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Log Structures on Generalized Semi-Stable Varieties
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Abstract

In this paper we study the log structures on generalizedstahte varieties, generalize the result
by F. Kato and M. Olsson, and prove the canonicity of log $tmecwhen it can be expected.

In out text we first give the definitions of local chart and wigakormal crossing morphism.
Then we study the invariants of complete noetherian loogl coming from weakly normal crossing
morphisms. These invariants enable us to further definesfireed local charts and prove that all log
structures induced by refined local charts are locally igpimic. Letf: X — S be a surjective,
proper and weakly normal crossing morphism of locally negttn schemes which satisfies the
conditions {) and ) in 3.3 and certain local conditions stated at the beginmh@. Then the
obstructions for the existence of semistable log strustareX is an invertible sheafZ(f) on a
finite X-schemeX = E(f). The main result of local case with respect to base schemes is

Theorem.

(1) There exists a semistable log structureXoif and only if Z(f) = Og.
(2) The semistable log structure ofnis unique up to (not necessarily canonical) isomorphisms
if it exists.

The main result of global case with respect to base schemes is

Theorem. Let X andS be locally noetherian schemefs, X — S a surjective proper weakly normal
crossing morphism without powers. ff satisfies the conditiont) in 3.3 and every fiber of is
geometrically connected, then
(1) There exists a semistable log structure faf and only if for every pointy € S, .Zj; is trivial
onEj;.
(2) Let (gj//ll,ai/l,al,rl,¢1) and (Ao, N3, 09, T2, $2) be two semistable log structures fér
Then there exist isomorphisms of log structuges #; = .#5 andv: .4, = 5 such that
pop1 = ¢20 f*h, 09 0 p =01 andr, o 1» = 1. Moreover such paify, ) is unique.

We further prove that the existence of semistable log strastremains under fibred products, base
extension, inverse limits, flat descent. Finally we studygbmistable curves. The main result is:

Theorem. Any semistable curve over a locally noetherian scheme is aklwenormal crossing
morphism without powers and has a canonical semistabletiogtgre.
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INTRODUCTION

A major advantage of logarithmic geometry is that it enableto treat some kind of singularity as
smooth case. To achieve this, we must equip a singular nsmphiith suitable log structure so that
it becomessmoothin the sense of logarithmic geometry.

In this paper, we study the existence and uniqueness of sdneisog structures on the morphisms
of schemes which locally have the form

AlTiy, .. Tgys e Tpty oo Tpg,, Ty - T

Qa ey dp ep;
p
(.H Ty —an- 1T _“p>
Jji1=1 Jp=1

Spec

If p and alle;;, are equal tdl, then the singularity is the so calledrmal crossingn the classical
sense.

The study of normal crossing singularities began with Daligagnd Mumford [2], where they
showed that any curve with normal crossing singularitiefordes to a smooth curve. For higher
dimensional spaces, Friedman [4] discovered that an alt&trufor the existence of smoothenings
with regular total space is an invertible sheaf on the segldcus. In [9,511-12] and [8], F. Kato
introduced log structures for normal crossing varietiesrdelds. And in [16], M. Olsson generalizes
them to morphismg': X — S, whereX is locally isomorphic to

SpecOg[Th, ..., T))/(Th - -- T, — t)

with ¢ € I'(S, Og) a fixed section. Also in [10], F. Kato considered the existeniclog structures on
pointed stable curves.

In this paper we generalize the results_in [8] and [16], nyaadd nontrivial powers and remove
the fixed sectiort in [16]. Roughly speaking, we construct an obstruction argwnorphismX xg
SpecOgy — SpecOgy. Then we prove that the semistable log structure existsdfanly if all
these obstructions vanish (see Theorem 5.6_and 6.7). Inafeaf no power, we shall see that this
kind of semistable log structures is canonical (i.e. unigpgo a unique isomorphism), which was
not discussed in [8] and [16].

In Section 1 we generalize the concept of normal crossingetsd called “weakly normal crossing”.
In Section 2 we study the invariants of complete local ringsich is of fundamental importance. In
Section 3 we define the concept of refined local chart. On egfated local chart, we may define a
log structure, which is the tile for building the global setable log structures. In Section 4 we list
some technigue and notations in cohomology theory whiclmeegled in later sections.

In Section 5 we study the local case. In other words, for a Wearmal crossing morphism
f: X — S, we focus on morphism&y — V for every étale neighborhood on S which issmall
enough especially the case when the base schéme the spectrum of a strictly Henselian local
ring. For weakly normal crossing morphisrfis X — S with nontrivial power, the theory can only
be built on local cases, because semistable log structures,0— V may not be unique (up to
isomorphism). In Section 6 we prove that for a weakly normrmaksing morphism without powers,
the semistable log structures exist if and only if all lochstuctions vanish. If so, then it must be
canonical.

In Section 7 we study properties of weakly normal crossingphisms under base change. We
shall show that the semistable log structures constructé® have good functorial properties. In
Section 8 we show that on semistable curves, our constrotigtiuctions are always trivial. So there
exists a canonical log structure on any semistable curvehwhiake it log smooth.

Notation and Conventions.Throughout the paper, rings, algebras and monoids aresalireex] to
be commutative and have multiplicative identity elemeAthomomorphism of rings (resp. monoids)
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is assumed to preserve identity element. A subring (respoiddis assumed to contain the identity
of the total ring (resp. monoid).

If n is a positive integer, we usg, to denote the symmetric group ém, 2, ... ,n}.

For every pair of integers: andn, we define a sdin, n| as

{m,m+1,...,n}, ifm<n,
[m,n] = _
g, if m > n.

For a fieldk, we usek to denote the algebraic closure/oindk, the separable closure bf

If X is a schemef € I'(X,Ox) is a section and: € X is a point, we us¢f(z) to denote the
image of the stallf,, in the residue field:(x).

If X is a scheme, a geometric point ahis a morphism of schemépec K — X whereK is a
separably closed field; if is a point onX, we usez to denote the geometric poifipec k(z)s — X.

If Sisaschemef: X — SandT — S are twoS-schemes, then we defidé, .= X xg 7T and
let f7: X7 — T denote the second projection.

For every morphisny: X — S of schemes, we us¥|; to denote the5-schemeX via f.

If X is ascheme an@ a monoid (resp. abelian group), we Usg to denote the constant sheaf of
monoids (resp. of abelian groups) &h; associated t6:.

If .# is alog structure on a schem& we write.# = M|O%.

1. DEFINITION

Definition 1.1. Let f: X — S be a morphism of finite type of locally noetherian schemes point
on X andy := f(x). A local chart of f atz consists of the following data:

(1) an étaleS-schemé&/ = Spec R which is a connected affine scheme;

(2) a pointy’ onV which maps ontay;

(3) an étald/ xg X-schemd/ = Spec A which is a connected affine scheme;

(4) apointz’ onU which maps onta: andy/’;

(5) a finitely generatedz-algebraP such that2p r is a free P-module,Spec P is connected
and is smooth ovev’;

(6) a pointp in Spec P which maps ontg/;

(7) asubset

of P such thatl;;, < p for all ¢ andy;, and

1€ [Lp]v Ji € [1,%']}

{ dP/R(Tiji)
is a part of a basis a2/ g;
(8) aclosed/-immersionU — Spec P which mapst’ ontop and is defined by the ideal

q2

€151 €2jg €pj

(jll_lllel a17j21_[ T2]2 - H T "= >7

wherea; € R such that;(y') = 0, ande;;, > 1 are integers which are invertible i, such
q;

that for everyi € [1,p], > e;;, > 1and

Jji=1

ai - e .
D;(U/V) := Spec (P '21 P (TG Tf;:fllTZiﬂz sze;:.ﬂl e Tle;:zz)> (1.2)
ji=

is connected.



We use o
U —Spec(P /(... 11 T - as, ... (1.2)
(#/ (- I T —annen))
orU/V, or simplyU to denote the local chart.

Remark 1.2. Note that all theseonnectednessan be satisfied by contractirtpec P, U and V'
suitably, so they are not essential restriction.

The following theorem shows that if a point has a local chifwen all points in some of its open
neighborhood have local charts.

Theorem 1.3. Let R be a noetherian ringP a finitely generatedz-algebra,
asubset o, aj,as,...,a, € R,

{ezjz ‘Z € [17p]7 Ji € [17%] }
a set of positive integers which are invertiblefin For eachi € [1, p], put

- 17 -

PutA = P/(by,b2,...,by), S = Spec R andX = Spec A. Assume that
(a) P is smooth oveR,
(b) 2p/r is a freeP-module;
(©) {dp/r(Tyj,)|i € [1 p] ji € [1,q;] } is a part of a basis 0f2p/p;

(d) foranyi € [1, ¢i], Z eij; > 1.
]L_l

Then we have
(1) b1,be,...,by, is aP-regular sequence.
(2) X — Sisaflat and local complete intersection morphism.
(3) For every pointz on X, there is a local chart at.

Proof. (1) and (2). SinceP is smooth over and{--- ,d(Tj;,),--- } is a part of a basis of2p/r,
{..., T, ...} are algebraically independent overand P is smooth overR|--- ,Tj;,, - -]. SO we
may assume that

P =Rl Ty, ]
is a polynomial algebra oveR with mdetermlnates{ Tij;»---}- Then (1) is by [11, (20.F),
COROLLARY 2] and induction orp. SoX — Sis a Iocal complete intersection morphism. By
[12, Corollary of Theorem 22.5]X is flat overS.

(3) = defines a prime ide& of P. Putp := RN ‘B. Assume that; € p fori € [1,] anda; ¢ p
fori € [l +1,p]. And for eachi € [1,[], we assume thak;;, € P for j; € [1,s;] andT;;, ¢ B for
Ji € [si +1,¢;]. Obviously, for alli € [1,1] we haves; > 1. Assume thalzz ei; > 1wheni € [1,7],

j=1
and Z e;; = 1 wheni € [r + 1,1]. By taking an affine open neighborhood®Bfin Spec P and an
j=1
affine open neighborhood ¢fin Spec R, we may assume that € R* wheneveri € [l + 1,p], and
T;j, € P* whenever
ell+1Lplv(iell,lnje[si+1,q])
is valid. Then
Pl :P/(br_;,_l,...,bp)
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is smooth overR. For eachi € [1,7], sincee;; is invertible inP§3h, there exists an element € Pq%h
such that

qi
uit = [ 757 (if si = g, we letu; = 1).
Ji=si+1
By taking an affine étale neighborhoodfin Spec P, we may assume that € P foralli € [1,r].
For eachi € [1, 7], let T}, be the image ofi;T;; in P, and for eacly; € [2, s;], T}, be the image of
T;;, in P'. Then we have

S1 S92 Sp
A= P’/( [T (7,97 —ax, I1 (T,)2 —as,..., T1 (T}, ) — ar) .

=1 j2=1 jr=1
Moreover, P’ is smooth ovet? and{- - - ,d(T};,),--- } is a part of basis of2p/ . O

Definition 1.4. Let f: X — S be a morphism of locally noetherian schemes. We sayftisveakly
normal crossingif it is of finite type, and for every point € X, either f is smooth atc or there
exists a local chart at.

A weakly normal crossing morphisifi: X — S is said to bewvithout powersf in every local chart
of f as (1.2), all the powers;;, are equal td.

By Theorem_1.3, iff: X — S is weakly normal crossing, thefis a flat and local complete
intersection morphism.
The following lemma is obvious.

Theorem 1.5. Let

x Lo g

) o

XT>S

be a Cartesian square of locally noetherian schemeg.isfweakly normal crossing, so j&.

2. INVARIANTS OF COMPLETE LOCAL RINGS

In this section we study the invariants of complete noeéimetocal ring coming from weakly
normal crossing morphisms, which ensure that all log stinestinduced by local charts are locally
isomorphic.

Let R be a complete noetherian local ring with maximal ideadnd residue field = R/m.

Let P and@ be rings of power series ovét in variables

{Xij ‘Z € [1,]7], j € [L%] } U {X1>X27-~ 7Xm}

and
{Yoy | € L], 5 € [Lgi) }U{Y1, Yo, Yo }
respectively.
Foreach € [1,p], lete;i, eo, ..., e;q, be positive integers which are invertible ihwith qz €ij >

Jj=1
1, a; an element im, and

qi
F; = HXZ” —a; €P.
j=1
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For eachi’ € [1,p'], letel,,,€ls, ... ’e;'qér be positive integers which are invertible i with
(I/

Z e > 1, by an element imm, and
=1

/Z—HYLJ i Q

Put
AZ:P/(Fl,FQ,...,Fp) and BZ:Q/(Gl,GQ,...,Gp/).
Letx;;, x;, andy, .,y be the images ok;;, X, andYy ;/, Y3, in A and B respectively. Lef)t; and
M, be the maximal ideals ofl and B, 9t; and91; the nilradicals ofd and B.
The following theorem is the main result of this section.

Theorem 2.1. Letp: A = B be an isomorphism aR-algebras. Thep = p/, m = m’; and there
exists ar € .S, such that for each € [1, p], we have
(1) ¢ = o(z)’
(2) ai = uiby(;) for someu; € R,
(3) there exists a; € S,, such that for eaclj € [1,¢;], we havee;; = efj(i) () andp(z;;) =
ViiYo (i), (5) for SOmev;; € B*.
To prove Theorem 2.1, we note the following simple fact.

Lemma 2.2. Every element itd can be uniquely written as a power series:

Zc(...,aij,...;...,ﬁk, HHSEO”J (Hm£k> , (2.1)
k=1

i=1j=1

wherea;;, B are inN, ¢(---) are in R satisfying the following conditions: for eveiye [1,p],
there exists g € [1,¢;] such thata;; < e;;. (So we may talkmonomialsand coefficientsetc)
Furthermore, if

ar=ay=---=ap=0,
thenA = @ A, is a graded ring, whered,, consists of homogeneous polynomials of degree

We first prove Theorem 2.1 in a simple but fundamental case.
Lemma 2.3. If R = K is a field, then Theore®.1is valid.
Proof. Without lose of generality, we may assume that
>1, i€[1,r], >1, ¢ e1,7],
qi . L] and q;r y | ! : /
=1, i€[r+1,p; =1, ‘e[ +1,p],
for somer € [0, p] andr’ € [0, p']. Firstly it easy to see that
q1 q2 dp
‘ﬁlz lej,ngj,...,prj N
j=1 j=1 j

J=1
/
7 ) b
syt2 = H Y157, H Y2575+ H Yp' 4
j'=1 j'=1 j'=1

Note thaty induces an isomorphism of vector spaces dver
@10 /(M NOMT) = Mo/ (N VM) .
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As ml/(‘ﬁl N mt%) has a baSéTHJ, ceey Tpl ande/(mg N mt%) has a bas@rq_l’l, sy Ypr1, WE
have

p—r=p —r'=f (2.2)
and there is @ = (d;;) € GL;(K) such that
(P(Zrs1,1), - B(@p1)) = (Frrg1,15-- - Tpr1) - D.
For eachi € [r + 1, p], put

i € [r' +1,p'] such thatdy . ;_» #0 } (2.3)

and leto (i) be the smallest numbetin [’ + 1, p'] such thatd;_, ;_, # 0 ande,; = g;. Then for
everyi € [r + 1, p], we may writep(z;) as

. /
gi = max { €}y

o(Ti1) = ViYo(i)1 + Wi,
where if we writev; andw; as the form (2.1), then the constant termpis
da(i)—r’,i—r € K” (sov; € B¥)
andw; does not contain, ;) . For anyh € [0, e’a(i%1 — 1], by considering the coefficient @f;(i),l
iN (viYo(i)1 + wi)", we know thatp(z;1)" # 0. Hencee;; > €)1
Suppose thab; # 0. We writew; as
w; = ¢t Ly + cigLig + -+ - + ¢y, La, + Hi,

whereL;, L;a, . .., L;, are monic monomials occurred with lowest degree (> 1), ¢;1, ci2, - - ., ci;
are nonzero elements i, and H; is the sum of monomials of degree greater thaim w;. The

e ., —1 ’
coefficient Ofya?;;)il Li1 in (viyp ()1 + w;) @1 is equal to

e/a(z‘),l ’ da(i)—r’,i—r ci1 #0.
Sop(w;)% @1 £ 0. Hencee;; > e;(i),l'
As D is an invertible matrix ovek, there exists &’ € S such that
da’(l),lv da’(2),27 cee da’(f),r
are all nonzero. By (2.3), for eveiyc [r + 1, p|] we have

/

—_— , .
€or(i—r)+r/1 S Ji = €o(i)1 S €il -

Thus

P P P
! / < .
€ = Col (i—r)4r/,1 S €it -

i'=r'+1 i=r+1 i=r+1
Applying above analysis to the homomorphigm': B — A, we have

P 4
/
E €i1 < E €irq -

i=r+1 i'=r'4+1
Hence for eachi € [r + 1, p], we have
/ /
€o'(i—r)+r1 = Eo(i),1 = Cil

andw; = 0; ando (i) = o’(i — r) + ' is a bijective from[r + 1, p] to [r' + 1, p'].
In the following we prove thap = p’ and extend to an element irf,,. Put

J=1q1) x [1,q] x --- % [1,qp],
']/ = [Lq“ X [Lqé] X X [17(];7’] .
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For eachy. = (j1,j2,...,Jp) € J, put

Co— . o (60 5212 €pjp
aj. = Q41 jo,.njp = (:Elﬂ 1 X245 ""’xm'p ) ’
Pj. = Pirgonip = ($1j1>332j2, e >$pjp) )

and for eacly! = (51,73, ...,4,) € J', put

!

2J2

’
1J1 P]p,
b / - b]{?ij 7] / (yljl 7y2]/ re e 7yp/j;, ) ’

950 = il = (Y150 Y2+ vyp'j;,,) :
Thenp; = ,/a; is a prime ideal ofA andq;, = ,/b; is a prime ideal of3. Moreover
=()a and (0)= () by
j.eJ jleJ’

are the primary decompositions @) C A and(0) C B respectively. Note that for every € J,

dim(A/p;.) qu p+m, (2.4)

which does not depend gin So allp; are isolated prime ideals belonging(ty. Similarly we have

dim(B/q;/) Z ¢ —p +m, (2.5)

and allq;, are isolated prime ideals belonglng(ﬁ). By the uniqueness of primary decomposition of
ideals, there is a bijective: J — J' such that for every. € J, o(a;) = by(;y ande(p;.) = da.)-
By (2.4) and (2.5), we have

P
Zqi —p+m=dim(A/p;) = dim(B/q,(.)) qu —p +m. (2.6)
1=1

Note thaty induces an isomorphism of rings:
A/Y pj = B/Y ay
/j.eJ ” /]eJ’ 7

By comparing the dimensions of both sides, we get= m/. For anyj. = (j1,j2,...,p), l. =
(l1,1,...,1,) € J, put

and for eacly! = (51, j3, ..., jp), ! = (11,05, 1},) € J', put

o) = #{ e LT |G AL
For eachy.,l. € J, we have
p

> gi—p+m—0(j,l) =dimA/(p; +p1.)

=1
= dim B/(da(;) + da())

- qu, —p +m—=0(a(j),al)).
i'=1
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By (2.6), we have

0(j., 1) =0 (a(j), (L)) . (2.7)
So we get
r=0((1,...,1),(2,...,2,1,...,1))
=0'(a(1,...,1),a(2,...,2,1,...,1))
< r.

Applying above argument ta—!, we getr’ < r and hence: = r’. By (2.2) we obtairp = p'.
For eachj. € J, we put

a(j) = (a1(j),2(5)s s p(4)) -
For eachh € [1, 7], let s andt be two different numbers ifi, ¢;], and
(jla o 7jh7 cee 7jp) S [17q1] X X [LQh—l] X [17Qh+1] Xoeee X [17QP] .
By (2.7), there is a unique integer
o=o(h,s,t;51,. ., Jns---,Jp) € [1,7]
such that
ao‘(jla cee 7jh—17 s)jh-i-lv cee 7j;l)) 7£ ao‘(jly cee 7jh—17t7jh+17 cee 7j;l)) 3
and for alll € [1,p] — {c},
al(jla cee 7jh—17 s)jh-i-lv cee 7j;l)) = al(jla cee 7jh—17t>jh+17 cee 7jp) .
Firstwe prove that (h, s,t; 51, ..., jn, - .-, Jp) does notdepend of, . .., jn, . .., jp. FOr simplicity
we assume thdt = 1 and~, d € [1, ¢2] are two different numbers. Put
ny = 0(1737t;’77j37 .. 7jp) )
no = 0(1737t; 57j37 o 7jp) .
Suppose that; # no. Then we have
O£n2(8,’7,j3, s 7j;l)) = ang(t7/77j37 o 7j;l)) ;
an2(3757j37 cee 7j;l)) 7£ ang(t75>j37 cee 7j;l)) .
So either
an2(87 77j37 cee 7j;l)) # Qg (37 57j37 o >j;l)) ) (28)

or

anz(t777j37 e 7jp) 7é anz (t757j37 s 7jp) . (29)

Assume that_(2.8) is valid, then
0-(2777 5) 87j37 s 7j117) =n2.
Thus for alll € [1, p] — {n2}, we have
al(3777j37 e 7jp) = al(3757j37 LR 7jp) = al(t757j37 L 7jp) bl
i.e.,
D/(OZ(S,’)/,jg, e >j;l))7 Oé(t, 57j37 e 7j;l))) < 1 9

which contradicts to_(2.7). Similarly the validity of (2.8ads to a contradiction. Heneg = n..

Soo(h,s,t;j1,.--1Jn,-- -, Jp) depends only om, s, t; thus we may write it as (h, s,t). Clearly
o(h,s,t) =o(h,t,s).
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Second we prove that(h, s,t) does not depend onand¢. We also assume that= 1 and let
s1, s2, s3 be three different numbers i, g,]. Putn; = o(1, 51, s2) andns = o(1, s1, s3). Suppose
thatn, # ns. Since

an,(s3,1,...,1) = ap, (s1,1,...,1) # ap,(s2,1,...,1),
we haveo (1, s2, s3) = ni. SO
any(83,1,...,1) = ap,(s2,1,...,1) = ap,(s1,1,...,1),
which contradicts to the fact that(1, s1, s3) = ne. Thuso(h, s,t) depends only ok, SO we may
write it aso (h).
We shall prove that: [1,7] — [1,7] is injective. Suppose that(1) = o(2) = n. Let
I<si<so<qn, 1 St1 <to<q2,1<Jy3<q3,...,1<jp<q
be integers. Then for any£ n,
al(317t17j37 o 7jp) - al(327t17j37 .. 7jp) - al(327t27j37 cee 7jp) .
Thus
D/(()é(81,t1,j3, o 7jp)7a(s27t27j37 o 7j;l))) < 1 )
which contradicts to_(2.7).
Therefore we obtain an elementc S,,.
From above discussion we see that for any
(ha]h 7jh7"' 7j;l)) € [LT] X [17(]1] X X [th—l] X [17qh+1] X X [17qp]7
there exists an injective map
Th(jl7 .. 7jh7 cee 7jp): [17 qh] — [17 q?‘(h)]
such that for alk € [1, g3],
ao(h)(jla o 7jh—17 S7jh+17 cee 7jh) = Th(jla cee 7jh7 cee 7jp)(s) )

and for alll € [1,p] — {o(h)}, the value ofa;(j1,...,Jn-1,5,Jn+1,---,Jn) dOEs not depend on
s. Now we prove thaty,(ji,...,Jn, .-, Jjp) does not depend oAy, ..., jn, ..., jp. We assume that
h =1andty,ts € [1, go] are two different numbers. Suppose that there is ar1, ¢;] such that

ny = Tl(tl,jg, ce ,jp)(S) ?é nog = 71(t27j37 s 7jp)(s) .

Then
Q1) (8,11, 25 - -+, Jp) = M1 # N2 = ag(1)(8,t2, 52,5 Jp) -
Thuso(2) = o(1), which contradicts to the injectivity of. So we have a well-defined injection
Th: [1,qn] — [1,qé(h)]. Henceg, < qé(h). So we get
p p p
D6 <D oy =D _d
=1 =1 V=
P p
Applying above argument tp~!, we obtain )~ ¢/, < " ¢;. Hence for every € [1,p], we have
g = q;_(z.) andry, is a bijective. o =
Put
Trp1 =+ =71, =1d: {1} = {1}.

Then for every(j1, j2, - - ., jp) € J, we have

a(jr, g2, Jp) = (To=11) Uo=1(1))s To=12) Go=12))s - - > To=1(p) (=1 (p))) -
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In other words,

P12, dp) = O 1) Gt 1)1 2) o1 (3 e Tom1 ) =1 () (2.10)

and

@(pjlvjm---,jp) - ngfl(l)(jgfl(l))77'071(2)0‘071(2))7~~~,T071(p)(j071(p)) : (211)

Leth € [1,r] ands € [1, ¢p). Put

T = Zps, Y = Yo(h),m(s) > €= €hs € = €o(h),mh(s)
for shortness. Then we have
ey _ . . . .
(z°) = ﬂ O51 s dhe1,8:0ht 15 osp

jl6[17(]1}7"'7jh71€[17qh71]7
jh+16[17Qh+l]7“'7jpe[lvqp]

By (2.10), we havey((2€)) = (y*'). Sop(a€) = uy® for someu € B*. Note thate® € 2§ — M+
anduy® € MG — MS 1. Soe = ¢’. On the other hand, we have

(':U) + ml = ﬂ pjl7"'7jh717s7jh+17"'7jp ’
j16[17q1]7---7jh—1E[lth—ﬂ7
jh+l€[17qh+1}7"'7]’1)6[17‘17)}

By (2.11), we have

p((2) +9) = (y) + M.
Soyp(z) = vy + w for somev € B andw € 9y. We writev andw as the form (2.1) and assume
thatw does not containy. Suppose that € My. Thenp(z) € M3 + Ny. Sox € MF + Ny, a

contradiction. Thug € B*, i.e., the constant termy of v is nonzero.
Suppose that) # 0. We writew as

w=c1Ly+cglo+ -+ csLs+ H,
wherelLq, Lo, ..., Ly are monic monomials occurred inwith lowest degree. (> 1), ¢1,¢2, ..., Cs
are nonzero elements i, and H is the sum of monomials of degree greater that w. Note that
uy® = () = () = (vy + w)°.
By Comparing the coefficients @f~'L; in the above equality, we gét= ecyc;, a contradiction.
Sow =0, i.e.,z = vy. O
Proof of Theoren2.1 By Lemma2.3p = p/, m = m/, and for everyi € [1,p] andj € [1, ¢],
p(wij) = uijyij + wij
for someu;; € B* andw;; € mB. (Here to without loss of generality, we assume that;, 72, ..., 7,
are identities.) We express; andw;; in the form of (2.1) and assume thaf; does not contairy; ;.

For every integefh > 1, puta;, = m" + (b;). Assume that we have proved that € a;, and
w;j € a;B. Then we have

ai = (11 77) = [ [ (g + wig)
Jj=1 j=1

qi

_ /€5 €ij—1 €i;—1 ejjt1 €i,q;

= E €ijUiYi1  Yij—1 Y5 Yig41 " Yig Wij (mod a; py1B), (2.12)
7=1
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whereu;j € B*. Now we apply Lemma 2.2 to thB/a; 1, -algebraB /a; ;11 5. By comparing the
constant terms in_(2.12), we hawge a; 5+1. Suppose thaw;; ¢ a; 1 B. Then we have

Sij
wij = Y cipLij+ Hij - (mod a;p11B),
=1

Whel’ecijl, Cij2y -+ 1 Cij,syj € Uip — 05 ht1, Lijh Lijg, L >Lij,sij are different monoic monomials in
w; with lowest degree;;, andH,; are sums of monomials of degree greatgin w;. By comparing
the coefficients of the term

eLJ €i,j—1, €ij— 1 €i,5+1 (21°01
Yi1 yz,] 1y2j yzy—i—l yzq Lljl

in (2.12), we get a contradiction. So we have

h=1
and

wij € ﬂ (m"B + Bb;) = Bb;.

The same reasoning for—! shows thab; € (a;). Soa; = u;b; for someu; € R*. Putw;; = ngbi
and

o €ij ij—1 e€ij—1 e;j11 €i,q; f
Vij = Uij + inJ Y ]J 1 zgj yl,]{i-l Vg Wi
Thenv;; € B* andp(x;;) = v;jy;;. This complete the proof of Theorem 2.1. O

The following Theorem is easy to prove.

Theorem 2.4. For eachi € [1, p], leta; denote the kernel of multiplication hy on R; and for each
J € [1, 4], letTJ;; denote the kernel of multiplication hy; on A. Then

(1) for eachi € [1,p] andj € [1, ¢;], we have

€ij—1_eij—1_eijt1 x@iqi).
)

o T O
Jijg = a (952‘1 Tii—1 L5 i1 iqs

(2) for eachi € [1, p], the canonical homomorphism dfmodules

qi

qi
EBJ —>ZJU

is an isomorphism.

3. REFINED LOoCAL CHARTS

In this section we define the concept of refined local charichvis more delicate than local charts.
Log structures induced by refined local charts are all lgdatbmorphic. But it is not true for local
charts. Also we introduce two assumptions on which the nesalts of this paper is built.

Let f: X — Y be a surjective, proper and weakly normal crossing morpbidocally noetherian
schemes.
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3.1. The singular locus.

Lemma 3.1. Letp: A — B be a flat local homomorphism of noetherian local ringsand y two
nonzero elements iA. If there is av € B* such thatp(y) = ve(x), then there exists a € A* such
thaty = ux.

Proof. SinceA and B are local rings ang is flat, we see thap is faithfully flat. SoxA = ¢o~!(zB)
andyA = ¢~ (yB). ThuszA = yAifand only if B = yB. O

Lemma3.2. Letx € X,y = f(z),

. a2 .
U—)SpeCP/( H Tfjllh —a1, |] T;;QJQ —ag,... H Tp]p;” —ap)
j2=1

j1=1 J2= Jp—
and

/

e, a2 e, q;), €t
U — SpecP/( ji) U1 —af, H (Téjé) Wy —ahy, ..., -,H (T;,j;/) Pp —a;,,)
j2:1 Jplzl

be two local charts off at z. Lett;;, and t;’jf, be the image of;;, and Ti//j{, in Ox ; respectively.
Thenp = p’ and there exists a € S, such that for eacti € [1, p], we have

1) ¢ = q:;(i)'

2) a; = u,-a’a(i) for someu; € 05,

(3) there exists a; € S,, such that for eacly € [1, ¢, e;; = ea(z) () andt;; = vijt;(i)

for somev;; € O% ;

)T (])

Proof. We use notations in Definition 1.1. Let € U andz” € U’ be the points as in Definition
1.1 (4) andy’ € V the point as in Definition 1.1 (2). Puif” := U x x U’. Then there is a point
zo € U"” which maps onto both’ andz”. Let x| be a closed point ifzg} C U” and letz; be
the image ofr) on X. Thenz; is a closed point irm. So by considering the cospecialization
mapOx z, — Ox,z, We may assume that = z; is a closed point. Ther(z)/x(y) is a finite
extension of fields. By [6, Ch. 0, (10.3.1)], there is a cortepl®etherian local rindg’ whose residue
field is algebraically closed and a flat local homomorphiS; — R’. By taking base extension
Spec R — S and applying Lemma_3.1, we may assume tfh(a,t) is algebraic closed. As is a
closed pointk(z) = r(y) is algebraic closed. Thus(z) = x(z). Let M andm be the maximal
ideals ofOgpec p v andOy,, respectively. There there is a canonical isomorphism:

L =M/ +mP) 5 Qp/r@p P/

As... TW .. € L are linearly independent oveiz’), we may select’, Ts,...,T, € M such
that{...,Tyj,,..., Tk, ...} is abasis of. By taking a connected affine open neighborhood:’dh
Spec P we may assume thit .., d(T5;,), ... ,d(Ts), ...} isabasisof2p p. Then{..., T;;,,..., T}, ...}
is algebraically mdependent ovét andP is étale overR[ Tijys -y Ty -] So we have an
isomorphism o@s y-algebras:

Ox.s —>OS@[[...,:r,-ji,...,:rk,...]]/(..., 117 _a>
1
Similarly we have
~ o~ o~ €.
Oxz = Osgll... iy, Tk]]/( [T (T5,,) " _ag,,...).

So the lemma is valid by Theorem 2.1. O
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Let x be a point onX equipped with a local chart of the form_(1.2). For each [1, p], let .#; be
the ideal ofOy generated by

ei1 €i,j—1meij—1
{Til ... T T,j

€i,j+1 €i,q;
L T 2,7 . T 13
5,j—1 "1 ,q;

1,j+1

jell,al} (3.1)
By Lemma 3.2, we see that
(A1, Iy ..., I)

are independent of the choice of local charts (up to a unigueptation of the subscripts ).
From (1.1), we know

D;(U/V) = Spec(Oy /%)
for eachi € [1, p]. So forU/V we have a finitd/-morphism

p
Dy =[] Di(U/V) = U.
=1

Clearly
{ Dy,y — U|U/V is alocal chart forf }

can be glued to a global finit§-morphismg: D — X. To consider the properties under base
extension, we also us@(f) or D(X/S) to denote the schem® for preciseness.

Obviously the set-theoretic image of the finite morphigrf) — X is the set of all points at
which f are not smooth.

Clearly we have

Theorem 3.3. Let
X' i S’
| o |
X T> S
be a Cartesian square of locally noetherian schemes. Themawe
D(f") = D(f) xs S".
For a pointy € Y, we define
Dy = D((X xg Spec Oy)/ Spec Oyz) = D(X/S) xg Spec Oy,

and letCP(y) denote the set of connected component®gpf

3.2. Reduced to local casesln this subsection, we assume tl#at= Spec R, whereR is a strictly
Henselian noetherian local ring, apgdis the closed point of.

Lemma 3.4. LetT be the spectrum of a Henselian local ririghe closed point of', Y a connected
schemeg: Y — T a étale morphismy a point onY such thatg(y) = t and k(t) — k(y) is
isomorphic. Thew: Y — T is an isomorphism.

Proof. See [7], (18.5.11) a}= c) and (18.5.18). O

Lemma 3.5. Let T' be the spectrum of a Henselian local ringthe closed point of', Y — T a
proper morphism. The# — Z; defines a bijection from the set of connected componenfsothe
set of connected componentsypf

Proof. See [7, (18.5.19)]. O
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By Lemma 3.4, ifr € f~!(y;) andU/V is a local chart off atz, thenV = S. By Lemma_3.2,

there is a canonical map
w: CP(y1) - R/R* (3.2)
(here */” means taking quotient of monoids) such thatit f~!(y;), U a local chart of the form
(1.2) atz, i € [1,p], andC € CP(y;) is the connected component Bf X /S) which contains the
image ofD;(U/S) on D(X/S), then
a; =w(C).
Now we consider the following conditions.

(*) For each pointz € f~'(y;) and for each local chat/ at z, the images of
Dy(U/S),D2(U/S),...,Dy(U/S)in D(X/S) are contained in different connected
components oD (X/S5).

Lemma 3.6. If (x) holds, then every connected component® @k /.S) is a closed subscheme &f

3.3. Construction of refined local chart. We return to the general case th#tis only a locally
noetherian scheme. For each pajrg S, we use

Wy CP(y) — OS@/OE’Q

to denote the map as in (3.2).
In the following, we require that : X — S satisfies the following conditions.

() For each poiny € S, X x5 Spec Og 5 — Spec Og 5 satisfies the condition].

Lemma 3.7. Lety be a point onS. Fix an open affine neighborhood’, of y. We define a full
subcategoryN (y) of the category oétale neighborhoods af as follows: for arétale neighborhood
V of g, V € N(y) if and only if it satisfies the following conditions:

(a) the image ol in S is contained iniv;

(b) the inverse image af in V' contains only one poiny’ € V;

(c) Vis an affine scheme and every irreducible componet obntainsy/’;
(d) for every irreducible componetit of Dy, the image of” on V' containsy/’.

Then we have

(1) For any pair of objectd” and V"’ in N(y), there exists at most one morphism frothto V;

(2) N(y) is alocal baseof 7, i.e., for everyetale neighborhood” of 7, there is an object”’ in
N(y) and a morphisni’’ — V of étale neighborhoods af.

(3) for any morphisn’” — V in N(y), Dy+ — Dy is dominant.

Proof. (1) is by [3, | 5.4].

(2) For every étale neighborhodd of 3, we may contract’ under the Zariski topology to obtain
an object inV (y).

(3) For each object” in N(y), since the image dpec Og; — V contains all generizations gf
in V, the morphismD; — Dy is dominant. So for any morphisid’ — V in N(y), Dy — Dy is
dominant. O

Remark 3.8. By (1), we may define a partial order d¥i(y) as follows. For any pair of objects
andV’in N(y), V' > V if and only if there is @ morphism froi’’ to V' in N(y). ObviouslyN (y)
is directly ordered, i.e., for any pair of objedtsandV’ in N (y), there exists an objedt” in N(y)
such that/” > V andV” > V',

Let y be a point onS. For each object’ in N(y), letqy : Dy — Dy be the canonical morphism.

By [7, (8.4.2)], there exists an objet} in N(y) such that for allV' > V), F — qy(F') defines a
bijection betweerCP(y) and the set of connected component®gf. By the definition ofN (y), the

inverse image of; in V, contains only one poing’. For every closed point in f;ol(y’), if fy, is
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smooth atr, we select open neighborhoots of x andV,, of y respectively such thafy, (U,) C V,
and fy, : U, — V., is smooth; otherwise we select a local chay/V, atx. For everyU,, let U, be
its image inXy;. As

eh cJus
andf;ol(y’) is quasi-compact, there exists a finite number of closedtpoinzs, .. ., z,, in f;ol(y’)
such that .
e < Jus, -
i=1
Put

V= Vo — fVo <XV0 - U Uglcz> :
i=1

As fy,: Xy, — Vp is proper,V' is an open neighborhood gf. There exists an objedf, in N(y)
and a morphism of étale neighborhoodg/f

/
Vi—>V XVonl XVO"'XVOV

Let Cy,Cy, ..., C, be all connected components bBf;. For eachi € [1,n] and each/ € N(y)

with V' > V3, C; defines a connected component V') of Dy. By Lemma_3.2, there exists an
element

bi(V) € I'(V,05/0%)
such that for every point € V and for every connected componénof D; which maps inta”;(V),

Obviouslyb; (V') depends only op, C; andV. Let Z;(V') be the closed subschemelofdefined by
the ideal generated by (V). Clearly the inverse image af (¢ Vp) in V is contained in all these
subschemeg; (V).

The following lemma can be directly verified.

Lemma 3.9. Let V' > V (> V;) be two elements itV (y). ThenC;(V’') = C;(V) xy V' and
ZZ(V/) = ZZ(V) Xy V.
Lemma 3.10. C;(V') — V factors throughZ; (V') and C;(V') is faithfully flat overZ; (V).
Proof. It is by the following lemma. O
Lemma 3.11. Let R be aring, A = R[T1,T5,...,T,] a polynomial ring overR, ey, e, ..., e,
positive integers. Then
B = A/(Tlel—lTQeg . Trin7 TlelT262—1 L. Tsn’ o ,TlelT262 - Tsn—l)
is flat overR.
Proof. Note thatB is a freeR-module with basis
{ vz | i either there exists an integere [1,n] such that, < e, —1 or}
L2 " | there exist at least two integets= [1, n] such that, < e, —1J"

Notation 3.12. We defines a subsé¥,(y) of N(y) as follows: forV € N(y), V € Ny(y) if and
only if it satisfies that

1) v =wn.

(2) For each € [1,n], there exists a sectian € I'(V, Oy ) such that

a; = b;(V) (mod Oy).

(3) If z is the inverse image af in V, then for anyi € [1,n] and any irreducible compone#t
of Z;(V), F containsz.

O
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It is easy to show that for eadhi € N (y), there exists an objedt’ in Ny(y) such thatV”’ > V;
and we have the following easy lemma.

Lemma 3.13. Let z be a generization of, u: Ogy; — Ogs > a cospecialization map, ang: D> —
Dy the morphism induced hy.

(1) For eachi, v=!(C;) = @ ifand only if i (wy(C;)) = 1in Og2/O% ..

(2) If v=1(C;) # @, then every connected componentof (C;) is a connected component of
D:.

(3) All connected components bt can be obtained as i(R).

We consider the following conditions abofit

() Lety; be apointort, yo a generization of;, u: Ogy, — Og g, a cospecialization
map, andv: Dy, — Dy, the morphism induced by. Then for every connected
componentC of Dy,, v~1(C) is connected. (Here empty set is also regarded to be
connected.)

Lemma 3.14. (1) is satisfied if one of the following conditions holds:

(1) S is a spectrum of a field.

(2) There exists a finite sét of closed points irt' such thatf is smooth outsidé..
(3) S is a spectrum of a discrete valuative ring afids smooth at the generic fiber.
(4) fis aweakly normal crossing morphism without powers.

Proof. (1), (2) and(3) are trivial.

(4) Obviously for eachy € S, X, is geometrically reduced over(y). Let C' be a connected
component ofD;, such thaw~!(C) # @. Fix an objectV’ € Ny(y;). Lety, be the inverse image
of y1 in V. Then the cospecialization map Og 5 — Og g, defines a poing;, on V' which maps to
yo and is a generization gf;. C defines a connected compon@‘lbf Dy. By Lemma_3.10, there
is a closed subschemg of V' such thatC' factors throughZ and C'is proper and flat oveZ. As
vy € Z andv™1(C) # @, by Lemma3.13)) € Z. ObvioustCyi is geometrically connected and
geometrically reduced over(y} ). Hence

dim,{(yi) F(Cyi, Oéy{) =1.
By [6, (7.7.5)],
{zeV|dim,,I'(C.,0p,) <1}
is an open neighborhood of. As y, is a generization of/,
dimy(y,) I'(Cyy, Og, ) < 1.
SoC,, is geometrically connected. By Lemma 3:5,'(C) is connected. O

Lemma 3.15. Assume thaf satisfies the conditioft). Lety € S,V € Ny(y), C1,Cq,...,C, the
connected components bf;. For eachi € [1,n], let C; be the connected componentl®f defined
by C; and leta; € I'(V,Og) be a representative elementgfV’). Letz’ be a point on/” and z its
image onS. Then

(1) Leti € [1,n] such that(a;). € my,. ThenC; xy Spec Og ; is a connected component of
D; and its image under the mayp; is equal to(a; ).’
2 {Ci Xy Spec Og z \ i€ [l,n]and(a;), € my } is the set of all connected components of

Ds.

Proof. (1) Obviouslyz' € Z;(V'). Let F' be an irreducible component &§(V') containingz’. Letw’
be the generic point of’ andw its image onS. Suppose that’; <y Spec Og ; is disconnected. Then
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by Lemma 3.13(; xy Spec Og 4 is disconnected. By the definition ofy(y), we see thay € F.
Sow is a generization of. Let

u: Os,g = OSQI — OS@/ = 05,@
be a cospecialization map and D, — Dy the induced morphism. Then
v_l(C’i) = C; xy Spec Og 5 -
Sincef satisfies the conditiont), v=!(C;) is connected, a contradition.

(2) is a consequence of (1). O
Definition 3.16. Letx € X be a point and, := f(x). A refined local chartof f atx is of the form
(U7V;T117--- ,qul;... ;Tpla"' ,qup;al,... ,an)

where o

U — SpecP/|..., Z Tf”L — Uy

J( LT e )

is alocal chart at, V € Ny(y), n := #CP(y) > p anda; = b;(V) (mod O5,) forall i € [1,n]. We
also simply usé//V or U to denote a refined local chart.
Remark 3.17. If f is smooth atr, thenp = 0; and if f is smooth at the fibeX,, thenp = n = 0.
Remark 3.18. Obviously every local chart can be contracted in the senétatdé topology to become
a refined local chart.

p
Remark 3.19. Let .#; be the log structure oli associating tey;: N} — Oy withm = > ¢; +
i=1
n — p, where if

Mmis---5Mgrs---5Mpls- -5 Npgps Mlp+15- -5 TIn
is a basis oN™, thenay (1;;,) = Ty, fori € [1,p] andyj; € [1,¢;], anday (;) = a; fori € [p+1,n].
Let .47, be the log structrue olf associating tgdy : N{, — Oy, where ifey, ..., e, is a basis of

N", thenfy (g;) = a; forall i € [1,n]. Letg: U — V be the canonical morphism. Then there is a
canonical morphism
oy g M — My

qi
defined by the map: N* — N, wherevy(e;) = > e;m;; for i € [1,p] andy(e;) = n; for
j=1
i€[p+1,n].
Remark 3.20. As .7y = N’g/a,;l((’);;) does not depend on the choicesgfandT;;,, we may glue
the sheavesZ; to obtain a global shea# of monoids onX,, and there is a canonical morphism

0: P — Ox/0%.

Similarly we may glue the sheave$’y, to obtain a global shea® of monoids onS,; and there is a
canonical morphism

v: 2 — 0g/0%.
Moreover, there is a canonical morphism f~'2 — 2 defined byy which makes the following
diagram commutative:
=1

f7le F71(0s/0%)

! |

P Ox /0%

Lemma 3.21. 2 is canonically isomorphic to the direct imageld, ;) under morphisnD(f) — S.
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4. COHOMOLOGY AND HYPERCOVERINGS
In this section, we review some technique_in [5]. A brief venscan be found in [172 and§3].

4.1. Cohomology. Let X be a scheme. We define a categdfyX') as follows: an object ii(X) is
a diagram

VT:>U_“>X (4.1)

whereU andV are schemes;: U — X andwvy,vy: V==U are surjective étale morphisms such
thatu o v; = u o vo and the induced morphism

(vl,vg)xt V —-U X x U
is surjective (and obviously étale); we also simply U568/ to denote the object (4.1); a morphism in
(X)) is a pair of morphisms
(f.9): UV = U/V
which makes a commutative diagram

V/v:>>U/—>X

)
N
v1

V:>>2U—>X

Given an object of form_(4.1) isl(X). Put(V/U)y = U, (V/U)1 =V, poo = u, p1o = v1,
p11 = va. Assume that for some integer> 2, we have schemgd//U),, for k € [1,n — 1] and étale
morphisms

prit (V/U)g = (V/U)g—1
for i € [0, k] such that whenever < i < j < k, we have
Pk—1,i © Pkj = Pk—1,j—1© Dki - 4.2)
Put
= (V/U)n_l Xx (V/U)n_l Xx - XX (V/U)n_l
n+1 copies of(V/U)n—1
and letg,;: P, — (V/U),—1 be the(i 4+ 1)-th projection. For each < i < j < n, let K(n,i,7)
be the equalizer gf,—1; o ¢n; andp,—1 ;1 © gn; In the category of schemes. A8/U),,_ is étale
overX, K(n,i,j) is an open subscheme Bf,. Put

V/U = () Kn,i,j)

0<i<j<n

and
Pni = nil(vyu), s (V/U)n = (V/U)p-1.
Let.# be an abelian sheaf oX..;. We define a cochain complex of abelian groups as follows: for

eachn € N, put
C(V/U,ZF) =T((V/U)n, F)

and let
n+1

d" =Y (-1)'pj i1, C(V/U,F) = C"T VU, Z)
=0
be the differential. Lef{™(V/U,.%) be the corresponding cohomology group. We define

H" (X, F) = lig H"(V/U, F),
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where the colimit runs through all elementstilx).
Let
07 LFh a0
be an exact sequence of abelian sheaveX¥ gnFori = 0, 1, we define
5 HY(X, F") - H N (X,.F)
as follows.
Lets € Z°(V/U, #") be a0-cocycle. By refining/, we may choose a lifting € . (U) of s.
Then we define
8°(s) = pio(3) — p11(3). i
Lett € Z'(V/U,#") be al-cocycle. By refiningl’, we may choose a lifting ¢ .# (V) of t.
Then we define . 3 .
5 (t) = p3o(t) — p31(F) + p3a() -
Theorem 4.1. For eachn = 0, 1, 2, we have a natural equivalence
H" (X, o) = H"(Xet, ) ;
and for each short exact sequence the natural equivaleramasnute with the connecting functars
4.2. Gerbe. Now we fix an abelian shed¥ on X;.

Definition 4.2. An .7 -gerbe(X, w) consists of the following two data:
(a) astackx over X;
(b) for each étaleX-schemell and for each objectl in X(U), an isomorphism of sheaves of
groups:
w(A): LO}\‘U :> dutU(A) .
These data satisfy the following conditions:
(1) for any étaleX-schemeU, there exists an étale coveriq@; — U}ics in X such that
X(U;) #oforalli e I;
(2) for any étaleX-schemelU and any pair of objectsl and B in X(U), there exists an étale
covering{U; — U }ier In X¢ such thatd|y, and B|y, are isomorphic ik (U;) for all i € I;
(3) for any étaleX-schemel, any elemeny € .%(U), and any isomorphinp: A = B in
X(U), we have
pow(A)(g) =w(B)(g)oep.
(So we may simply write» o g or g o  or eveng - ¢ for above morphism.)
Fix an.7-gerbeX. Choose an étale coveriig — X which admits an objecl € X(U), and an
étale covering” — U x x U which admits an isomorphism

¢: pio(A) = pi1(4)
in X(V). Then there exists a cocydec Z%(V/U,.#) such that
g0 P31(6) = P3a(d) 0 P3o(d): (P10 0 P20)"(A) = (P11 0 p22)*(A) -
We define
(%] = [g] € H?(Xey, 7).

Lemma 4.3. Let V/U be an object irRl(X), A an object inX(U), and¢: p},(4) = pi;(A4) an
isomorphism ir (V') satisfying the cocycle condition:

~

P21(®) = Pa(®) 0 pao(@): (P10 © p20)*(A) = (P11 © p22)*(A) .
Then there exists an obje&t in X(X) and an isomorphisnp: B|y — A in X(U) such thate o
Pio(e) = pii(v). And(B, ¢) is unique up to isomorphism.
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Theorem 4.4. X(X) # @ if and only if[X] = 0 in H?(Xe, ).

Letg € ZY(V/U, F), A an object in¥(X). By Lemma 4.3, there is an objegtA) in X(X) and
an isomorphismp, : g(A)|y — Al in X(U) such thay o p%,(¢,) = pi;(dy). Itis easy to show that
(g, A) — g(A) defines an action of the group' (X.,.#) on the set of isomorphic classes of objects
in X(X).

Let A and B be objects ink(X), ¢: Aly — B|y an isomorphism i%(U) andg € .# (V) such
thatg o pio(¢) = pi;(¢). Theng € ZY(V/U, F) andg(B) = Ain X(X).

Theorem 4.5.1f X(X) # @, then the groupgd * (X.s, %) acts canonically and simply transitively on
the set of isomorphic classes of objectsifX ).

5. LocAL CASES

Let f: X — S be a surjective, proper and weakly normal crossing morpbisiocally noetherian
schemes which satisfies the conditiofsand ) in §3.3, D1, Do, ..., D,, the connected components
of D(f). Assume that there exist global sections

ay,ag,...,an € I'(S,0g)
such that for any poing € S and anyi € [1, n], the following two conditions holds:
(1) ifa;y € O% 4 thenD; x5 Spec Og 5 = @,
(2) if a; 5 € mg g, then
D; 5 = D; xg SpecOg
is a connected component b; andwy(D; 5) = @; 5.
Thus
CP(y) = {Di,g !z €l,n|, a;y € mgy } .
Obviously whenS is a spectrum of a strictly Henselian local ring, then abowaditions hold.

Furthermore, for any point € S and anyV’ € Ny(y), Xy — V satisfies above conditions.
Let .4 be the log structure off defined by

Ng—)OS, Ei > a;,

whereey, e, ..., &, is a basis oN".

For eachi € [1,n], let .%; be the ideal sheaf oX corresponding to the closed subscheeand
let 27; denote the kernel of the multiplication hyon Og. As f is flat, the kernel of the multiplication
by a; on Ox is equal ta7; - Ox. Let E; be the closed subscheme_¥fdefined by.%; - .#; and put

n

E =[] E;. We also us&Z(f) or E(X/S) to denote the schem&.
i=1

n
Let.7; be the kernel of the morphis@y, — O onXe. Thens; = 1+.%;-.7;. Put¥ = 11 %.
i=1
Then we have an exact sequence of abelian sheaves:

0= — (Ox)" —» 0 —0.

We also useZ (f) or .#(X/S) to denote this abelian she&t.
Let &, 2, 6, ¥ andd be the notations defined in Remark 3.20. Obviously there isr@mical
morphismN¢ — 2. Let~ denote the composite

Nt = 123 o,

We define a stack on X, as follows. For each étal&-schemelU, an object inX(U) is a
pair (.# ,o0), where.Z is a fine saturated log structure 6hando: .# — Z|y is a morphism of
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sheaves of monoids which induces an isomorphigm— #|;; and makes the following diagram
commutative:

M Ou

|

@’UWOU/OI*J

If U' — U is a morphism of étaleX-schemes(.#,0) € X(U) and (.#',0’) € X(U’), then a
morphism of(.#’, ") to (.# , o) in X lying aboveU’ — U is an isomorphismy: .#" = .# |y of
log structures such thaty o ¢ = o’.

We shall prove thak is an.7-gerbe (see Lemma 5.4). The proof needs the following threple
lemmas.

Lemma5.1. Let X be a schemey a fine saturated log structure ok andz a geometric point on
X. Then there exists agtale neighborhood/ of z and a fine saturated cha#®;, — .# | such that
the induced ma@ — . ; is a bijection.

Lemma 5.2. Let X be a scheme and: .# — Ox a fine log structure onX. Put & := .# and

leta: & — Ox/O% be the morphism induced hy. We define an abelian sheaf on X as

follows: for everyétale X-schemel, </ (U) is the set of morphisms: &7¢P|; — Oj; of abelian

sheaves such that for agyaleU-schemd’” and any sectios € &(V'), we havery (s)-t = t, where

t € I'(V,Ox) is a lifting of a(s). Then there is a canonical isomorphism frash to the sheaf of
automorphisms of log structures.ef which induce identities o’ defined as follows: for angtale

X-schemé/ and any sectiow € I'(U, &), wy (0)v (s) = s - oy (5), whereV is anétaleU-scheme
ands € (V).

Lemma 5.3. Let X be a scheme ané’ a fine monoid. For each = 1,2, let«;: Px — Ox be a
morphism of sheaves of monoidg; the log structure associating ;, ¢;: Px — .#; the induced
morphism. Assume that there exists a morphisnPx — O3 of sheaves of monoids such that
a1 = 0 - ap. Then there exists a unique isomorphism.#; = .#, of log structures such that
poty =206-1Lo.

Lemma5.4. X is an.#-gerbe.

Proof. We have to verify the conditions in Definition 4.2. (1) is obws. Datum (b) and Condition
(3) is by Lemma 5.2 and Theorem 2.4.

For the condition (2), leU be an étaleX-scheme,ay: 41 — Oy andas: A5 — Oy two
objects inX(U), = a point onU. PutP = Z;. By Lemma.5.1, for each = 1,2, there exists
an étale neighborhootl;, and a char;: Py, — .#;|y, which inducs identity onP = 27;. Put
V3 = V1 xy Va. Since both

(o 0Bi)z: P — Oug
are liftings of
952 P — OU@/O[*]@,

we have an étale neighborhodd— V5 of z and a morphism:.: P, — O5, of sheaves of monoids
such that; = u - 49, where

0; = (aioﬂi)\vz Py — Oy.
As Py, — .#;|y are charts, by Lemma 5.3 there exists an isomorphism#; — .#> of log

structures such that o 51|y = w - 52]y. Thusy induces identity on?|y,. Soy is an isomorphism
in X(V). O
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Obviously there exists an étale coveritig— X, an object# in X(U), and a morphism: N, —
. which is a lifting of v|;: N} — Z?|y. So there exists an étale coveribg— U xx U and

an isomorphismp: pi,(.#) = pi,(.#) of log structures o/ (here the notation$V/U); and
pri: (V/U) — (V/U)i—1 are defined as if4.1). Hence there exists an element
u = (ug,us,...,u,) € (Ox)"(V)

such that

¢ oplp(p) =u-p1i(p)
and a cocycleg € Z2(V/U,.7) such that

g0 131(9) = paa(¢) © pao () -
We have
[X] = lg] € H?*(Xer, 7).

By (4.2), we have

P10 © P21 = P10 © P20 5

P10 ©p22 = P11 ° P20,

P11 © P22 = P11 © P21 -
We also have

g - P (u) - (p11opa1)*(p)
= g P51(¢) © (P10 © p21)”(p)
= P2a(®) © P2 () © (P10 © p20)" (p)
= p30(u) - P22 () © (P11 © p20)*(p)
= pao(u) - Pa() © (P10 © p22)*(p)
= p3o(u) - P (u) - (P11 © p22)*(p)
= p3o(u) - P (u) - (p11 0 p21)*(p).

Thusg = pio(u) - pe(u) - i (u)~t. Since the image of in O% is equal tol, we see that
determinates an element Hl(Ect,O*E). So we obtain an invertibl® g-module, which depends
only on the morphisny: X — S. We denote it byZ’(f) or Z(X/S5).

Definition 5.5. A semistable log structuren X is an object(.#, o) in X(X) such that there is a
morphismp: N — .# which lifts the morphismy: N% — .

Theorem 5.6.

(1) There exists a semistable log structureXnf and only if Z(f) = Op.
(2) The semistable log structure df is unique (up to isomorphism) if it exists.

Proof. (1) If semistable log structures o%i exist, obviously.Z(f) = Og.

Assume thatZ(f) = Og. By above argumen{X] is the image ofZ(f) under the connecting
map

HY (B, OF) — H*(Xet, F) .

Thus[X] = 0. By Theorem_ 4.4, there exists an elemest € X(X). LetU — X be an étale
covering such that there exists a liftipg N, — .# |y of y|y: N} = Z|y. PutV :=U x5 U and
letu € (O%)™(V) such thapij,(p) = u-pj;(p). Leta be the image of. in O}, (V). As Z(f) = O
is represented bfi], there exists an element € Og(U) such thatu = pj,(v') - pj;(v/)~L. By
contractingU suitably, we may choose a liftinge (0% )™ (U) of v'. Then

u=pio(v) - piy(v) " g
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for someg € .7 (V). As9?(g) = 9*(u) = 1, g is a cocycle. Put

pri=v"p: N — M|y
Then

Plo(p1) =g Pri(p1) -
By Lemma 4.3, there exists an objea’ in X(X) and an isomorphism: .Z'|; — |y in X(U)
such thatg=! - pi,(¢) = pi1(#). Putps == ¢~ 1 o p1. Thenpiy(p2) = pi;(p2). So there exists a
morphismy’: N% — .#’ such thal'|; = p2. Obviously,' is a lift of y: N% — &, Thus.Z’ is a
semistable log structure ox.

(2) Let.#, and.#> be two semistable log structures ah Fori = 1,2, let p;: N% — .#; be
liftings of v: N, — 2. By Theorem 4.5, there exist étale coveritgs— X andV — U xx U,
a cocycleg € Z1(V/U, #) and an isomorphism: 45|y — .#1|y such thatg - pi,(6) = i1 ().
Letd € (O%)"(U) such thaip o ps|r = ¢ - p1|r. Then we have

g-p10(8) - prlv =g - pio(0 - p1lv)
=g pio(¢ o p2|v)
= (9-P10(8)) o p2lv
= p11(®) o p2|v
= p11(8) - p1lv -

Sog = p},(8) - pjo(6)~", i.e.,[g] = 0. Therefore#y = .4, in X(X). O

Remark 5.7. Note that the isomorphisms between semistable log stegtmay not be unique. So
this kind of structure is not canonical.

Theorem 5.8. Assume that altq, as, . . . , a,, are regular elements i'(S, Og) (i.e., (0 : a;) = 0 for
alli € [1,n]). ThenZ(f) = Og, i.e., there exists a semistable log structure’on

Proof. Note that

F =[]0+ 7)=0.
i=1
So there exists an objec# in X(X). Obviouly there exists an étale coverifify, }xca Of X such
that for each\ € A, there exists a lifting, : Ng, — A |y, of v|u, : Np, — Z|u, such that the
composite morphism

n

P
Uy — ///|UA — OUA

is equal to

ZA%OUA, Ei — Q; .
Sinceay,aq, ..., a, are regular elements i (S,O0g) and f: X — S is flat, aq,as,...,a, are
regular elements id’(X, Ox) too. So on eaclt/y,, we havep,|v,, = pulu,,- Thus{p,} can be
glued to obtain a global lifting: N% — .# of v: N — . O

Theorem 5.9. Let.# be a semistable log structure dhandp: N* — .# alifting of v: N§ — 2.
By Lemm&.3 p induces a morphismp: f*.4" — .4 of log structures. Then

(fs0): (X, ) = (Y, N)

is log smooth and integral.
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Proof. Let x be a point onX andy = f(x). Let
(U, ViTu, o Tagys o3Ity oo Tpg,s a1, -0 aq)

be a refined local chart gfatx and putm := i g;+1—p. Letg: U — V be the induced morphism.
Then =

(gv SOU/V): (Uv %U) — (Vvv JVV)
is log smooth, where#y;, 4, and oy are defined in Remark 3.19. By Lemma 5.3, we may
contractl//V suitably such that there exists two isomorphism.zy = .# | andr: A, = N |y
of log structures. Put#y = .4y, NS = S, p1 = oy, P2 = ol oply o f¥(r). Let
a=ay: N? — #, 8= By: N, - 45 andy: Nl — N™ be the notations as in Remark 3.19.
Now (g, ¢1) is log smooth. We shall use the definition of log smoothnegsdue that(g, ©2) is also
log smooth. Le{(Ty, ) and(T, .7) be fine log scheme$7y, %) — (T, .7) a thickening of order
one (Cf. [9, 3.5]),(to,%0): (Tv, %) — (U, #y) and(t,v): (T, T) — (V,A4)) be morphisms of
log schemes which makes a commutative diagram:

(To, ) (to,%o) U, M)
l l(wz)
(T,7) (V, )

)

For each = 1,2, let p; denote the composite morphism
NHEACNSPTLNA
Then there exists a sectianc (Oy;)"(U) such thaips = u - p1. The composite morphism

NRGINTSUN SN

is equal toyy o t(p2). Letv € (OF)™(T') be alift of
to(u) € (07,)"(To) -
Then there is a morphismy : t*.45 — 7 of log structures such that
Yot (B)=vT" (Yot (h)).
So the composite morphism
NGNS N N
is equal toyy o t§(p1), which shows that

t7/l/)
(To, To) —2 (v,
l l(ngl)
T V.
( 7?) (tﬂl”) ( 7'/1/0)

is commutative. Agg, 1) is log smooth, by replac& with an étale covering, we may assume that
there is a morphism

(h,&1): (T, 7) — (U, #4)
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of log schemes which makes the following diagram
(to,%0)

(To, %) (U, )
l () l(gw
(T, 7) (V, )

(")

commutative. By the following Lemma 5.10, there exists dispav € (O5.)™(T') which makes a
commutative diagram:
v-h*(u) 1

N7
Let&y: h*.#y — 7 be the morphism of log structures satisfying that h*(a) = w - (& - h*(«)).
Then we have a commutative diagram:

Or

(TO,%) (to,%0) (U, ///0)
l () l(gm)
(T, 7) — = (V)
Thus(g, 12) is log smooth. O
Lemma 5.10. Let A be a ring, I an ideal of A such that/? = (0), u € 1+ 1, e1,eo,...,e, be
positive irltegers which are invertible iA. Then there exists elementg vs,...,v, € 1 + I such

thatu = [] v;".
i=1

The following theorem is obvious.
Theorem 5.11. Let S’ be a locally noetherian scheme asd — S a flat morphism. PufX’ :=
X xg S"and letf’: X’ — S’ be the projection. Then

(1) f' satisfies all these conditions ¢fmentioned at the beginning of this section.
(2) For eachi € [1,n], letb; be the image ofi; in I'(S’, Og/). Assume thak; is invertible for
i € [m + 1,n] andb; is not invertible for[1, m]. Then

E(f") = (Z]:lez> xs S

(3) Z(f") is isomorphic to the inverse image &f under the canonical morphis®(f') —

E(f).
6. GLOBAL CASES

Let X andS be locally noetherian schemes, X — S a surjective proper weakly normal crossing
morphism without powers such thdt satisfies the conditionf) in §3.3 and every fiber off is
geometrically connected. By Lemma 3.14 (#)lso satisfies the conditior)(in §3.3.

Let 2, 2, 0,9 andd be the notations defined in Remark 3.20.

For every pointy € S, we write

Ey = E(X X g Spec (95737/ Spec Os,g) ,
Ly = .,%(X X g Spec (95737/ Spec Os,g) .



30

Lemma 6.1. Lety € S. If .7 is trivial, then there exists an elemeWi§ € Ny(y) such that for all
elementd” > Vj in Ny(y), Z(Xv/V) is trivial.

Proof. See [7, (8.5.2.5)]. O

Corollary 6.2. Lety € S. If £ is trivial, then there exists an open neighborhdddf y such that
forall z € V, .%; is trivial.

Lemma 6.3. Let f: X — Y be a proper and flat morphism of locally noetherian schemeh #at
every fiber off is geometrically reduced and geometrically connected.nTthe canonical morphism
Oy — f.Ox is isomorphic.

Proof. See [6, (7.8.7) and (7.8.8)]. O

Lemma 6.4. Let R be a noetherian local ring with maximal ideal, « € m,a = (0 : a),n > 2 an
integer,

A= R[T,Ts,...,T,]]
a ring of power series oveR, I the ideal ofA generated by

Ty Tyt Ty T Ty, Ty T
and
J = (Tng---Tn—a)—l—a-I.

ThenJ N R = (0).

Proof. Letb € J N R and put

n
b:(Tng---Tn—a)-FO—I—ZTl---Ti---Tn-Fi,

i=1
whereF; € Afor all i € [0,n] and for everyi € [1, n], all coefficients ofF; are contained im. For
eachi € [1,n], putF; = G;+1T;- N;, where all monomials id7; do not contairil; and all coefficients
of G; andN; are contained im. Then we have

Tl”'Ti’”Tn'Fi:Tl'”Ti”'Tn'Gi+(T1T2"'Tn—CL)'Ni-
n

PutGy == Fy + > N;. Then
i=1

b= (I\TyTh—a) Go+ Y Ty T T, - Gy (6.1)
=1
For eachy € N, letc, denote the coefficient ¢fl1 75 - - - T},)? in G. By comparing the coefficient of
(T3 ---T,)%in (6.1), we have = —acy andc,—1 = acy forall g > 1. Thus

e P e (ur— o), ;
q=1 q=1

Lemma 6.5. For all pointsy € S andV € Ny(y), we have(fy ). (F(Xy /V)) = 1.

Proof. Let Dy, D>, ..., D,, be the connected componentdaf, a1, as, . . ., a, € Og(V') the corresponding
sections. For eache [1,n], let % and.#; be ideal sheaves dri and Xy respectively defined if5,
and put 7; == % - %, ThenZ (Xy /V) = [[(1+ _#;). So we have only to provefy ). _7Z; = (0).

i=1
Let W be an open subset 6f andb € I'(Xw,.%). By Lemma_6.3, we havé € I'(W,Og).
Suppose thalVy, # @. Asblw, = b|s-1(w,) is invertible, 7;|;-1w,) = (1), so#|w, = (1) and
Filgrw,) = (). As ;= (0 : a)™, a; = 0. Hence(Dy)w, # 9, i.e., iy, # (1), a
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contradiction. Hencé&V, = @. Thus for anyw € W, by is contained in the maximal ideal 6¥s .
By Lemma6.4p; = 0. Sob = 0. O

Definition 6.6. A semistable log structutr f is of the form(.#, 4", o, 1, ¢), where.# and./" are
fine saturated log structures ghandsS respectivelyy: f*.4" — .# is a morphism of log structures
onX,o: # — & andr: 4 — 2 are morphisms of sheaves of monoids, suchdratdr induce
isomorphismsy: .#Z ~ 2 and7: .4/ = 2, and the following three diagrams are commutative:

N Os M Ox N ——

R

Q?OS/OE @?OX/O;( f_lo@—a>9

The following two theorems are the main results of this paper

Theorem 6.7.

(1) There exists a semistable log structure foif and only if for every poiny € S, .Zj is trivial
on .

(2) Let (A1, M, 01,71, ¢1) and (Mo, No, 02, T2, p2) be two semistable log structures fgr
Then there exists isomorphism .#, = .#, andv: .4 = 4 of log structures such that
po @1 = @0 f¥, g9 0p =01 andr oty = 7. Furthermore, such paify, ¢) is unique.

Proof. (2) Lety be a point onS, V' € Ny(y), and let
ai,ag,...,an € I'(V,0g)
be sections satisfying the condition (2) in Notation 3.1®afly .4; = N". By Lemmab.1, we may
contractV suitably to make both4; and.#; isomorphic to the log structure associated to
Bo: Nj; = Oy, €+ a;,

where{e1,e9,...,¢,} is a basis ofN”. In other words, we have an isomorphismg: 41|y —
4|y of log structures, and chartg: N” — 4|y such that)y o 81 = (2, 2|y © g = 71|y, and
the diagram

Nn
Q|V Bi Oy
o~
Hilv
is commutative. Since the composite morphisms

FoBi) dilx
Y > fo(Silv) —= Milx,

are liftings of

_ ol x
?(v—)f 1‘Q|Xv —V>°9Z|Xv>
we see that.7; | x, , 0i| x,, ) are semistable log structures &R-. So, by Theorem 5.6 (2), there exists

an isomorphismpy : . |x,, — #5|x, such thatpy o 01|y, = o2|x, . Obviously there exists a
section

v=(v1,v2,...,v,) € (O%)"(Xv)
such that

ov o ((91]xy) o fir(B1)) =v - ((92]x,) o fir(B2)) -
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Taking composite of both sides of above equality with the phimm .#5|x, — Ox,, we have
vja; = a; for eachi € [1,n]. Applying Lemma. 6.3 to the morphisidy, — V/, we havey; € O5(V).
By Lemma 5.3, there is an isomorphisny : 41|y — 3|y of log structures such thaty, o 3; =
v+ B2. Thuspy o (¢1x,) = (¢2]x) o fi (¥v).

Suppose that there exists another pair of isomorphisims#, |x,, — .#5|x, andy’: M|y =
;v of log structures such that’ o (¢1]x,,) = (¢2]x,) © fir(¥), (02]x,) o ¢’ = o1|x, and
Tly oY’ = 1]x, . By Lemmab.4,

o lo olx, € F(XV,,?(XV/V)) .

By Lemma6.5," ! o g|x, = id, i.e., v = ¢'. Thus(¢a|x,) o £y (¥v) = (¢2]x,) o fi- (). Itis
easy to show thap is injective. Sofy (¢¥v) = fi-(¥'). Sincefy is faithfully flat, we getyy = ¢
Now we can glue thesgpy, 1) to a pair of isomorphism of log structurég, ).
(1) is by (2) and Theorem 5.6. O

Theorem 6.8. Let (.#, ./, 0,7, ¢) be a semistable log structure fgr Then
(f.0): (X, ll) = (Y, N)
is log smooth and integral.
Proof. The conclusion is a consequence of Theorem 5.9. O

7. PROPERTIES UNDERBASE CHANGE

Definition 7.1. Let f: X — S be a morphism of locally noetherian schemes.
(1) We say thaif satisfieqN;) if it is surjective, proper, weakly normal crossing with@atwers,
and all fibers off are geometrically connected.
(2) We say thaff satisfiegNy) if it satisfies(IN7) and the conditionf) in §3.3.
(3) We say thatf satisfiesN3) if it satisfies(IN2) and for every poiny € S, the invertible sheaf
£y on B defined ing6 is trivial.

7.1. Properties under fibred products. Let.S, X andY be locally noetherian schemefs, X — S
andg: Y — S two morphisms. For af-schemeZ which satisfiegN,) and a points on S, we use
Es(Z/S) and.Z5(Z/S) to denote the notation8; and.Z; defined in§6 for preciseness, and write

Z(5) == Z xgSpecOg 5 .

Theorem 7.2. Assume thaf and g satisfies(N;). ThenX xgY — S satisfies(N;). Furthermore

we have
D((X Xg Y)/S) = (D(X/S) Xg Y) 11 (X Xg D(Y/S)).

Theorem 7.3. Assume thaf and g satisfies(Ny). ThenX xgY — S satisfies(N2). Furthermore
if s € S, then

Es(X xgY) = (Es(X) xg Y (5)) [1(X(5) x5 Es(Y))
Ls(X xgY) = (L(X) @5 Oy () 1 (Ox(s) @5 Z5(Y)) .
Theorem 7.4.If f and g satisfiesN3), so doesX xgY — S.
7.2. Properties under base extensionLet

XILX
f’l ] lf
S ——5

be a Cartesian square of locally noetherian schemes.
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Theorem 7.5. If f satisfies(N;), so doesf’.

Lemma 7.6. Assume thaf satisfies(N;). Lety’ be a point onS’, y := ¢(y’). Fix a x(y)-embedding

of k(y)s into k(y')s. By[7, (18.8.8) (2)] it induces a local homomorphism Og; — Og 5 Which
makes a commutative diagram

q
OSvy — OS’vy’
Os7g u Oslvgl

Letv: Spec Og 5 — Spec Og,; be the morphism induced by Then
(1) The diagram

Spec Ogr v — Spec Og 5

| |

S5

is commutative.
(2) The square

Dgl idxwv Dg
Spec Ogl,g/ — Spec 0575

is Cartesian.

(3) If X xgSpec Og 5 — Spec Og 5 satisfies the conditiofx) in §3.2, so doesX’ x g:Spec Ogr i —
Spec Ogr .

We assume thaX x g Spec Og 3 — Spec Og 5 satisfies the conditio(x) in §3.2
(4) v induces a canonical bijection

¢: CP(y) = CP(y)), C — (id x v)~H0).

(5) We have a commutative diagram

CP(y) ——— CP(y/)

wyl lwy,

* *
Os7g/OS7g T (9517@//05/75/

(6) There is a canonical closed immersion
Eg/ — Eg X Spec Os.g Spec Oslgl .

(7) If qis flat aty/, then above morphism is an isomorphism.
(8) £ is isomorphic the inverse image &f; under the morphisnky — Ej.

Theorem 7.7. If f satisfies(N5) (resp.(N3)), so doesf’.

Theorem 7.8.
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(1) Assume thaf satisfies(Ns). Let %2, 2, 0, ¢ andd be the notations fof defined in Remark
3.20 and &', 2/, ¢', ¥ and ¥’ the corresponding notations fof’. Then there are two
canonical isomorphisms of sheaves of monoide~'2 = 2 andpu: ¢-'2 = 2
which makes the following three diagrams commutative.

p—ly i L@/ q—lg 5 Q’

S T

p_l(OX/O}) —>OX//O}/ q_l((’)s/(’)g) —>OSI/O§/

/—1

p (f12) = 7 (g1 2) S 1y

ol E

p' P 2 1
(2) Assume thaf satisfieSNs). Let(.#, 4,0, 1,¢) and(#', A", o', 7', ¢') be the semistable
log structures forf and f’ respectively. Then there exists two isomorphigms*.# = .#'
andn: ¢*.4# = 4" of log structures which make the following three diagramsoutative.

PN = (g ) — e

p*sal J{s@’
¢

p* M = M
p‘lﬂ—>p*//—£>//’ gt —>q*JV—Z>JV’
plo_l /// ‘/O_/ qlTl /// lT/
Bie A e u
P 132 - ! q 13 - 9/

Moreover the pain(¢, n) is unique. Simply speaking, the semistable log structurg ofay
be viewed as the inverse image of thaff of

The following theorem shows that above isomorphisms aretuial.

Theorem 7.9. Let

p2 p1
X2 —_— X1 —_— X(]

f2l O {é O lfo
S2 2 S1 a1 So

be a commutative diagram of locally noetherian schemes dth squares Cartesian. Ppt =
p1opzandqo = q1 ° qa.
(1) Assume thaf satisfies(N,). For eachi = 1,2, 3, let #;, 2;, 0;, ¥; andd; be the notations
for f; defined in RemarR.20 Let

Alzpl_le@olb@l, )\22p2_1<@1i>e@2, )\O:pglh@oi)e@g,
p gt 20 = 2, po: gy ' 21 = 2o, 1ot g5 2o = 2,
be the isomorphisms defined in Theo@® (1) Then

Xoopy (M) =X and  pgoqy(m)=po-
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(2) Assume thayf satisfies(Ns). For each: = 1,2, 3, let (.#;, /4, 04, 7i, p;) be the semistable
log structure forf;. Let

CL: prdly = M, Co: phtth = Mo, Co: potly = Mo,
m: @G = M, Mo oM — N, 0 @A — N,
be the isomorphisms defined in Theo@® (2) Then
Gop5(¢i)=¢ and  meogi(m)=rno.

Theorem 7.10. Let Sy, S1 and X be locally noetherian schemef,: Xg — Sp andg: S1 — Sy
be two morphisms. Pu; = S xg, S1 and Sz := 51 xg, S1 xg, S1. For eachi = 1,2,3, let
X; = Xo xg, S; and f;: X; — §; the second projections. Assume that b&ihand S3 are locally
noetherian.

Xog==Xo—= X — X,

o b b

v v
53352351—(1)50

(1) Assume thaff; satisfies(N2). Thenf, and f3 also satisfy(N»). For eachi = 1,2,3, let
Z;, 2;, 0;, ¥; ando; be the notations foyf; defined in RemarB.20 For eachi = 1,2, let
N pr; TP = Py andp;: pr; 21 = 2, be the isomorphisms corresponding to tHi
projections defined in Theorem9 (1) Put

A= )\2_1 oA prflﬁl — prgle@l,
pi= iyt o pryt 2y - pry 2y
Then
prog (A) o priy (A) =priz (\)  and  pryg (1) o priy (k) = priy (n).

(2) Assume thaff; satisfies(N3). Thenf, and f3 also satisfy(N3). For eachi = 1,2,3, let
(M, N;, 01,71, i) De the semistable log structure fr For eachi = 1,2, let(;: pri.#; —
M andn;: prit; = A5 be the isomorphisms corresponding to tkta projections defined
in Theoremz.9 (2) Put

(=(y o privaty S prisdty
po= iyt oy prio S pryh .
Then
praz(¢) o prip(¢) = prig(¢)  and  prig(n) o pris(n) = pris(n).
Proof. For eachi = 1,2,3, let \}: pri_lgzl = 3 be the isomorphism corresponding to thth
projection. For each < i < j < 3, let\): pri‘jlg% = 25 be the isomorphism corresponding to
pr;;: X3 — Xo. By Theorem 7.9, we have
Aj; o pri_jl()\l) =\ and Mo pri_jl()\g) =\
Thus
pr; (A = pri (g o i (M) = (X)) o
ij ij \"\2 Pry; (A1 J e

The other three equations are similar. O
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7.3. Properties under inverse limit.

Theorem 7.11.Let Sy be a noetherian schem@)y, s,.1 ) uca an inverse system of noetherian affine
So-schemes such that al],, are affine morphisms. L&b, sy) be its inverse limit. Assume thétis
also noetherian.

(1) Let fo: Xo — Sp be a morphism of finite type. P&t := X xg, Sandf = (fo)s: X — S.
For each\ € A, put X, = X xg, Sy and f == (fo)s, : X» — Sx. Thenf satisfies(N;)
(resp.(Nq) or (N3)) if and only if there exists an index € A such that for anyA > A, f)
satisfiesN;) (resp.(Ng) or (N3)).

(2) Letf: X — S be a morphism which satisfi¢dl;) (resp.(Nz) or (N3)). Then there exists
an index)\o € A and a morphisny,,: X, — S», which satisfiegN;) (resp.(N2) or (N3))
such thatX is S-isomorphic toX, XSy S.

Proof. See [7,588]. Note that every local chart (resp. refined local charty afan be descended to
some index\o € A and X can be covered by a finite number of local chart (resp. refioeal ichart)
of f. O

Corollary 7.12. Let f: X — S be a morphism of finite type of locally noetherian schemesnFh

satisfiegN1) (resp.(N2) or (N3)) if and only if for every poiny € S, X x gSpec Og 3 — Spec Og
satisfies(N1) (resp.(N2) or (N3)).

7.4. Properties under flat descent.

Lemma 7.13. Let X’ — X be a faithfully flat morphism locally of finite presentatiohschemes,
U — X aneétale morphism of schemeg/ a fine saturated log structure oki. PutX” := X’ x x X',
and let.#’ and.#" be the pull-back of# on X’ and X" respectively. Then

MU)—— MU xx X')—=.4"(U xx X")
is exact.
Proof. [15, Lemma 1.1.3]. d

Lemma 7.14. Letp: X’ — X be a faithfully flat morphism locally of finite presentatiohschemes.
PutX” = X' xxy X'and X" = X' xx X’ xx X'. Let.# be a fine saturated log structure oY
and¢: pri.# —s pry.# an isomorphism of log structures off’ such that onX”” we have

priz(¢) = praz(¢) o pria(¢) .
Then there exists a unique (up to isomorphism) paif, s) on X, where.4" is a fine saturated log
structure onX ands: p*.4" = .# is an isomorphism of log structures off, such that the following
diagram

prip* A LR ¥) pri A

| e )
(s)

*
pri(s

pryp* AN —— prs. A
is commutative.
Proof. [15, Theorem 1.1.5]. a

Lemma 7.15. Let f: (X,.#) — (Y,.#) be a morphism of fine saturated log schentésthe
cokernel of f*4#" — .#, & a geometric point onX, § = f(z), @ — 4 a chart with@ fine
saturated. Assume that

(1) @ — 4 is isomorphic;

(2) Ny — M 5 is injective;
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(3) the torsion part of¢2" is a finite group of order invertible ir(z).
Then there exists a chart
(P%%|U7Q—>‘/V|V7Q—>P)

of f at z such thatP — ./ is isomorphic.
Proof. [14, Theorem 2.13]. O

Lemma 7.16. If S is a schemeg is a point onS, and .% is an Og-module, we define#(x) =
LetXT = (X,.#) andY't = (Y, .#) be two fine log schemeg; X' — Y a morphism of log
schemesy € X a point, % the cokernel of the morphisift.#" — .#. Then there is a commutative

diagram

gp gp
M G

dlogl \ Lﬁ

Qx )y (2)—— Oxi)y+(2) Ny (L) ®z CF

wherew(m) = 1 ® m for eachm € €2, and the bottom row is an exact sequence of linear space
overk(z).

The homomorphismy /y+ 5 is sometimes called tHeoincaré residue mappirag .
Proof. See [14, Proposition 2.22]. O
Lemma 7.17.Let f: (X, #) — (Y, /") be a log smooth morphism of fine saturated log schemes,
x e X,y = f(x),and let

(P— #,Q - N Q5 P)

be a chart off. Assume that: Q — P is injective,P = .#; andQ = 75 are isomorphisms.
PutZ := Y Xgyeczjg) SPecZ[P] andg: X — Z the induced morphism. Theris smooth at:.

Proof. In this proof, for a log schemgX,.#), we use simplyX ' to denote it. First we have
Qz‘r/y‘r = Oy ®yz (P®"/QFP).
Hence
K(Z) @ (9721 /y1) — K(Z) @z (PEP/Q5P).
Let ¢ denote the cokernel of the morphisfi.¥” — .#. Then the composite

% _ Pxt vtz _
K(Z) ® (9" gt pyt) = K(T) ® Lyt jyt —— 5(T) Rz CE

is isomorphic, wherey v+ ; is defined in Lemma 7.16. Hence
K(Z) @ (9" 21 yt) = K(T) @ 2xt /vt

is injective. Hencey* (2, v+ — 2y v+ has a left inverse in some open neighborhéddf z. So
glu: U — Zis smooth. O

Theorem 7.18. Let
X/ L> S/

It

XTS

be a Cartesian square of locally noetherian schemes sudhytisafaithfully flat and locally of finite
type, andf’ satisfieN3). Thenf satisfiegN3) too.
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Proof. Let &', 2,0, 9" andd’ be the notations fof’ defined in Remark 3.20; and lew#’, 4", o', 7/, ¢')
be the semistable log structure 8f By Theorem 7.10 and Lemma 7.14, there exist fine saturatgd lo
structures# on X and.#" on S, a morphism of log structures: f*.4" — ., two isomorphisms
of log structure®*.# = .#' andq*.#" = 4" which makes a commutative diagram.

p*(9)

l%

f/*(/I// - %/
©

o

Letx be a point onX andy := f(x). Letz’ € p~!(z) and puty’ := f'(z'). Theng(y') = y. We have
Mz =My =N" and Nz = Ny =N
for somem,n € N. Furthermore the homomorphism
d:=Qpz: 79 — My

is defined asl(e;) = > m;; fori € [1,r] andd(e;) = n; fori € [r + 1,n], where{eq,e9,...,6,} iS

s
j=1
a basis ofN",

{77117 ey Mgy s Mrls e oo s Mgy M1y - - 777n}

s
is a basis oN", andm = >_ s; + n — r. By Lemma 7.15, there exists a chart
i=1

(N™ = |y, N" = N |y, N & N™)
of f atz such thatN™ = _#Z; andN" = _#"; are isomorphic. PW’ := U xx X" andV’ =
V xg S’. By Lemma 7.17,
U' = V' Xgpeczinn) Spec ZIN™]
is smooth att’. By [7, (17.7.1)],
U — V Xgpecznm] Spec Z[N™]

is smooth atz. Therefore we may contraét/V" suitable to obtain a local chart at Furthermore it
is easy to verify that.#, ./, ¢) is just the semistable log structure ff O

8. SEMISTABLE CURVES

Definition 8.1. Let k& be a separably closed field. #emistable curvever k is a connected proper
1—equiAdimensionak—schemeX such that for any closed pointe X, either X is smooth atc over
k, or Ox 4 is k-isomorphic tok ([T}, T3]] / (T T%).

Lemma 8.2. Letk be a separably closed field and a semistable curve ovér. Then

(1) X is reduced.
(2) X has only a finite number of singular points and all singulairge arek-rational.

Definition 8.3. Let S be a scheme. Aemistable curvever S is anS-schemef: X — S such that
f is proper, faithfully flat, of finite presentation, and evggometric fiber is a semistable curve in the
sense of Definition 8.1.

Remark 8.4. The notation ofsemistable curvéere is slightly weaker than the notation sthble
curvein [2].

Lemma 8.5. Let S be a locally noetherian schemg; X — S a morphism which satisfig®N;) in
Definition7.1and is of relative dimensioh. Thenf also satisfiegN3) in Definition7.1
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Proof. By Corollary 7.12, we may assume tHats the spectrum of a strictly Henselian rifiy Letm
be the maximal ideal ok andy; the closed point of. If f is smooth, the question is trivial. Assume
that f is not smooth. The®(f) # @. Let Dy, D», ..., D,, be the connected componentsioff).
For eachi € [1,n], select an element; € m such that; = wy, (D;). ThenD; = Spec R/(a;). Let
z; be the closed point ab; and letl;: D; — X be the inclusion. Then there exists a refined local
chart at/;(z;) of the form
(Ui, 8;Ti1, Tigs aq, ag, - . ., ap)

satisfying that’; x x D; = @ forall j € [1,n| — {i}. Let.#; be the log structure ofi; associate to
of: N — Oy, where if

i1, 1625 My -+ Ty - o+ 5 1
is a basis ofN"*1, thend/(n;;) = T;; for j = 1,2, andal(n) = ax for k € [1,n] — {i}. Let
o N’[}jl — #; be the induced morphism. Let,es,...,e, be a basis oN". We define three
homomorphisms of monoids

82‘, 82‘1, 82‘2 :N? — Nn+1
as follows: fork € [1,n] — {i},

Oi(ex) = On(ex) = Oia(er) = i,
and
0i(gi) = mi1 + miz 0i1(gs) = i1 Oi2(g4) = mi2 -

Then

pi = ;0 0;: N — M,
is a liting of [y, : Ni;. — Z|u,, where Lety: N — & be the notation defined ig5. Put
Uy .= X — D(f) and.#, the log structure ol/y induced by

1[1]0—>0on Eir>a;.

Let po: Np;, — -0 be the induced morphism. Thep is a lifting of [y, : Ni; — £]u,.

For any: € [1,n] and any pointc on Uy x x U;, there exists an étale neighborhodd of z such
thatT;1 |w or T;o|w is invertible. Without lose of generality, we may assume gy is invertible.
ThenTZ-1|W = (Ti2|W)_1 -a; and

OZZ'|W o aﬂl N” — .//Z|W
is a chart of #;|y. So there exists an isomorphisim .#;|yw — .#,|w of log structures such that
¢Oai’W Oail = (Ul,UQ, o 7un) : PO‘W7

whereu; = (Tiz|w )~ anduy, = 1for k € [1,n] — {i}. Thuse o p;lw = polw-

For any pair of integerd < i« < j < n and any pointr on U; x x Uj, there exists an étale
neighborhoodiV' of z such thatT;; |y or T|w is invertible, andTj,|w or Tja|w is invertible.
Without lose of generality, we may assume tfigtjyy and 72|y are invertible. Then fos = 4, j,
Tsl|W = (T32|W)_1 - as and

aslw 0 01 N — Ms|w

is a chart of #| . So there exists an isomorphist .#;|w — .#;|w of log structures such that
¢ o ailw 0 din = (u1,uz,...,un) - (ajlw 0 91),

whereu; = (Tio|lw) ™, uj = Tjolw, andug, = 1 for k € [1,n] — {i,j}. Thusé o pilw = pjlw.
Now we translate above analysis into the languag¢binWe obtains an étale covering — X,
an object# in X(U), and a morphismp: Nj, — .# which is a liting ofy|;: N} — Z|y, an étale
coveringV — U x x U, and an isomorphism: p},(.#) = pi,(.#) of log structures oV, such
that¢ o piy(p) = pi;i(p). S0.Z5, is trivial. O
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Lemma 8.6. Let R, A be two complete noetherian local rings with maximal idea/$t and residue
fieldsk, K respectivelyR — A aflat local homomorphisn®z[[T}, T»]] a ring of power series oveR
with variablesT; andT5. Assume that exists two elements, x> € 9t such that the homomorphism
of k-algebras

k([Th, T3] /(T Tp) = A/mA, T; — 71 (i = 1,2)
is an isomorphism. Then there exists an elemert m, two elements:,zo € 9 such that the
homomorphism oR-algebras

R, D) /(WT» —a) = A, T — z; (i =1,2)
is an isomorphism.

Proof. Puta; = 0 and P; = k[[Tl,Tg]]/(Tng). For eachn € N, putR, = R/m" and4,, =
A/m"A. Letyr: P = A; be the isomorphism defined in the lemma. Assume that we hawvelfo
a, € Randz,1,r,2 € A such that

Yo Py = (R/m™)[[T1, To)] /(T T — @) = Ay, T — ZTni (1 =1,2)

is an isomorphism. Then
2= Tp1¥no — ap € MUA.
Putz = 3" b;z;, whereb; € m” andz; € A. Obviously we haved = R + 9 andon —
mA + I'nljzzl—i- zn2A. So for eacly € [1,n], we may writez; as
zj = ¢j + djuj + Tp1vj + Tpawj,

wherec; € R, d; € m, u;,vj,w; € A. Put
n
Tpi11 = Tp1 — Y bjwy,
j=1
n
Tpy1,2 = Tp2 — '21 bjvj,
‘]:

n
Any1 = an + Y bjcj.
i=1

Then we have

n n n
1
Tn+1,1Tn+1,2 — Qn+1 = bjdju]' + (Z ijj) (Z bjwj) c m"+ A.
=1 7=1 7=1

J
Put
Ppyr = (R/w ([T, T)] /(T Tz — o)
and lety,41: P41 — Ap41 be the homomorphism dR-algebras defined by, 1(7;) = Zp41,
for i = 1,2. Obviously,; is surjective. We shall prove thait,; is injective. Assume that

J = Ker(¢ny1) # 0. If m = m™*!, theny, .1 = 91 is an isomorphism. So we may assume that
m"*! =£ m. Since the diagram

Yn+1
Pn—i—l - An+1

L,

P,——— A,
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is commutative) is contained inm”/m"*!) - P, .. Since bothP,,; andA,,,, are flat overR,,, 1,
so isTJ. As7J is a finitely generated, ;-module, by [11, Ch. 2, COROLLARY of (4.A)]J is
faithfully flat over R,, 1. And becausen/m"*! # 0,

(m/m" ™). 7= (m/m" ™) @r T £ 0
by [11, Ch. 2, (4.A)]. But it contradicts that
(m/mn-i-l) .JC (m/mn-i-l) . (mn/mn-i-l) . Pn+1 —0.

Thus,+1 is an isomorphism.
Clearly{ay} is a Cauchy sequence I, and{z,;} and{z,2} are Cauchy sequences.n Since
R and A are complete, we may let:= lim a,, andx; = lim x,,; fori = 1, 2. O

Lemma 8.7. Let R be a ring, A and B two R-algebras,a, I and J be ideals ofR, A and B
respgctiveIX such thatA C [ andaB C J. LetC and D denote the topologicaR—aIgAebraEA ®rB
and A ® 5 B equipped wit{ /C' + JC)-adic and(I D + J D)-adic topologies. Thet' = D.

Proof. Note that for alln € N,
rc+Jjtccac+Joy
and
(IC+JC)*" C I"C + J"C'.
Thus R
C = @C/(I"C +J"C) = @(A/I") ®p/an (B/J").
Similarly we have

D 2= 1im(A/I"A) @ gy (B/J"B) = lim(A/T") @pyan (B/J") .
HenceC = D. O

Lemma 8.8. Let S be a scheme of finite type over a field or an excellent dedekinthuh, X; and
X5 two S-schemes of finite type; € X; andze € X5 two points which map onto the same point
sonS. Assume tha@xl,m1 and @X%m are Og s-isomorphic. Then there exists @hschemd/, a
pointu € U, two étale S-morphismsp;: U — X3 and ps: U — X», such thatp;(u) = z; and
k(z;) = k(u) fori=1,2.

Proof. See [1, (2.6)]. O

Remark 8.9. Note thatZ is an excellent dedekind domain. So to use this lemma, wdlysaply
the inverse limit of schemes to descend the base schemedmbetf finite type over.

Lemma 8.10. Let A be a strictly Henselian noetherian local rin§,:= Spec A, s the closed point of
S, f: X — S afaithfully flat, proper morphism such thai; is a semistable curve ovet(s). Then
X is a semistable curve ovérand satisfiegNs) in Definition7.1

Proof. Let m be the maximal ideal oA andk := A/m the residue field. IfX, is smooth overk,
then X is smooth ovelS and the lemma is valid. So we may assume tKiats not smooth ovek.
Letxzy,zo,...,x, be all singular points oK ;. By Lemma 8.2, allz; arek-rational. Sar; defines a
closed immersion; : Speck — X,. As @Xx = k[T, Tg]]/(Tng), by Lemma 8.8, there exists a
k-scheméV; of finite type, a pointy; onV;, two étalek-morphismsp;: V; — X, and

qi: VZ — Spec k[Tl, TQ]/(TlTQ)

such that;(y;) = z; andq;(y;) = 0, andk(y;) = k(z;) = k. Soy; is ak-rational point onV;, and
it defines a closed immersian: Speck — V;. LetU denote the set of points at whict is smooth
overS. ThenU is open inX and

Us :XS—{l‘l,l‘Q,...,l‘n}.
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By [7, §(8.8), §(8.6), (8.10.5), (11.2.6), (17.7.8)], there exists a figitgeneratedZ-subalgebra
R of A, a proper and faithfully flaR-schemeY” such thatX is S-isomorphic toY ®pz A, an open
subschemd/’ of Y such thatU’ is smooth overR and U is the inverse image of/’ under the
morphismX — Y, an ideak of R such thanA = m; and for eachi € [1, n|, an(R/a)-schemé&// of
finite type, two closedR/a)-immersionsy,: Spec(R/a) — Y ®@r(R/a) andd,: Spec(R/a) — V/
such that

(U’ RR (R/a)) [[Spec(R/a)]]---]ISpec(R/a)
n (8.1)
i E13 101 CTRV

is surjective whereyy: U’ @ (R/a) — Y ®p (R/a) is the inclusion, two étaléR/a)-morphisms
p,: V! =Y ®g (R/a) and

q;- : Vi, — SpeC(R/Cl) [Tl, TQ]/(TlTQ) s

finally a commutative diagram

Speck
Xs % Spec ]{T[Tl, TQ]/(TlTQ)
‘/ (8.2)
Spec(R/a)
e \
Y on (Rfa) —— V! —— Spec(R/a)[T1, T2}/ (TiT2)

with all vertical squares Cartesian.

Putp := m N R andk’ == x(p). Thena C p. PutA4, = (Rp)h, So = Spec Ay, S = Spec Ay,
Xo =Y Xspeck S0, X = Y Xspec g S. Lets’ be the point orBpec R defined byp. Thens' is the
image ofs underS — Spec R. Let sy ands be the closed points of, and S respectively. As

k(8) = k(sg) = K(s") = K,

we may regard that
Xs = (Xo)sy = Yo .
For eachi € [1,n], 4/ induces &/'-rational pointz; on Yy which is the image of; underX — Y.

By the bottom part of Diagram (8.2), we have

Oy, o = K[[T1, To]] /(1 T). (8.3)

By the surjective morphism_(8.1), we know thdt, =), . . ., z], are all singular points of; overk’.
By Lemma_8.6 and Lemma 8.7,

Oyt = @XI = Oxyur = AT, To]) /(W T2 — a;) (8.4)

for somea; € pAy. Let R be theR-subalgebra ofl, generated byi;, as, . . ., a,. Putq = pAgN R,
T :=SpecR,Y' =Y Xgpecr T- Lett € T be the point defined by. Thenx(t) = £’ andY; = Y.
By (8.4) and Lemma 8.7, we have

Oy 4 2 Ory[[T1, o] /(LT — ).
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By Lemma 8.8, there existsi&schemdV! of finite type, two étald’-morphisms!: W/ — Y’ and
qglz WZ-, — Spec R,[Tl, TQ]/(TlTQ — CLZ‘) s

a pointz, on W/ such thap!/(z) = i, ¢/ (=) is the point defined by the prime ideal generated by

2

qu {Tl,TQ}, andm(zg) =k'. PutW, = Wz’/ X7 S,

ﬁi Z:pQ/Xids,i VVZ'—>X1,
(ji = q;/ X lds VVZ — SpeCAl[Tl,TQ]/(TlTQ — (IZ') .

As 2/ € W/ ands € S both map onta € T, there is a point; € W; which maps onto both/ ands.
Thenp;(z;) = «} andg;(z;) is the point defined by the prime ideal generate¢p by{77,7>}. Thus
W; may be contracted to a local chart«jf ThereforeX — S satisfieSN; ). By Lemma8.5X — S
satisfiesN3). Let D; denote the connected component of

Spec Ow, / ((6)7 (T1), (4:)* (I2))

containingz;. ThenD; is étale overSpec Ay/(a;). Sincer(z) = k' and Ay/(a;) is complete, a
fortiori Henselian, by Lemma 3.8; = Spec Ay /(a;). ThusD; — S'is a closed immersion. Since
X — Sis separated, the composite morphism

is a closed immersion. So we may regdddas a closed subscheme ®t Sincex’, z,. ..,z are
all singular points ofX; overk’, we have

n
D(x/8) =]]D:.
=1
Note that as subsets of, D; N D; = @forall 1 < i < j < n. ThusD(X/S) is also a closed

subscheme ok .
In the following we shall descend to elements ird,. Put

Ay = (Rp)Sh, Ay = Ay X Aq Ay , A3 = A ® A Ay ® A A;.

For eachi € [1,3], putS; := Spec 4; and X; = Y Xgpec g Si. Obviously we may regardio as a
subring of A;. So there is a canonical morphissh — S. ThusX; — S satisfies(N3). For each
€ [1,n], putD; = D; X g S1. ThenDy, Dy, ..., D, are all connected components 0t X, /S51).
Note thatS, and.S3 might not be noetherian. We shall use the trick of inversetdiof schemes to
avoid this difficult. By Theorem 7.11 and [¥(8.6)], there exists a finitely generateld-subalgebra
A’ of Ay which containsay, as, . .., a, such that if letS” := Spec A’ and X’ = X, xg, S, then
X' — S’ satisfiegN3); and closed subschem&¥, D), ..., D}, of X’ such thatD; x ¢ S; = D,; for

alli e [1,n]andD(X’/S") = ﬁ D!. Put
i=1

A= A @y A S" := Spec A" X" = Xo x5, 5"
A/// = A/ ®A0 A/ ®AO A/ S/// = SpeC A/// X/// = XO XSO S/// .
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Let91: X1 — X/, g X2 — X”, gs: X3 — XW, hli 51 — Sl, hg: SQ — S”, hgi 53 — 8" be
the canonical morphisms. Then we have a commutative diagfiitimall squares Cartesian.

X

Xl/l H X/l Xl 0
e 7 A
/93 /92 /l]l /
X3 —= X, X1 Xo
Sl/l == S/l Sl SO
A A A
/h3 /h2 /h1 /
Sy =———== 95 Sp ———= 50

Let s; be the closed point of; and puts’ := hy(s1) € S’. By Theorem 3.3, we have
priD(X’')S") = prsD(X'/S") = D(X"/S").

Pulling back toX5, we have
pr”{D(Xl/Sl) = pI‘;D(Xl/Sl) .

By [3, VIII, 1.9], there exists a closed subschefief X, such thatD(X,/S;) = C xx, X;. Let
C4,Cs,...,C, be all connected components &f. By Lemma 3.55/ = n, and by rearranging the
order of Cy, Cs, ..., C,, we may assume thdt; xx, X1 = D, for all i € [1,n]. By [7, §(8.6)]
and by replacing3 with a suitably large finitely generateth-subalgebra ofl;, we may assume that
Ci; xx, X' = Djforalli € [1,n]. Thenthese datX’ — S’, D}, D), ..., D}, a1,as,...,a, satisfy
conditions in the begin of5. Let &/, 2', ¢, ¢ and?’ be the notations fof’ defined in Remark
3.20; and let(.#’, /", o', 7', ¢') be a semistable log structure ¢f. Let p': N2, — Og be the
homomorphism of monoids defined pY(s;) = a;, wheresy, e, ..., &, is a basis oN"™. Then there
is a commutative diagram

/

P
Ng/ OS/

]

9 —5 (’)s//(’)g,

wherey: N?, — 2 is the canonical morphism. As is an isomorphism, by Lemma 5.1 there exists
an affine étale neighborhoddl of 5’ such thaty|y lifts to a chatNR, — .#”|x. Note that4, is a
strictly Henselian local ring. By [7, (18.8.1)f; — S’ factors throughV. So by replacings’ with

N, we obtains thay lifts to a chatp: N%, — .4 and the composite morphism

5N Oy

is equal top’. By Theorem 7.10, there is an isomorphigmpri.#" = pr3.#" of log structures on
X" such thatpris(¢) o pris(¢) = priz(¢) on X”. By Lemma_3.21, botlpri(p) andpr;(p) are
lifts of the canonical morphisiy?, — 2", where2” is defined in Remark 3.20. So there exists an
element

u=(ur,ug,...,u,) € (OL)"(S")
such thatp o pri(p) = u - pri(p) andpris(u;) o pris(u;) = priz(w;) in O, (S") foralli € [1,n].
We haven; ® 1 = u;- (1®a;) in A”. Letv; denote the image af; in A5. Thena;®1 = v;-(1®a;) in

As andv; defines an isomorphismy; : Og, = Og, of Og,-modules such thair}, (v;) o priy(¥;) =
pri3(¢i) on Ss. By flat descent of quasi-coherent sheaf, there exists amtible Og-module.%; and
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an isomorphismp; : ¢*.%; — Og, of Os,-modules such that

pl"fq*f pry (i) 052
| |+
pryq* L —— Os,
pry (¢z

is commutative, where: S; — Sy is the canonical morphism. Sinek, is a noetherian local ring,
% = Og,. So¢; defines an element; € Aj such thaty; = w; ' ® w;. Putb; := w;a;. Then
b @1 =1®b;in Ay. By [13, 1, 2.18],b; € Ay. SinceA, is flat overA,, by Lemma 3.1h; = w)a;
for somew! € A;. Now replacingl’; with (w/)~'T} in (8.4), we obtain

Oxy,u; = Ao[[T1, To))/(Th Ty — bi) (8.5)

As Ay = (Rp)h, there exists a finitely generated ététealgebraB, a prime idealy of B, elements
c1,¢o,...,Ch € ¢, @and an isomorphism: (Bq)h =y Ap of R-algebras such that(c;) = b; for all
i € [1,n]. PutL := Spec BandZ =Y xgpec r L. Letl € L be the point defined by. As x(l) = ¥/,
we may regard that; = (Xj)s,. By (8.5) and Lemma 8.7, we have

00 = O |[T1, To)) /(T T3 — ¢3) .

As B is finitely generated ovef, by Lemma 8.8 there exists a local chartdf— L atz). By base
extensionSy, — L, we obtains a local chart ofy, — Sy atz}. SoX, — Sy satisfies(N;). By
Lemma_8.5X, — Sy also satisfie§N3). By base extensio¥ — Sy, we know thatf: X — S
satisfiesN3) and is a semistable curve ovgr O

From above lemma and Corollary 7.12, we obtains that

Theorem 8.11. Any semistable curve over a locally noetherian schemefiemtiN3), thus has a
canonical semistable log structure.

Theorem 8.12. Let S be a noetherian scheme and X — S be a proper and faithfully flat
morphism. ThenX is a semistable curve oves if and only if for every closed poing € S,
X xg Speck(y)s — Speck(y)s is a semistable curve.

Theorem 8.13. Let
X' —>f’ S’

l 0 l
X —f> S
be a Cartesian square of schemes such that

(1) f’is a semistable curve,
(2) qis faithfully flat,
(3) f is proper and of finite presentation.

Thenf is also a semistable curve.
Proof. Obviously f is also faithfully flat. So by Definition 8.3, we may assumettfa= Speck

wherek is a separably closed field, aitd is affine. By Theorem 7.11, we may further assume that
S’ is of finite type overS. Then the theorem is by Theorem 7.18. O
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