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INTRODUCTION

A central problem in Algebraic Geometry is the classificaid several isomorphism classes
of objects by considering their deformations and studytregiaturally related moduli problems,
see [33], [34]. This general strategy has also been appliethgularities. Some classes of
singularities with fixed numerical invariants are studieain the moduli point of view, i.e.
proving the existence of moduli spaces or giving obstrustio their existence. See for instance
[17], [28], [29] and [42].

The main purpose of this paper is to prove the existence ohtiauli spacddy , parameter-
izing the embedded curve singularities(&f', 0) with an admissible Hilbert polynomial and
to study its basic properties. The main difference betwherckassical projective moduli prob-
lems and the case studied here is Hat, is not a locally finite type scheme. Hence the general
techniques of construction of moduli spaces of projectivects do not apply to our problem
and we need to develop specific ones. SHgg, is a projective limit okk-schemes of finite type
we define a measure, in Hy , valued in the completion! of the ring M = Ko(Sch)[L™]
whereL is the class ofK,(Sch) defined by the affine line ovdt. This measure induces a
motivic integration onHy , and enable us to consider a motivic volume for singularities
arbitrary dimension. Seée [27]./[7], arid [30] for the motiintegration on jet schemes.

In[11], see alsd [14], we characterized the Hilbert-Sarpoéinomials of curve singularities:
we proved that there exists a curve singularitywith embedding dimensioh and Hilbert
polynomialp = eyT" — ey if, and only if, eitherb = ¢y = 1 ande; = 0, 0r2 < b < ey,
andpope, < €1 < p1pe,, S€€ Theorern 3.1 for the definitions @f, ., and p, ;.,. Moreover,
for each triplet(b, ey, e1) satisfying the above conditions there is a reduced curguianity
C c (kV,0) with k an algebraically closed field. From this result and the mesuit of this
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paper, Theorern 3.8, we deduce that the moduli sfphge is nonempty for the polynomials
p=eoT — ey With pgp e, < €1 < p1pe, fOr someb < N.

The contents of the paper is the following. The main purpdsgeation[] is to characterize
the zero dimensional closed subscheifies (kV, 0) for which there exists a curve singularity
C c (kN,0) such thatZ is a truncation ofC. In other words we characterize which zero-
dimensional schemes can be lifted to a curve singularitgofém 1.D. The key idea in the
proof of Theorend 119 is the control of the dimension of sorfiltl of Z obtained by applying
Artin’s approximation theorem to the system of equatiorfinge by some syzygy conditions
deduced from Robbiano-Valla’s characterization of stathtbasis.

It is well known that some propertig defined in the set of curve singularities are finitely
determined, i.e. determined by theth truncationC,, of C for n > ny = no(P). The most
studied finitely determined property is the analytic type[10] we prove that analytic type is
finitely determined fom > ny = 2u + 1, wherey stands for the Milnor number af, as a
corollary we get that if a property of curve singularitiesrigariant by analytic transformations
then is finitely determined. In [10] we also prove that "to @édlie same tangent cone” or "to
have the same Hilbert function” are finitely determined @rbies. In the section 3 we attach to
any finitely determined proper®y a rational power serie®/ P.Sp € M|T);,., Propositiorn 3.22.

In the second section we introduce the algebraic familiesiofe singularities over a scheme
S. Notice that the concept of family is a key ingredient in a mogroblem. We analyze the
relationship between families and normally flat morphismd @e also give several explicit
examples of families of curve singularities with fixed Hitbpolynomial.

The purpose of Sectidn 3 is to construct a moduli schElng parameterizing the embedded
curve singularities ofk™, 0) with fixed Hilbert polynomiap. In the main result of this section,
Theoren 3.8, we establish the existence &f-sschemeHy , pro-representing the functor of
familiesHy ,. We will obtainHy, as an inverse limit ok—schemes=,, of finite type with
affine morphisms,, : =, — =,_;. Notice that in Proposition 3.6 we prove some properties of
=, as a corollary of Theorem 1.9; in particular we prove tatontains the:-th truncations of
all curve singularities with Hilbert polynomial The key point in the existence #fy , is the
control of the behavior of the degree one superficial elemgiven in [10]; this enables us to
prove that,, is affine for a big enough. As a corollary we get that the cohomological dimen-
sion of Hy, is finite, and that there exists a universal family o¥B¢,. We end section three
by constructing the Hilbert strata &ty , for each admissible Hilbert function, in particular we
prove the existence of a moduli space parameterizing niyriet families.

In the second part of section three we introduce a motivicswmes,, defined in the algebra
of cylindersHy , valued inM. By means ofi, we define for a singularityX' of arbitrary
dimension a motivic volumeol(X) € M. Given a propertyP defined on the set of curve
singularities with Hilbert polynomigb we define a motivic Poincare seri#sPSp € M|[T]].
We prove that ifP is a finitely determined property thew PS» € M|[T),,.. In particular we
prove M PSu, , € M[T ..
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In the section 4 we compute the tangent spadd;ef, at a closed point, for this we determine
families that are first order deformations. We apply theselts to the moduli space of singu-
larities with maximal Hilbert function, in particular togohe curve singularities. By considering
Hy , as object of the category of pro-schemes we define a topolodg sheaf of rings. Taking
dual spaces with respect this topology we obtain the reflgaf the tangent space at the closed
points ofHy , and also the reflexivity of the normal space of the curve dargies parame-
terized byHy ,. We end the paper studying the obstructiveness of the closiedis of Hy ,,.
We prove that plane curve singularities and space curvelksinges with maximal numbers of
generators with respect to their multiplicity define norsiobcted closed points.

ACKNOWLEDGEMENTS The author would like to thank O.A. Laudal for the commenmntd a
suggestions that improved this paper.

1. TRUNCATIONS OF CURVE SINGULARITIES

Throughout this papek is an algebraically closed field. We set= k[[ X1, ..., Xy]|], M =
(X1, ..., Xn) is the maximal ideal of?, and we denote bgk™, 0) thek—schemeSpec(R).

A curve singularity of(kN, 0) is a one-dimensional Cohen-Macaulay, closed subsct&me
of (kN,0). We denote bym the maximal ideal oD = R/I, and byH}, (resp. h}.(T) =
eo(T + 1) — e;) the first Hilbert function (resp. Hilbert polynomial) @f, i.e. HL(t) :=
lengthr(Oc/m'™) and HL (t) = h(t) fort > eq — 1; e is the multiplicity of C. An element
r € Oc¢ is a degree one superficial elemenrif”*! : ) = m" for all n > 0, see for instance
[35].

From now on we fix a degree-one polynompél") = eo(T" + 1) — e; for which there exist
a curve singularityC’ C (k~,0) of embedding dimensioh < N with k., = p, see Proposi-
tion[3.1.

Given a curve singularity’ we denote byC,, the closed sub-scheme @~ 0) defined by
the ideal/ (C') + M", we say that’, is then—th truncation ofC', n > 1. First we recall some
necessary conditions for the ideals_ R to being a truncation of a curve singularity.

Lemma 1.1. LetC c (kN,0) be a curve singularity of multiplicity,. There exists a linear
form L € M \ M? such that for alln > ¢, + 1 such that the following conditions hold:
(1) lengthr(R/I(C)+ M™ + (L)) = ey,
(2) if nis the maximal ideal oR/1(C') + M™ then for allt, n —2 > ¢t > ¢, — 1, the product
by L defines an isomorphism kfvector spaces of dimensiex

nt ; n'

—
nt+1 nt+2

+1

Proof. Sincek is infinite andO. is a Cohen-Macaulay local ring we may assume that there
exists a linear fornl. € M \ M? such that its coset defines a degree one superficial element of
Oc¢, [31] Proposition 3.2. Then we havengthr(R/I(C) + (L)) = eo andM™ C I(C) + (L)

for all n > ey. From this we deduce the first equality.
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From [26], Theorem 2, we have

di m”
i\ gt ) =0

forall n > ey — 1. Hence from[[10], Proposition 1, we deduce

m: ; m'

—
mt+1 mt+2

+1

is an isomorphism odk-vector spaces of dimensieg foralln —2 >t > ey — 1. Since

m'! n’
Ia)

mitl nit+1

foralln —2>1t>ey— 1, we get(2). O

Next we define a set of ideals, containing then-th truncation of curve singularities of
multiplicity eq. Since we want to consider in Sectioh 3 a scheme structureroe subsets of
T,., we replace the identity of Lemrha (1) by an inequality that will define an open condition
on a suitable Grassmanian.

Definition 1.2. Letn > ¢, + 1 be an integerT,, is the set of idealg C R such thatM™ C J
and such that there exists a linear forine M \ M? such that

(1) lengthgr(R/J + (L)) < ey, and

(2) if n is the maximal ideal oR?/.J then the product by. is an isomorphism dk-vector

spaces
l’lt I nt-i-l
nt+1 nt+2
of dimensiorey, forallt =eqg —1,...,n — 2.

From the conditior(2) it is easy to prove that there exist a linear polynomidll") = ey (T +
1) —b,b € Z, such that

qs(t) = lengthgr(R/J + M')

forallt = ¢y — 2,...,n — 1. From the characterization of Hilbert functions due to Mday,
see for instance [40], we get

2
For alln; < n, we denote byi,, ,,, : T,, — T,, the projection map,,, ,,(J) = J + M™.

qs(t) > eo(t+1) — (60).

Forall f € R we denote byf* € S = k[X}, ..., Xy]|the initial form of f. If J is an ideal ofR
we will denote byJ* the homogeneous ideal Sfgenerated by the initial forms of the elements
of J, we putGr(R/J) = S/J* for the associated graded ring ity J. A set of elements of
J such that their initial forms is a (minimal) set of generatof J* is known as a (minimal)
standard basis of. We will denote bys,,, resp.J, the degree: component of5, resp..J*.
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Proposition 1.3. Let J be an element of T,,, n > ey + 2, then every minimal homogeneous
basisF,, ..., I, of J* satisfies

deg(E) g {60-'—1,...,”— 1}
foralli=1,...,s.

Proof. Letn be the maximal ideal of2/.J. L is a linear form, satisfying the conditiofs) and
(2) of the definition ofT,,, so that

St o n' St—i—l o n*!
Jt* ntti Jt*—i-l nt+2
is an isomorphism ok-vector spaces for all = ej — 1,...,n — 2. From the surjectivity of

these morphisms we g&t = LS,y + J; fort = eo, - --n — 1. Hence we deduce
JF CS1Jr + LS

t=eo+1,---n—1. Leta be an element of;, then there exigt € S,J; , C J; anda € S;_;
such thata = b+ La. In particularLa = a — b € J. From the injectivity of the above
morphisms we get € J; |, soa € S;J; ;. HenceJ; C S;J; , and then

Jt* = Sl‘]t*—l
fort =ey+1,---,n — 1. From this we get the claim. O
Definition 1.4. Let J € T,, be an ideal;n > ¢y + 2, and letFy, ..., F, be a minimal homo-

geneous basis of*. We may assume thdtg(F;) < e, fori = 1,...,v anddeg(F;) > n for
1=v+1,...,s. We denote by the homogeneous ideal §fgenerated by;,i =1, ..., v.

Next we will recall a result of G. Hermann, _[23], quoted by MrtiA in [1], Theorem
6.5. We need some additional definitions. The degfegf) of a r-pla of polynomials
f = (f1,...,f.) € S"is by definition the sum of the degrees fif ..., f,. The degree of
F = {f},... £}, f; € 5", is the sum of the degrees ff, ... ,f,. Let B C S" be aS-sub-
module, the degreéeg(B) of B is the minimum of the degrees of its systems of generators.

Proposition 1.5([23], [1]). There exists an integer valued functipn N> — N such that for
all ideals K C S of degree< d there exists a primary decompositiongf= K; N ---N K,
such that the following integers are boundedchidyv, d):
(1) The number, and the degree of each primary idéefd].
(2) The degree of the associated prime idgat rad(K;) and the exponents; such that
P C Kyi=1,--- 7.

We will apply the last proposition to our setting.

Definition 1.6. Let K be a heightV — 1 homogeneous ideal ¢f. Given a minimal primary
decompositio’ = K; N ---N K, under the condition$l) and(2) of Propositiori 1.5, we can
split this decomposition, after a suitable permutationtvio piecesk.,, = Ky N - N K,
such thatrad(Kepmp) = M and Koy = K1 N -+ - N K, is a perfect heightV — 1 ideal of S.
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Proposition 1.7. There exists a functiofi : N> — N such that: letJ be an ideal of T,
n > §(N, ep), then the following conditions hold:
(1) S/J is a one-dimensional graded ring of multiplicity, deg(J) < 6(N, ey), andJ +
M"™ = J*.
) 1If Jis trle ideal defining the-th truncation of a curve singularitg’ of multiplicity e
thenS/J is the associated graded ring @c, i.e. J = I(C)". )
(3) If Syzi(J) is the first syzygy module dfy, ..., F, then it holdsdeg(Syz1(J)) <
(S(N, 60).

Proof. (1) from the definition ofJ we getJ + M™ = J*. Let us assume that/.J is a zero
dimensional ring. Sincd is generated by homogeneous forms of degfeg we have

deg(J) < e (N;\Lfeo) =d,

so from Proposition 1]152) we get that

N — §V+_71(N, d)) (N, o).

We defines(N, ep) = n(N,ep) + () + 1. Sincelengths(S/J) > eo(n) — (%) then for
n > 8(N, ey) we get a contradiction, séim(S/.J) > 1.

Let n be the maximal ideal of/.J. From the definition of/ and condition(2) of the
definition of T, we get thatn’t! = Ln‘ for all t > ey — 1, sodim(S/J) < 1. Since
dim(S/J) > 1 we have thatS/.J is a one-dimensional graded ring of multiplicity less or
equal tharey. LetJ = K,o_emp N K.y be a primary decomposition of satisfying Proposi-
tion[1.5, whereX,,,_...;, is a perfect heightv — 1 ideal andK.,,;, is aM —primary ideal. Since
§(N,ep) > v(N,d) from Propositio 15 we hav&/"™ C K.,,, and then

Kno—emb + Kemb
Hé,/j(n) = Hé/Kmiemb(n) + lengthg < K ) :

lengths(S/J) < (

From this we deduce thﬁg/j(n) = Hg, . (n)foralln > d(N,eg). SINCeS/K,p—cmp IS @

one-dimensional Cohen-Macaulay graded ring of multipliei (S/ K,o—emp) = eO(S/j) < eg

anng/j(eO—l) = ey, second condition of the definition @,, we get thaiS/.J has multiplicity
€0.
(2) seel[10], Proposition 23) follows from [39]. O

We denote by34,4, : N* — N the so-called beta function of Artin, see [1], Theorem 6.1.

Proposition 1.8. There exists a numerical functigh: N®* — N such that for all ideals/ of
T, n > (N, ep),

B(N,eq,n) > Barin(N,v(r +1),2r,n)
with v the minimal number of generators df and the minimal number of generators of

Syz(J).
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Proof. From the last result we know that< deg(J) < §(N, ey) andr < deg(Syz(J)) <
d(N, eg). From these inequalities we deduce the claim. O

Theorem 1.9.For all n > §(N, ey) the set of the associated idealsitdh truncations of curve
singularities of multiplicitye, coincides with

Tn - aﬁ(N,eo,n),n(TB(N,eo,n))~

Moreover, given/ € T, there exists a curve singularity of multiplicity e, such thatO., =
R/J,andS/J is the associated graded ring @..

Proof. Let us consider an ideal = (f,..., fs) of Tz, m = B(N,ep,n), such thatF; = f7*,
i=1,---,s, form a minimal basis of*. We may assume thdtg(F;) < e, fori =1,...,v
anddeg(F;) > mfori=wv+1,...,s, Propositioi 3]7. We denote biythe homogeneous ideal
of S generated by;,i =1,..., .

Let Z be the first syzygy module of, ..., f,, and letZ* be the first syzygy module of
Fy = fr,...,F; = fr. Letus recall that there exists a mé&p: Z — Z*, see proof of([37]
Theorem 1.9, such thatfor dH4, . .., as) € Z we haved(ay, ..., as) = (by,...,bs) with b, the
initial form of a; if deg(a;) = p—d;, with d; = deg(F;), p = Min{deg(a;) +dy,i =1,...,s},
and zero otherwise.

Let RY,..., R" be a minimal system of generators of syzygy onduIéﬂqf. .., F,. From
[37], Theorem 1.9, there exist elemedts, ..., R" of Z such thatb(R') = R\, i = 1,...,7.
Let R' the projection on the first components of’, i = 1,...,r. Thenwe have, = 1,...,r,

Zé;szo mOd(Xl,...,XN)ﬁ.

j=1
Let us consider the following system of equations attacbebdse syzygy conditions

(sys) {2 B0

1=1,...,7

considered in the polynomial rifg Xy, ..., Xn;Yy,..., Y, X], ..., X].
Sincen = B(N,ep,n) > Bamin(N,v(r + 1),2r,n), from the approximation theorem of
Artin, [1] Theorem 6.1, there exists a solution of the systdraquationg Sy z)

Zﬁj%‘:o
j=1
1 =1,...,r,and such that
gj:fijdMn i=1,...,v
R =RmodM" i=1,....r

Let us definel = (¢,...,¢9,)R. Next step is to prove that, ..., g, is a standard basis of
I. We will prove it by means of [37] Theorem 1.9. Notice tHat= J mod(Xy,..., Xn)",
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gi = fr=F,i=1,...,v. HenceR!,... R" is also a minimal system of generators of the
first syzygy module of gz, . .., ¢ }. Since®(R') = ®(R') = Ri,i=1,...,r,andR ,.... R
verifies (Syz), from [37] Theorem 1.9, we get thdy,, ..., g,} is a standard basis df i.e.
I* = (g5,...,9°) = (Fy,...,F,) = J. In particularR/I is a one-dimensional local ring of
multiplicity eq, Proposition LI{1).

From the conditiori1) of the definition ofT;; we get that there exists a linear forfrsuch that
dimy(R/I1+ (L)) = ey, SOR/I is a one-dimensional Cohen-Macaulay local ring of multigyi

eo. If we defineC = Spec(R/I) then we deduce the claim. O

2. FAMILIES OF EMBEDDED CURVE SINGULARITIES

For allk-scheme of finite typ& = Spec(A) we will denote by(k", 0), the affinek-scheme
Spec(A[[ X, ..., Xn]]). We denote byr : (kV,0)s — S the morphism ok-schemes induced
by the natural morphism df-algebrasA — A[[X]] = A[[X1, ..., Xv]]. Given a closed sub-
schemeZ C (kV,0)4 we will denote byZ, the closed sub-scheme @", 0) defined by the
ideal/(Z,) = I(Z) + (X)", foralln > 1.

Let us denote by , : Aff — Set the contravariant functor such that for all affike
scheme of finite typ&

closed subschemes c (kV,0)4 such thatr : Z — S
is flat and

H, (S) = (i) for all n > eq + 1 the morphismr,, : Z,, — S is flat with

P fibers of lengthp(n — 1),

(i) for all closed pointss € S the fiberZ, = Z @4 k(s) is a
curve singularity of kv, 0) with Hilbert polynomialp.

\

we say thaH  (S) is the set of families of curves ovérwith Hilbert polynomialp.

Proposition 2.1. (1) Hy ,(Spec(k)) is the set of curve singularities ¢&", 0) with Hilbert
polynomialp.
(2) Given a schemg c (k%,0), the following conditions hold
(2.1) if Z verifies the conditiotti) of the definition of family of curve singularities over
S thenZ is flat oversS,
(2.2) if S'is reduced and if for all closed pointse S the fiberZ, is a curve singularity
with Hilbert polynomialp thenZ is a family of curves oves.

Proof. (1) From the definition of family of curve singularities it isasy to see that
Hy ,(Spec(k)) is a set of curve singularities with Hilbert polynomig{7’). Let C be a
curve singularity of(k",0) with Hilbert polynomialp(7). From [26], Theorem 2, we have
hi(n) = Hi(n) forn > e — 1, so we havel € Hy  (Spec(k)).
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(2.1) follows the main ideas of the proof of [32], Theorem 88t 77 = Spec(A[[X]]/J) be a
closed subscheme ¢k”,0), with S = Spec(A), such that for alh > e, + 1 the morphism
T Z, — S'is flat with fibers of lengthp(n — 1). We have to prove that the morphism

AllX
A—p=2
isflat. Letf : L — P be a monomorphism of finitely generatdemodules, we have to prove
thatf ® Idg : L ®4 B — P ®4 B is also a monomorphism.

Since the morphisml — B,, := Jﬁ[([%]n is flat for alln > e + 1, we have that

f®IdBn : L®A Bn —>P®ABn
is also a monomorphism, > e, + 1. Hence

@f@ Idg, : @(L®A B,) — @(P®A B,)
is a monomorphism. Since tbemodulesL and P are finitely generated it is well known that
@(L@ABH) = L®a B, @(P@ABH) =P®sB
from this we deducé2.1). The statement (2.2) follows frorn [26], Theorem 2. 0J

Remark 2.2. Notice that the conditioif) implies that for all closed points € S the fiberZ,
is al—dimensional closed sub-schemgkf', 0) with Hilbert polynomialp. Hence(ii) can be
changed to

(i) for all closed pointss € S the fiberZ, is a Cohen-Macaulay scheme.

Remark 2.3. There exist flat morphisms that are not families. See Exahdléor a first order
deformation of a plane curve singularity that is not a family

In the following examples we will construct families of cergingularities with a closed fiber
C' by deforming the ideal (C'), by deforming a first syzygy matrix af(C') and by deforming
a parametrization of’.

Example 2.4. Let F, G4, ...,G, be power series in the variables,;, X,. We assume that
order(F) = eg andorder(G;) > ep+1fori =1, ...,r. We putd = k[T, ..., T,], S = Spec(A),
I=(F+Y,_ | T,G;) C A[[X1, Xo]], andZ = Spec(A[[ X1, X2]]/I). Notice that for all point

of S the fiberZ, is a plane singularity of multiplicity,. From Proposition 2]1 (2.2) we deduce
that 7 is a family of plane curve singularities with Hilbert polyméal p = e, T — eg(eg — 1) /2.

Example 2.5. Let us consider the curve singularity @, 0) defined by the ideal generated by
the maximal minors of the matrix ([9])

Xs 0
Xot X,
0 X,
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An straightforward computation shows thigt = e, T — (€3 — 3¢ + 4) /2, and
Hé. = {1, 3, 4, 5, 6, €0 — 1, €0, €0, }

Let us consider the closed subschemef (kV,0), S = Spec(k[U]), defined by the ideal
generated by the maximal minors of the matrix

X5+ QU 0
X0 L QU X34 QuU
0 Xo+QsU

where@, Q», Q3 are formal power series X, X5, X5 of order at leas®, and(), is a power

series in the same set of variables of order at leastVe know that” is a flat deformation of
C with baseS, seel[2]. We have a better result: from[[37], Theorem 1.9tahgent cone of
the fiberZ, coincides withZ, = C for all closed points € S. Hence the Hilbert function is
constant on the fibers, from Propositlonl2.1 we get that a family of curve singularities with
Hilbert polynomialp = e,T — (e — 3eo + 4)/2.

Example 2.6. Notice that in the previous example we have deformed theixnaftrsyzygies
of the curve singularity obtaining a family of curve singiti@s. We can also deform the
parametrization, i.e. the normalization morphism, in ofteobtain families. In this case the
families verify a stronger condition the singularity oraerthe fibers is constant, see [41]. Let
C the curve singularity ofk?, 0) with normalization morphisn®- — O¢ = k[[t]], defined
by

X, =15 X, =17, X5 =t X, =%

Recall that we can compute the Hilbert function(doby two different methods. First we can
compute the ideal of’ eliminatingt and then computing the Hilbert @?.. In our setting we
can also compute the Hilbert function 6fusing the fact

0(C) = #(N\T(C))
wherel'(C') =< 6,7,10,15 > is the semi-group generated by Hence we have(C) = 8.

On the other hand we can desingulariZeby an unique Blow-up, so from [25] we get that
§(C) = p = 8. Hence we havé}, = 6T — 8. Let us consider the family of parameterizations

BU) : Xy =15 Xy =17, Xy =10, X, = 15 + Ut'S.

Then we can consider the closed sub-schemgbf0), S = Spec(k[U]), defined bys(U).
From [41] we get that for all closed pointse S the normalization of the fiber, is defined
by 5(s). Hencel'(Z,) = I'(C') andh}, = h{, = 61 — 8; from Propositiori ZJ1 we get that
Z € H4,6T—8(S)-

We end this section studying the relationship between famibf curve singularities and
normally flat morphisms, see [24].
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Definition 2.7. Let.S = Spec(A) be a scheme of finite type and lebe a closed subscheme of
(kV,0)4 such that there exists a closed sectionS — Z of 7 : Z — S. We say tha is
normally flat alongS if and only ifGrz, ., (Oz) is a flatOs module.

Proposition 2.8. Let Z be a closed subscheme(&f', 0) ; such that there exists a closed section
c:S—Zofr: 27— S.

(1) if Z is a normally flat scheme alongand verifieqii)’ thenZ is a family of curves,

(2) if Z is a family of plane curve singularities thehis normally flat alongs.

Proof. (1) The result follows from the factrz, . (Oz) is a flat Os-module if and only if
OZ/IQ(S) = Oy, is aflatOg-module for alln > 1.

(2) Let Z be a family of plane curve singularities over an affine schéme Spec(A). We
need to prove that for all closed pointe S andn > 1 the Og,-moduleOy, is free of rank
eon — eg(eg — 1) /2. Letm be the maximal ideal oft defined bys. For alln > 1, we will prove

that
Ap[[ X1, Xo]]

I(Z) An[[ X1, Xo]] + (X1, Xo)"
is a freeA,,-module of rankeqn — eg(eg — 1)/2. Let F € 1(Z)A,[[ X1, Xa]] € An[[X1, Xo]]
be a power series such that,[[ X1, X,]]/(F) ®4 k is the local ring0,. Since thek-vector
spaceq F) + (X1, Xo)®t C I(Z)An[[X1, Xo]] + (X1, Xo)t! have the same codimension
eo(eg + 1) — eo(eg — 1)/2, the vector spaces agree. From this it is easy to prove (2). O

Remark 2.9. The last Proposition enable us to consider the conditipof the definition of
family of curve singularities as a weak form of normally flabrmphism. Notice that the last
three examples are in fact normally flat families.

Example 2.10.Example of family not normally flat. Let us consider the fanof monomial
curves

X1 = t7,X2 = t8,X3 = (1 - U)tg + atlo.
Since the singularity order and the Hilbert polynomial deesdepend on the parameterfrom
[41] and Propositioh 211, we get that there exists a familgwfe singularities : 7 — S =
Spec(k[u]) such thatZ, is the monomial curve defined by On the other handi} (3) = 5,
andH} (3) = 6 sow is not a normally flat family.

In [11] we defined rigid Hilbert polynomials as the polynotsithat determines the Hilbert
function; i.e.p = eyT" — e, is rigid if there exists a functio/, : N — N such that ifC' is a
curve singularity withh, = p thenH}, = H,,. For instance = e,T — e; with e; = ¢y — 1, e,
eoleg —1)/2 —1, eg(eg — 1) /2 are rigid polynomials, and any Hilbert polynomijak eqT' — e;
with ey < 5 isrigid, seel[11]. See also [15] for further results on rig@lynomials. Finally, it
is easy to prove

Proposition 2.11. Every family of curve singularities with a rigid Hilbert peiomial over a
reduced base is normally flat.
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3. MODULI SPACE OF CURVE SINGULARITIES

The purpose of this section is to construct a moduli schBing parameterizing the embed-
ded curve singularities ¢k, 0) with fixed Hilbert polynomiap, Theoreni-3.8.

Let us recall that we assumed in the first section that e,(7 + 1) — e, is an admissible
Hilbert polynomial, i.e. there exists a curve singulaxityof (k¥,0) with Hilbert polynomial
p. In [11] we characterized the admissible Hilbert polyndmiido recall that result we have to
define some integers attachedetoand the embedding dimension: given integers b < ¢
we consider the following integers, ., = (r + 1)eg — ("), with r the integer such that

T

(b+:_l) <ey < (fj_fi), andpr’eO = 60(60 — 1)/2 — (b — 1)(b — 2)/2

Proposition 3.1. There exists a curve singularity with embedding dimension < N and
Hilbert polynomialp(T') = eqT' — e; if, and only if, either

(1)b:1,60:1,61:0,0r

(2)2<b<ep, andpope, < e1 < Prpeo-

Moreover, for each tripletb, ey, e1) satisfying the above conditions there is a reduced curve
singularity C'  (k~,0) with embedding dimensidnand Hilbert polynomiap = e T — e,
with k is an algebraically closed field.

Let /' : N — N be a numerical function such thatt) < b(¢) := (V") forallt > 0. For
eacht > 0 we denote by, the Grassmannian df (t)—dimensional quotients a&, = R/M*,
notice thatR, is ab(t) dimensionak-vector space. Recall th&t; represents the contravariant
functor G, : Sch — Set, whereSch is the category ok—schemes locally of finite type,
Set the category of sets, ar@,(S) is the set of locally free quotients (/iﬂ(s) of rank F'(t),
see [22]-1-9.7.4. IfK is a F'(t)—dimensional quotient of?; then we will denote by K] the

corresponding closed point 6f;.

We denote by, ,, the contravariant set-valued functor 8ah defined by:F, ,,(S) is the set
of S— module quotients” = R,,(s)/N such that th&s-module

f(l) — Rn_i(s)/(an,i)*(N)

belongs toG,,_;(S), i = 0,1,...,n — r, whereo,, ; : Fz; — 1/%;: is the natural morphism of
sheaves. For all integers< n, let W (r, n, F') be the reduced subscheme(®f whose closed
points correspond to tHe-vector space quotient3, / E such thatlimy (R, /E + M") = F(t)
forallt =r,... n.

Proposition 3.2. The schemé&V/ (r, n, F') represents the functar, ,,.

Proof. In order to prove the result we will use [22]-0-4.5.4. Frora tbcal nature of the defini-
tion of )., it is easy to verify the second condition 0f [22]-0-4.5.4 eTirst condition follows
from [22]-1-9.7.4.6, and the third condition from [22]-1-R4.7.

We will prove the fourth condition of [22]-0-4.5.4. Léin;},—: . »») be a lexicographically
ordered set of monomials &f{.X}, ..., Xn| such that their cosets iR, form ak—basis. We
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denote byH the set off = {iy,...,ipum)} C {1,2,...,b(n)} such that
card(HN{1,2,....,0(n —1i)}) = F(n—1)

foralli = 1,2,....,n — r. It is known that for everyd € H we get an open seB, (H)
of G,: B,(H) is the set off'(n) dimensional vector spacd®,/L such that the cosets of
Miy, ..y Mig,,, N this quotient form &-basis. This open set is isomorphic to the affine space of
matrices,F'(n ) (b(n) — F(n)).

Let g : (’)Spec o R, be the morphism 00s,,...—modules defined by the—linear
mapey : k'™ — R, with o ((a:)ien) = > ;e aimi. By [22]-0-4.5.4 we get thaB, (H)
is represented by the subfunct@y, ,; of G, defined by:G,, () is the set ofF € G,,(S) such
that the composition

oL 21, R (S) — F

is an epimorphism. It is easy to see that there exists a eoedaorrespondencebetween
G, ;(S) and the set 0©s—morphisms : R, — OsF™ such thatpy = Id; v corresponds
to F = R,/Ker(v). Hence we have a exact sequence of set maps

—~ oH
Qn,H(S) L) HomoS(Rn, OSF(H)) = HOmos(OsF(n), OSF(n)),

Bu

with ay (v) = vou, Bu(v) = Id; we getthati,, ; is representable b, (), i.e. the kernel
of the pair of morphisms

aH

KFm) = Fn)?
By
Let us consider the subfuncté.,, y of F,,, such that for everys, ., x(S) is the set of
F € F,,(S) such that the composition

05" 2 Rog) — F

is an epimorphism. Let us consider the restrictiory of

Y Fonu(S) — Homos(]fi’\; (QSF(H))7

first of all we need to compute the image @f For this consider the projection in the first
F(n — i) components

(i) : OgF™ — 0=
and the canonical monomorphism

e~

o(i) s Mn=i/M» —s R,
From [22]-0-5.5.7 it is easy to prove

CLAIM: Letw : E(S) — O™ be a morphism such thatpy; = Id, then the sheaf
ﬁ(s)/Ker(v) is locally free of rankF'(n — i) if and only if 7(i)vo (i) = 0.

From the claim we can build up the following exact sequenaaapb sets
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Frnm(S) AN Homos(ﬁ:“ OSF("))

E€H n—r ‘
= Homoy (05", 05"") x [[ Hom(M=t /M~ 5, O™ ),
H

i=1
with 6y (v) = (1d;0,...,0), andeg(v) = (vyg;w(i)vo(i),7 = 1,2,...,n — r). From this and
[22]-1-9.4.9 we obtain thaf; ,, ; is representable by the Kernel, sXyI, of the pair of mor-
phisms

kb(nF(n :;kF(n XHklnz (n—i)

I(n,i) = dimy(M™/M™), so we get [22]-0-4.5.4(|v) for the family of functo{s", . i} wen-
HenceF, , is representable by a schemYe and{ Xy} ncy, is an open cover ak. From the
proof of the representability oX'; we deduce thaky is a linear subspace @, (H). From
the definition ofV (r, n, F') and [22]-1-4.2.4(ii) we deduce th& = W (r,n, F'), so we get that
W (r,n, F) represents the functd, ,,. O

We denote byHilb, the Hilbert scheme parameterizing the closed subschemgscofR,,)
of length F'(n); Hilb, represents the contravariant set-valued funéfdp, on Sch for which
Hilb, (S) is the set of morphismg : Z C Spec(R,) x S — S with fibers of length/'(n), see
[18]. Let

any1: W(r,n+ 1, F)N Hilb,y — W(r,n, F) N Hilb,
be the morphism of schemes induced by the functorial monphis
Apq - Fr,n—l—l Xgn+1 H’len—i-l — F,n’n Xa, H’len,

with An+1(5) (.7") = .7:(1).

From now on we assume tha{t) = p(t — 1) = et — e1, and for alln > ey + 1 we put
W(n) =Wi(ey+ 1,n,p) andW’(n) = W(n) N Hilb,.

LetC c (kV,0) be a reduced curve singularity. We will denoted§y’) = dimy (O /O¢)
the order of singularity of”, hereO¢ is the integral closure ad. on its full ring of fractions.

We denote by.(C) the Milnor number of”; notice thau(C') = 26(C) —r(C) + 1 wherer(C')
is the number of branches 6f, [5] Proposition 1.2.1.

Definition 3.3. We denote by, (N, p) the set of points ofs,, defined by all truncations’,
where( is a curve singularity of Hilbert polynomidl}, = p.

We will prove thatC,,(N, p) is in fact a constructible set @f,,, see Proposition 3.6.

Proposition 3.4. (1) For all n > ¢y + 1 it holdsC,, (N, p) C W'(n).

(2) Let C be a curve singularity with Hilbert polynomid}, = p, then its tangent cone is
determined byC, |, n > ey + 1.

(3) If C'is reduced then the analytic type @fis determined byC,,|, n > 2u(C) + 1.
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Proof. (1) We only need to prove that for all curve singularity of tiplicity e, it holds[C,,] €
W'(n), n > ey + 1. Notice that the closed points of’(n) are the quotient&// with I C R
ideal such thatV/™ C I anddimy(R/M" "+ 1) =pn—i—1)fori =0,..,n—e—1.In
particular if C is a curve singularity ofk?, 0) with Hilbert p then R/1(C) + M™ defines a
closed point o’ (n) for all n > ey + 1, seel[26], Theorem 5.

(2) follows from Propositiof 1]7. From [10], Theorem 6, wealdee (3). O

Notice that in the last proposition we proved thit(n) contains all-th truncations of curve
singularities with Hilbert polynomiagp. In order to take account of the Cohen-Macaulayness
of the curve singularities we need to shrifik (n) by intersecting this scheme with some open
Zariski subset of7,,. For this end, given a linear forth € R we denote by/, (L) the Zariski
open set of7,, whose closed points are the quotieits/ E' such thatdimy (R.,+1/(E, L)) <
eo, Where(E, L) is the ideal generated by and L.

Proposition 3.5. (1) Let / be an ideal ofR such thatd = R/ is a one-dimensional local ring
of multiplicityeq. Let L be an element aR, the following conditions hold

(1) dimy(A/LA) > eq and we have equality if and only if is Cohen-Macaulay and the
coset ofL in A is a degree-one superficial element.

(2) If dimy(R/I + M*™1) = p(ey) then the following conditions are equivalent:
(@) [R/I + Me™!]| belongs td/,,. (L),
(b) Ais Cohen-Macaulay and the cosetiofn A is a degree-one superficial element.

(3) There existlinear forms, ..., L; of R, s = ¢o(N —1)+1, such that for all curve singularity
C of (kN,0) with Hilbert polynomialp andn > e, + 1 it holds[C,] € W'(n) N U,(L,).

Proof. (1) Let us assuméimy (A/LA) < oo, i.e. LA is am—primary ideal ofA. From [38],
Cap. | Proposition 3.4, we gét). By (1) we deduce that) is equivalentlimy (R/I + (L)) <
eo- It is easy to see that this inequality equivalentltew (R/I + M<™! + (L)) < e, i.€
[R/I + M**1] belongs ta/,,1(L).

(3) Let C be a curve singularity” of (kN,0) with Hilbert polynomialp. From [43], Chap. |
Proposition 3.2, we deduce that if a linear fofnis a non zero-divisor i6:r(O¢),.q thenL is
a degree one superficial element®f. Let L,, ..., Ly, s = eo(N — 1) + 1 be linear forms such
that any subset oV — 1 elements ik—independent. From this and thg) it is easy to deduce
the claim. O

We will define a sub-schemeg, of Hilb, taking account of the condition (2) of the definition
of T,,. For this end we have to define some special cells of the GessanG,,, from a
deep study of these cells we will deduce that the morphigns affine for a big enough,
Proposition 3.1 1).

Let Mon = {m4,ms, ...} be the set of monomials ¢f ordered with respect to the degree-
lexicographic ordering. Given multi-indexés = {i1, ..., ipe-1)} C {1,2,...,0(e0)}, 5. =
{J1s - Jeo} C {bleo) + 1,...,b(ep + 1)}, and a linear formL,, we defineD, (i, j,q) as the
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linear subspace ak,, generated by thg(n — 1) linear independent monomials

. T s J—
Mgy ooy My Limy,, ..., Lqmjeo, r=0,...,n—ey— 1.

For alln > eq we fix ak-basisV,,(i,j, L) of R, adding to these elements monomials of
suitable degree. We denote B, (i , 7, q) the Zariski open subset @f, with closed points
[R,/E] such that the projectioP,,(i, j ,q) — R,/ E is an isomorphism.

For all tripleti_, j., ¢, we consider the open sel&, (i, j., q) = B,(i.,j.,q) N U(L,); we set
B, =U; j 4B.(i,7,q). We denote by, the open sulke—scheme ofV' (n)

=, =W'(n)NB,

andz,(i,j,q) = 2, N B, (i, j,q). Notice that the morphism,, : W'(n) — W'(n — 1)
induces morphisms, : =,(i,7.,q9) — Z,-1(1.,7.,9), an : Z, — Z,_1, foralln > eq + 1.

Proposition 3.6. (1) For all curve singularitiesC' of (k~, 0) with Hilbert polynomialp there
exists indexes, j , g such thafC,| € =,(i,j,q), foralln > ey + 1.

(2) C(N, p) is a constructible set an@', (N, p) C =,

(3) Forall i, j,qitholdsa, ' (Z,-1(i., j., @)rea) = Enlis, s rea-

Proof. (1) Follows from Proposition 1112) and Proposition 3]5.
(2) From Theorem_119 we get th&t,(N,p) = agg.eo) - - - Ant1(ZEpm.e))r SO Cn(N,p) is a
constructible set contained 1),.
(3) Letz = [R/I + M™| be a closed point dE,, such that, (z) belongs ta=,,_1(i., j , ¢)red-
Let n be the maximal ideal oR/I + M™. Sincea,(z) belongs toB,,_1(i, j.,¢) we have that
dimy (n®Ts /metst) = ¢o fors = 1,...,n — ey — 1, SO we have

n80—1 Ly ne-l—s—l

neo — ne+s+1

is an epimorphismfos = 1,...,n—¢ey— 1. Sincea, (z) € W(n) we get that these morphisms
are in fact isomorphism, so€ =,(i,j., q)- O

Let X, Y be k-schemes. Given constructible setsCc X, B C Y we say that a map
f A — B is a piecewise trivial fibration with fiber R—schemeF’ if there exists a finite
partition of B in locally closed subset$ C Y such thatf : f~1(S) — S is a fibration of fiber
F, seel[6].

The key result in the definition of a local motivic integratim the moduli spacély ,, The-
orem[3.8, is the following result:

Proposition 3.7. (1) For all n > ¢y + 4 the morphism,, : =, — =,,_; is affine.
(2) Given integerss > 2, n > §(N, e), there exists a constructible seff ¢ C, (N, p) such
that: for all curve singularities” with Hilbert polynomialp, [R/1(C) + M"] is a closed point
of X if and only the minimal numbers of generatord ¢f') is v.
(3) If v = N — 1, i.e. the case of complete intersection singularitiesntive set-?, := >3,
and the restriction ofi,,

A 2 X — Xt
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is an exhaustive piecewise fibration with fidéez k(N =1 n > §(N, e).

Proof. (1) We will perform the proof in three steps.

Step 1For alln > eq + 4 the cell B,(i, j , q) is isomorphic to an affine spade", for some
integers,,, anda,, restricts to an affine morphism, : W(n) N B,(i,j,q) — W(n—1)N
Bn_l(i,,j,, Q)

Proof: It is easy to see that considering the b&%€i., j., ¢) that the open seB,, (i ,j,q) is
isomorphic to the affine space @f(n) — p(n)) x b(n) matrices, and that/(n) N B,(i,j.,q)
is a linear subspace @,,(i , j,q). A general element dfi' (n) N B, (i, j, q) can be written as
follows

Id A 0 B

0 0 d || C

Hence for alln > ey + 4 we getB,, (i, 7., q) = k* . From this it is easy to see that is a linear
projection betweetk*" andk®* - wherea,, (U) is the matrix obtained frony deleting its last
row and the last two columns. Hence we §&tp 1

Step 2Foralln > eq+ 4, a, : Z,(i,j.,q9) — Z,.-1(i., j, q) is an affine morphism.
Proof: Let us consider the restriction af,

an : W(n) N Bu(i, j,q)) — W(n—1)0 B, (i, 4., q)-
SinceW (r) N B..(i., 5., q) is an open subset &% (r) N B,.(i, j.,q) forr =n,n — 1, and
a,'(W(n—=1)NB, (i, j,q)=W(n)NB,(i,j,q),

n

from [22]-1-9.1.2 we deduce that
an: W(n)NB,(i,j,q) — Wn—-1)NB,_(i,j,q)

is affine. Since&E,.(i, j, ) is a closed subscheme @f (r) N B.(i, 7., q), forr = n,n — 1, by
[22]-1-9.1.16(i),(v) we obtairStep 2

Step 3For alln > ey + 4 the morphisnu,, : =, — =, is affine.

Proof: By Step 2 Propositiori 3.6 (3), and [22]-1-9.1.18 we get that foral> ¢, + 4 the
morphisma,, : =, — =, is affine.

(2) We denote by/(B) = dimy(B) the minimal number of generators of a finitely generated
R—moduleB. Let G} be the constructible sub-set &f, whose closed pointgz/.J] verifies
v(J) = v. We definex" = G" N C,, (N, p), Proposition 3.6.

Let C' be a curve singularity with Hilbert polynomial From [37] and Propositioh 1.7

(3) we get/(C) N M™ C I(C)M, n > §(N,ep), so we have/(I(C)) = v <I(C}V%Mn> and
[R/I(C) + M™] is a point of X! if and only if v = v(I(C)). Moreover, letf, ..., f, be
elementd (C') such that their cosets i(C') + M /M™ form a minimal system of generators,

thenfy, ..., f, is minimal system of generators 6fC').
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(3) We setx?, := X% _,. i.e. v = N — 1. Letz = [R/J + M"] be a closed point oL,
J = I(C) with C a curve singularity, ang = [R/J + M| = a,(z) its image. We may

assume thay € =,_1(i, 7., q)ra, fOr some set of indexes, j,q. Let U be the associated
matrix toz, seeStep 1 Letf = f;,..., f, bev rows of U such that their cosets iR,,_; form

a minimal system of generators df+ M"~!, see(2). Notice thatf is a minimal system of

generators off + M™ and that all entries df/ are determined bf.

If 2/ = [R/J + M"]is a closed point oE”, such that,,(z') = a,(x) thenJ’ admits a mini-
mal system of generatogs= ¢, . .., g, such thatf; = ¢; moduloA/"~!. From Propositioh 3]6
(3) '/ belongs to=,,(7 , 5., ¢) and then defines a matriX’ with the same shape éf. Hence
f — g is a set ofr homogeneous polynomials of degredelonging toD, (i, j, L,), i.e. the
monomials corresponding to the matfx Then we have tha&”, c X1 x k(V—leo,

Let z be a closed point oE” ! x kN~ suych thata,(z) = x. Let J. be the ideal of?
generated by, +¢4, ..., f,+e, ,wheres = ¢4, ..., ¢, iSaset oiv homogeneous polynomials of
degreen belonging toD,,(i , 5., L,), such that = [R/.J. + M™]. From the conditiori2) of the
definition of T,, we deduce thatim(R/J.) < 1; sincev = N — 1 we get thatlim(R/J.) = 1
and thenC' = Spec(R/J.) is a curve singularity. From the definition @f, we deduce that’
is a curve singularity with Hilbert polynomial soz € 7. O

From Propositiof 3]7 and [21]-1V-8.2.3, see also [19] exsgo€ll, we deduce that the inverse
system{Z,, a, }n>c,+1 has a limitHy , that we describe as follows. Since the mapsare
affine, we havé&,, = Spec(A, ) where A, is a quasi-coherent sheaflofalgebras oveg,,, [20]
1.3.7. Then we definEly , = Spec(.A), with

A= lim A,

see[[19] exposse VII. In particular we get that for all pairdf Hy ,, it holds

OHN7P7x = lg,n Tr;kl(o’:n,ﬂ'n(x))7

n

[21], 8.2.12.1. Where we have denoted by

Tn t Hyp — Sa,

the natural projectiom, > eg+1. Giveni > j > ey+1 we define the affinemap ; : 2, — =
by the composition; ; = a;a;—1 - - - aj41.

Theorem 3.8. The schemély , pro-represents the functd_ﬁN,p.

Proof. We will prove that the functoH) , is isomorphic toh = Hom(-, Hy 1)) LetS be
an object ofAff and letZ C (k%,0), be a family of curves ove$ with Hilbert polynomialp.
SinceZ, is a flat scheme ove¥ with fibers of lengttp(n), we haveO,, € Hilb,(S). On the
other hand, ifF., ;1 , is the functor that is represented BY(n) thenOy, € F, .1.,(S5), and

Oz, € (Fupsin ¥, Hilb,)(S).

n
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Hence by Proposition 3.2 there exists a morphisftZ) : S — W'(n) for alln > ey + 1.
Recall that5’, is an open subset @f,,, sos, (Z) factorizes through¥,, = W'(n) N B’, if and
only if for all closed points € S, we haver, (Z)(s) € B,,. Sinceo,(Z)(s) = [(Z,),] andZ
is a curve singularity with Hilbert polynomial7") by Propositio 316 we get,(Z)(s) € B,,.
Hence we have a morphism
on(Z): S —Z,

foralln > eq + 1. It is easy to see that for all > ¢, + 2 it holdsa,0,(Z) = 0,_1(Z) so we
have a morphism,(Z) : S — Hy ). From this we get a functorial morphism

o . EN,;D(T) —) h,

sendingZ € Hy ,(5) too.(Z).
To complete the proof we need to prove tha&t) is bijective for all.S. The injectivity is
straightforward. Ley : S = Spec(A) — Hy , a morphism ok-schemes. The morphism

defines an ideal, ¢ A[[X]]/(X)", the compatibility relations.,g, = ¢,—1 give us.J, +
(X))t = J,_foralln > eq + 2. If we write J = N,>¢11J, then it holdsJ, = J + (X)"
forall n > eq + 1. From this we ge#4[[X]]/J is isomorphic to the limit of the inverse system
defined byA[[X]]/J,, n > eo + 1.

Let us consider the schente C (k”,0), defined by the ideal. We will prove that” is a
family ando(Z) = g. Sincel(Z,) = J,, we have thatZ verifies condition (i) of the definition
of a family. Lets be a closed point of, we have to prove that, is a curve singularity with
Hilbert polynomialp(7"). Notice that for alln > ¢, + 1 it holds(Z;),, = (Z,)s SO Z, is a one-
dimensional sub-scheme @, 0) with Hilbert polynomialp. From=,, C B,, and Proposition
2.3 we get that/ is a family. Sincer(Z) = g we obtain the theorem. O

Remark 3.9. Notice that from the last result and Proposition] 3.6 we gat t#) (Hy,) =
C,. (N, p) is the constructible set of all-truncations of curve singularities with Hilbert polyno-
mial p.

On the other hand, notice thHly , is not ak-scheme locally of finite type. Hence from the
previous result we cannot deduce the existence of a unifarady. In the next result we will
construct a universal family for the scheHsg, ,.

Theorem 3.10.There exists &-schemée ,,, limit of an inverse systelU,,, o, }n>e,+1, and a
morphismy : Zy, — Hy , such that for all families of curve singularitigs: Z — S with
Hilbert polynomialp there exists a unique morphism S — Hy , such thatZ,, = S xz, U,
n>ey+ 1.

1

Proof. Let p,, : T,, — Hilb,, be the universal family offilb,, n > eq + 1. Recall thatl,, is a
closed sub-scheme @filb, x Spec(R,,), and thatp, is the restriction of the projection to the
first component. Hencg, is an affine morphism.
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From the definition oE,, we have thak,, is an open subs-cheme &filb,,. If we denote by
U, the fibred product

Un - Tn X Hilb, Sn

we get that the induced morphism : U, — =, is affine. Let us consider the following
commutative diagram

Qn
U1 — U,

Pn+1 \L l Pn

—_ —_
=

.=
—n+1 an —

whereq,, is the morphism obtained from the universal family — Hilb,, and the fact that
=, is an open subset aff:lb,. Sincea,p,,1 andp, are affine we get that,, is also affine,
[22]-1-9.1.16(v). We definé& y , as the limit of the inverse syste{W,,, a,, } n>e,+1. We denote

by
o ZNJ, — HN’p

the morphism induced by the morphism of inverse systems : {U,,, a,} — {=,,a,}. We
leave to the reader the proof of the universal property oy, — Hx . O

In the following result we will prove thaHy , has finite cohomological dimension. Recall
that if Y is a scheme, the cohomological dimensig(Y’) of Y is the least integer such that
H(Y,F) = 0 for all quasi-coherent sheavésand; > i.

Proposition 3.11. There exists a constapt V) such that
cd(Hy,p) < g(N)p(eo +3)* 7.

Proof. Let F be a quasi-coherent sheaf Hiy , and letj > cd(=.,+3). The inverse system
{Zn, an}n>eor1 defines a direct system of groufsl’ (=, mn.(F)), Gns bn>egr1- From [19],
Exp. VIl Corollaire 5.10, we have

H(Hyp, F) 2 lim H (2, 10 (F)).

Sincea,, is an affine morphism for ak > e + 4 we get
HY(Ep, T (F)) = HY (Zegr, Tegr3e(F)) = 0.
Hence we haved(Hy ;) < cd(Z.,+3). Since=, ;3 is a sub-scheme dfilb.,3 we get
Cd(Eeo-l-?») < dim(Eeo-‘ri%) < dim(Hilbeo-H%)'

The claim follows from([4]. O

Proposition 3.12. There exists a one-to-one correspondence between theagtefsingulari-
ties with Hilbert polynomiap and the set of rational points &1y ,. Moreover, if the cardinality
of k is strictly greater than the cardinality aff then every closed point &1 , is rational.
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Proof. The first part follows from the Propositidn 8.8 and [[22]-B&. By construction we
have thatt v, can be covered by open affine sésc(A) whereA is ak—algebra countably
generated. From [16], Proposition 2.6, we obtain the claim. O

From now on we assume that the cardinality of the ground kel greater than the cardi-
nality of N. Hence we have a one-to-one correspondence between thfecaet®singularities
with Hilbert polynomialp and the set of closed points By ,,.

Definition 3.13. Let z be a closed point oHy ,, we will denote by, the curve singularity
defined by, and by, = I(C,) C R = k[[ X, ..., Xy]] the ideal associated t6. The maximal
ideal of O¢, = R/, is my.

Given a functiont' : N — N, we say thatF' is admissible for the polynomial(7") if
F(t) = p(t) fort > ey — 1. Given an admissible functioh for p and an integer, 1 < r < ey,
we define a contravariant set valued functorAff such that for alk-scheme of finite typ&
we have

Z € Hy,(S) such that for allh = r,...,eg + 1
the morphism
Hy . (S) = e s

is flat with fibers of length¥'(n).

Notice thatHy , = Hy ..., and thattl y .., (5) is the set of normally flat families of base
We denote byH y . thek-schemdd y ,, = W(r,e0 + 1, F) XG.,+1 Hxp- Notice thatH y r,
is a closed sub-schemeHiy ,. From the Theorern 3.8 it is easy to prove

Proposition 3.14. Hy, r,. represents the functdd y, .

Given an admissible functioh for p there is a family of closed sub-schemed®h§ ,
HN,F,l C HN,F,2 c---C HN,F,eO+1 = HN,p-

We say that y r, is the Hilbert stratum oHy , with respect to(F, ). Recall that it is an
open problem to characterize the admissible Hilbert fumstj we only have characterized the
asymptotically behavior of Hilbert functions, i.e. Hillbgolynomials Proposition 3.1.

Very few properties of Hilbert functions are known, see fostance([12]. Ifp is a rigid
polynomial we know that there exists a unique admissibletion F' associated t@, in this
case we haveHy 5, )red = (Hn prt1)rea, fOrallr =1, ..., eo.

We say that a subsé? of Hy , is a cylinder if D = «,;'(D,,) whereD,, C 7,(Hy,) is a
constructible set aE,, for somen € N. We denote by:(D) the least integer verifying such a
condition. Notice thaD,, = m, (D) for n > n(D).

In the next result we will prove foHy , some results of [3], Proposition 6.5, 6.6, ahd [6],
Lemma 2.4, proved for the jet schemes.
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Proposition 3.15. (1) The collectiorCy , of cylinders ofHy , is a Boolean algebra of sets.
(2) Given a cylinderD and a family of cylinder§ D; },cn of Hy , such thatD = U,y D; there
exist a finite set of indexds C N such thatD = U;cx D;.

Proof. (1) Sincer,,(Hx ) = C,.(N, p) are constructible sets it is easy to prg¥¢ Sectior 3.P.
(2) Let us consider the cylindrical sefs, = D\ (D, U---UD,,),n > 0. SinceZ; D Zy D ...
we have that the claim is equivalent, = () for some index,. We can assume that there
exists an increasing set of integgrs; },>1, n; > n(Z;), such thatr,,(Z;) = T,,, with T,,,

a constructible set ¢f,,, and7, C a’l (_Tn) i > 1. Sincen;>1Z; = 0 from [21],

N1 Ti4+1,14

Proposition 8.3.3, we have thdt, = () for some index,, and then we gef). O

We denote byK(Sch) the Grothendieck ring oBch. Let L = [k| be the coset ok in
Koy(Sch), we setM = Ky(Sch)[L!]. LetF = {F"M},cz be Kontsevich’s filtration of\1:
F™ M is the sub-group aM generated by the elements of the foifiL~ for i — dim/(V') > n.
We denote b)ﬂ/l\ the completion ofM with respect the filtratiotF.

Let C be a cylinder oy ,,, we say that” is c-stable at leveh > n(C) if

[Tn11(C)] = [ma(C)] L € Ko(Sch),

C'is c-stable if there exists an integey > n(C') such that” is c-stable at leveh for all n > n,.
We denote byn(C) the least integen, verifying such a condition.

A cylinder C'is calledc-trivial if there exist an integer, > n(C') such that for all. > ny
the morphismu,,.; : m,41(C) — 7,(C) is a piecewise trivial fibration with fibef" = k°. We
denote bytn(C') the least integen, verifying such a condition. Notice thattrivial implies
c-stable.

Proposition 3.16. Let D be ac-trivial cylinder of Hy , and letC' be a cylinder. TheD N C'is
c-trivial and

11,(C, D) := [1,(C) N7, (D)) LD € M
does not depend am, providedn > tn(D), n(C).
Proof. From the definition ot-trivial cylinder we get that
[0+1(C) N1 (D) L™ = [,(C) N (D)) LL- " = [, (C) Ny (D) LY,
Hence the classr, (C) N, (D)] L=¢"*Y is independent of, providedn > tn(D),n(C). O

Let us consider the cylindddy ,* = 7, *(X7%), n > §(N, ey), Propositioi 3J73). By the
last proposition we may define @l , a finitely additive measure valued .

Mp : CN7p — M
C — (€ Hy,™) = [m,(C) N S] LDV =eo
for a big enough.
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Proposition 3.17. There exists a finitely additiv&{-valued measure defined by

—

Hp - CN7p — M
C = limye py(C, HN,pCi)
Proof. Let C1, .. ., C,. be a disjoint family of cylinders, then we have to prove
Np(cl U---uG,) = E?:lﬂp(ci)-
Notice that we only need to prove the equality fo= 2, this case follows from the group
structure ofK,(Sch). O

In the next proposition we prove some auxiliary results watvill use later on. SincéA is
complete we may consider the nofim|| : M — R*, with ||a|| = 27" wheren is the order of
a with respect the filtratiotr of M.

Proposition 3.18. (1) If Dy, D, are cylinders offly , such thatD, C D, then

[1p (D) < [[1p(Do2)]]-
(2) If Dy, ..., D, are cylinders ofH then

lpp(Dy U - U D)} < Maz{lpp(D) ||, i = 1,7

Proof. (1) We may assume thad;, = =, '(T;), i = 1,2, whereT; C T, C w,(Hyx,) are
constructible sets; > 0. If we setr;(n) = c¢(n + 1) — dim(T; N7, (Hxy)), ¢ = 1,2, theniitis
easy to prove;(n) < ro(n) for all n > 0. Hence we deduce

1D = Hm 272 < lim 272 = |, (D).

(2) By induction onr it is enough to prove the result for= 2. Letd; = dim(7; N 7,(Hx,)),
1 = 1,2, then we have

C(?’L + ].) — dzm((Tl U Tg) N Wn(HNJ,)) Z c(n + 1) — M&[L’{dl, dg}

From this it is easy to get the claim. O

A subsetC of Hy , is measurable with respegj if and only if for every real number € R*
there exists a sequence of cylindrical Sgis},>, such that'vCy C .-, C; and||1,(C;)|| < e
for all i > 1, whereC' Vv C, stands for the disjoint unio@' v Cy, = C' U C, \ C'NCy. We say
thatC is strongly measurable @, C C'. Seel[3],[8] Appendix A.

Proposition 3.19. (1) Any cylindrical set is strongly measurable. The collectdmeasurable
set form a finite algebra of sef¥; .

(2) If C'is a measurable set &y , theny,(C) := lim,_, 1, (C;) exists inA and is indepen-
dent of the choice of the sequercg },~o. Then there exists a finite measure

—

pp: Cy, — M
C = pp(C)
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(3) Let{C;}.>0 be a sequence of measurable sets.

(3.1) If lim; 00 || 14,(C5) || = 0 thenU,;>oC; is measurable.

(3.2) If the sequence of measurable sets are mutually disjoint@nrd U;>,C; is measurable
then) .., 1,(C;) converges i to i (C).

Proof. The proof of(1) and (3) are standard(2) Lete, ¢ be positive real numbers, and let
{Ci}i>0, {C}}i>0 sequences of cylindrical sets Hiy , verifying the conditions of measurable
set. Then we have;, v C)) C |-, C; U~ C/, from Propositiorh 3.1%1) there exist integers
r, ' such thatCy, v ¢ ¢ |J'_, C; U Ui, C.. From this and Proposition 31&) we get
1, (Co v Cp)|| < Maz{e, €'}. Notice thatu,(Cy) — u,(Ch) = 1,(Co \ Cf); Propositior 3.18
(1) and the last inequality yieltli,(Co) — 11,(Cp)|| < Max{e, €'}. From this it is easy to get
the claim. O

Let C' be a measurable set Bfy , andf : C — Z U {oo}, we say thaif is exponentially
integrable if the fibers of are measurable and the motivic integral

| L= (e oL

s>0

converges in.
Given a singularityX c (k~,0) of arbitrary dimension, let us consider the function

Yx - (HN,p)rat — NU{OO}
C — (C-X)

where(C'- X') stands for the "false” intersection multiplicityC'- X') = dimy(R/I(C)+1(X)).

Proposition 3.20.Let X c (kY,0) be a singularity of algebraic variety.
(i) For all s € N the sety'(s) is a cylinder,
(17) vx is exponentially integrable.

Proof. (i) Notice that if(C' - X) = s thenM*® C I(C) + I(X). From this fact it is easy to see
that~y'(s) is a cylindrical subset oFly ,. (ii) We can apply Propositidn-3.19, (3.2), in order
to prove thatyy is exponentially integrable. O

Let X c (kV,0) be a singularity of arbitrary dimension. The motivic volumfeX with
respect t is the integral

zwwb/ Ldpy = 3 (1 ()L
Hn ,p >0

Given an integee, we denote byt (e,) the finite set of admissible Hilbert polynomials, see
Propositio 3.11.



MODULI SPACE 25

Theorem 3.21(definition of motivic volume) Let X be a singularity, then the series

Z( Z vol,( )]L_eo

e0>1 peH(eo)
converges inM to the motivic volumeol(X) of X.

Proof. Let us consider the motivic volume of with respecp

volp(X) =3 sqmp(y™ (s))L7°
= Eszo[wn(’y L(s)) N Zg )L~ =Deots)

withn > s, (N, ). From Proposition 3]7 we get that
[ﬂ'n(f}/ ( )) N E"]L ((n+1)(N—1)eo+s) c FIM

for a non-negative integér From this we get

( 3 Uolp(X)>]L_80 € FeoM
pE’H(eO))
and we are done. O

Let P be a property defined in the set of curve singularities witlbétt polynomialp. Let
c(P) be the set of rational points &y, corresponding to curve singularities verifying the
propertyP. We say thatP is finitely determined if there exists an integey = nq(P), that
we may assume, > &(N,e) + 1, Propositior 37, such that for all curve singularit@&s
C? with Hilbert polynomialp andC! = C?, n > ny, thenC" verifies P if and only if C?
verifiesP. Notice that anyP analytically invariant property defined in the set of rediicarve
singularities is finitely determined, [10].

We say that a finitely determined propefyjis constructible, cfd-property for short, if the set
of truncationgC,,] € =, n > ny(P), such thatC verifiesP is a constructible set,(P) of =,,.
Trivially a cfd-propertyP is determined by the cylindrical setP) = 7, 'c,(P). On the other
hand every cylindrical set defines a cfd-property.

Given a propertyP of curve singularities with Hilbert polynomial we define its motivic
Poincare series by, = ny(P),

MPSp =Y [mu(c(P)T" € M[TT.

n>ngo

We denote byM [T, the ring of rational power series, i.e. the sub-ring\df[T’|] generated
by M[T] and(1 — L*T?)~%, a € N,b € N\ {0}.

Proposition 3.22. LetP be a cfd-property then it holds
MPSp € M[T]ipe-
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Proof. If we setn, = ny(P) then we have

MPSp = anno [T, (c(P)) N 2] T™
- EnZnO [ﬂ-no (C(P)) N ZZiO]L(N_l)eO”T”

(N—1)egngn
= [y (c(P)) N X1 oo

and we get the claim. O

Notice that the conditiontfelongs taHy ,” is a cfd-property that we will denote iy ,. A
simple computation shows:

. L(N—l)eonoT”O
MPSuy, = [Ed 1T 1w Dar

whereng = §(V, eg) + 1.

4. LOCAL PROPERTIES OF THE MODULI SPACE

The purpose of this section is to study the local riig, , . wherex is a closed point of
Hy . In particular we will compute the tangent spate= Homy(n,/n2, k) of Hy, at z,
wheren, is the maximal ideal 00y, .-

We denote byA ff’ the subcategory oA ff of thek—scheme$pec(A) whereA is an Artinian
local k—algebra. Letd}, . be the contravariant functor betwearf’” andSet, such that for
any objectS of Aff’ we have

Z € Hy ) (S) such that
—%,p(T)(S) = Zs = C:v
for the closed poing of S.

We will denote byD thek—schemeSpec(k[¢]), letpp be the closed point ab. Notice that
the elements affy; , (D) are first embedded deformations(@f, but not all, see Example 4.4.
It is well known that there exists a bijection betwegnand the set of morphisti: D — Hy,
such thatf(pp) = z. By Theoreni 3.8 we obtain that there exist a bijection betwEeand
HY (D). From Theoreri 318 it is easy to prove

Proposition 4.1. The functorly, ,r is pro-represented bypec(Omny , )

In order to computé’, we need to characterize the g¢f; , (D). Let be an ideal of?,
we consider Hironaka’s invariant (1) associated td, see[[24] Chapter I, definition 1. Let
fi, ..., fs be astandard basis 6&uch thavrder(f;) = v(I). Recall that from([10], Proposition
2, we have that'(1(C)) < ep, i = 1, ..., s, for all curve singularityC' of multiplicity e.
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Proposition 4.2. Let J = (fi1 + eg1,..., fs + £g5) be an ideal ofk[¢][[X]] defining a first
order deformationp : Z — D of a curve singularityC' of multiplicity e, defined by the ideal
I =(fi1,...,fs). Then the following conditions are equivalent:

(1) Z is a family of curve singularities with Hilbert polynomig(7),
(2) ¢ : Zer1 — D isflat, _
(3) forall i = 1,...,sit holds thatg; € (1 + Meo+! : [ + peoti—v'(D))

Proof. We putv’ = v*(I). We will use the syzygy flatness criterion, see for insta@eGorol-
lary page 11. From this result, we deduce that= k[¢|[[X]]/(J + M™) is a flatk[c¢] —module
if and only if for all a4, ...,as € R such thaty";_, a;f; € M" there exist4,, ..., A, € R such
that

D (ai+eA)(fi +2g:) € MK[E][[X]).

i=1
By definition of family of curve singularities we get th@t) implies(2).
(2) implies(3). Let us assume that: Z.,.; — D is flat. Leta be an element af/®+1-"", we
need to show that for all= 1, ..., s we haveg;a € I + M**!. From the flatness af,,.; and
fia € M**! we deduce that there exists, ..., A, € R such thaya + > ;| A;fi € M+,
sog;a € Mt 41,
(3) implies(1). Suppose that for all= 1, ..., s it holds

gi € (I + MeoFh: [ 4 peoti=v'y,

soforalln > e+ 1 wegetg; € (I +M": [+ M"—”i). Letaq,...,a, € R be elements
with >, a;f; € M". Sincefi, ..., fs is an standard basis df by [37], Corollary 1.8, there
existsC; € M™ ', i = 1,...,s,suchthaly">_ a;fi = 20, Cifi, s0a; — O, ...,a, — C, is a
syzygy of f1, ..., fs. From the flatness of over D, we deduce that there exidt, ..., A, such
that ") (a; — C; + €A;)(fi + €g;) = 0. From the assumptio(®) there existBy, ..., B; € R

such that
Zcigi - ZBifi e M".
i=1 =1
Sinced ’_, a;f; € M, from the two last equalities it is easy to see that

S

Z(ai +e(A; — B))(fi +eg;) € M™.
i=1
We have proved that,, is a D—module flat for alln > eq + 1, s0Z is a family. O

Corollary 4.3. For all closed pointr of Hy ,,, the morphism
d(ﬂ-n) : THN,py-T — TE'rnﬂ'n(x)

IS surjectiven > ey + 1.

Propositior 4.2 enable us to give an example of a first ordieraition that is not a family.
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Example 4.4. Let us consider the plane curve singularity defined by theggu X} = 0. In
this case we have, = 3 ande, = 3. Let us consider the first order deformatigrdefined by
X3 +¢eXy,i.e. g1 = X;. From the last result we get thd; — D is not flat.

It is well known that the first order embedded deformation§'pére classified by the normal
module

N, = Homp,r,(I,/I2, R/ L,).

If we denote byembdef(C,) the first order embedded deformations @f, we will de-

fine a bijective mapr : N, — embdef(C,). Letg : I,/I?> — R/I, be a morphism
of R/I,—modules. Then a lifting of; is a R/I,—module morphism(g) = (g;,...,3s) :

(R/1.)* — R/I, such that the following diagram is commutative

(R/L.)*

(f)l Y

I,/I? —= R/,

7(g) is the first order deformation defined by the idéak (f1 +cg, ..., fs+egs) with (g1, .., g5)
a lifting of g.

We denote byV; the set ofg € NV, for which there exist a liftindgi, .., ;) such that for all
i=1,...,sitholds thatg, € (m&*! : m®*+1=v"). From last Proposition we deduce

Proposition 4.5. 7 defines a bijection betwedn and V..

In a very few cases we can computg/(C')); for example ifC is a curve singularity with
maximal Hilbert function then*(1(C)) = {eo,...,e0 + 1}, seel[36]. Notice in this case the
ring Grimm (O¢) is Cohen-Macaulayn is the maximal ideal o®.. We can prove a more general
result without any restriction oui*.

Proposition 4.6. Let C' be a curve singularity ofk¥,0) of multiplicity ¢, and embedding
dimensiorb. It holds: _

(1) Ifthe associated graded ringr,, (O¢) is Cohen-Macaulay thefm®™! : m®+1=v") = m?
fori=1,...,s.

(2) If C' has a maximal Hilbert function ang, = ("~1*"), for some integer, thenI(C) has an
standard basis of = (b;}j{") forms of degree + 1 and the ringGr, (O¢) is Cohen-Macaulay.

In particular (m®*! : m®~") = m"*!,

%

Proof. (1) We putv’ = v*(I). Notice that we always haua’’ c (m*! : m®+1-*") Leth be

an element o®)¢ such thath m®+1=*" ¢ m®+! ; =1, . s.

Suppose that ¢ m"’; let ¢ be the least integer such thiate m' \ m’*'. Letz be a degree
one superficial element @.. Thenz defines a non-zero divisor @f,,(Oc). This implies

that m!/m®*? SN m® /m®*! is a monomorphism. Notice that — ¢t > ey + 1 — v%, SO
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hz~" € m**!, Since the coset df in m’/m"*! is non-zero we get a contradiction. Hence
h € m"", and we get the result.
(2) We only need to prove that= ("~'*") andvi(1(C)) = r + 1 fori = 1, .., s. This follows

r+1
from [36]. O

Notice that very often if is a rigid Hilbert polynomial then the associated graded s
Cohen-Macaulay, see for instance![15],/[13].

Corollary 4.7. Letz be a closed point dfl, (1. Then there exists a natural bijection between
T, andm?.

We will end this paper studying the local structure of theselb points oHy .

Definition 4.8. Let C be a curve singularity with Hilbert polynomial7"). We say that”, or
the corresponding closed pointof Hy ,, is non-obstructed if the functdty, - is smooth,
i.e. for all epimorphism of local finitely generated Artinik-algebrash : A — A’ the set
map

E‘:‘K{_’p(’f‘) (h)

ﬂ:]c\f,p(T) (Spec(A)) ﬁ:]c\f,p(T) (SpeC(A/ )

IS surjective.

Letk — mod be the category dt-modules. Given &-modulelV we will denote byiv* =
Homy (W, k) its dual space. It is well known that there exists a naturatomeorphismit’ —
W*, that it is isomorphism if and only if/ is a finite dimensionak-module.

Following Laudal, [[28], pag. 102, we will consider each abjef k — mod endowed with
a topology that will induce its reflexivity. Letl be an object ok — mod, pick ak-base
V = {v;}ic;. We put onWW the topology for which a basis of neighborhoods of the néutra
elements consists of the subspaceB/ofontaining all but a finite number of the elements/of
We will denote byk — top.mod the corresponding category of topologikamodules. Given
an object otk — top.mod. We will denote byl1° the topological dual ofV. It is easy to see
that the dual basis df defines a topology oi/° such thai?” = WW°°.

We know that for all closed point of Hy ,, it holds

. *
OHN,pvm = lll;n TrTL(OEn,xn)?
n

wherez, = m,(z), [21], 8.2.12.1. In particular we hawe, = lim— 7} (n,,), wherem,,, is
the maximal ideal o0z, ,,. For alln > ¢, + 1 we pick ak—basisV,, = {¢;},cs, of m, ,
such that7, C J,41, andV,, C V,;,. Notice thaty = lim— V,, is ak—basis ofn,, and
V U {1} is ak-basis of Oy, , .. We write J = lim— J7,. From now on we will consider
OHu, .. €ndowed with the topology for which a basis of neighborhaafdsie neutral element
are the ideals containing all but a finite number of elemeht8.oThis topology will permit
us to characterize the non-obstructiveness of the closedspaf Hy ,, see Theorern 4.9. We

will denote by(’)ITINM its completion with respect the topology defined above. Td®logy
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induces a topology on, /nZ, making thisk-module an object ok — top.mod. Moreover,
this topology induces also a topology on the tangent sffacen which the neighborhoods of
the neutral element df, are the linear maps : n,/n? — k whose kernel contains all but a
finite number of elements af.

Let us consider th&-algebra morphisnyp : k[T;,i € V| — On,, . Such thatp(T;) = e,

i € J. Notice thatp, : k[T;,i € V]/(T;)* — On,,, /10> is an isomorphism ok-modules.
We will consider ink[T;,: € V] the topology for which a basis of the neutral element are the
ideals! contained in(7;) such that all but a finite number @} belongs to/. We will denote

by k[T;,7 € V]|* the completion ok[T;,7 € V] with respect this topology. Notice thatis a
continuous map with respect to the topologies defined above.

Theorem 4.9. A closed point: of Hy , is a non-obstructed point if and only if
et K[Tie It — OIJ—FIN],@
is an isomorphism dt-algebras.

Proof. We will write S = k[T;,7 € V], andO, = Ou, .. We will denote by/, the ideal
of S generated foff;, : € J \ J,; and we will denote byV,, the corresponding ideal @,.
Henceyp induces an epimorphism &fvector spaces,, : S/I, — O,/W,. Since the set of
{I,}., resp.W,, are cofinal in the basis of neighborhoodsSofresp.O,, we get thatp™ is an
isomorphism ok-algebras if and only if,, is an isomorphism for a big enough.

Let us assume thatis non-obstructed and that, is not an isomorphism; let be a non-zero
element ofS/1,, belonging to the Kernel af,,. Let s be an integer such that the cosetfoin
A" = S/I,, + (T;)® is non-zero. Let, be morphism induced by,

h:A =5/1,+(T,)° — A= 0O,/W, +n.

Let us consider the projection: Oy, , . — A. Sincex is a non-obstructed point we get that
there exists a morphism: Oy, , . — A’ such that the following diagram is commutative

OHN,p,m
A——A
Sincey, is an isomorphism we get that the above diagram induces

A
_l \Q:Id
A——A
So0h is an isomorphism and we get a contradiction.
If o™ is an isomorphism then it is easy to see tha& non-obstructed. O
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Proposition 4.10. (i) Every closed point: of Hy (1), With p(T') = ey — eg(eg — 1)/2, is
non-obstructed. In particulaH, (7 is reduced.

(i) Given an integera > 2 we putp, = (5)7 — 2(3). Then every closed pointof Hs ), is
non-obstructed, an#ll; ,,, is reduced.

Proof. (i) Let h : A — A" be a epimorphism of local finitely generated lokahlgebras; we
need to prove thall; ., (h) is surjective. We write5 = Spec(A) andS" = Spec(A').

Given a family Z' € Hj,;(S) there existsF e A'[[X;, X]] such thatZ' =
Spec(A'[[ X1, Xo]]/(F)). Let G € A[[X1, X»]] be a power series of orderand such that
h(G) = F. Then it is easy to prove that the family = Spec(A[[X., X2]]/(G)) verifies
H ) (M)(2) = Z.

(i) Let h : A — A’ be a epimorphism of local finitely generated lokahlgebras; we write
S = Spec(A) andS" = Spec(A). Let Z' be a family of curve singularities ¢k?, 0) over S’

with Hilbert polynomial
a a

Let x be the closed point dfl; ,,, () defined by the closed fiber &f . From Corollary 4.5, we
getthatv(/,) = a andl, C R = k[[ X1, X», X3|] admits a minimal free resolution

00— R M pe 1 50

with M a matrix with entries belonging to the maximal ideallvdf order1. Hence there exists
ana x (a — 1) matrix M with coefficients in the maximal ideals of[ X, X, X3]], such that
its maximal minors generates and ideal, $aywith Z' = Spec(A'[[X1, Xo, X3]]/1) and M
is mapped ta\/ by the natural morphism df—algebrasA'[[ X1, X5, Xs]] — k[[X1, X2, X3]].
Let N be ana x (a — 1) matrix such that its entries belong to the maximal ideallaind are
mapped to the entries af by h. Let I be the ideal ofA[[ X, X», X;]] generated by the maximal
minors of M; we putZ = Spec(A[[X1, X2, X3]]/I). Itis easy to see that € H3, - (5),
whereS = Spec(A), andZ’ = H5 , 1(h)(Z). O
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