sub-scheme of(k4, 0)S, S = Spec(k[U ]), defined byβ(U).
From [41] we get that for all closed pointss ∈ S the normalization of the fiberZs is defined
by β(s). HenceΓ(Zs) = Γ(C) andh1

Zs
= h1

C = 6T − 8; from Proposition 2.1 we get that
Z ∈ H4,6T−8(S).

We end this section studying the relationship between families of curve singularities and
normally flat morphisms, see [24].
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Definition 2.7. LetS = Spec(A) be a scheme of finite type and letZ be a closed subscheme of
(kN , 0)S such that there exists a closed sectionσ : S −→ Z of π : Z −→ S. We say thatZ is
normally flat alongS if and only ifGrIσ(S)

(OZ) is a flatOS module.

Proposition 2.8.LetZ be a closed subscheme of(kN , 0)S such that there exists a closed section
σ : S −→ Z of π : Z −→ S.
(1) if Z is a normally flat scheme alongS and verifies(ii)′ thenZ is a family of curves,
(2) if Z is a family of plane curve singularities thenZ is normally flat alongS.

Proof. (1) The result follows from the factGrIσ(S)
(OZ) is a flatOS-module if and only if

OZ/I
n
σ(S) = OZn

is a flatOS-module for alln ≥ 1.
(2) Let Z be a family of plane curve singularities over an affine schemeS = Spec(A). We
need to prove that for all closed points ∈ S andn ≥ 1 theOS,s-moduleOZn

is free of rank
e0n− e0(e0− 1)/2. Letm be the maximal ideal ofA defined bys. For alln ≥ 1, we will prove
that

Am[[X1, X2]]

I(Z)Am[[X1, X2]] + (X1, X2)n

is a freeAm-module of ranke0n − e0(e0 − 1)/2. LetF ∈ I(Z)Am[[X1, X2]] ⊂ Am[[X1, X2]]

be a power series such thatAm[[X1, X2]]/(F ) ⊗A k is the local ringOZs
. Since thek-vector

spaces(F ) + (X1, X2)
e0+1 ⊂ I(Z)Am[[X1, X2]] + (X1, X2)

e0+1 have the same codimension
e0(e0 + 1)− e0(e0 − 1)/2, the vector spaces agree. From this it is easy to prove (2). �

Remark 2.9. The last Proposition enable us to consider the condition(i) of the definition of
family of curve singularities as a weak form of normally flat morphism. Notice that the last
three examples are in fact normally flat families.

Example 2.10.Example of family not normally flat. Let us consider the family of monomial
curves

X1 = t7, X2 = t8, X3 = (1− u)t9 + at10.

Since the singularity order and the Hilbert polynomial doesnot depend on the parameteru, from
[41] and Proposition 2.1, we get that there exists a family ofcurve singularitiesπ : Z −→ S =
Spec(k[u]) such thatZu is the monomial curve defined byu. On the other handH1

Z0
(3) = 5,

andH1
Z1
(3) = 6 soπ is not a normally flat family.

In [11] we defined rigid Hilbert polynomials as the polynomials that determines the Hilbert
function; i.e.p = e0T − e1 is rigid if there exists a functionHp : N −→ N such that ifC is a
curve singularity withh1

C = p thenH1
C = Hp. For instancep = e0T − e1 with e1 = e0 − 1, e0,

e0(e0− 1)/2− 1, e0(e0− 1)/2 are rigid polynomials, and any Hilbert polynomialp = e0T − e1
with e0 ≤ 5 is rigid, see [11]. See also [15] for further results on rigidpolynomials. Finally, it
is easy to prove

Proposition 2.11. Every family of curve singularities with a rigid Hilbert polynomial over a
reduced base is normally flat.
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3. MODULI SPACE OF CURVE SINGULARITIES.

The purpose of this section is to construct a moduli schemeHN,p parameterizing the embed-
ded curve singularities of(kN, 0) with fixed Hilbert polynomialp, Theorem 3.8.

Let us recall that we assumed in the first section thatp = e0(T + 1) − e1 is an admissible
Hilbert polynomial, i.e. there exists a curve singularityC of (kN, 0) with Hilbert polynomial
p. In [11] we characterized the admissible Hilbert polynomials. To recall that result we have to
define some integers attached toe0 and the embedding dimension: given integers1 ≤ b ≤ e0
we consider the following integersρ0,b,e0 = (r + 1)e0 −

(
r+b
r

)
, with r the integer such that(

b+r−1
r

)
≤ e0 <

(
b+r
r+1

)
, andρ1,b,e0 = e0(e0 − 1)/2− (b− 1)(b− 2)/2.

Proposition 3.1. There exists a curve singularityC with embedding dimensionb ≤ N and
Hilbert polynomialp(T ) = e0T − e1 if, and only if, either
(1) b = 1, e0 = 1, e1 = 0, or
(2) 2 ≤ b ≤ e0, andρ0,b,e0 ≤ e1 ≤ ρ1,b,e0 .
Moreover, for each triplet(b, e0, e1) satisfying the above conditions there is a reduced curve
singularityC ⊂ (kN, 0) with embedding dimensionb and Hilbert polynomialp = e0T − e1,
with k is an algebraically closed field.

LetF : N −→ N be a numerical function such thatF (t) ≤ b(t) :=
(
N+t−1

N

)
for all t ≥ 0. For

eacht ≥ 0 we denote byGt the Grassmannian ofF (t)−dimensional quotients ofRt = R/M t,
notice thatRt is ab(t) dimensionalk-vector space. Recall thatGt represents the contravariant
functorGt : Sch −→ Set, whereSch is the category ofk−schemes locally of finite type,
Set the category of sets, andGt(S) is the set of locally free quotients of̃Rt(S) of rankF (t),
see [22]-I-9.7.4. IfK is aF (t)−dimensional quotient ofRt then we will denote by[K] the
corresponding closed point ofGt.

We denote byFr,n the contravariant set-valued functor onSch defined by:Fr,n(S) is the set
of S−module quotientsF = R̃n(S)/N such that theOS-module

F (i) = R̃n−i(S)/(σn,i)∗(N)

belongs toGn−i(S), i = 0, 1, ..., n − r, whereσn,i : R̃n −→ R̃n−i is the natural morphism of
sheaves. For all integersr ≤ n, letW (r, n, F ) be the reduced subscheme ofGn whose closed
points correspond to thek-vector space quotientsRn/E such thatdimk(Rn/E +M t) = F (t)

for all t = r, . . . , n.

Proposition 3.2. The schemeW (r, n, F ) represents the functorFr,n.

Proof. In order to prove the result we will use [22]-0-4.5.4. From the local nature of the defini-
tion of Fr,n it is easy to verify the second condition of [22]-0-4.5.4. The first condition follows
from [22]-I-9.7.4.6, and the third condition from [22]-I-9.7.4.7.

We will prove the fourth condition of [22]-0-4.5.4. Let{mi}i=1,...,b(n) be a lexicographically
ordered set of monomials ofk[X1, ..., XN ] such that their cosets inRn form ak−basis. We
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denote byH the set ofH = {i1, ..., iF (n)} ⊂ {1, 2, ..., b(n)} such that

card(H ∩ {1, 2, ..., b(n− i)}) = F (n− i)

for all i = 1, 2, ..., n − r. It is known that for everyH ∈ H we get an open setBn(H)

of Gn: Bn(H) is the set ofF (n) dimensional vector spacesRn/L such that the cosets of
mi1 , ..., miF (n)

in this quotient form ak-basis. This open set is isomorphic to the affine space of
matrices,F (n)× (b(n)− F (n)).

Let ϕH : O
F (n)
Spec(k) −→ R̃n be the morphism ofOSpec(k)−modules defined by thek−linear

mapϕH : kF (n) −→ Rn with ϕH((ai)i∈H) =
∑

i∈H aimi. By [22]-0-4.5.4 we get thatBn(H)

is represented by the subfunctorGn,H of Gn defined by:Gn,H(S) is the set ofF ∈ Gn(S) such
that the composition

OF (n)
S

ϕH−→ R̃n(S) −→ F

is an epimorphism. It is easy to see that there exists a one-to-one correspondenceγ between
Gn,H(S) and the set ofOS−morphismsv : R̃n −→ OS

F (n) such thatvϕH = Id; v corresponds

toF = R̃n/Ker(v). Hence we have a exact sequence of set maps

Gn,H(S)
γ
−→ HomOS

(R̃n,OS
F (n))

αH

⇒

βH

HomOS
(OS

F (n),OS
F (n)),

with αH(v) = vϕH , βH(v) = Id; we get thatGn,H is representable byBn(H), i.e. the kernel
of the pair of morphisms

kb(n)F (n)
αH

⇒

βH

kF (n)2 .

Let us consider the subfunctorFr,n,H of Fr,n such that for everyS, Fr,n,H(S) is the set of
F ∈ Fr,n(S) such that the composition

O
F (n)
S

ϕH−→ R̃n(S) −→ F

is an epimorphism. Let us consider the restriction ofγ

γ : Fr,n,H(S) −→ HomOS
(R̃n,OS

F (n)),

first of all we need to compute the image ofγ. For this consider the projection in the first
F (n− i) components

π(i) : OS
F (n) −→ OS

F (n−i),

and the canonical monomorphism

σ(i) : ˜Mn−i/Mn −→ R̃n.

From [22]-0-5.5.7 it is easy to prove

CLAIM: Let v : R̃n(S) −→ OS
F (n) be a morphism such thatvϕH = Id, then the sheaf

R̃n(S)/Ker(v) is locally free of rankF (n− i) if and only if π(i)vσ(i) = 0.

From the claim we can build up the following exact sequence ofmap sets
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Fr,n,H(S)
γ
−→ HomOS

(R̃n,OS
F (n))

εH
⇒

δH
HomOS

(OS
F (n),OS

F (n))×
n−r∏

i=1

Hom( ˜Mn−i/Mn
(S),OS

F (n−i)),

with δH(v) = (Id; 0, ..., 0), andεH(v) = (vγH; π(i)vσ(i), i = 1, 2, ..., n − r). From this and
[22]-I-9.4.9 we obtain thatFr,n,H is representable by the Kernel, sayXH , of the pair of mor-
phisms

kb(n)F (n)
εH
⇒

δH
kF (n)2 ×

n−r∏

i=1

kl(n,i)F (n−i),

l(n, i) = dimk(M
n−i/Mn), so we get [22]-0-4.5.4(iv) for the family of functors{Fr,n,H}H∈H.

HenceFr,n is representable by a schemeX, and{XH}H∈H, is an open cover ofX. From the
proof of the representability ofXH we deduce thatXH is a linear subspace ofBn(H). From
the definition ofW (r, n, F ) and [22]-I-4.2.4(ii) we deduce thatX = W (r, n, F ), so we get that
W (r, n, F ) represents the functorFr,n. �

We denote byHilbn the Hilbert scheme parameterizing the closed subschemes ofSpec(Rn)
of lengthF (n); Hilbn represents the contravariant set-valued functorHilbn onSch for which
Hilbn(S) is the set of morphismsf : Z ⊂ Spec(Rn)×S −→ S with fibers of lengthF (n), see
[18]. Let

an+1 : W (r, n+ 1, F ) ∩Hilbn+1 −→ W (r, n, F ) ∩Hilbn

be the morphism of schemes induced by the functorial morphism

an+1 : Fr,n+1 ×Gn+1
Hilbn+1 −→ Fr,n ×Gn

Hilbn,

with an+1(S)(F) = F
(1).

From now on we assume thatF (t) = p(t − 1) = e0t − e1, and for alln ≥ e0 + 1 we put
W (n) = W (e0 + 1, n, p) andW ′(n) = W (n) ∩Hilbn.

Let C ⊂ (kN , 0) be a reduced curve singularity. We will denote byδ(C) = dimk(OC/OC)

the order of singularity ofC, hereOC is the integral closure ofOC on its full ring of fractions.
We denote byµ(C) the Milnor number ofC; notice thatµ(C) = 2δ(C)− r(C)+1 wherer(C)

is the number of branches ofC, [5] Proposition 1.2.1.

Definition 3.3. We denote byCn(N, p) the set of points ofGn defined by all truncationsCn

whereC is a curve singularity of Hilbert polynomialh1
C = p.

We will prove thatCn(N, p) is in fact a constructible set ofGn, see Proposition 3.6.

Proposition 3.4. (1) For all n ≥ e0 + 1 it holdsCn(N, p) ⊂W ′(n).
(2) Let C be a curve singularity with Hilbert polynomialh1

C = p, then its tangent cone is
determined by[Cn], n ≥ e0 + 1.
(3) If C is reduced then the analytic type ofC is determined by[Cn], n ≥ 2µ(C) + 1.
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Proof. (1) We only need to prove that for all curve singularity of multiplicity e0 it holds[Cn] ∈
W ′(n), n ≥ e0 + 1. Notice that the closed points ofW ′(n) are the quotientsR/I with I ⊂ R
ideal such thatMn ⊂ I anddimk(R/Mn−i + I) = p(n − i − 1) for i = 0, ..., n − e − 1. In
particular ifC is a curve singularity of(kN , 0) with Hilbert p thenR/I(C) + Mn defines a
closed point ofW ′(n) for all n ≥ e0 + 1, see [26], Theorem 5.
(2) follows from Proposition 1.7. From [10], Theorem 6, we deduce (3). �

Notice that in the last proposition we proved thatW ′(n) contains alln-th truncations of curve
singularities with Hilbert polynomialp. In order to take account of the Cohen-Macaulayness
of the curve singularities we need to shrinkW

′

(n) by intersecting this scheme with some open
Zariski subset ofGn. For this end, given a linear formL ∈ R we denote byUn(L) the Zariski
open set ofGn whose closed points are the quotientsRn/E such thatdimk(Re0+1/(E,L)) ≤
e0, where(E,L) is the ideal generated byE andL.

Proposition 3.5. (1) Let I be an ideal ofR such thatA = R/I is a one-dimensional local ring
of multiplicitye0. LetL be an element ofR, the following conditions hold

(1) dimk(A/LA) ≥ e0 and we have equality if and only ifA is Cohen-Macaulay and the
coset ofL in A is a degree-one superficial element.

(2) If dimk(R/I +Me0+1) = p(e0) then the following conditions are equivalent:
(a) [R/I +Me0+1] belongs toUe0+1(L),
(b) A is Cohen-Macaulay and the coset ofL in A is a degree-one superficial element.

(3) There exist linear formsL1, ..., Ls ofR, s = e0(N−1)+1, such that for all curve singularity
C of (kN, 0) with Hilbert polynomialp andn ≥ e0 + 1 it holds[Cn] ∈ W

′

(n) ∩ Un(Lq).

Proof. (1) Let us assumedimk(A/LA) ≤ ∞, i.e. LA is am−primary ideal ofA. From [38],
Cap. I Proposition 3.4, we get(1). By (1) we deduce that(b) is equivalentdimk(R/I +(L)) ≤
e0. It is easy to see that this inequality equivalent todimk(R/I + Me0+1 + (L)) ≤ e0, i.e
[R/I +Me0+1] belongs toUe0+1(L).
(3) Let C be a curve singularityC of (kN, 0) with Hilbert polynomialp. From [43], Chap. I
Proposition 3.2, we deduce that if a linear formL is a non zero-divisor inGr(OC)red thenL is
a degree one superficial element ofOC . LetL1, ..., Ls, s = e0(N − 1) + 1 be linear forms such
that any subset ofN − 1 elements isk−independent. From this and the(1) it is easy to deduce
the claim. �

We will define a sub-schemeΞn of Hilbn taking account of the condition (2) of the definition
of Tn. For this end we have to define some special cells of the GrassmannianGn, from a
deep study of these cells we will deduce that the morphisman is affine for a big enoughn,
Proposition 3.7(1).

Let Mon = {m1, m2, ...} be the set of monomials ofS ordered with respect to the degree-
lexicographic ordering. Given multi-indexesi. = {i1, ..., ip(e0−1)} ⊂ {1, 2, ..., b(e0)}, j. =

{j1, ..., je0} ⊂ {b(e0) + 1, ..., b(e0 + 1)}, and a linear formLq, we defineDn(i., j., q) as the
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linear subspace ofRn generated by thep(n− 1) linear independent monomials

mi1 , ..., mip(e0−1)
;Lr

qmj1 , ..., L
r
qmje0

, r = 0, ..., n− e0 − 1.

For all n ≥ e0 we fix a k-basisVn(i., j., L) of Rn adding to these elements monomials of
suitable degree. We denote byBn(i., j., q) the Zariski open subset ofGn with closed points
[Rn/E] such that the projectionDn(i., j., q) −→ Rn/E is an isomorphism.

For all triplet i., j., q, we consider the open setsB
′

n(i., j., q) = Bn(i., j., q) ∩ U(Lq); we set
B

′

n = ∪i.,j.,qB
′

n(i., j., q). We denote byΞn the open sub-k−scheme ofW
′

(n)

Ξn = W
′

(n) ∩B
′

n

andΞn(i., j., q) = Ξn ∩ B
′

n(i., j., q). Notice that the morphisman : W
′

(n) −→ W
′

(n − 1)

induces morphismsan : Ξn(i., j., q) −→ Ξn−1(i., j., q), an : Ξn −→ Ξn−1, for all n ≥ e0 + 1.

Proposition 3.6. (1) For all curve singularitiesC of (kN, 0) with Hilbert polynomialp there
exists indexesi., j., q such that[Cn] ∈ Ξn(i., j., q), for all n ≥ e0 + 1.
(2) Cn(N, p) is a constructible set andCn(N, p) ⊂ Ξn,
(3) For all i., j., q it holdsa−1

n (Ξn−1(i., j., q)red) = Ξn(i., j., q)red.

Proof. (1) Follows from Proposition 1.1(2) and Proposition 3.5.
(2) From Theorem 1.9 we get thatCn(N, p) = aβ(n,e0) . . . an+1(Ξβ(n,e0)), so Cn(N, p) is a
constructible set contained inΞn.
(3) Let x = [R/I + Mn] be a closed point ofΞn such thatan(x) belongs toΞn−1(i., j., q)red.
Let n be the maximal ideal ofR/I + Mn. Sincean(x) belongs toBn−1(i., j., q) we have that
dimk(n

e0+s/ne0+s+1) = e0 for s = 1, . . . , n− e0 − 1, so we have

ne0−1

ne0

.Lq

−→
ne+s−1

ne+s+1

is an epimorphism fors = 1, . . . , n− e0−1. Sincean(x) ∈ W (n) we get that these morphisms
are in fact isomorphism, sox ∈ Ξn(i., j., q). �

Let X, Y be k-schemes. Given constructible setsA ⊂ X, B ⊂ Y we say that a map
f : A −→ B is a piecewise trivial fibration with fiber ak−schemeF if there exists a finite
partition ofB in locally closed subsetsS ⊂ Y such thatf : f−1(S) −→ S is a fibration of fiber
F , see [6].

The key result in the definition of a local motivic integration in the moduli spaceHN,p, The-
orem 3.8, is the following result:

Proposition 3.7. (1) For all n ≥ e0 + 4 the morphisman : Ξn −→ Ξn−1 is affine.
(2) Given integersν ≥ 2, n ≥ δ(N, e0), there exists a constructible setΣn

ν ⊂ Cn(N, p) such
that: for all curve singularitiesC with Hilbert polynomialp, [R/I(C) +Mn] is a closed point
of Σn

ν if and only the minimal numbers of generators ofI(C) is ν.
(3) If ν = N − 1, i.e. the case of complete intersection singularities, then we setΣn

ci := Σn
N−1

and the restriction ofan
an : Σn

ci −→ Σn−1
ci
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is an exhaustive piecewise fibration with fiberF ∼= k(N−1)e0 , n ≥ δ(N, e0).

Proof. (1) We will perform the proof in three steps.
Step 1For all n ≥ e0 + 4 the cellBn(i., j., q) is isomorphic to an affine spaceksn , for some
integersn, andan restricts to an affine morphisman : W (n) ∩ Bn(i., j., q) −→ W (n − 1) ∩
Bn−1(i., j., q).

Proof: It is easy to see that considering the baseVn(i., j., q) that the open setBn(i., j., q) is
isomorphic to the affine space of(b(n) − p(n)) × b(n) matrices, and thatW (n) ∩ Bn(i., j., q)

is a linear subspace ofBn(i., j., q). A general element ofW (n) ∩Bn(i., j., q) can be written as
follows

U =




Id

0

A

0

0

Id

B

C




Hence for alln ≥ e0 + 4 we getBn(i., j., q) ∼= ksn . From this it is easy to see thatan is a linear
projection betweenksn andksn−1 wherean(U) is the matrix obtained fromU deleting its last
row and the last two columns. Hence we getStep 1.

Step 2For alln ≥ e0 + 4, an : Ξn(i., j., q) −→ Ξn−1(i., j., q) is an affine morphism.

Proof: Let us consider the restriction ofan

an : W (n) ∩Bn(i., j., q)) −→W (n− 1) ∩Bn−1(i., j., q).

SinceW (r) ∩B
′

r(i., j., q) is an open subset ofW (r) ∩Br(i., j., q) for r = n, n− 1, and

a−1
n (W (n− 1) ∩B

′

n−1(i., j., q)) = W (n) ∩B
′

n(i., j., q),

from [22]-I-9.1.2 we deduce that

an : W (n) ∩ B
′

n(i., j., q)) −→ W (n− 1) ∩ B
′

n−1(i., j., q)

is affine. SinceΞr(i., j., q) is a closed subscheme ofW (r) ∩ B
′

r(i., j., q), for r = n, n − 1, by
[22]-I-9.1.16(i),(v) we obtainStep 2.

Step 3For alln ≥ e0 + 4 the morphisman : Ξn −→ Ξn−1 is affine.

Proof: By Step 2, Proposition 3.6 (3), and [22]-I-9.1.18 we get that for alln ≥ e0 + 4 the
morphisman : Ξn −→ Ξn−1 is affine.

(2) We denote byν(B) = dimk(B) the minimal number of generators of a finitely generated
R−moduleB. Let Gn

ν be the constructible sub-set ofΞn whose closed points[R/J ] verifies
ν(J) = ν. We defineΣn

ν = Gn
ν ∩ Cn(N, p), Proposition 3.6.

Let C be a curve singularity with Hilbert polynomialp. From [37] and Proposition 1.7

(3) we getI(C) ∩ Mn ⊂ I(C)M , n ≥ δ(N, e0), so we haveν(I(C)) = ν
(

I(C)+Mn

Mn

)
and

[R/I(C) + Mn] is a point ofΣn
ν if and only if ν = ν(I(C)). Moreover, letf1, . . . , fν be

elementsI(C) such that their cosets inI(C) +Mn/Mn form a minimal system of generators,
thenf1, . . . , fν is minimal system of generators ofI(C).
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(3) We setΣn
ci := Σn

N−1. i.e. ν = N − 1. Let x = [R/J + Mn] be a closed point ofΣn
ci,

J = I(C) with C a curve singularity, andy = [R/J + Mn−1] = an(x) its image. We may
assume thaty ∈ Ξn−1(i., j., q)red, for some set of indexesi., j., q. Let U be the associated
matrix tox, seeStep 1. Let f = f1, . . . , fν beν rows ofU such that their cosets inRn−1 form
a minimal system of generators ofJ + Mn−1, see(2). Notice thatf is a minimal system of
generators ofJ +Mn and that all entries ofU are determined byf .

If x′ = [R/J ′ +Mn] is a closed point ofΣn
ci such thatan(x′) = an(x) thenJ ′ admits a mini-

mal system of generatorsg = g1, . . . , gν such thatfi = gi moduloMn−1. From Proposition 3.6
(3) x′ belongs toΞn(i., j., q) and then defines a matrixU ′ with the same shape ofU . Hence
f − g is a set ofν homogeneous polynomials of degreen belonging toDn(i., j., Lq), i.e. the
monomials corresponding to the matrixB. Then we have thatΣn

ci ⊂ Σn−1
ci × k(N−1)e0 .

Let z be a closed point ofΣn−1
ci × k(N−1)e0 such thatan(z) = x. Let Jε be the ideal ofR

generated byf1+ε1, . . . , fν+εν ,whereε = ε1, . . . , εν is a set ofν homogeneous polynomials of
degreen belonging toDn(i., j., Lq), such thatz = [R/Jε +Mn]. From the condition(2) of the
definition ofTn we deduce thatdim(R/Jε) ≤ 1; sinceν = N − 1 we get thatdim(R/Jε) = 1
and thenC = Spec(R/Jε) is a curve singularity. From the definition ofTn we deduce thatC
is a curve singularity with Hilbert polynomialp, soz ∈ Σn

ci. �

From Proposition 3.7 and [21]-IV-8.2.3, see also [19] exposse VII, we deduce that the inverse
system{Ξn, an}n≥e0+1 has a limitHN,p that we describe as follows. Since the mapsan are
affine, we haveΞn = Spec(An) whereAn is a quasi-coherent sheaf ofk-algebras overΞn, [20]
1.3.7. Then we defineHN,p = Spec(A), with

A = lim
−→

n

An,

see [19] exposse VII. In particular we get that for all pointx of HN,p it holds

OHN,p,x
∼= lim

−→

n

π∗
n(OΞn,πn(x)),

[21], 8.2.12.1. Where we have denoted by

πn : HN,p −→ Ξn,

the natural projection,n ≥ e0+1. Giveni > j ≥ e0+1 we define the affine mapai,j : Ξi −→ Ξj

by the compositionai,j = aiai−1 · · · aj+1.

Theorem 3.8.The schemeHN,p pro-represents the functorHN,p.

Proof. We will prove that the functorHN,p is isomorphic toh = Hom(·,HN,p(T )). Let S be
an object ofAff and letZ ⊂ (kN , 0)S be a family of curves overS with Hilbert polynomialp.
SinceZn is a flat scheme overS with fibers of lengthp(n), we haveOZn

∈ Hilbn(S). On the
other hand, ifFe0+1,n is the functor that is represented byW (n) thenOZn

∈ Fe0+1,n(S), and

OZn
∈ (Fe0+1,n ×Gn

Hilbn)(S).
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Hence by Proposition 3.2 there exists a morphismσn(Z) : S −→ W
′

(n) for all n ≥ e0 + 1.
Recall thatB′

n is an open subset ofGn, soσn(Z) factorizes throughXn = W
′

(n) ∩ B′
n if and

only if for all closed points ∈ S, we haveσn(Z)(s) ∈ B
′

n. Sinceσn(Z)(s) = [(Zs)n] andZ
is a curve singularity with Hilbert polynomialp(T ) by Proposition 3.6 we getσn(Z)(s) ∈ B

′

n.
Hence we have a morphism

σn(Z) : S −→ Ξn

for all n ≥ e0 + 1. It is easy to see that for alln ≥ e0 + 2 it holdsanσn(Z) = σn−1(Z) so we
have a morphismσ∗(Z) : S −→ HN,p(T ). From this we get a functorial morphism

σ : HN,p(T ) −→ h,

sendingZ ∈ HN,p(S) to σ∗(Z).
To complete the proof we need to prove thatσ(S) is bijective for allS. The injectivity is

straightforward. Letg : S = Spec(A) −→ HN,p a morphism ofk-schemes. The morphism

gn = πng : S = Spec(A) −→ Ξn ⊂ Hilbn

defines an idealJn ⊂ A[[X ]]/(X)n, the compatibility relationsangn = gn−1 give usJn +
(X)n−1 = Jn−1 for all n ≥ e0 + 2. If we write J = ∩n≥e0+1Jn then it holdsJn = J + (X)n

for all n ≥ e0 + 1. From this we getA[[X ]]/J is isomorphic to the limit of the inverse system
defined byA[[X ]]/Jn, n ≥ e0 + 1.

Let us consider the schemeZ ⊂ (kN , 0)S defined by the idealJ . We will prove thatZ is a
family andσ(Z) = g. SinceI(Zn) = Jn we have thatZ verifies condition (i) of the definition
of a family. Lets be a closed point ofS, we have to prove thatZs is a curve singularity with
Hilbert polynomialp(T ). Notice that for alln ≥ e0 + 1 it holds(Zs)n = (Zn)s soZs is a one-
dimensional sub-scheme of(kN , 0) with Hilbert polynomialp. FromΞn ⊂ Bn and Proposition
2.3 we get thatZ is a family. Sinceσ(Z) = g we obtain the theorem. �

Remark 3.9. Notice that from the last result and Proposition 3.6 we get that πn(HN,p) =

Cn(N, p) is the constructible set of alln-truncations of curve singularities with Hilbert polyno-
mial p.

On the other hand, notice thatHN,p is not ak-scheme locally of finite type. Hence from the
previous result we cannot deduce the existence of a universal family. In the next result we will
construct a universal family for the schemeHN,p.

Theorem 3.10.There exists ak-schemeZN,p, limit of an inverse system{Un, αn}n≥e0+1, and a
morphismϕ : ZN,p −→ HN,p such that for all families of curve singularitiesf : Z −→ S with
Hilbert polynomialp there exists a unique morphismσ : S −→ HN,p such thatZn

∼= S×Ξn
Un,

n ≥ e0 + 1.

Proof. Let ρn : Tn −→ Hilbn be the universal family ofHilbn, n ≥ e0 + 1. Recall thatTn is a
closed sub-scheme ofHilbn × Spec(Rn), and thatρn is the restriction of the projection to the
first component. Henceρn is an affine morphism.
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From the definition ofΞn we have thatΞn is an open subs-cheme ofHilbn. If we denote by
Un the fibred product

Un = Tn ×Hilbn Ξn

we get that the induced morphismρn : Un −→ Ξn is affine. Let us consider the following
commutative diagram

Un+1

ρn+1

��

αn
// Un

ρn

��

Ξn+1 an
// Ξn

whereαn is the morphism obtained from the universal familyTn −→ Hilbn and the fact that
Ξn is an open subset ofHilbn. Sinceanρn+1 andρn are affine we get thatαn is also affine,
[22]-I-9.1.16(v). We defineZN,p as the limit of the inverse system{Un, αn}n≥e0+1. We denote
by

σ : ZN,p −→ HN,p

the morphism induced by the morphism of inverse systems{ρn} : {Un, αn} −→ {Ξn, an}. We
leave to the reader the proof of the universal property ofσ : ZN,p −→ HN,p. �

In the following result we will prove thatHN,p has finite cohomological dimension. Recall
that if Y is a scheme, the cohomological dimensioncd(Y ) of Y is the least integeri such that
Hj(Y,F) = 0 for all quasi-coherent sheavesF andj > i.

Proposition 3.11.There exists a constantg(N) such that

cd(HN,p) ≤ g(N)p(e0 + 3)2−2/N .

Proof. Let F be a quasi-coherent sheaf ofHN,p and letj ≥ cd(Ξe0+3). The inverse system
{Ξn, an}n≥e0+1 defines a direct system of groups{Hj(Ξn, πn∗(F)), an∗}n≥e0+1. From [19],
Exp. VII Corollaire 5.10, we have

Hj(HN,p,F) ∼= lim
−→

n

Hj(Ξn, πn∗(F)).

Sincean is an affine morphism for alln ≥ e0 + 4 we get

Hj(Ξn, πn∗(F)) ∼= Hj(Ξe0+3, πe0+3∗(F)) = 0.

Hence we havecd(HN,p) ≤ cd(Ξe0+3). SinceΞe0+3 is a sub-scheme ofHilbe0+3 we get

cd(Ξe0+3) ≤ dim(Ξe0+3) ≤ dim(Hilbe0+3).

The claim follows from [4]. �

Proposition 3.12.There exists a one-to-one correspondence between the set ofcurve singulari-
ties with Hilbert polynomialp and the set of rational points ofHN,p. Moreover, if the cardinality
of k is strictly greater than the cardinality ofN then every closed point ofHN,p is rational.



MODULI SPACE 21

Proof. The first part follows from the Proposition 3.8 and [22]-I-3.3.5. By construction we
have thatHN,p can be covered by open affine setsSpec(A) whereA is ak−algebra countably
generated. From [16], Proposition 2.6, we obtain the claim. �

From now on we assume that the cardinality of the ground fieldk is greater than the cardi-
nality of N. Hence we have a one-to-one correspondence between the set of curve singularities
with Hilbert polynomialp and the set of closed points ofHN,p.

Definition 3.13. Let x be a closed point ofHN,p, we will denote byCx the curve singularity
defined byx, and byIx = I(Cx) ⊂ R = k[[X1, ..., XN ]] the ideal associated toC. The maximal
ideal ofOCx

= R/Ix is mx.

Given a functionF : N −→ N, we say thatF is admissible for the polynomialp(T ) if
F (t) = p(t) for t ≥ e0 − 1. Given an admissible functionF for p and an integerr, 1 ≤ r ≤ e0,
we define a contravariant set valued functor onAff such that for allk-scheme of finite typeS
we have

HN,F,r(S) =





Z ∈ HN,p(S) such that for alln = r, ..., e0 + 1
the morphism

π : Zn −→ S
is flat with fibers of lengthF (n).





Notice thatHN,p = HN,F,e0+1, and thatHN,F,1(S) is the set of normally flat families of baseS.
We denote byHN,F,r thek-schemeHN,F,r = W (r, e0 + 1, F )×Ge0+1 HN,p. Notice thatHN,F,r

is a closed sub-scheme ofHN,p. From the Theorem 3.8 it is easy to prove

Proposition 3.14.HN,F,r represents the functorHN,F,r.

Given an admissible functionF for p there is a family of closed sub-schemes ofHN,p

HN,F,1 ⊂ HN,F,2 ⊂ · · · ⊂ HN,F,e0+1 = HN,p.

We say thatHN,F,r is the Hilbert stratum ofHN,p with respect to(F, r). Recall that it is an
open problem to characterize the admissible Hilbert functions, we only have characterized the
asymptotically behavior of Hilbert functions, i.e. Hilbert polynomials Proposition 3.1.

Very few properties of Hilbert functions are known, see for instance [12]. Ifp is a rigid
polynomial we know that there exists a unique admissible function F associated top, in this
case we have(HN,F,r)red = (HN,F,r+1)red, for all r = 1, ..., e0.

We say that a subsetD of HN,p is a cylinder ifD = π−1
n (Dn) whereDn ⊂ πn(HN,p) is a

constructible set ofΞn for somen ∈ N. We denote byn(D) the least integern verifying such a
condition. Notice thatDn = πn(D) for n ≥ n(D).

In the next result we will prove forHN,p some results of [3], Proposition 6.5, 6.6, and [6],
Lemma 2.4, proved for the jet schemes.
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Proposition 3.15. (1) The collectionCN,p of cylinders ofHN,p is a Boolean algebra of sets.
(2) Given a cylinderD and a family of cylinders{Di}i∈N of HN,p such thatD = ∪i∈NDi there
exist a finite set of indexesK ⊂ N such thatD = ∪i∈KDi.

Proof. (1) Sinceπn(HN,p) = Cn(N, p) are constructible sets it is easy to prove(1), Section 3.9.
(2) Let us consider the cylindrical setsZn = D \ (D1∪ · · ·∪Dn), n ≥ 0. SinceZ1 ⊃ Z2 ⊃ . . .
we have that the claim is equivalent toZi0 = ∅ for some indexi0. We can assume that there
exists an increasing set of integers{ni}i≥1, ni ≥ n(Zi), such thatπni

(Zi) = Tni
, with Tni

a constructible set ofΞni
, andTni+1

⊂ a−1
ni+1,ni

(Tni
), i ≥ 1. Since∩i≥1Zi = ∅ from [21],

Proposition 8.3.3, we have thatZi0 = ∅ for some indexi0, and then we get(2). �

We denote byK0(Sch) the Grothendieck ring ofSch. Let L = [k] be the coset ofk in
K0(Sch), we setM = K0(Sch)[L

−1]. LetF = {F nM}n∈Z be Kontsevich’s filtration ofM:
F nM is the sub-group ofM generated by the elements of the form[V ]L−i for i−dim(V ) ≥ n.
We denote bŷM the completion ofM with respect the filtrationF .

LetC be a cylinder ofHN,p, we say thatC is c-stable at leveln ≥ n(C) if

[πn+1(C)] = [πn(C)] Lc ∈ K0(Sch),

C is c-stable if there exists an integern0 ≥ n(C) such thatC is c-stable at leveln for all n ≥ n0.
We denote bysn(C) the least integern0 verifying such a condition.

A cylinderC is calledc-trivial if there exist an integern0 ≥ n(C) such that for alln ≥ n0

the morphisman+1 : πn+1(C) −→ πn(C) is a piecewise trivial fibration with fiberF ∼= kc. We
denote bytn(C) the least integern0 verifying such a condition. Notice thatc-trivial implies
c-stable.

Proposition 3.16.LetD be ac-trivial cylinder ofHN,p and letC be a cylinder. ThenD ∩ C is
c-trivial and

µp(C,D) := [πn(C) ∩ πn(D)] L−c(n+1) ∈M

does not depend onn, providedn ≥ tn(D), n(C).

Proof. From the definition ofc-trivial cylinder we get that

[πn+1(C) ∩ πn+1(D)] L−c(n+2) = [πn(C) ∩ πn(D)] LcL−c(n+2) = [πn(C) ∩ πn(D)] L−c(n+1).

Hence the class[πn(C)∩πn(D)] L−c(n+1) is independent ofn, providedn ≥ tn(D), n(C). �

Let us consider the cylinderHN,p
ci = π−1

n (Σn
ci), n ≥ δ(N, e0), Proposition 3.7(3). By the

last proposition we may define onCN,p a finitely additive measure valued inM

µp : CN,p −→ M

C −→ µp(C,HN,p
ci) = [πn(C) ∩ Σn

ci]L
−(n+1)(N−1)e0

for a big enoughn.
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Proposition 3.17.There exists a finitely additivêM-valued measure defined by

µp : CN,p −→ M̂

C 7→ limi→∞ µp(C,HN,p
ci)

Proof. Let C1, . . . , Cr be a disjoint family of cylinders, then we have to prove

µp(C1 ∪ · · · ∪ Cr) = Σr
i=1µp(Ci).

Notice that we only need to prove the equality forr = 2, this case follows from the group
structure ofK0(Sch). �

In the next proposition we prove some auxiliary results thatwe will use later on. SincêM is
complete we may consider the norm‖ · ‖ : M̂ −→ R+, with ‖a‖ = 2−n wheren is the order of
a with respect the filtrationF ofM.

Proposition 3.18. (1) If D1, D2 are cylinders ofHN,p such thatD1 ⊂ D2 then

‖µp(D1)‖ ≤ ‖µp(D2)‖.

(2) If D1, . . . , Dr are cylinders ofH then

‖µp(D1 ∪ · · · ∪Dr)‖ ≤Max{‖µp(Di)‖, i = 1, . . . , r}.

Proof. (1) We may assume thatDi = π−1
n (Ti), i = 1, 2, whereT1 ⊂ T2 ⊂ πn(HN,p) are

constructible sets,n≫ 0. If we setri(n) = c(n+ 1)− dim(Ti ∩ πn(HN,p)), i = 1, 2, then it is
easy to prover1(n) ≤ r2(n) for all n≫ 0. Hence we deduce

‖µp(D1)‖ = lim
n

2−r1(n) ≤ lim
n

2−r2(n) = ‖µp(D2)‖.

(2) By induction onr it is enough to prove the result forr = 2. Let di = dim(Ti ∩ πn(HN,p)),
i = 1, 2, then we have

c(n+ 1)− dim((T1 ∪ T2) ∩ πn(HN,p)) ≥ c(n+ 1)−Max{d1, d2}.

From this it is easy to get the claim. �

A subsetC of HN,p is measurable with respectµp if and only if for every real numberǫ ∈ R+

there exists a sequence of cylindrical sets{Ci}i≥0 such thatC∨C0 ⊂
⋃

i≥1Ci and‖µp(Ci)‖ ≤ ǫ

for all i ≥ 1, whereC ∨ C0 stands for the disjoint unionC ∨ C0 = C ∪ C0 \ C ∩ C0. We say
thatC is strongly measurable ifC0 ⊂ C. See [3], [8] Appendix A.

Proposition 3.19.(1) Any cylindrical set is strongly measurable. The collectionof measurable
set form a finite algebra of setsC∗N,p.

(2) If C is a measurable set ofHN,p thenµp(C) := limǫ→0 µp(Ci) exists inM̂ and is indepen-
dent of the choice of the sequence{Ci}i≥0. Then there exists a finite measure

µp : C
∗
N,p −→ M̂

C 7→ µp(C)
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(3) Let{Ci}i≥0 be a sequence of measurable sets.
(3.1) If limi→∞ ‖µp(Ci)‖ = 0 then∪i≥0Ci is measurable.
(3.2) If the sequence of measurable sets are mutually disjoint andC = ∪i≥0Ci is measurable
then

∑
i≥0 µp(Ci) converges inM̂ to µp(C).

Proof. The proof of(1) and (3) are standard.(2) Let ǫ, ǫ′ be positive real numbers, and let
{Ci}i≥0, {C ′

i}i≥0 sequences of cylindrical sets ofHN,p verifying the conditions of measurable
set. Then we haveC0 ∨C

′
0 ⊂

⋃
i≥1Ci ∪

⋃
i≥1C

′
i, from Proposition 3.15(1) there exist integers

r, r′ such thatC0 ∨ C ′
0 ⊂

⋃r
i=1Ci ∪

⋃r′

i=1C
′
i. From this and Proposition 3.18(2) we get

‖µp(C0 ∨ C ′
0)‖ ≤ Max{ǫ, ǫ′}. Notice thatµp(C0) − µp(C

′
0) = µp(C0 \ C

′
0); Proposition 3.18

(1) and the last inequality yield‖µp(C0) − µp(C
′
0)‖ ≤ Max{ǫ, ǫ′}. From this it is easy to get

the claim. �

Let C be a measurable set ofHN,p andf : C −→ Z ∪ {∞}, we say thatf is exponentially
integrable if the fibers off are measurable and the motivic integral

∫

C

L−fdµp :=
∑

s≥0

µp(C ∩ f−1(s))L−s

converges inM̂.
Given a singularityX ⊂ (kN, 0) of arbitrary dimension, let us consider the function

γX : (HN,p)rat −→ N ∪ {∞}

C −→ (C ·X)

where(C ·X) stands for the ”false” intersection multiplicity:(C ·X) = dimk(R/I(C)+I(X)).

Proposition 3.20.LetX ⊂ (kN, 0) be a singularity of algebraic variety.
(i) For all s ∈ N the setγ−1

X (s) is a cylinder,
(ii) γX is exponentially integrable.

Proof. (i) Notice that if(C ·X) = s thenMs ⊂ I(C) + I(X). From this fact it is easy to see
thatγ−1

X (s) is a cylindrical subset ofHN,p. (ii) We can apply Proposition 3.19, (3.2), in order
to prove thatγX is exponentially integrable. �

Let X ⊂ (kN, 0) be a singularity of arbitrary dimension. The motivic volumeof X with
respect top is the integral

volp(X) =

∫

HN,p

L−γXdµp =
∑

s≥0

µp(γ
−1
X (s))L−s

Given an integere0 we denote byH(e0) the finite set of admissible Hilbert polynomials, see
Proposition 3.1.
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Theorem 3.21(definition of motivic volume). LetX be a singularity, then the series
∑

e0≥1

( ∑

p∈H(e0)

volp(X)
)
L−e0

converges inM̂ to the motivic volumevol(X) ofX.

Proof. Let us consider the motivic volume ofX with respectp

volp(X) =
∑

s≥0 µp(γ
−1(s))L−s

=
∑

s≥0[πn(γ
−1(s)) ∩ Σn

ci]L
−((n+1)(N−1)e0+s)

with n ≥ s, δ(N, e0). From Proposition 3.7 we get that

[πn(γ
−1(s)) ∩ Σn

ci]L
−((n+1)(N−1)e0+s) ∈ F lM

for a non-negative integerl. From this we get

( ∑

p∈H(e0))

volp(X)
)
L−e0 ∈ F e0M

and we are done. �

Let P be a property defined in the set of curve singularities with Hilbert polynomialp. Let
c(P) be the set of rational points ofHN,p corresponding to curve singularities verifying the
propertyP. We say thatP is finitely determined if there exists an integern0 = n0(P), that
we may assumen0 ≥ δ(N, e0) + 1, Proposition 3.7, such that for all curve singularitiesC1,
C2 with Hilbert polynomialp andC1

n = C2
n, n ≥ n0, thenC1 verifiesP if and only if C2

verifiesP. Notice that anyP analytically invariant property defined in the set of reduced curve
singularities is finitely determined, [10].

We say that a finitely determined propertyP is constructible, cfd-property for short, if the set
of truncations[Cn] ∈ Ξn, n ≥ n0(P), such thatC verifiesP is a constructible setcn(P) of Ξn.
Trivially a cfd-propertyP is determined by the cylindrical setc(P) = π−1

n cn(P). On the other
hand every cylindrical set defines a cfd-property.

Given a propertyP of curve singularities with Hilbert polynomialp we define its motivic
Poincare series by,n0 = n0(P),

MPSP =
∑

n≥n0

[πn(c(P))]T
n ∈M[[T ]].

We denote byM[T ]loc the ring of rational power series, i.e. the sub-ring ofM[[T ]] generated
byM[T ] and(1− LaT b)−1, a ∈ N, b ∈ N \ {0}.

Proposition 3.22.LetP be a cfd-property then it holds

MPSP ∈M[T ]loc.
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Proof. If we setn0 = n0(P) then we have

MPSP =
∑

n≥n0
[πn(c(P)) ∩ Σn

ci]T
n

=
∑

n≥n0
[πn0(c(P)) ∩ Σn0

ci ]L
(N−1)e0nT n

= [πn0(c(P)) ∩ Σn0
ci ]

L
(N−1)e0n0Tn0

1−L(N−1)e0T

and we get the claim. �

Notice that the condition ”belongs toHN,p” is a cfd-property that we will denote byHN,p. A
simple computation shows:

MPSHN,p
= [Σn0

ci ]
L(N−1)e0n0T n0

1− L(N−1)e0T

wheren0 = δ(N, e0) + 1.

4. LOCAL PROPERTIES OF THE MODULI SPACE.

The purpose of this section is to study the local ringOHN,p,x wherex is a closed point of
HN,p. In particular we will compute the tangent spaceTx = Homk(nx/n

2
x,k) of HN,p at x,

wherenx is the maximal ideal ofOHN,p,x.

We denote byAff ′ the subcategory ofAff of thek−schemesSpec(A)whereA is an Artinian
localk−algebra. LetHx

N,p(T ) be the contravariant functor betweenAff ′ andSet, such that for
any objectS of Aff ′ we have

Hx
N,p(T )(S) =





Z ∈ HN,p(T )(S) such that

Zs = Cx

for the closed points of S.





We will denote byD thek−schemeSpec(k[ε]), let pD be the closed point ofD. Notice that
the elements ofHx

N,p(T )(D) are first embedded deformations ofCx, but not all, see Example 4.4.
It is well known that there exists a bijection betweenTx and the set of morphismf : D → HN,p

such thatf(pD) = x. By Theorem 3.8 we obtain that there exist a bijection between Tx and
Hx

N,p(T )(D). From Theorem 3.8 it is easy to prove

Proposition 4.1. The functorHx
N,p(T ) is pro-represented bySpec(OHN,p,x).

In order to computeTx we need to characterize the setHx
N,p(T )(D). Let I be an ideal ofR,

we consider Hironaka’s invariantv∗(I) associated toI, see [24] Chapter III, definition 1. Let
f1, ..., fs be a standard basis ofI such thatorder(fi) = vi(I). Recall that from [10], Proposition
2, we have thatvi(I(C)) ≤ e0, i = 1, ..., s, for all curve singularityC of multiplicity e0.
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Proposition 4.2. Let J = (f1 + εg1, ..., fs + εgs) be an ideal ofk[ε][[X ]] defining a first
order deformationϕ : Z → D of a curve singularityC of multiplicity e0 defined by the ideal
I = (f1, . . . , fs). Then the following conditions are equivalent:

(1) Z is a family of curve singularities with Hilbert polynomialp(T ),
(2) ϕ : Ze+1 → D is flat,
(3) for all i = 1, ..., s it holds thatgi ∈ (I +Me0+1 : I +Me0+1−vi(I)),

Proof. We putνi = νi(I). We will use the syzygy flatness criterion, see for instance [2], Corol-
lary page 11. From this result, we deduce thatEn = k[ε][[X ]]/(J +Mn) is a flatk[ε]−module
if and only if for all a1, ..., as ∈ R such that

∑s
i=1 aifi ∈ Mn there existA1, ..., As ∈ R such

that
s∑

i=1

(ai + εAi)(fi + εgi) ∈Mnk[ε][[X ]].

By definition of family of curve singularities we get that(1) implies(2).
(2) implies(3). Let us assume thatϕ : Ze0+1 → D is flat. Leta be an element ofMe0+1−vi , we
need to show that for alli = 1, ..., s we havegia ∈ I +Me0+1. From the flatness ofEe0+1 and
fia ∈ Me0+1, we deduce that there existsA1, ..., As ∈ R such thatgia +

∑s
i=1Aifi ∈ Me0+1,

sogia ∈Me0+1 + I.
(3) implies(1). Suppose that for alli = 1, ..., s it holds

gi ∈ (I +Me0+1 : I +Me0+1−vi),

so for all n ≥ e0 + 1 we getgi ∈ (I + Mn : I + Mn−vi). Let a1, ..., as ∈ R be elements
with

∑s
i=1 aifi ∈ Mn. Sincef1, ..., fs is an standard basis ofI, by [37], Corollary 1.8, there

existsCi ∈ Mn−vi , i = 1, ..., s, such that
∑s

i=1 aifi =
∑s

i=1Cifi, soa1 − C1, ..., as − Cs is a
syzygy off1, ..., fs. From the flatness ofZ overD, we deduce that there existA1, ..., As such
that

∑s
i=1(ai − Ci + εAi)(fi + εgi) = 0. From the assumption(2) there existB1, ..., Bs ∈ R

such that
s∑

i=1

Cigi −
s∑

i=1

Bifi ∈Mn.

Since
∑s

i=1 aifi ∈Mn, from the two last equalities it is easy to see that

s∑

i=1

(ai + ε(Ai − Bi))(fi + εgi) ∈Mn.

We have proved thatEn is aD−module flat for alln ≥ e0 + 1, soZ is a family. �

Corollary 4.3. For all closed pointx ofHN,p, the morphism

d(πn) : THN,p,x −→ TΞn,πn(x)

is surjective,n ≥ e0 + 1.

Proposition 4.2 enable us to give an example of a first order deformation that is not a family.
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Example 4.4. Let us consider the plane curve singularity defined by the equationX3
1 = 0. In

this case we havev1 = 3 ande0 = 3. Let us consider the first order deformationZ defined by
X3

1 + εX1, i.e. g1 = X1. From the last result we get thatZ4 → D is not flat.

It is well known that the first order embedded deformations ofCx are classified by the normal
module

Nx = HomR/Ix(Ix/I
2
x, R/Ix).

If we denote byembdef (Cx) the first order embedded deformations ofCx, we will de-
fine a bijective mapτ : Nx −→ embdef(Cx). Let g : Ix/I

2
x → R/Ix be a morphism

of R/Ix−modules. Then a lifting ofg is a R/Ix−module morphism(g.) = (g1, ..., gs) :

(R/Ix)
s → R/Ix such that the following diagram is commutative

(R/Ix)
s

(f.)
��

(g.)

$$I

I

I

I

I

I

I

I

I

Ix/I
2
x g

// R/Ix

τ(g) is the first order deformation defined by the idealJ = (f1+εg1, ..., fs+εgs) with (g1, .., gs)

a lifting of g.

We denote byN ′
x the set ofg ∈ Nx for which there exist a lifting(g1, .., gs) such that for all

i = 1, ..., s it holds thatgi ∈ (me0+1
x : me0+1−vi

x ). From last Proposition we deduce

Proposition 4.5. τ defines a bijection betweenTx andN ′
x.

In a very few cases we can computev∗(I(C)); for example ifC is a curve singularity with
maximal Hilbert function thenv∗(I(C)) = {e0, . . . , e0 + 1}, see [36]. Notice in this case the
ringGrm(OC) is Cohen-Macaulay,m is the maximal ideal ofOC . We can prove a more general
result without any restriction onv∗.

Proposition 4.6. Let C be a curve singularity of(kN , 0) of multiplicity e0 and embedding
dimensionb. It holds:
(1) If the associated graded ringGrm(OC) is Cohen-Macaulay then(me0+1 : me0+1−vi) = mvi

for i = 1, ..., s.
(2) If C has a maximal Hilbert function ande0 =

(
b−1+r

r

)
, for some integerr, thenI(C) has an

standard basis ofs =
(
b−1+r
r+1

)
forms of degreer+1 and the ringGrm(OC) is Cohen-Macaulay.

In particular (me0+1 : me0−r) = mr+1.

Proof. (1) We putvi = vi(I). Notice that we always havemvi ⊂ (me0+1 : me0+1−vi). Let h be
an element ofOC such thath me0+1−vi ⊂me0+1, i = 1, .., s.
Suppose thath 6∈ mvi ; let t be the least integer such thath ∈ mt \mt+1. Let x be a degree
one superficial element ofOC . Thenx defines a non-zero divisor ofgrm(OC). This implies

thatmt/mt+1 xe0−t

−→ me0/me0+1 is a monomorphism. Notice thate0 − t ≥ e0 + 1 − vi, so
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hxe0−t ∈ me0+1. Since the coset ofh in mt/mt+1 is non-zero we get a contradiction. Hence
h ∈mvi , and we get the result.
(2) We only need to prove thats =

(
b−1+r
r+1

)
andvi(I(C)) = r + 1 for i = 1, ..., s. This follows

from [36]. �

Notice that very often ifp is a rigid Hilbert polynomial then the associated graded ring is
Cohen-Macaulay, see for instance [15], [13].

Corollary 4.7. Letx be a closed point ofH2,p(T ). Then there exists a natural bijection between
Tx andme0

x .

We will end this paper studying the local structure of the closed points ofHN,p.

Definition 4.8. LetC be a curve singularity with Hilbert polynomialp(T ). We say thatC, or
the corresponding closed pointx of HN,p, is non-obstructed if the functorHx

N,p(T ) is smooth,

i.e. for all epimorphism of local finitely generated Artinian k-algebrash : A −→ A
′

the set
map

Hx
N,p(T )(Spec(A))

Hx
N,p(T )

(h)
// Hx

N,p(T )(Spec(A
′

))

is surjective.

Let k−mod be the category ofk-modules. Given ak-moduleW we will denote byW ∗ =

Homk(W,k) its dual space. It is well known that there exists a natural monomorphismW −→
W ∗, that it is isomorphism if and only ifW is a finite dimensionalk-module.

Following Laudal, [28], pag. 102, we will consider each object of k−mod endowed with
a topology that will induce its reflexivity. LetW be an object ofk−mod, pick ak-base
V = {vi}i∈I . We put onW the topology for which a basis of neighborhoods of the neutral
elements consists of the subspaces ofW containing all but a finite number of the elements ofV.
We will denote byk− top.mod the corresponding category of topologicalk-modules. Given
an object ofk− top.mod. We will denote byW ◦ the topological dual ofW . It is easy to see
that the dual basis ofV defines a topology onW ◦ such thatW ∼= W ◦◦.

We know that for all closed pointx of HN,p it holds

OHN,p,x
∼= lim

−→

n

π∗
n(OΞn,xn

),

wherexn = πn(x), [21], 8.2.12.1. In particular we havenx
∼= lim−→

n
π∗
n(nxn

), wheremxn
is

the maximal ideal ofOΞn,xn
. For alln ≥ e0 + 1 we pick ak−basisVn = {ej}j∈Jn

of mxn
,

such thatJn ⊂ Jn+1, andVn ⊂ Vn+1. Notice thatV = lim−→

n
Vn, is ak−basis ofnx, and

V ∪ {1} is a k-basis ofOHN,p,x. We writeJ = lim−→

n
Jn. From now on we will consider

OHN,p,x endowed with the topology for which a basis of neighborhoodsof the neutral element
are the ideals containing all but a finite number of elements of V. This topology will permit
us to characterize the non-obstructiveness of the closed points ofHN,p, see Theorem 4.9. We
will denote byO+

HN,p,x
its completion with respect the topology defined above. Thistopology
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induces a topology onnx/n
2
x, making thisk-module an object ofk− top.mod. Moreover,

this topology induces also a topology on the tangent spaceTx, in which the neighborhoods of
the neutral element ofTx are the linear mapsω : nx/n

2
x −→ k whose kernel contains all but a

finite number of elements ofV.

Let us consider thek-algebra morphismϕ : k[Ti, i ∈ V] −→ OHN,p,x such thatϕ(Ti) = ei,
i ∈ J . Notice thatϕ2 : k[Ti, i ∈ V]/(Ti)

2 −→ OHN,p,x/n
2
x is an isomorphism ofk-modules.

We will consider ink[Ti, i ∈ V] the topology for which a basis of the neutral element are the
idealsI contained in(Ti) such that all but a finite number ofTi belongs toI. We will denote
by k[Ti, i ∈ V]

+ the completion ofk[Ti, i ∈ V] with respect this topology. Notice thatϕ is a
continuous map with respect to the topologies defined above.

Theorem 4.9.A closed pointx ofHN,p is a non-obstructed point if and only if

ϕ+ : k[Ti; i ∈ I]+ −→ O+
HN,p,x

is an isomorphism ofk-algebras.

Proof. We will write S = k[Ti, i ∈ V], andOx = OHN,p,x. We will denote byIn the ideal
of S generated forTi, i ∈ J \ Jn; and we will denote byWn the corresponding ideal ofOx.
Henceϕ induces an epimorphism ofk-vector spacesϕn : S/In −→ Ox/Wn. Since the set of
{In}n, resp.Wn, are cofinal in the basis of neighborhoods ofS, resp.Ox, we get thatϕ+ is an
isomorphism ofk-algebras if and only ifϕn is an isomorphism for an big enough.

Let us assume thatx is non-obstructed and thatϕn is not an isomorphism; letF be a non-zero
element ofS/In belonging to the Kernel ofϕn. Let s be an integer such that the coset ofF in
A

′

= S/In + (Ti)
s is non-zero. Leth be morphism induced byϕn

h : A
′

= S/In + (Ti)
s −→ A = Ox/Wn + ns

x.

Let us consider the projectionπ : OHN,p,x −→ A. Sincex is a non-obstructed point we get that
there exists a morphismσ : OHN,p,x −→ A

′

such that the following diagram is commutative

OHN,p,x

σ

��

π

""F

F

F

F

F

F

F

F

F

A
′

h
// A

Sinceϕ2 is an isomorphism we get that the above diagram induces

A

σ
��

π=Id

��
@

@

@

@

@

@

@

@

A
′

h
// A

soh is an isomorphism and we get a contradiction.
If ϕ+ is an isomorphism then it is easy to see thatx is non-obstructed. �
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Proposition 4.10. (i) Every closed pointx of H2,p(T ), with p(T ) = e0T − e0(e0 − 1)/2, is
non-obstructed. In particularH2,p(T ) is reduced.
(ii) Given an integera ≥ 2 we putpa =

(
a
2

)
T − 2

(
a
3

)
. Then every closed pointx of H3,pa is

non-obstructed, andH3,pa is reduced.

Proof. (i) Let h : A −→ A
′

be a epimorphism of local finitely generated localk-algebras; we
need to prove thatHx

2,p(T )(h) is surjective. We writeS = Spec(A) andS
′

= Spec(A
′

).
Given a family Z

′

∈ Hx
2,p(T )(S) there existsF ∈ A

′

[[X1, X2]] such thatZ
′

=

Spec(A
′

[[X1, X2]]/(F )). Let G ∈ A[[X1, X2]] be a power series of ordere and such that
h(G) = F . Then it is easy to prove that the familyZ = Spec(A[[Xx, X2]]/(G)) verifies
Hx

2,p(T )(h)(Z) = Z
′

.
(ii) Let h : A −→ A

′

be a epimorphism of local finitely generated localk-algebras; we write
S = Spec(A) andS

′

= Spec(A
′

). Let Z
′

be a family of curve singularities of(k3, 0) overS
′

with Hilbert polynomial

pa(T ) =

(
a

2

)
T − 2

(
a

3

)
.

Let x be the closed point ofH3,pa(T ) defined by the closed fiber ofZ
′

. From Corollary 4.5, we
get thatv(Ix) = a andIx ⊂ R = k[[X1, X2, X3]] admits a minimal free resolution

0 −→ Ra−1 M
−→ Ra −→ Ix −→ 0

with M a matrix with entries belonging to the maximal ideal ofR of order1. Hence there exists
ana × (a − 1) matrixM with coefficients in the maximal ideals ofA[[X1, X2, X3]], such that
its maximal minors generates and ideal, sayI

′

, with Z
′

= Spec(A
′

[[X1, X2, X3]]/I
′

) andM
is mapped toM by the natural morphism ofk−algebrasA

′

[[X1, X2, X3]] −→ k[[X1, X2, X3]].

Let N be ana × (a − 1) matrix such that its entries belong to the maximal ideal ofA and are
mapped to the entries ofM byh. LetI be the ideal ofA[[X1, X2, X3]] generated by the maximal
minors ofM ; we putZ = Spec(A[[X1, X2, X3]]/I). It is easy to see thatZ ∈ Hx

3,pa(T )(S),
whereS = Spec(A), andZ

′

= Hx
3,pa(T )(h)(Z). �
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269, 270, 305, (1972-73).
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