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Log Structures on Generalized Semi-Stable Varieties

Ting Li
Directed by Professor Zhao Chunlai

Abstract

In this paper we study the log structures on generalized semistable varieties, generalize the result
by F. Kato and M. Olsson, and prove the canonicity of log structure when it can be expected.

In out text we first give the definitions of local chart and weakly normal crossing morphism.
Then we study the invariants of complete noetherian local ring coming from weakly normal crossing
morphisms. These invariants enable us to further define the refined local charts and prove that all log
structures induced by refined local charts are locally isomorphic. Letf : X → S be a surjective,
proper and weakly normal crossing morphism of locally noetherian schemes which satisfies the
conditions (†) and (‡) in 3.3 and certain local conditions stated at the beginningof 5. Then the
obstructions for the existence of semistable log structures onX is an invertible sheafL (f) on a
finiteX-schemeE = E(f). The main result of local case with respect to base schemes is:

Theorem.
(1) There exists a semistable log structure onX if and only if L (f) ∼= OE .
(2) The semistable log structure onX is unique up to (not necessarily canonical) isomorphisms

if it exists.

The main result of global case with respect to base schemes is:

Theorem. LetX andS be locally noetherian schemes,f : X → S a surjective proper weakly normal
crossing morphism without powers. Iff satisfies the condition (†) in 3.3 and every fiber off is
geometrically connected, then

(1) There exists a semistable log structure forf if and only if for every pointy ∈ S, Lȳ is trivial
onEȳ.

(2) Let (M1,N1, σ1, τ1, φ1) and (M2,N2, σ2, τ2, φ2) be two semistable log structures forf .
Then there exist isomorphisms of log structuresϕ : M1

∼−→M2 andψ : N1
∼−→ N2 such that

ϕ ◦ φ1 = φ2 ◦ f∗ψ, σ2 ◦ ϕ = σ1 andτ2 ◦ ψ = τ1. Moreover such pair(ϕ,ψ) is unique.

We further prove that the existence of semistable log structures remains under fibred products, base
extension, inverse limits, flat descent. Finally we study the semistable curves. The main result is:

Theorem. Any semistable curve over a locally noetherian scheme is a weakly normal crossing
morphism without powers and has a canonical semistable log structure.
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INTRODUCTION

A major advantage of logarithmic geometry is that it enablesus to treat some kind of singularity as
smooth case. To achieve this, we must equip a singular morphism with suitable log structure so that
it becomessmoothin the sense of logarithmic geometry.

In this paper, we study the existence and uniqueness of semistable log structures on the morphisms
of schemes which locally have the form

Spec
A[T11, . . . , T1q1 , . . . , Tp1, . . . , Tpqp , T1, . . . , Tm]( q1∏

j1=1
T
e1j1
1j1
− a1, . . . ,

qp∏
jp=1

T
epjp
pjp
− ap

) .

If p and alleiji are equal to1, then the singularity is the so callednormal crossingin the classical
sense.

The study of normal crossing singularities began with Deligne and Mumford [2], where they
showed that any curve with normal crossing singularities deforms to a smooth curve. For higher
dimensional spaces, Friedman [4] discovered that an obstruction for the existence of smoothenings
with regular total space is an invertible sheaf on the singular locus. In [9,§11-12] and [8], F. Kato
introduced log structures for normal crossing varieties over fields. And in [16], M. Olsson generalizes
them to morphismsf : X → S, whereX is locally isomorphic to

SpecOS [T1, . . . , Tl]/(T1 · · ·Tr − t) ,

with t ∈ Γ (S,OS) a fixed section. Also in [10], F. Kato considered the existence of log structures on
pointed stable curves.

In this paper we generalize the results in [8] and [16], mainly add nontrivial powers and remove
the fixed sectiont in [16]. Roughly speaking, we construct an obstruction at every morphismX ×S
SpecOS,ȳ → SpecOS,ȳ. Then we prove that the semistable log structure exists if and only if all
these obstructions vanish (see Theorem 5.6 and 6.7). In the case of no power, we shall see that this
kind of semistable log structures is canonical (i.e. uniqueup to a unique isomorphism), which was
not discussed in [8] and [16].

In Section 1 we generalize the concept of normal crossing to the so called “weakly normal crossing”.
In Section 2 we study the invariants of complete local rings,which is of fundamental importance. In
Section 3 we define the concept of refined local chart. On each refined local chart, we may define a
log structure, which is the tile for building the global semistable log structures. In Section 4 we list
some technique and notations in cohomology theory which areneeded in later sections.

In Section 5 we study the local case. In other words, for a weakly normal crossing morphism
f : X → S, we focus on morphismsXV → V for every étale neighborhoodV onS which issmall
enough, especially the case when the base schemeS is the spectrum of a strictly Henselian local
ring. For weakly normal crossing morphismsf : X → S with nontrivial power, the theory can only
be built on local cases, because semistable log structures on XV → V may not be unique (up to
isomorphism). In Section 6 we prove that for a weakly normal crossing morphism without powers,
the semistable log structures exist if and only if all local obstructions vanish. If so, then it must be
canonical.

In Section 7 we study properties of weakly normal crossing morphisms under base change. We
shall show that the semistable log structures constructed in §6 have good functorial properties. In
Section 8 we show that on semistable curves, our constructedobstructions are always trivial. So there
exists a canonical log structure on any semistable curve which make it log smooth.

Notation and Conventions.Throughout the paper, rings, algebras and monoids are all assumed to
be commutative and have multiplicative identity elements.A homomorphism of rings (resp. monoids)
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is assumed to preserve identity element. A subring (resp. monoid) is assumed to contain the identity
of the total ring (resp. monoid).

If n is a positive integer, we useSn to denote the symmetric group on{1, 2, . . . , n}.
For every pair of integersm andn, we define a set[m,n] as

[m,n] ≔

{
{m,m+ 1, . . . , n} , if m 6 n,

∅ , if m > n.

For a fieldk, we usēk to denote the algebraic closure ofk andks the separable closure ofk.
If X is a scheme,f ∈ Γ (X,OX) is a section andx ∈ X is a point, we usef(x) to denote the

image of the stalkfx in the residue fieldκ(x).
If X is a scheme, a geometric point onX is a morphism of schemesSpecK → X whereK is a

separably closed field; ifx is a point onX, we usēx to denote the geometric pointSpecκ(x)s → X.
If S is a scheme,f : X → S andT → S are twoS-schemes, then we defineXT ≔ X ×S T and

let fT : XT → T denote the second projection.
For every morphismf : X → S of schemes, we useX[f ] to denote theS-schemeX via f .
If X is a scheme andG a monoid (resp. abelian group), we useGX to denote the constant sheaf of

monoids (resp. of abelian groups) onXet associated toG.
If M is a log structure on a schemeX, we writeM ≔M /O∗

X .

1. DEFINITION

Definition 1.1. Let f : X → S be a morphism of finite type of locally noetherian schemes,x a point
onX andy ≔ f(x). A local chart of f atx consists of the following data:

(1) an étaleS-schemeV = SpecR which is a connected affine scheme;
(2) a pointy′ onV which maps ontoy;
(3) an étaleV ×S X-schemeU = SpecA which is a connected affine scheme;
(4) a pointx′ onU which maps ontox andy′;
(5) a finitely generatedR-algebraP such thatΩP/R is a freeP -module,SpecP is connected

and is smooth overV ;
(6) a pointp in SpecP which maps ontoy′;
(7) a subset {

Tiji
∣∣ i ∈ [1, p], ji ∈ [1, qi]

}

of P such thatTiji ∈ p for all i andji, and
{
dP/R(Tiji)

∣∣ i ∈ [1, p], ji ∈ [1, qi]
}

is a part of a basis ofΩP/R;
(8) a closedV -immersionU →֒ SpecP which mapsx′ ontop and is defined by the ideal

( q1∏
j1=1

T
e1j1
1j1
− a1,

q2∏
j2=1

T
e2j2
2j2
− a2, . . . ,

qp∏
jp=1

T
epjp
pjp
− ap

)
,

whereai ∈ R such thatai(y′) = 0, andeiji > 1 are integers which are invertible inR, such

that for everyi ∈ [1, p],
qi∑
ji=1

eiji > 1 and

Di(U/V ) ≔ Spec
(
P
/ qi∑
ji=1

P ·
(
T ei1i1 · · ·T

ei,ji−1

i,ji−1 T
eiji−1

iji
T
ei,ji+1

i,ji+1 · · ·T
ei,qi
i,qi

))
(1.1)

is connected.
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We use

U → Spec
(
P
/(

. . . ,
qi∏
ji=1

T
eiji
iji
− ai, . . .

))
(1.2)

orU/V , or simplyU to denote the local chart.

Remark 1.2. Note that all theseconnectednesscan be satisfied by contractingSpecP , U andV
suitably, so they are not essential restriction.

The following theorem shows that if a point has a local chart,then all points in some of its open
neighborhood have local charts.

Theorem 1.3. LetR be a noetherian ring,P a finitely generatedR-algebra,
{
Tiji

∣∣ i ∈ [1, p], ji ∈ [1, qi]
}

a subset ofP , a1, a2, . . . , ap ∈ R,
{
eiji
∣∣ i ∈ [1, p], ji ∈ [1, qi]

}

a set of positive integers which are invertible inR. For eachi ∈ [1, p], put

bi ≔
qi∏
j=1

T
eij
ij − ai .

PutA ≔ P/(b1, b2, . . . , bp), S ≔ SpecR andX ≔ SpecA. Assume that

(a) P is smooth overR;
(b) ΩP/R is a freeP -module;
(c)
{
dP/R(Tiji)

∣∣ i ∈ [1, p], ji ∈ [1, qi]
}

is a part of a basis ofΩP/R;

(d) for anyi ∈ [1, qi],
qi∑
ji=1

eiji > 1.

Then we have

(1) b1, b2, . . . , bp is aP -regular sequence.
(2) X → S is a flat and local complete intersection morphism.
(3) For every pointx onX, there is a local chart atx.

Proof. (1) and (2). SinceP is smooth overR and{· · · , d(Tiji), · · · } is a part of a basis ofΩP/R,
{. . . , Tiji , . . .} are algebraically independent overR andP is smooth overR[· · · , Tiji , · · · ]. So we
may assume that

P = R[· · · , Tiji , · · · ]
is a polynomial algebra overR with indeterminates{. . . , Tiji , . . .}. Then (1) is by [11, (20.F),
COROLLARY 2] and induction onp. SoX → S is a local complete intersection morphism. By
[12, Corollary of Theorem 22.5],X is flat overS.

(3) x defines a prime idealP of P . Putp ≔ R ∩P. Assume thatai ∈ p for i ∈ [1, l] andai /∈ p

for i ∈ [l + 1, p]. And for eachi ∈ [1, l], we assume thatTiji ∈ P for ji ∈ [1, si] andTiji /∈ P for

ji ∈ [si+1, qi]. Obviously, for alli ∈ [1, l] we havesi > 1. Assume that
si∑
j=1

eij > 1 wheni ∈ [1, r],

and
si∑
j=1

eij = 1 wheni ∈ [r + 1, l]. By taking an affine open neighborhood ofP in SpecP and an

affine open neighborhood ofp in SpecR, we may assume thatai ∈ R∗ wheneveri ∈ [l + 1, p], and
Tiji ∈ P ∗ whenever

i ∈ [l + 1, p] ∨
(
i ∈ [1, l] ∧ j ∈ [si + 1, qi]

)

is valid. Then
P ′
≔ P/(br+1, . . . , bp)
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is smooth overR. For eachi ∈ [1, r], sinceei1 is invertible inP sh
P , there exists an elementui ∈ P sh

P

such that

uei1i =

qi∏

ji=si+1

T
eiji
iji

(if si = qi, we letui = 1) .

By taking an affine étale neighborhood ofP in SpecP , we may assume thatui ∈ P for all i ∈ [1, r].
For eachi ∈ [1, r], let T ′

i1 be the image ofuiTi1 in P ′, and for eachji ∈ [2, si], T ′
iji

be the image of
Tiji in P ′. Then we have

A = P ′
/( s1∏

j1=1
(T ′

1j1)
e1j1 − a1,

s2∏
j2=1

(T ′
2j2)

e2j2 − a2, . . . ,
sr∏
jr=1

(T ′
rjr)

erjr − ar
)
.

Moreover,P ′ is smooth overR and{· · · , d(T ′
iji
), · · · } is a part of basis ofΩP ′/R. �

Definition 1.4. Let f : X → S be a morphism of locally noetherian schemes. We say thatf is weakly
normal crossing if it is of finite type, and for every pointx ∈ X, eitherf is smooth atx or there
exists a local chart atx.

A weakly normal crossing morphismf : X → S is said to bewithout powersif in every local chart
of f as (1.2), all the powerseiji are equal to1.

By Theorem 1.3, iff : X → S is weakly normal crossing, thenf is a flat and local complete
intersection morphism.

The following lemma is obvious.

Theorem 1.5. Let

X ′
f ′

//

��
�

S′

��
X

f
// S

be a Cartesian square of locally noetherian schemes. Iff is weakly normal crossing, so isf ′.

2. INVARIANTS OF COMPLETE LOCAL RINGS

In this section we study the invariants of complete noetherian local ring coming from weakly
normal crossing morphisms, which ensure that all log structures induced by local charts are locally
isomorphic.

LetR be a complete noetherian local ring with maximal idealm and residue fieldk = R/m.
Let P andQ be rings of power series overR in variables

{
Xij

∣∣ i ∈ [1, p], j ∈ [1, qi]
}⋃{

X1,X2, . . . ,Xm

}

and {
Yi′j′

∣∣ i′ ∈ [1, p′], j′ ∈ [1, q′i′ ]
}⋃{

Y1, Y2, . . . , Ym′

}

respectively.

For eachi ∈ [1, p], let ei1, ei2, . . . , eiqi be positive integers which are invertible inR with
qi∑
j=1

eij >

1, ai an element inm, and

Fi ≔

qi∏

j=1

X
eij
ij − ai ∈ P .
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For eachi′ ∈ [1, p′], let e′i′1, e
′
i′2, . . . , e

′
i′q′

i′
be positive integers which are invertible inR with

q′
i′∑

j′=1

e′i′j′ > 1, bi′ an element inm, and

Gi′ ≔

q′
i′∏

j′=1

Y
e′
i′j′

i′j′ − bi′ ∈ Q .

Put
A ≔ P/(F1, F2, . . . , Fp) and B ≔ Q/(G1, G2, . . . , Gp′) .

Letxij , xk andyi′j′, yk′ be the images ofXij ,Xk andYi′j′, Yk′ in A andB respectively. LetM1 and
M2 be the maximal ideals ofA andB, N1 andN2 the nilradicals ofA andB.

The following theorem is the main result of this section.

Theorem 2.1. Letϕ : A
∼−→ B be an isomorphism ofR-algebras. Thenp = p′, m = m′; and there

exists aσ ∈ Sp such that for eachi ∈ [1, p], we have

(1) qi = q′σ(i),
(2) ai = uibσ(i) for someui ∈ R∗,
(3) there exists aτi ∈ Sqi such that for eachj ∈ [1, qi], we haveeij = e′σ(i),τi(j) andϕ(xij) =

vijyσ(i),τi(j) for somevij ∈ B∗.

To prove Theorem 2.1, we note the following simple fact.

Lemma 2.2. Every element inA can be uniquely written as a power series:

∑
c(. . . , αij , . . . ; . . . , βk, . . .) ·




p∏

i=1

qi∏

j=1

x
αij

ij


 ·

(
m∏

k=1

xβkk

)
, (2.1)

whereαij , βk are in N, c(· · · ) are in R satisfying the following conditions: for everyi ∈ [1, p],
there exists aj ∈ [1, qi] such thatαij < eij . (So we may talkmonomialsand coefficientsetc.)
Furthermore, if

a1 = a2 = · · · = ap = 0 ,

thenA =
⊕
An is a graded ring, whereAn consists of homogeneous polynomials of degreen.

We first prove Theorem 2.1 in a simple but fundamental case.

Lemma 2.3. If R = K is a field, then Theorem2.1 is valid.

Proof. Without lose of generality, we may assume that

qi

{
> 1 , i ∈ [1, r] ,

= 1 , i ∈ [r + 1, p] ;
and q′i′

{
> 1 , i′ ∈ [1, r′] ,

= 1 , i′ ∈ [r′ + 1, p′] ,

for somer ∈ [0, p] andr′ ∈ [0, p′]. Firstly it easy to see that

N1 =

(
q1∏
j=1

x1j ,
q2∏
j=1

x2j , . . . ,
qp∏
j=1

xpj

)
,

N2 =




q′1∏
j′=1

y1j′ ,
q′2∏
j′=1

y2j′ , . . . ,

q′
p′∏

j′=1

yp′j′


 .

Note thatϕ induces an isomorphism of vector spaces overK:

ϕ̄ : N1/(N1 ∩M2
1)

∼−→ N2/(N2 ∩M2
2) .
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As N1/(N1 ∩M2
1) has a basēxr+1,1, . . . , x̄p1 andN2/(N2 ∩M2

2) has a basēyr′+1,1, . . . , ȳp′1, we
have

p− r = p′ − r′ = f (2.2)

and there is aD = (di′i) ∈ GLf (K) such that
(
ϕ̄(x̄r+1,1), . . . , ϕ̄(x̄p1)

)
=
(
ȳr′+1,1, . . . , ȳp′1

)
·D .

For eachi ∈ [r + 1, p], put

gi ≔ max
{
e′i′1

∣∣ i′ ∈ [r′ + 1, p′] such thatdi′−r′,i−r 6= 0
}

(2.3)

and letσ(i) be the smallest numberi′ in [r′ + 1, p′] such thatdi′−r′,i−r 6= 0 ande′i′1 = gi. Then for
everyi ∈ [r + 1, p], we may writeϕ(xi) as

ϕ(xi1) = viyσ(i),1 + wi ,

where if we writevi andwi as the form (2.1), then the constant term ofvi is

dσ(i)−r′,i−r ∈ K∗ (sovi ∈ B∗)

andwi does not containyσ(i),1. For anyh ∈ [0, e′σ(i),1 − 1], by considering the coefficient ofyhσ(i),1
in (viyσ(i),1 + wi)

h, we know thatϕ(xi1)h 6= 0. Henceei1 > e′σ(i),1.
Suppose thatwi 6= 0. We writewi as

wi = ci1Li1 + ci2Li2 + · · · + ciliLili +Hi ,

whereLi1, Li2, . . . , Lili are monic monomials occurred inwi with lowest degreen (> 1), ci1, ci2, . . . , cili
are nonzero elements inK, andHi is the sum of monomials of degree greater thann in wi. The

coefficient ofy
e′
σ(i),1

−1

σ(i),1 Li1 in (viyσ(i),1 + wi)
e′
σ(i),1 is equal to

e′σ(i),1 · dσ(i)−r′,i−r · ci1 6= 0 .

Soϕ(xi1)
e′
σ(i),1 6= 0. Henceei1 > e′σ(i),1.

AsD is an invertible matrix overK, there exists aσ′ ∈ Sf such that

dσ′(1),1, dσ′(2),2, . . . , dσ′(f),r

are all nonzero. By (2.3), for everyi ∈ [r + 1, p] we have

e′σ′(i−r)+r′,1 6 gi = e′σ(i),1 6 ei1 .

Thus
p′∑

i′=r′+1

e′i′1 =

p∑

i=r+1

e′σ′(i−r)+r′,1 6

p∑

i=r+1

ei1 .

Applying above analysis to the homomorphismϕ−1 : B → A, we have

p∑

i=r+1

ei1 6

p′∑

i′=r′+1

e′i′1 .

Hence for eachi ∈ [r + 1, p], we have

e′σ′(i−r)+r′,1 = e′σ(i),1 = ei1

andwi = 0; andσ(i) = σ′(i− r) + r′ is a bijective from[r + 1, p] to [r′ + 1, p′].
In the following we prove thatp = p′ and extendσ to an element inSp. Put

J ≔ [1, q1]× [1, q2]× · · · × [1, qp] ,

J ′
≔ [1, q′1]× [1, q′2]× · · · × [1, q′p′ ] .
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For eachj· = (j1, j2, . . . , jp) ∈ J , put

aj· = aj1,j2,...,jp ≔
(
x
e1j1
1j1

, x
e2j2
2j2

, . . . , x
epjp
pjp

)
,

pj· = pj1,j2,...,jp ≔
(
x1j1 , x2j2 , . . . , xpjp

)
;

and for eachj′· = (j′1, j
′
2, . . . , j

′
p′) ∈ J ′, put

bj′· = bj′1,j
′
2,...,j

′
p′
≔

(
y
e′
1j′

1

1j′1
, y
e′
2j′

2

2j′2
, . . . , y

e′
p′j′

p′

p′j′
p′

)
,

qj′· = qj′1,j
′
2,...,j

′
p′
≔

(
y1j′1 , y2j′2 , . . . , yp′j′p′

)
.

Thenpj· =
√
aj· is a prime ideal ofA andqj′· =

√
bj′· is a prime ideal ofB. Moreover

(0) =
⋂

j·∈J

aj· and (0) =
⋂

j′·∈J ′

bj′·

are the primary decompositions of(0) ⊆ A and(0) ⊆ B respectively. Note that for everyj· ∈ J ,

dim(A/pj·) =

p∑

i=1

qi − p+m, (2.4)

which does not depend onj·. So allpj· are isolated prime ideals belonging to(0). Similarly we have

dim(B/qj′· ) =

p′∑

i′=1

q′i′ − p′ +m′ , (2.5)

and allqj′· are isolated prime ideals belonging to(0). By the uniqueness of primary decomposition of
ideals, there is a bijectiveα : J → J ′ such that for everyj· ∈ J , ϕ(aj·) = bα(j·) andϕ(pj·) = qα(j·).
By (2.4) and (2.5), we have

p∑

i=1

qi − p+m = dim(A/pj·) = dim(B/qα(j·)) =

p′∑

i′=1

q′i′ − p′ +m′ . (2.6)

Note thatϕ induces an isomorphism of rings:

A
/∑
j·∈J

pj·
∼−→ B

/∑
j′·∈J ′

qj′· .

By comparing the dimensions of both sides, we getm = m′. For anyj· = (j1, j2, . . . , jp), l· =
(l1, l2, . . . , lp) ∈ J , put

d(j·, l·) ≔ #
{
i ∈ [1, p]

∣∣ ji 6= li
}
;

and for eachj′· = (j′1, j
′
2, . . . , j

′
p′), l

′
· = (l′1, l

′
2, . . . , l

′
p′) ∈ J ′, put

d′(j′· , l
′
·) ≔ #

{
i′ ∈ [1, p′]

∣∣ j′i′ 6= l′i′
}
.

For eachj·, l· ∈ J , we have
p∑

i=1

qi − p+m− d
(
j·, l·

)
= dimA/(pj· + pl·)

= dimB/(qα(j·) + qα(l·))

=

p′∑

i′=1

q′i′ − p′ +m− d′
(
α(j·), α(l·)

)
.
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By (2.6), we have
d
(
j·, l·

)
= d′

(
α(j·), α(l·)

)
. (2.7)

So we get

r = d
(
(1, . . . , 1), (2, . . . , 2, 1, . . . , 1)

)

= d′
(
α(1, . . . , 1), α(2, . . . , 2, 1, . . . , 1)

)

6 r′ .

Applying above argument toα−1, we getr′ 6 r and hencer = r′. By (2.2) we obtainp = p′.
For eachj· ∈ J , we put

α(j·) =
(
α1

(
j·), α2(j·), . . . , αp(j·)

)
.

For eachh ∈ [1, r], let s andt be two different numbers in[1, qh], and

(j1, . . . , ̂h, . . . , jp) ∈ [1, q1]× · · · × [1, qh−1]× [1, qh+1]× · · · × [1, qp] .

By (2.7), there is a unique integer

σ = σ(h, s, t; j1, . . . , ̂h, . . . , jp) ∈ [1, r]

such that
ασ(j1, . . . , jh−1, s, jh+1, . . . , jp) 6= ασ(j1, . . . , jh−1, t, jh+1, . . . , jp) ,

and for alll ∈ [1, p]− {σ},
αl(j1, . . . , jh−1, s, jh+1, . . . , jp) = αl(j1, . . . , jh−1, t, jh+1, . . . , jp) .

First we prove thatσ(h, s, t; j1, . . . , ̂h, . . . , jp) does not depend onj1, . . . , ̂h, . . . , jp. For simplicity
we assume thath = 1 andγ, δ ∈ [1, q2] are two different numbers. Put

n1 ≔ σ(1, s, t; γ, j3 , . . . , jp) ,

n2 ≔ σ(1, s, t; δ, j3 , . . . , jp) .

Suppose thatn1 6= n2. Then we have

αn2(s, γ, j3, . . . , jp) = αn2(t, γ, j3, . . . , jp) ,

αn2(s, δ, j3, . . . , jp) 6= αn2(t, δ, j3, . . . , jp) .

So either

αn2(s, γ, j3, . . . , jp) 6= αn2(s, δ, j3, . . . , jp) , (2.8)

or

αn2(t, γ, j3, . . . , jp) 6= αn2(t, δ, j3, . . . , jp) . (2.9)

Assume that (2.8) is valid, then

σ(2, γ, δ; s, j3 , . . . , jp) = n2 .

Thus for alll ∈ [1, p] − {n2}, we have

αl(s, γ, j3, . . . , jp) = αl(s, δ, j3, . . . , jp) = αl(t, δ, j3, . . . , jp) ,

i.e.,
d′
(
α(s, γ, j3, . . . , jp), α(t, δ, j3 , . . . , jp)

)
6 1 ,

which contradicts to (2.7). Similarly the validity of (2.9)leads to a contradiction. Hencen1 = n2.
Soσ(h, s, t; j1, . . . , ̂h, . . . , jp) depends only onh, s, t; thus we may write it asσ(h, s, t). Clearly
σ(h, s, t) = σ(h, t, s).
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Second we prove thatσ(h, s, t) does not depend ons andt. We also assume thath = 1 and let
s1, s2, s3 be three different numbers in[1, qh]. Putn1 ≔ σ(1, s1, s2) andn2 ≔ σ(1, s1, s3). Suppose
thatn1 6= n2. Since

αn1(s3, 1, . . . , 1) = αn1(s1, 1, . . . , 1) 6= αn1(s2, 1, . . . , 1) ,

we haveσ(1, s2, s3) = n1. So

αn2(s3, 1, . . . , 1) = αn2(s2, 1, . . . , 1) = αn2(s1, 1, . . . , 1) ,

which contradicts to the fact thatσ(1, s1, s3) = n2. Thusσ(h, s, t) depends only onh, so we may
write it asσ(h).

We shall prove thatσ : [1, r]→ [1, r] is injective. Suppose thatσ(1) = σ(2) = n. Let

1 6 s1 < s2 6 q1, 1 6 t1 < t2 6 q2, 1 6 j3 6 q3, . . . , 1 6 jp 6 qp

be integers. Then for anyl 6= n,

αl(s1, t1, j3, . . . , jp) = αl(s2, t1, j3, . . . , jp) = αl(s2, t2, j3, . . . , jp) .

Thus
d′
(
α(s1, t1, j3, . . . , jp), α(s2, t2, j3, . . . , jp)

)
6 1 ,

which contradicts to (2.7).
Therefore we obtain an elementσ ∈ Sp.
From above discussion we see that for any

(h; j1, . . . , ̂h, . . . , jp) ∈ [1, r]× [1, q1]× · · · × [1, qh−1]× [1, qh+1]× · · · × [1, qp] ,

there exists an injective map

τh(j1, . . . , ̂h, . . . , jp) : [1, qh]→ [1, q′σ(h)]

such that for alls ∈ [1, qh],

ασ(h)(j1, . . . , jh−1, s, jh+1, . . . , jh) = τh(j1, . . . , ̂h, . . . , jp)(s) ,

and for all l ∈ [1, p] − {σ(h)}, the value ofαl(j1, . . . , jh−1, s, jh+1, . . . , jh) does not depend on
s. Now we prove thatτh(j1, . . . , ̂h, . . . , jp) does not depend onj1, . . . , ̂h, . . . , jp. We assume that
h = 1 andt1, t2 ∈ [1, q2] are two different numbers. Suppose that there is ans ∈ [1, q1] such that

n1 ≔ τ1(t1, j3, . . . , jp)(s) 6= n2 ≔ τ1(t2, j3, . . . , jp)(s) .

Then
ασ(1)(s, t1, j2, . . . , jp) = n1 6= n2 = ασ(1)(s, t2, j2, . . . , jp) .

Thusσ(2) = σ(1), which contradicts to the injectivity ofσ. So we have a well-defined injection
τh : [1, qh]→ [1, q′σ(h)]. Henceqh 6 q′σ(h). So we get

p∑

i=1

qi 6

p∑

i=1

q′σ(i) =

p∑

i′=1

q′i′ .

Applying above argument toϕ−1, we obtain
p∑

i′=1

q′i′ 6
p∑
i=1

qi. Hence for everyi ∈ [1, p], we have

qi = q′σ(i) andτh is a bijective.
Put

τr+1 = · · · = τp = id: {1} → {1} .
Then for every(j1, j2, . . . , jp) ∈ J , we have

α(j1, j2, . . . , jp) =
(
τσ−1(1)(jσ−1(1)), τσ−1(2)(jσ−1(2)), . . . , τσ−1(p)(jσ−1(p))

)
.
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In other words,

ϕ(aj1,j2,...,jp) = bτσ−1(1)(jσ−1(1)),τσ−1(2)(jσ−1(2)),...,τσ−1(p)(jσ−1(p))
(2.10)

and

ϕ(pj1,j2,...,jp) = qτσ−1(1)(jσ−1(1)),τσ−1(2)(jσ−1(2)),...,τσ−1(p)(jσ−1(p))
. (2.11)

Let h ∈ [1, r] ands ∈ [1, qh]. Put

x ≔ xhs , y ≔ yσ(h),τh(s) , e ≔ ehs , e′ ≔ e′σ(h),τh(s)

for shortness. Then we have

(xe) =
⋂

j1∈[1,q1],...,jh−1∈[1,qh−1],
jh+1∈[1,qh+1],...,jp∈[1,qp]

aj1,...,jh−1,s,jh+1,...,jp ,

By (2.10), we haveϕ
(
(xe)

)
=
(
ye

′)
. Soϕ(xe) = uye

′
for someu ∈ B∗. Note thatxe ∈Me

1−Me+1
1

anduye
′ ∈Me′

2 −Me′+1
2 . Soe = e′. On the other hand, we have

(x) +N1 =
⋂

j1∈[1,q1],...,jh−1∈[1,qh−1],
jh+1∈[1,qh+1],...,jp∈[1,qp]

pj1,...,jh−1,s,jh+1,...,jp ,

By (2.11), we have

ϕ
(
(x) +N1

)
= (y) +N2 .

Soϕ(x) = vy + w for somev ∈ B andw ∈ N2. We writev andw as the form (2.1) and assume
thatw does not containy. Suppose thatv ∈ M2. Thenϕ(x) ∈ M2

2 + N2. Sox ∈ M2
1 + N1, a

contradiction. Thusv ∈ B∗, i.e., the constant termc0 of v is nonzero.
Suppose thatw 6= 0. We writew as

w = c1L1 + c2L2 + · · ·+ csLs +H ,

whereL1, L2, . . . , Ls are monic monomials occurred inw with lowest degreen (> 1), c1, c2, . . . , cs
are nonzero elements inK, andH is the sum of monomials of degree greater thatn in w. Note that

uye = ϕ(xe) = ϕ(x)e = (vy + w)e .

By Comparing the coefficients ofye−1L1 in the above equality, we get0 = ec0c1, a contradiction.
Sow = 0, i.e.,x = vy. �

Proof of Theorem2.1. By Lemma 2.3,p = p′,m = m′, and for everyi ∈ [1, p] andj ∈ [1, qi],

ϕ(xij) = uijyij + wij

for someuij ∈ B∗ andwij ∈ mB. (Here to without loss of generality, we assume thatσ, τ1, τ2, . . . , τp
are identities.) We expressuij andwij in the form of (2.1) and assume thatwij does not containyij.
For every integerh > 1, put aih ≔ mh + (bi). Assume that we have proved thatai ∈ aih and
wij ∈ aihB. Then we have

ai = ϕ
( qi∏
j=1

x
eij
ij

)
=

qi∏

j=1

(uijyij + wij)
eij

≡
qi∑

j=1

eiju
′
ijy

eij
i1 · · · y

ei,j−1

i,j−1 y
eij−1
ij y

ei,j+1

i,j+1 · · · y
ei,qi
i,qi

wij (mod ai,h+1B) , (2.12)
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whereu′ij ∈ B∗. Now we apply Lemma 2.2 to theR/ai,h+1-algebraB/ai,h+1B. By comparing the
constant terms in (2.12), we haveai ∈ ai,h+1. Suppose thatwij /∈ ai,h+1B. Then we have

wij ≡
sij∑

l=1

cijlLijl +Hij (mod ai,h+1B) ,

wherecij1, cij2, . . . , cij,sij ∈ aih − ai,h+1, Lij1, Lij2, . . . , Lij,sij are different monoic monomials in
wi with lowest degreetij, andHij are sums of monomials of degree greatertij in wi. By comparing
the coefficients of the term

y
eij
i1 · · · y

ei,j−1

i,j−1 y
eij−1
ij y

ei,j+1

i,j+1 · · · y
ei,qi
i,qi

Lij1

in (2.12), we get a contradiction. So we have

ai ∈
∞⋂

h=1

(
mh + (bi)

)
= (bi)

and

wij ∈
∞⋂

h=1

(
mhB +Bbi

)
= Bbi .

The same reasoning forϕ−1 shows thatbi ∈ (ai). Soai = uibi for someui ∈ R∗. Putwij ≔ w′
ijbi

and

vij ≔ uij + y
eij
i1 · · · y

ei,j−1

i,j−1 y
eij−1
ij y

ei,j+1

i,j+1 · · · y
ei,qi
i,qi

w′
ij .

Thenvij ∈ B∗ andϕ(xij) = vijyij. This complete the proof of Theorem 2.1. �

The following Theorem is easy to prove.

Theorem 2.4. For eachi ∈ [1, p], let ai denote the kernel of multiplication byai onR; and for each
j ∈ [1, qi], let Iij denote the kernel of multiplication byxij onA. Then

(1) for eachi ∈ [1, p] andj ∈ [1, qi], we have

Iij = ai ·
(
xei1i1 · · · x

ei,j−1

i,j−1 x
eij−1
ij x

ei,j+1

i,j+1 · · · x
eiqi
iqi

)
;

(2) for eachi ∈ [1, p], the canonical homomorphism ofA-modules

qi⊕

j=1

Iij →
qi∑

j=1

Iij

is an isomorphism.

3. REFINED LOCAL CHARTS

In this section we define the concept of refined local chart, which is more delicate than local charts.
Log structures induced by refined local charts are all locally isomorphic. But it is not true for local
charts. Also we introduce two assumptions on which the main results of this paper is built.

Let f : X → Y be a surjective, proper and weakly normal crossing morphismof locally noetherian
schemes.
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3.1. The singular locus.

Lemma 3.1. Letϕ : A → B be a flat local homomorphism of noetherian local rings,x andy two
nonzero elements inA. If there is av ∈ B∗ such thatϕ(y) = vϕ(x), then there exists au ∈ A∗ such
that y = ux.

Proof. SinceA andB are local rings andϕ is flat, we see thatϕ is faithfully flat. SoxA = ϕ−1(xB)
andyA = ϕ−1(yB). ThusxA = yA if and only if xB = yB. �

Lemma 3.2. Letx ∈ X, y ≔ f(x),

U → SpecP
/( q1∏

j1=1
T
e1j1
1j1
− a1,

q2∏
j2=1

T
e2j2
2j2
− a2, . . . ,

qp∏
jp=1

T
epjp
pjp
− ap

)

and

U ′ → SpecP ′
/( q′1∏

j′1=1

(T ′
1j′1

)
e′
1j′

1 − a′1,
q′2∏
j′2=1

(T ′
2j′2

)
e′
2j′

2 − a′2, . . . ,
q′
p′∏

j′
p′
=1

(T ′
p′j′

p′
)
e′
p′j′

p′ − a′p′
)

be two local charts off at x. Let tiji and t′i′j′
i′

be the image ofTiji andT ′
i′j′

i′
in OX,x̄ respectively.

Thenp = p′ and there exists aσ ∈ Sp such that for eachi ∈ [1, p], we have

(1) qi = q′σ(i),

(2) ai = uia
′
σ(i) for someui ∈ O∗

Y,ȳ,

(3) there exists aτi ∈ Sqi such that for eachj ∈ [1, qi], eij = e′σ(i),τi(j) and tij = vijt
′
σ(i),τi(j)

for somevij ∈ O∗
X,x̄.

Proof. We use notations in Definition 1.1. Letx′ ∈ U andx′′ ∈ U ′ be the points as in Definition
1.1 (4) andy′ ∈ V the point as in Definition 1.1 (2). PutU ′′

≔ U ×X U ′. Then there is a point
x0 ∈ U ′′ which maps onto bothx′ andx′′. Let x′1 be a closed point in{x0} ⊆ U ′′ and letx1 be
the image ofx′1 on X. Thenx1 is a closed point in{x}. So by considering the cospecialization
mapOX,x̄1 → OX,x̄, we may assume thatx = x1 is a closed point. Thenκ(x)/κ(y) is a finite
extension of fields. By [6, Ch. 0, (10.3.1)], there is a complete noetherian local ringR′ whose residue
field is algebraically closed and a flat local homomorphismOS,ȳ → R′. By taking base extension
SpecR′ → S and applying Lemma 3.1, we may assume thatκ(y) is algebraic closed. Asx is a
closed point,κ(x) = κ(y) is algebraic closed. Thusκ(x) = κ(x′). Let M andm be the maximal
ideals ofOSpecP,x′ andOV,y′ respectively. There there is a canonical isomorphism:

L ≔M/(M2 +mP )
∼−→ ΩP/R ⊗P P/M .

As . . . , T iji , . . . ∈ L are linearly independent overκ(x′), we may selectT1, T2, . . . , Tn ∈ M such
that{. . . , T iji , . . . , T k, . . .} is a basis ofL. By taking a connected affine open neighborhood ofx′ in
SpecP , we may assume that

{
. . . , d(Tiji), . . . , d(Tk), . . .

}
is a basis ofΩP/R. Then{. . . , Tiji , . . . , Tk, . . .}

is algebraically independent overR, andP is étale overR[. . . , Tiji , . . . , Tk, . . .]. So we have an
isomorphism ofÔS,ȳ-algebras:

ÔX,x̄ ∼−→ ÔS,ȳ[[. . . , Tiji , . . . , Tk, . . .]]
/(

. . . ,
qi∏
ji=1

T
eiji
iji
− ai, . . .

)
.

Similarly we have

ÔX,x̄ ∼−→ ÔS,ȳ[[. . . , T ′
i′j′

i′
, . . . , T ′

k′ , . . .]]
/(

. . . ,
q′
i′∏

j′
i′
=1

(T ′
i′j′

i′
)
e′
i′j′

i′ − a′i′ , . . .
)
.

So the lemma is valid by Theorem 2.1. �
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Let x be a point onX equipped with a local chart of the form (1.2). For eachi ∈ [1, p], let Ii be
the ideal ofOU generated by

{
T ei1i1 · · ·T

ei,j−1

i,j−1 T
eij−1
ij T

ei,j+1

i,j+1 · · ·T
ei,qi
i,qi

∣∣ j ∈ [1, qi]
}
. (3.1)

By Lemma 3.2, we see that (
I1,I2, . . . ,Ip

)

are independent of the choice of local charts (up to a unique permutation of the subscripts inSp).
From (1.1), we know

Di(U/V ) = Spec
(
OU/Ii

)

for eachi ∈ [1, p]. So forU/V we have a finiteV -morphism

DU/V ≔

p∐

i=1

Di(U/V )→ U .

Clearly {
DU/V → U

∣∣U/V is a local chart forf
}

can be glued to a global finiteS-morphismg : D → X. To consider the properties under base
extension, we also useD(f) orD(X/S) to denote the schemeD for preciseness.

Obviously the set-theoretic image of the finite morphismD(f) → X is the set of all points at
whichf are not smooth.

Clearly we have

Theorem 3.3. Let

X ′
f ′

//

��
�

S′

��
X

f
// S

be a Cartesian square of locally noetherian schemes. Then wehave

D(f ′) = D(f)×S S′ .

For a pointy ∈ Y , we define

Dȳ ≔ D
(
(X ×S SpecOY,ȳ)/SpecOY,ȳ

)
= D(X/S)×S SpecOY,ȳ ,

and letCP(y) denote the set of connected components ofDȳ.

3.2. Reduced to local cases.In this subsection, we assume thatS = SpecR, whereR is a strictly
Henselian noetherian local ring, andy1 is the closed point ofS.

Lemma 3.4. LetT be the spectrum of a Henselian local ring,t the closed point ofT , Y a connected
scheme,g : Y → T a étale morphism,y a point onY such thatg(y) = t and κ(t) → κ(y) is
isomorphic. Theng : Y → T is an isomorphism.

Proof. See [7], (18.5.11) a)=⇒ c) and (18.5.18). �

Lemma 3.5. Let T be the spectrum of a Henselian local ring,t the closed point ofT , Y → T a
proper morphism. ThenZ 7→ Zt defines a bijection from the set of connected components ofY to the
set of connected components ofYt.

Proof. See [7, (18.5.19)]. �
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By Lemma 3.4, ifx ∈ f−1(y1) andU/V is a local chart off at x, thenV = S. By Lemma 3.2,
there is a canonical map

ω : CP(y1)→ R/R∗ (3.2)

(here “/” means taking quotient of monoids) such that ifx ∈ f−1(y1), U a local chart of the form
(1.2) atx, i ∈ [1, p], andC ∈ CP(y1) is the connected component ofD(X/S) which contains the
image ofDi(U/S) onD(X/S), then

ai = ω(C) .

Now we consider the following conditions.

(∗) For each pointx ∈ f−1(y1) and for each local chartU at x, the images of
D1(U/S),D2(U/S), . . . ,Dp(U/S) inD(X/S) are contained in different connected
components ofD(X/S).

Lemma 3.6. If (∗) holds, then every connected components ofD(X/S) is a closed subscheme ofX.

3.3. Construction of refined local chart. We return to the general case thatS is only a locally
noetherian scheme. For each pointy ∈ S, we use

ωȳ : CP(y)→ OS,ȳ/O∗
S,ȳ

to denote the map as in (3.2).
In the following, we require thatf : X → S satisfies the following conditions.

(†) For each pointy ∈ S,X ×S SpecOS,ȳ → SpecOS,ȳ satisfies the condition (∗).
Lemma 3.7. Let y be a point onS. Fix an open affine neighborhoodWy of y. We define a full
subcategoryN(y) of the category of́etale neighborhoods of̄y as follows: for anétale neighborhood
V of ȳ, V ∈ N(y) if and only if it satisfies the following conditions:

(a) the image ofV in S is contained inWy;
(b) the inverse image ofy in V contains only one pointy′ ∈ V ;
(c) V is an affine scheme and every irreducible component ofV containsy′;
(d) for every irreducible componentF ofDV , the image ofF onV containsy′.

Then we have

(1) For any pair of objectsV andV ′ in N(y), there exists at most one morphism fromV ′ to V ;
(2) N(y) is a local baseof ȳ, i.e., for everýetale neighborhoodV of ȳ, there is an objectV ′ in

N(y) and a morphismV ′ → V of étale neighborhoods of̄y.
(3) for any morphismV ′ → V in N(y),DV ′ → DV is dominant.

Proof. (1) is by [3, I 5.4].
(2) For every étale neighborhoodV of ȳ, we may contractV under the Zariski topology to obtain

an object inN(y).
(3) For each objectV in N(y), since the image ofSpecOS,ȳ → V contains all generizations ofy′

in V , the morphismDȳ → DV is dominant. So for any morphismV ′ → V in N(y), DV ′ → DV is
dominant. �

Remark 3.8. By (1), we may define a partial order onN(y) as follows. For any pair of objectsV
andV ′ in N(y), V ′ > V if and only if there is a morphism fromV ′ to V in N(y). ObviouslyN(y)
is directly ordered, i.e., for any pair of objectsV andV ′ in N(y), there exists an objectV ′′ in N(y)
such thatV ′′ > V andV ′′ > V ′.

Let y be a point onS. For each objectV in N(y), let qV : Dȳ → DV be the canonical morphism.
By [7, (8.4.2)], there exists an objectV0 in N(y) such that for allV > V0, F 7→ qV (F ) defines a
bijection betweenCP(y) and the set of connected components ofDV . By the definition ofN(y), the
inverse image ofy in V0 contains only one pointy′. For every closed pointx in f−1

V0
(y′), if fV0 is
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smooth atx, we select open neighborhoodsUx of x andVx of y respectively such thatfV0(Ux) ⊆ Vx
andfV0 : Ux → Vx is smooth; otherwise we select a local chartUx/Vx atx. For everyUx, letU ′

x be
its image inXV0 . As

f−1
V0

(y′) ⊆
⋃
U ′
x

andf−1
V0

(y′) is quasi-compact, there exists a finite number of closed pointsx1, x2, . . . , xm in f−1
V0

(y′)
such that

f−1
V0

(y′) ⊆
m⋃

i=1

U ′
xi .

Put

V ′
≔ V0 − fV0

(
XV0 −

m⋃
i=1

U ′
xi

)
.

As fV0 : XV0 → V0 is proper,V ′ is an open neighborhood ofy′. There exists an objectV1 in N(y)
and a morphism of étale neighborhoods ofȳ′,

V1 → V ′ ×V0 Vx1 ×V0 · · · ×V0 Vxm .
Let C1, C2, . . . , Cn be all connected components ofDȳ. For eachi ∈ [1, n] and eachV ∈ N(y)

with V > V1, Ci defines a connected componentCi(V ) of DV . By Lemma 3.2, there exists an
element

bi(V ) ∈ Γ (V,OS/O∗
S)

such that for every pointz ∈ V and for every connected componentF ofDz̄ which maps intoCi(V ),

ωz̄(F ) = bi(V )z̄ .

Obviouslybi(V ) depends only ony, Ci andV . LetZi(V ) be the closed subscheme ofV defined by
the ideal generated bybi(V ). Clearly the inverse image ofy′ (∈ V0) in V is contained in all these
subschemesZi(V ).

The following lemma can be directly verified.

Lemma 3.9. Let V ′ > V (> V1) be two elements inN(y). ThenCi(V ′) = Ci(V ) ×V V ′ and
Zi(V

′) = Zi(V )×V V ′.

Lemma 3.10.Ci(V )→ V factors throughZi(V ) andCi(V ) is faithfully flat overZi(V ).

Proof. It is by the following lemma. �

Lemma 3.11. Let R be a ring,A = R[T1, T2, . . . , Tn] a polynomial ring overR, e1, e2, . . . , en
positive integers. Then

B ≔ A/(T e1−1
1 T e22 · · ·T enn , T e11 T e2−1

2 · · ·T enn , . . . , T e11 T e22 · · ·T en−1
n )

is flat overR.

Proof. Note thatB is a freeR-module with basis
{
T i11 T

i2
2 · · ·T inn

∣∣∣either there exists an integerk ∈ [1, n] such thatik < ek−1 or
there exist at least two integersk ∈ [1, n] such thatik 6 ek−1

}
. �

Notation 3.12. We defines a subsetN0(y) of N(y) as follows: forV ∈ N(y), V ∈ N0(y) if and
only if it satisfies that

(1) V > V1.
(2) For eachi ∈ [1, n], there exists a sectionai ∈ Γ (V,OV ) such that

ai ≡ bi(V ) (mod O∗
V ) .

(3) If z is the inverse image ofy in V , then for anyi ∈ [1, n] and any irreducible componentF
of Zi(V ), F containsz.
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It is easy to show that for eachV ∈ N(y), there exists an objectV ′ in N0(y) such thatV ′ > V ;
and we have the following easy lemma.

Lemma 3.13. Let z be a generization ofy, u : OS,ȳ → OS,z̄ a cospecialization map, andv : Dz̄ →
Dȳ the morphism induced byu.

(1) For eachi, v−1(Ci) = ∅ if and only ifū
(
ωȳ(Ci)

)
= 1̄ in OS,z̄/O∗

S,z̄.
(2) If v−1(Ci) 6= ∅, then every connected component ofv−1(Ci) is a connected component of

Dz̄.
(3) All connected components ofDz̄ can be obtained as in(2).

We consider the following conditions aboutf :

(‡) Lety1 be a point onS, y0 a generization ofy1, u : OS,ȳ1 → OS,ȳ0 a cospecialization
map, andv : Dȳ0 → Dȳ1 the morphism induced byu. Then for every connected
componentC of Dȳ1 , v−1(C) is connected. (Here empty set is also regarded to be
connected.)

Lemma 3.14. (‡) is satisfied if one of the following conditions holds:

(1) S is a spectrum of a field.
(2) There exists a finite setL of closed points inS such thatf is smooth outsideL.
(3) S is a spectrum of a discrete valuative ring andf is smooth at the generic fiber.
(4) f is a weakly normal crossing morphism without powers.

Proof. (1), (2) and(3) are trivial.
(4) Obviously for eachy ∈ S, Xy is geometrically reduced overκ(y). Let C be a connected

component ofDȳ1 such thatv−1(C) 6= ∅. Fix an objectV ∈ N0(y1). Let y′1 be the inverse image
of y1 in V . Then the cospecialization mapu : OS,ȳ1 → OS,ȳ0 defines a pointy′0 onV which maps to
y0 and is a generization ofy′1. C defines a connected componentC̄ of DV . By Lemma 3.10, there
is a closed subschemeZ of V such thatC̄ factors throughZ and C̄ is proper and flat overZ. As
y′1 ∈ Z andv−1(C) 6= ∅, by Lemma 3.13y′0 ∈ Z. ObviouslyC̄y′1 is geometrically connected and
geometrically reduced overκ(y′1). Hence

dimκ(y′1)
Γ
(
C̄y′1 ,OC̄y′1

)
= 1 .

By [6, (7.7.5)], {
z ∈ V

∣∣ dimκ(z) Γ
(
C̄z,OC̄z

)
6 1

}

is an open neighborhood ofy′1. As y′0 is a generization ofy′1,

dimκ(y0) Γ
(
C̄y0 ,OC̄y0

)
6 1 .

SoC̄y0 is geometrically connected. By Lemma 3.5,v−1(C) is connected. �

Lemma 3.15. Assume thatf satisfies the condition(‡). Lety ∈ S, V ∈ N0(y), C1, C2, . . . , Cn the
connected components ofDȳ. For eachi ∈ [1, n], let C̄i be the connected component ofDV defined
byCi and letai ∈ Γ (V,OS) be a representative element ofbi(V ). Let z′ be a point onV andz its
image onS. Then

(1) Let i ∈ [1, n] such that(ai)z′ ∈ mV,z′. ThenC̄i ×V SpecOS,z̄ is a connected component of
Dz̄ and its image under the mapωz̄ is equal to(ai)z′ .

(2)
{
C̄i ×V SpecOS,z̄

∣∣ i ∈ [1, n] and(ai)z′ ∈ mV,z′
}

is the set of all connected components of
Dz̄.

Proof. (1) Obviouslyz′ ∈ Zi(V ). LetF be an irreducible component ofZi(V ) containingz′. Letw′

be the generic point ofF andw its image onS. Suppose that̄Ci×V SpecOS,z̄ is disconnected. Then
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by Lemma 3.13,C̄i ×V SpecOS,w̄ is disconnected. By the definition ofN0(y), we see thaty ∈ F .
Sow is a generization ofy. Let

u : OS,ȳ = OS,ȳ′ → OS,w̄′ = OS,w̄
be a cospecialization map andv : Dw̄ → Dȳ the induced morphism. Then

v−1(Ci) = C̄i ×V SpecOS,w̄ .
Sincef satisfies the condition (‡), v−1(Ci) is connected, a contradition.

(2) is a consequence of (1). �

Definition 3.16. Let x ∈ X be a point andy ≔ f(x). A refined local chartof f atx is of the form

(U, V ;T11, . . . , T1q1 ; . . . ;Tp1, . . . , Tpqp; a1, . . . , an)

where

U → SpecP
/(

. . . ,
qi∏
ji=1

T
eiji
iji
− ai, . . .

)

is a local chart atx, V ∈ N0(y), n ≔ #CP(y) > p andai ≡ bi(V ) (mod O∗
V ) for all i ∈ [1, n]. We

also simply useU/V or U to denote a refined local chart.

Remark 3.17. If f is smooth atx, thenp = 0; and if f is smooth at the fiberXy, thenp = n = 0.

Remark 3.18. Obviously every local chart can be contracted in the sense ofétale topology to become
a refined local chart.

Remark 3.19. Let MU be the log structure onU associating toαU : NmU → OU with m ≔
p∑
i=1

qi +

n− p, where if
η11, . . . , η1q1 , . . . , ηp1, . . . , ηpqp , ηp+1, . . . , ηn

is a basis ofNm, thenαU (ηiji) = T̄iji for i ∈ [1, p] andji ∈ [1, qi], andαU (ηi) = ai for i ∈ [p+1, n].
Let NV be the log structrue onV associating toβV : NnV → OV , where ifε1, . . . , εn is a basis of
Nn, thenβV (εi) = ai for all i ∈ [1, n]. Let g : U → V be the canonical morphism. Then there is a
canonical morphism

ϕU/V : g∗NV →MU

defined by the mapγ : Nn → Nm, whereγ(εi) =
qi∑
j=1

eijηij for i ∈ [1, p] and γ(εi) = ηi for

i ∈ [p+ 1, n].

Remark 3.20. As M U = NmU /α
−1
U (O∗

U ) does not depend on the choice ofai andTiji , we may glue
the sheavesM U to obtain a global sheafP of monoids onXet and there is a canonical morphism

θ : P → OX/O∗
X .

Similarly we may glue the sheavesN V to obtain a global sheafQ of monoids onSet and there is a
canonical morphism

ϑ : Q → OS/O∗
S .

Moreover, there is a canonical morphismd : f−1Q → P defined byγ which makes the following
diagram commutative:

f−1Q
f−1ϑ

//

d

��

f−1
(
OS/O∗

S

)

��

P
θ

// OX/O∗
X

Lemma 3.21.Q is canonically isomorphic to the direct image ofND(f) under morphismD(f)→ S.
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4. COHOMOLOGY AND HYPERCOVERINGS

In this section, we review some technique in [5]. A brief version can be found in [17,§2 and§3].

4.1. Cohomology. LetX be a scheme. We define a categoryU(X) as follows: an object inU(X) is
a diagram

V
v1 //
v2

// U
u // X (4.1)

whereU andV are schemes,u : U → X and v1, v2 : V
////U are surjective étale morphisms such

thatu ◦ v1 = u ◦ v2 and the induced morphism

(v1, v2)X : V → U ×X U

is surjective (and obviously étale); we also simply useU/V to denote the object (4.1); a morphism in
U(X) is a pair of morphisms

(f, g) : U ′/V ′ → U/V

which makes a commutative diagram

V ′
v′1 //

v′2

//

g

��

U ′

f

��

u′ // X

V
v1 //
v2

// U u
// X

Given an object of form (4.1) inU(X). Put (V/U)0 ≔ U , (V/U)1 ≔ V , p00 ≔ u, p10 ≔ v1,
p11 ≔ v2. Assume that for some integern > 2, we have schemes(V/U)k for k ∈ [1, n− 1] and étale
morphisms

pki : (V/U)k → (V/U)k−1

for i ∈ [0, k] such that whenever0 6 i < j 6 k, we have

pk−1,i ◦ pkj = pk−1,j−1 ◦ pki . (4.2)

Put
Pn ≔ (V/U)n−1 ×X (V/U)n−1 ×X · · · ×X (V/U)n−1︸ ︷︷ ︸

n+1 copies of(V/U)n−1

and letqni : Pn → (V/U)n−1 be the(i + 1)-th projection. For each0 6 i < j 6 n, letK(n, i, j)
be the equalizer ofpn−1,i ◦ qnj andpn−1,j−1 ◦ qni in the category of schemes. As(V/U)n−1 is étale
overX,K(n, i, j) is an open subscheme ofPn. Put

(V/U)n ≔
⋂

06i<j6n

K(n, i, j)

and
pni ≔ qni|(V/U)n : (V/U)n → (V/U)n−1 .

Let F be an abelian sheaf onXet. We define a cochain complex of abelian groups as follows: for
eachn ∈ N, put

Cn(V/U,F ) ≔ Γ
(
(V/U)n,F

)

and let

dn ≔

n+1∑

i=0

(−1)ip∗n+1,i : C
n(V/U,F ) → Cn+1(V/U,F )

be the differential. LetHn(V/U,F ) be the corresponding cohomology group. We define

H
n(X,F ) ≔ lim−→Hn(V/U,F ) ,
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where the colimit runs through all elements inU(X).
Let

0→ F ′ f−→ F
g−→ F ′′ → 0

be an exact sequence of abelian sheaves onXet. Fori = 0, 1, we define

δi : Hi(X,F ′′)→ H
i+1(X,F ′)

as follows.
Let s ∈ Z0(V/U,F ′′) be a0-cocycle. By refiningU , we may choose a lifting̃s ∈ F (U) of s.

Then we define
δ0(s) = p∗10(s̃)− p∗11(s̃) .

Let t ∈ Z1(V/U,F ′′) be a1-cocycle. By refiningV , we may choose a lifting̃t ∈ F (V ) of t.
Then we define

δ1(t) = p∗20(t̃)− p∗21(t̃) + p∗22(t̃) .

Theorem 4.1. For eachn = 0, 1, 2, we have a natural equivalence

H
n(X, • )

∼−→ Hn(Xet, • ) ;

and for each short exact sequence the natural equivalences commute with the connecting functorsδ.

4.2. Gerbe. Now we fix an abelian sheafF onXet.

Definition 4.2. An F -gerbe(X, ω) consists of the following two data:

(a) a stackX overXet;
(b) for each étaleX-schemeU and for each objectA in X(U), an isomorphism of sheaves of

groups:
ω(A) : F |U ∼−→ AutU(A) .

These data satisfy the following conditions:

(1) for any étaleX-schemeU , there exists an étale covering{Ui → U}i∈I in Xet such that
X(Ui) 6= ∅ for all i ∈ I;

(2) for any étaleX-schemeU and any pair of objectsA andB in X(U), there exists an étale
covering{Ui → U}i∈I in Xet such thatA|Ui andB|Ui are isomorphic inX(Ui) for all i ∈ I;

(3) for any étaleX-schemeU , any elementg ∈ F (U), and any isomorphimϕ : A
∼−→ B in

X(U), we have
ϕ ◦ ω(A)(g) = ω(B)(g) ◦ ϕ .

(So we may simply writeϕ ◦ g or g ◦ ϕ or eveng · ϕ for above morphism.)

Fix anF -gerbeX. Choose an étale coveringU → X which admits an objectA ∈ X(U), and an
étale coveringV → U ×X U which admits an isomorphism

φ : p∗10(A)
∼−→ p∗11(A)

in X(V ). Then there exists a cocycleg ∈ Z2(V/U,F ) such that

g ◦ p∗21(φ) = p∗22(φ) ◦ p∗20(φ) : (p10 ◦ p20)∗(A)
∼−→ (p11 ◦ p22)∗(A) .

We define
[X] ≔ [g] ∈ H2(Xet,F ) .

Lemma 4.3. Let V/U be an object inA(X), A an object inX(U), andφ : p∗10(A)
∼−→ p∗11(A) an

isomorphism inX(V ) satisfying the cocycle condition:

p∗21(φ) = p∗22(φ) ◦ p∗20(φ) : (p10 ◦ p20)∗(A)
∼−→ (p11 ◦ p22)∗(A) .

Then there exists an objectB in X(X) and an isomorphismϕ : B|U ∼−→ A in X(U) such thatφ ◦
p∗10(ϕ) = p∗11(ϕ). And(B,ϕ) is unique up to isomorphism.
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Theorem 4.4.X(X) 6= ∅ if and only if[X] = 0 in H2(Xet,F ).

Let g ∈ Z1(V/U,F ), A an object inX(X). By Lemma 4.3, there is an objectg(A) in X(X) and
an isomorphismφg : g(A)|U → A|U in X(U) such thatg ◦ p∗10(φg) = p∗11(φg). It is easy to show that
(g,A) 7→ g(A) defines an action of the groupH1(Xet,F ) on the set of isomorphic classes of objects
in X(X).

LetA andB be objects inX(X), φ : A|U ∼−→ B|U an isomorphism inX(U) andg ∈ F (V ) such
thatg ◦ p∗10(φ) = p∗11(φ). Theng ∈ Z1(V/U,F ) andg(B) ∼= A in X(X).

Theorem 4.5. If X(X) 6= ∅, then the groupH1(Xet,F ) acts canonically and simply transitively on
the set of isomorphic classes of objects inX(X).

5. LOCAL CASES

Let f : X → S be a surjective, proper and weakly normal crossing morphismof locally noetherian
schemes which satisfies the conditions (†) and (‡) in §3.3,D1,D2, . . . ,Dn the connected components
of D(f). Assume that there exist global sections

a1, a2, . . . , an ∈ Γ (S,OS)
such that for any pointy ∈ S and anyi ∈ [1, n], the following two conditions holds:

(1) if ai,ȳ ∈ O∗
S,ȳ, thenDi ×S SpecOS,ȳ = ∅;

(2) if ai,ȳ ∈ mS,ȳ, then
Di,ȳ ≔ Di ×S SpecOS,ȳ

is a connected component ofDȳ andωȳ(Di,ȳ) = ai,ȳ.

Thus
CP(y) =

{
Di,ȳ

∣∣ i ∈ [1, n], ai,ȳ ∈ mS,ȳ

}
.

Obviously whenS is a spectrum of a strictly Henselian local ring, then above conditions hold.
Furthermore, for any pointy ∈ S and anyV ∈ N0(y),XV → V satisfies above conditions.

Let N be the log structure onS defined by

N
n
S → OS , εi 7→ ai ,

whereε1, ε2, . . . , εn is a basis ofNn.
For eachi ∈ [1, n], let Ii be the ideal sheaf onX corresponding to the closed subschemeDi and

let Ki denote the kernel of the multiplication byai onOS . Asf is flat, the kernel of the multiplication
by ai onOX is equal toKi · OX . LetEi be the closed subscheme ofX defined byKi ·Ii and put

E ≔
n∐
i=1

Ei. We also useE(f) orE(X/S) to denote the schemeE.

LetFi be the kernel of the morphismO∗
X → O∗

Ei
onXet. ThenFi = 1+Ki·Ii. PutF ≔

n∏
i=1

Fi.

Then we have an exact sequence of abelian sheaves:

0→ F → (O∗
X)

n → O∗
E → 0 .

We also useF (f) or F (X/S) to denote this abelian sheafF .
Let P, Q, θ, ϑ andd be the notations defined in Remark 3.20. Obviously there is a canonical

morphismNnS → Q. Let γ denote the composite

N
n
X → f−1Q

d−→P .

We define a stackX on Xet as follows. For each étaleX-schemeU , an object inX(U) is a
pair (M , σ), whereM is a fine saturated log structure onU andσ : M → P|U is a morphism of
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sheaves of monoids which induces an isomorphismM
∼−→ P|U and makes the following diagram

commutative:

M //

σ
��

OU

��
P|U

θ|U

// OU/O∗
U

If U ′ → U is a morphism of étaleX-schemes,(M , σ) ∈ X(U) and (M ′, σ′) ∈ X(U ′), then a
morphism of(M ′, σ′) to (M , σ) in X lying aboveU ′ → U is an isomorphismϕ : M ′ ∼−→M |U ′ of
log structures such thatσ|U ′ ◦ ϕ = σ′.

We shall prove thatX is anF -gerbe (see Lemma 5.4). The proof needs the following three simple
lemmas.

Lemma 5.1. LetX be a scheme,M a fine saturated log structure onX and x̄ a geometric point on
X. Then there exists ańetale neighborhoodU of x̄ and a fine saturated chartPU →M |U such that
the induced mapP →M x̄ is a bijection.

Lemma 5.2. LetX be a scheme andα : M → OX a fine log structure onX. Put P ≔ M and
let ᾱ : P → OX/O∗

X be the morphism induced byα. We define an abelian sheafA on Xet as
follows: for everyétaleX-schemeU , A (U) is the set of morphismsσ : Pgp|U → O∗

U of abelian
sheaves such that for anyétaleU -schemeV and any sections ∈P(V ), we haveσV (s) ·t = t, where
t ∈ Γ (V,OX) is a lifting of ᾱ(s). Then there is a canonical isomorphism fromA to the sheaf of
automorphisms of log structures ofM which induce identities onP defined as follows: for anýetale
X-schemeU and any sectionσ ∈ Γ (U,A ), ωU (σ)V (s) = s · σV

(
s̄), whereV is anétaleU -scheme

ands ∈M (V ).

Lemma 5.3. LetX be a scheme andP a fine monoid. For eachi = 1, 2, let αi : PX → OX be a
morphism of sheaves of monoids,Mi the log structure associating toαi, ιi : PX →Mi the induced
morphism. Assume that there exists a morphismδ : PX → O∗

X of sheaves of monoids such that
α1 = δ · α2. Then there exists a unique isomorphismρ : M1

∼−→ M2 of log structures such that
ρ ◦ ι1 = δ · ι2.

Lemma 5.4. X is anF -gerbe.

Proof. We have to verify the conditions in Definition 4.2. (1) is obvious. Datum (b) and Condition
(3) is by Lemma 5.2 and Theorem 2.4.

For the condition (2), letU be an étaleX-scheme,α1 : M1 → OU andα2 : M2 → OU two
objects inX(U), x a point onU . PutP ≔ Px̄. By Lemma 5.1, for eachi = 1, 2, there exists
an étale neighborhoodVi, and a chartβi : PVi → Mi|Vi which inducs identity onP = Px̄. Put
V3 ≔ V1 ×U V2. Since both

(αi ◦ βi)x̄ : P → OU,x̄
are liftings of

θx̄ : P → OU,x̄/O∗
U,x̄ ,

we have an étale neighborhoodV → V3 of x̄ and a morphismu : PV → O∗
V of sheaves of monoids

such thatδ1 = u · δ2, where

δi ≔ (αi ◦ βi)|V : PV → OV .
As PV → Mi|V are charts, by Lemma 5.3 there exists an isomorphismϕ : M1

∼−→ M2 of log
structures such thatϕ ◦ β1|V = u · β2|V . Thusϕ induces identity onP|V . Soϕ is an isomorphism
in X(V ). �
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Obviously there exists an étale coveringU → X, an objectM in X(U), and a morphismρ : NnU →
M which is a lifting of γ|U : NnU → P|U . So there exists an étale coveringV → U ×X U and
an isomorphismφ : p∗10(M )

∼−→ p∗11(M ) of log structures onV (here the notations(V/U)k and
pki : (V/U)k → (V/U)k−1 are defined as in§4.1). Hence there exists an element

u = (u1, u2, . . . , un) ∈ (O∗
X)

n(V )

such that
φ ◦ p∗10(ρ) = u · p∗11(ρ)

and a cocycleg ∈ Z2(V/U,F ) such that

g ◦ p∗21(φ) = p∗22(φ) ◦ p∗20(φ) .
We have

[X] = [g] ∈ H2(Xet,F ) .

By (4.2), we have

p10 ◦ p21 = p10 ◦ p20 ,
p10 ◦ p22 = p11 ◦ p20 ,
p11 ◦ p22 = p11 ◦ p21 .

We also have

g · p∗21(u) · (p11 ◦ p21)∗(ρ)
= g · p∗21(φ) ◦ (p10 ◦ p21)∗(ρ)
= p∗22(φ) ◦ p∗20(φ) ◦ (p10 ◦ p20)∗(ρ)
= p∗20(u) · p∗22(φ) ◦ (p11 ◦ p20)∗(ρ)
= p∗20(u) · p∗22(φ) ◦ (p10 ◦ p22)∗(ρ)
= p∗20(u) · p∗22(u) · (p11 ◦ p22)∗(ρ)
= p∗20(u) · p∗22(u) · (p11 ◦ p21)∗(ρ) .

Thus g = p∗20(u) · p∗22(u) · p∗21(u)−1. Since the image ofg in O∗
E is equal to1, we see thatu

determinates an element inH1(Eet,O∗
E). So we obtain an invertibleOE-module, which depends

only on the morphismf : X → S. We denote it byL (f) or L (X/S).

Definition 5.5. A semistable log structureonX is an object(M , σ) in X(X) such that there is a
morphismρ : NnX →M which lifts the morphismγ : NnX →P.

Theorem 5.6.
(1) There exists a semistable log structure onX if and only ifL (f) ∼= OE .
(2) The semistable log structure onX is unique (up to isomorphism) if it exists.

Proof. (1) If semistable log structures onX exist, obviouslyL (f) ∼= OE .
Assume thatL (f) ∼= OE . By above argument,[X] is the image ofL (f) under the connecting

map
H1(Eet,O∗

E)→ H2(Xet,F ) .

Thus [X] = 0. By Theorem 4.4, there exists an elementM ∈ X(X). Let U → X be an étale
covering such that there exists a liftingρ : NnU →M |U of γ|U : NnU → P|U . PutV ≔ U ×S U and
let u ∈ (O∗

X)
n(V ) such thatp∗10(ρ) = u ·p∗11(ρ). Let ū be the image ofu inO∗

E(V ). AsL (f) ∼= OE
is represented by[ū], there exists an elementv′ ∈ OE(U) such thatū = p∗10(v

′) · p∗11(v′)−1. By
contractingU suitably, we may choose a liftingv ∈ (O∗

X)
n(U) of v′. Then

u = p∗10(v) · p∗11(v)−1 · g
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for someg ∈ F (V ). As ∂2(g) = ∂2(u) = 1, g is a cocycle. Put

ρ1 ≔ v−1 · ρ : NnU →M |U .

Then

p∗10(ρ1) = g · p∗11(ρ1) .
By Lemma 4.3, there exists an objectM ′ in X(X) and an isomorphismφ : M ′|U →M |U in X(U)
such thatg−1 · p∗10(φ) = p∗11(φ). Putρ2 ≔ φ−1 ◦ ρ1. Thenp∗10(ρ2) = p∗11(ρ2). So there exists a
morphismρ′ : NnX →M ′ such thatρ′|U = ρ2. Obviouslyρ′ is a lift of γ : NnX →P. ThusM ′ is a
semistable log structure onX.

(2) Let M1 andM2 be two semistable log structures onX. For i = 1, 2, let ρi : NnX → Mi be
liftings of γ : NnX → P. By Theorem 4.5, there exist étale coveringsU → X andV → U ×X U ,
a cocycleg ∈ Z1(V/U,F ) and an isomorphismφ : M2|U ∼−→M1|U such thatg · p∗10(φ) = p∗11(φ).
Let δ ∈ (O∗

X)
n(U) such thatφ ◦ ρ2|U = δ · ρ1|U . Then we have

g · p∗10(δ) · ρ1|V = g · p∗10(δ · ρ1|U )
= g · p∗10(φ ◦ ρ2|U )
=
(
g · p∗10(φ)

)
◦ ρ2|V

= p∗11(φ) ◦ ρ2|V
= p∗11(δ) · ρ1|V .

Sog = p∗11(δ) · p∗10(δ)−1, i.e.,[g] = 0. ThereforeM1
∼= M2 in X(X). �

Remark 5.7. Note that the isomorphisms between semistable log structures may not be unique. So
this kind of structure is not canonical.

Theorem 5.8. Assume that alla1, a2, . . . , an are regular elements inΓ (S,OS) (i.e.,(0 : ai) = 0 for
all i ∈ [1, n]). ThenL (f) ∼= OE , i.e., there exists a semistable log structure onX.

Proof. Note that

F =
n∏

i=1

(1 + Ki ·Ii) = 0 .

So there exists an objectM in X(X). Obviouly there exists an étale covering{Uλ}λ∈Λ of X such
that for eachλ ∈ Λ, there exists a liftingρλ : NnUλ

→ M |Uλ
of γ|Uλ

: NnUλ
→ P|Uλ

such that the
composite morphism

N
n
Uλ

ρλ−→M |Uλ
→ OUλ

is equal to

N
n
Uλ
→ OUλ

, εi → ai .

Sincea1, a2, . . . , an are regular elements inΓ (S,OS) and f : X → S is flat, a1, a2, . . . , an are
regular elements inΓ (X,OX) too. So on eachUλµ, we haveρλ|Uλµ

= ρµ|Uλµ
. Thus{ρλ} can be

glued to obtain a global liftingρ : NnX →M of γ : NnX →P. �

Theorem 5.9. LetM be a semistable log structure onX andρ : Nn →M a lifting of γ : NnX →P.
By Lemma5.3, ρ induces a morphismϕ : f∗N →M of log structures. Then

(f, ϕ) : (X,M )→ (Y,N )

is log smooth and integral.



28

Proof. Let x be a point onX andy ≔ f(x). Let

(U, V ;T11, . . . , T1q1 ; . . . ;Tp1, . . . , Tpqp ; a1, . . . , al)

be a refined local chart off atx and putm ≔
p∑
i=1

qi+ l−p. Let g : U → V be the induced morphism.

Then

(g, ϕU/V ) : (U,MU )→ (V,NV )

is log smooth, whereMU , NV andϕU/V are defined in Remark 3.19. By Lemma 5.3, we may

contractU/V suitably such that there exists two isomorphismσ : MU
∼−→M |U andτ : NV

∼−→ N |V
of log structures. PutM0 ≔ MU , N0 ≔ NV , ϕ1 ≔ ϕU/V , ϕ2 ≔ σ−1 ◦ ϕ|U ◦ f∗(τ). Let
α ≔ αU : NmU → M0, β ≔ βV : NlV → N0 andγ : Nl → Nm be the notations as in Remark 3.19.
Now (g, ϕ1) is log smooth. We shall use the definition of log smoothness toprove that(g, ϕ2) is also
log smooth. Let(T0,T0) and(T,T ) be fine log schemes,(T0,T0) → (T,T ) a thickening of order
one (Cf. [9, 3.5]),(t0, ψ0) : (T0,T0) → (U,M0) and(t, ψ) : (T,T ) → (V,N0) be morphisms of
log schemes which makes a commutative diagram:

(T0,T0)
(t0,ψ0) //

��

(U,M0)

(g,ϕ2)
��

(T,T )
(t,ψ)

// (V,N0)

For eachi = 1, 2, let ρi denote the composite morphism

N
l
U

g∗(β)−−−→ g∗N0
ϕi−→M0 .

Then there exists a sectionu ∈ (O∗
U )

n(U) such thatρ2 = u · ρ1. The composite morphism

N
l
T

t∗(β)−−−→ t∗N0
ψ−→ T → T0

is equal toψ0 ◦ t∗0(ρ2). Let v ∈ (O∗
T )
n(T ) be a lift of

t∗0(u) ∈ (O∗
T0)

n(T0) .

Then there is a morphismψ′ : t∗N0 → T of log structures such that

ψ′ ◦ t∗(β) = v−1 ·
(
ψ ◦ t∗(β)

)
.

So the composite morphism

N
l
T

t∗(β)−−−→ t∗N0
ψ′

−→ T → T0

is equal toψ0 ◦ t∗0(ρ1), which shows that

(T0,T0)
(t0,ψ0) //

��

(U,M0)

(g,ϕ1)
��

(T,T )
(t,ψ′)

// (V,N0)

is commutative. As(g, ψ1) is log smooth, by replaceT with an étale covering, we may assume that
there is a morphism

(h, ξ1) : (T,T )→ (U,M0)
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of log schemes which makes the following diagram

(T0,T0)
(t0,ψ0) //

��

(U,M0)

(g,ϕ1)
��

(T,T )

(h,ξ1)
66nnnnnnnnnnnn

(t,ψ′)
// (V,N0)

commutative. By the following Lemma 5.10, there exists a section w ∈ (O∗
T )
m(T ) which makes a

commutative diagram:

NlT

v·h∗(u)−1

//

γT

��

O∗
T

NmT

w

99sssssssssss

Let ξ2 : h∗M0 → T be the morphism of log structures satisfying thatξ2 ◦ h∗(α) = w ·
(
ξ1 · h∗(α)

)
.

Then we have a commutative diagram:

(T0,T0)
(t0,ψ0) //

��

(U,M0)

(g,ϕ2)
��

(T,T )

(h,ξ2)
66nnnnnnnnnnnn

(t,ψ)
// (V,N0)

Thus(g, ψ2) is log smooth. �

Lemma 5.10. Let A be a ring,I an ideal ofA such thatI2 = (0), u ∈ 1 + I, e1, e2, . . . , en be
positive integers which are invertible inA. Then there exists elementsv1, v2, . . . , vn ∈ 1 + I such

thatu =
n∏
i=1

veii .

The following theorem is obvious.

Theorem 5.11. Let S′ be a locally noetherian scheme andS′ → S a flat morphism. PutX ′
≔

X ×S S′ and letf ′ : X ′ → S′ be the projection. Then

(1) f ′ satisfies all these conditions off mentioned at the beginning of this section.
(2) For eachi ∈ [1, n], let bi be the image ofai in Γ (S′,OS′). Assume thatbi is invertible for

i ∈ [m+ 1, n] andbi is not invertible for[1,m]. Then

E(f ′) =
( m∐
i=1

Ei

)
×S S′ .

(3) L (f ′) is isomorphic to the inverse image ofL under the canonical morphismE(f ′) →
E(f).

6. GLOBAL CASES

LetX andS be locally noetherian schemes,f : X → S a surjective proper weakly normal crossing
morphism without powers such thatf satisfies the condition (†) in §3.3 and every fiber off is
geometrically connected. By Lemma 3.14 (4),f also satisfies the condition (‡) in §3.3.

Let P, Q, θ, ϑ andd be the notations defined in Remark 3.20.
For every pointy ∈ S, we write

Eȳ ≔ E
(
X ×S SpecOS,ȳ

/
SpecOS,ȳ

)
,

Lȳ ≔ L
(
X ×S SpecOS,ȳ

/
SpecOS,ȳ

)
.
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Lemma 6.1. Let y ∈ S. If Lȳ is trivial, then there exists an elementV0 ∈ N0(y) such that for all
elementsV > V0 in N0(y), L (XV /V ) is trivial.

Proof. See [7, (8.5.2.5)]. �

Corollary 6.2. Let y ∈ S. If Lȳ is trivial, then there exists an open neighborhoodV of y such that
for all z ∈ V , Lz̄ is trivial.

Lemma 6.3. Let f : X → Y be a proper and flat morphism of locally noetherian schemes such that
every fiber off is geometrically reduced and geometrically connected. Then the canonical morphism
OY → f∗OX is isomorphic.

Proof. See [6, (7.8.7) and (7.8.8)]. �

Lemma 6.4. LetR be a noetherian local ring with maximal idealm, a ∈ m, a = (0 : a), n > 2 an
integer,

A = R[[T1, T2, . . . , Tn]]

a ring of power series overR, I the ideal ofA generated by

T2 · · · Tn, . . . , T1 · · · T̂i · · ·Tn, . . . , T1 · · ·Tn−1

and
J ≔ (T1T2 · · ·Tn − a) + a · I .

ThenJ ∩R = (0).

Proof. Let b ∈ J ∩R and put

b = (T1T2 · · ·Tn − a) · F0 +

n∑

i=1

T1 · · · T̂i · · · Tn · Fi ,

whereFi ∈ A for all i ∈ [0, n] and for everyi ∈ [1, n], all coefficients ofFi are contained ina. For
eachi ∈ [1, n], putFi = Gi+Ti ·Ni, where all monomials inGi do not containTi and all coefficients
of Gi andNi are contained ina. Then we have

T1 · · · T̂i · · ·Tn · Fi = T1 · · · T̂i · · ·Tn ·Gi + (T1T2 · · ·Tn − a) ·Ni .

PutG0 ≔ F0 +
n∑
i=1

Ni. Then

b = (T1T2 · · ·Tn − a) ·G0 +

n∑

i=1

T1 · · · T̂i · · · Tn ·Gi . (6.1)

For eachq ∈ N, let cq denote the coefficient of(T1T2 · · ·Tn)q in G0. By comparing the coefficient of
(T1T2 · · ·Tn)q in (6.1), we haveb = −ac0 andcq−1 = acq for all q > 1. Thus

b ∈
∞⋂

q=1

(aq) ⊆
∞⋂

q=1

mq = (0) . �

Lemma 6.5. For all pointsy ∈ S andV ∈ N0(y), we have(fV )∗
(
F (XV /V )

)
= 1.

Proof. LetD1,D2, . . . ,Dn be the connected components ofDV , a1, a2, . . . , an ∈ OS(V ) the corresponding
sections. For eachi ∈ [1, n], let Ki andIi be ideal sheaves onV andXV respectively defined in§5,

and putJi ≔ Ki ·Ii. ThenF (XV /V ) =
n∏
i=1

(1 +Ji). So we have only to prove(fV )∗Ji = (0).

Let W be an open subset ofV and b ∈ Γ (XW ,Ii). By Lemma 6.3, we haveb ∈ Γ (W,OS).
Suppose thatWb 6= ∅. As b|Wb

= b|f−1(Wb) is invertible,Ji|f−1(Wb) = (1), soKi|Wb
= (1) and

Ii|f−1(Wb) = (1). As Ki = (0 : a)∼, ai = 0. Hence(Di)Wb
6= ∅, i.e., Ii|f−1(Wb) 6= (1), a
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contradiction. HenceWb = ∅. Thus for anyw ∈ W , bw̄ is contained in the maximal ideal ofOS,w̄.
By Lemma 6.4,bw̄ = 0. Sob = 0. �

Definition 6.6. A semistable log structurefor f is of the form(M ,N , σ, τ, ϕ), whereM andN are
fine saturated log structures onX andS respectively,ϕ : f∗N →M is a morphism of log structures
onX, σ : M →P andτ : N → Q are morphisms of sheaves of monoids, such thatσ andτ induce
isomorphisms̄σ : M

∼−→P andτ̄ : N
∼−→ Q, and the following three diagrams are commutative:

N //

τ

��

OS

��

Q
ϑ

// OS/O∗
S

M //

σ

��

OX

��

P
θ

// OX/O∗
X

f−1N //

f−1τ
��

M

σ

��
f−1Q

d
// P

The following two theorems are the main results of this papers.

Theorem 6.7.
(1) There exists a semistable log structure forf if and only if for every pointy ∈ S, Lȳ is trivial

onEȳ.
(2) Let (M1,N1, σ1, τ1, φ1) and (M2,N2, σ2, τ2, φ2) be two semistable log structures forf .

Then there exists isomorphismϕ : M1
∼−→M2 andψ : N1

∼−→ N2 of log structures such that
ϕ ◦ φ1 = φ2 ◦ f∗ψ, σ2 ◦ ϕ = σ1 andτ2 ◦ ψ = τ1. Furthermore, such pair(ϕ,ψ) is unique.

Proof. (2) Lety be a point onS, V ∈ N0(y), and let

a1, a2, . . . , an ∈ Γ (V,OS)
be sections satisfying the condition (2) in Notation 3.12. Clearly Nȳ = Nn. By Lemma 5.1, we may
contractV suitably to make bothN1 andN2 isomorphic to the log structure associated to

β0 : N
n
V → OV , εi 7→ ai ,

where{ε1, ε2, . . . , εn} is a basis ofNn. In other words, we have an isomorphismsψ0 : N1|V ∼−→
N2|V of log structures, and chartsβi : Nn → Ni|V such thatψ0 ◦ β1 = β2, τ2|V ◦ ψ0 = τ1|V , and
the diagram

Nn

xxqqqqqqq

βi

��

β0

&&LLLLLLL

Q|V OV

Ni|V
τi|V

eeLLLLLL

99ssssss

is commutative. Since the composite morphisms

N
n
XV

f∗V (βi)−−−−→ f∗V (Ni|V )
φi|XV−−−−→Mi|XV

are liftings of

N
n
XV
→ f−1Q|XV

d|XV−−−→P|XV
,

we see that(Mi|XV
, σi|XV

) are semistable log structures onXV . So, by Theorem 5.6 (2), there exists
an isomorphismϕV : M1|XV

∼−→ M2|XV
such thatϕV ◦ σ1|XV

= σ2|XV
. Obviously there exists a

section
v = (v1, v2, . . . , vn) ∈ (O∗

X)
n(XV )

such that
ϕV ◦

(
(φ1|XV

) ◦ f∗V (β1)
)
= v ·

(
(φ2|XV

) ◦ f∗V (β2)
)
.
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Taking composite of both sides of above equality with the morphism M2|XV
→ OXV

, we have
viai = ai for eachi ∈ [1, n]. Applying Lemma 6.3 to the morphismXV → V , we havevi ∈ O∗

S(V ).
By Lemma 5.3, there is an isomorphismψV : N1|V ∼−→ N2|V of log structures such thatψV ◦ β1 =
v · β2. ThusϕV ◦ (φ1|XV

) = (φ2|XV
) ◦ f∗V (ψV ).

Suppose that there exists another pair of isomorphismsϕ′ : M1|XV

∼−→M2|XV
andψ′ : N1|V ∼−→

N2|V of log structures such thatϕ′ ◦ (φ1|XV
) = (φ2|XV

) ◦ f∗V (ψ′), (σ2|XV
) ◦ ϕ′ = σ1|XV

and
τ2|V ◦ ψ′ = τ1|XV

. By Lemma 5.4,

ϕ′−1 ◦ ϕ|XV
∈ Γ

(
XV ,F (XV /V )

)
.

By Lemma 6.5,ϕ′−1 ◦ ϕ|XV
= id, i.e.,ϕV = ϕ′. Thus(φ2|XV

) ◦ f∗V (ψV ) = (φ2|XV
) ◦ f∗V (ψ′). It is

easy to show thatφ2 is injective. Sof∗V (ψV ) = f∗V (ψ
′). SincefV is faithfully flat, we getψV = ψ′.

Now we can glue these(ϕV , ψV ) to a pair of isomorphism of log structures(ϕ,ψ).
(1) is by (2) and Theorem 5.6. �

Theorem 6.8. Let (M ,N , σ, τ, φ) be a semistable log structure forf . Then

(f, φ) : (X,M )→ (Y,N )

is log smooth and integral.

Proof. The conclusion is a consequence of Theorem 5.9. �

7. PROPERTIES UNDERBASE CHANGE

Definition 7.1. Let f : X → S be a morphism of locally noetherian schemes.

(1) We say thatf satisfies(N1) if it is surjective, proper, weakly normal crossing withoutpowers,
and all fibers off are geometrically connected.

(2) We say thatf satisfies(N2) if it satisfies(N1) and the condition (†) in §3.3.
(3) We say thatf satisfies(N3) if it satisfies(N2) and for every pointy ∈ S, the invertible sheaf

Lȳ onEȳ defined in§6 is trivial.

7.1. Properties under fibred products. LetS,X andY be locally noetherian schemes,f : X → S
andg : Y → S two morphisms. For anS-schemeZ which satisfies(N2) and a points onS, we use
Es̄(Z/S) andLs̄(Z/S) to denote the notationsEs̄ andLs̄ defined in§6 for preciseness, and write

Z(s̄) ≔ Z ×S SpecOS,s̄ .
Theorem 7.2. Assume thatf andg satisfies(N1). ThenX ×S Y → S satisfies(N1). Furthermore
we have

D
(
(X ×S Y )/S

)
=
(
D(X/S)×S Y

)∐(
X ×S D(Y/S)

)
.

Theorem 7.3. Assume thatf andg satisfies(N2). ThenX ×S Y → S satisfies(N2). Furthermore
if s ∈ S, then

Es̄(X ×S Y ) =
(
Es̄(X) ×S Y (s̄)

)∐(
X(s̄)×S Es̄(Y )

)
,

Ls̄(X ×S Y ) =
(
Ls̄(X)⊗S OY (s̄)

)∐(OX(s̄) ⊗S Ls̄(Y )
)
.

Theorem 7.4. If f andg satisfies(N3), so doesX ×S Y → S.

7.2. Properties under base extension.Let

X ′
p

//

f ′

��
�

X

f

��
S′

q
// S

be a Cartesian square of locally noetherian schemes.



33

Theorem 7.5. If f satisfies(N1), so doesf ′.

Lemma 7.6. Assume thatf satisfies(N1). Lety′ be a point onS′, y ≔ q(y′). Fix aκ(y)-embedding
of κ(y)s into κ(y′)s. By [7, (18.8.8) (2)], it induces a local homomorphismu : OS,ȳ → OS′,ȳ′ which
makes a commutative diagram

OS,y
q#y //

��

OS′,y′

��
OS,ȳ u

// OS′,ȳ′

Letv : SpecOS′,ȳ′ → SpecOS,ȳ be the morphism induced byu. Then

(1) The diagram

SpecOS′,ȳ′
v //

��

SpecOS,ȳ

��
S′

q
// S

is commutative.
(2) The square

Dȳ′
id×v //

��

Dȳ

��
SpecOS′,ȳ′ v

// SpecOS,ȳ
is Cartesian.

(3) If X×SSpecOS,ȳ → SpecOS,ȳ satisfies the condition(∗) in §3.2, so doesX ′×S′SpecOS′,ȳ′ →
SpecOS′,ȳ′ .

We assume thatX ×S SpecOS,ȳ → SpecOS,ȳ satisfies the condition(∗) in §3.2.

(4) v induces a canonical bijection

ϕ : CP(y)
∼−→ CP(y′) , C 7→ (id× v)−1(C) .

(5) We have a commutative diagram

CP(y)
ϕ

∼
//

ωȳ

��

CP(y′)

ωȳ′

��
OS,ȳ/O∗

S,ȳ ū
// OS′,ȳ′/O∗

S′,ȳ′

(6) There is a canonical closed immersion

Eȳ′ →֒ Eȳ ×SpecOS,ȳ
SpecOS′,ȳ′ .

(7) If q is flat aty′, then above morphism is an isomorphism.
(8) Lȳ′ is isomorphic the inverse image ofLȳ under the morphismEȳ′ → Eȳ.

Theorem 7.7. If f satisfies(N2) (resp.(N3)), so doesf ′.

Theorem 7.8.
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(1) Assume thatf satisfies(N2). LetP, Q, θ, ϑ andd be the notations forf defined in Remark
3.20, and P ′, Q′, θ′, ϑ′ and d′ the corresponding notations forf ′. Then there are two
canonical isomorphisms of sheaves of monoidsλ : p−1P

∼−→ P ′ and µ : q−1Q
∼−→ Q′

which makes the following three diagrams commutative.

p−1P

p−1θ
��

λ
∼

// P ′

θ′

��
p−1
(
OX/O∗

X

)
// OX′/O∗

X′

q−1Q

q−1ϑ
��

µ

∼
// Q′

ϑ′

��
q−1
(
OS/O∗

S

)
// OS′/O∗

S′

p−1
(
f−1Q

)
= f ′−1

(
q−1Q

) f ′−1µ

∼
//

p−1d
��

Q′

d′

��
p−1P

λ
∼

// P ′

(2) Assume thatf satisfies(N3). Let(M ,N , σ, τ, ϕ) and(M ′,N ′, σ′, τ ′, ϕ′) be the semistable
log structures forf andf ′ respectively. Then there exists two isomorphismsζ : p∗M

∼−→M ′

andη : q∗N
∼−→ N ′ of log structures which make the following three diagrams commutative.

p∗
(
f∗N

)
= f ′∗

(
q∗N

) f ′∗η

∼
//

p∗ϕ
��

N ′

ϕ′

��
p∗M

ζ

∼
// M ′

p−1M //

p−1σ
��

p∗M

{{v
v

v
v

v

ζ

∼
// M ′

σ′

��
p−1P

λ
∼

// P ′

q−1N //

q−1τ
��

q∗N

{{v
v

v
v

v

η

∼
// N ′

τ ′

��
q−1Q

µ

∼
// Q′

Moreover the pair(ζ, η) is unique. Simply speaking, the semistable log structure off ′ may
be viewed as the inverse image of that off .

The following theorem shows that above isomorphisms are functorial.

Theorem 7.9. Let

X2
p2 //

f2
��

�

X1
p1 //

f1
��

�

X0

f0
��

S2 q2
// S1 q1

// S0

be a commutative diagram of locally noetherian schemes withboth squares Cartesian. Putp0 ≔
p1 ◦ p2 andq0 ≔ q1 ◦ q2.

(1) Assume thatf satisfies(N2). For eachi = 1, 2, 3, let Pi, Qi, θi, ϑi anddi be the notations
for fi defined in Remark3.20. Let

λ1 : p
−1
1 P0

∼−→P1 , λ2 : p
−1
2 P1

∼−→P2 , λ0 : p
−1
0 P0

∼−→P2 ,

µ1 : q
−1
1 Q0

∼−→ Q1 , µ2 : q
−1
2 Q1

∼−→ Q2 , µ0 : q
−1
0 Q0

∼−→ Q2 ,

be the isomorphisms defined in Theorem7.8 (1). Then

λ2 ◦ p−1
2 (λ1) = λ0 and µ2 ◦ q−1

2 (µ1) = µ0 .
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(2) Assume thatf satisfies(N3). For eachi = 1, 2, 3, let (Mi,Ni, σi, τi, ϕi) be the semistable
log structure forfi. Let

ζ1 : p
∗
1M0

∼−→M1 , ζ2 : p
∗
2M1

∼−→M2 , ζ0 : p
∗
0M0

∼−→M2 ,

η1 : q
∗
1N0

∼−→ N1 , η2 : q
∗
2N1

∼−→ N2 , η0 : q
∗
0N0

∼−→ N2 ,

be the isomorphisms defined in Theorem7.8 (2). Then

ζ2 ◦ p∗2(ζ1) = ζ0 and η2 ◦ q∗2(η1) = η0 .

Theorem 7.10. Let S0, S1 andX0 be locally noetherian schemes,f0 : X0 → S0 and q : S1 → S0
be two morphisms. PutS2 ≔ S1 ×S0 S1 andS3 ≔ S1 ×S0 S1 ×S0 S1. For eachi = 1, 2, 3, let
Xi ≔ X0 ×S0 Si andfi : Xi → Si the second projections. Assume that bothS2 andS3 are locally
noetherian.

X3
// ////

f3
��

X2
////

f2
��

X1
//

f1
��

X0

f0
��

S3
// //// S2

//// S1 q
// S0

(1) Assume thatf1 satisfies(N2). Thenf2 and f3 also satisfy(N2). For eachi = 1, 2, 3, let
Pi, Qi, θi, ϑi anddi be the notations forfi defined in Remark3.20. For eachi = 1, 2, let
λi : pr

−1
i P1

∼−→P2 andµi : pr
−1
i Q1

∼−→ Q2 be the isomorphisms corresponding to thei-th
projections defined in Theorem7.9 (1). Put

λ ≔ λ−1
2 ◦ λ1 : pr−1

1 P1 → pr−1
2 P1 ,

µ ≔ µ−1
2 ◦ µ1 : pr−1

1 Q1 → pr−1
2 Q1 .

Then

pr−1
23 (λ) ◦ pr−1

12 (λ) = pr−1
13 (λ) and pr−1

23 (µ) ◦ pr−1
12 (µ) = pr−1

13 (µ) .

(2) Assume thatf1 satisfies(N3). Thenf2 and f3 also satisfy(N3). For eachi = 1, 2, 3, let
(Mi,Ni, σi, τi, ϕi) be the semistable log structure forfi. For eachi = 1, 2, letζi : pr∗iM1

∼−→
M2 andηi : pr∗iN1

∼−→ N2 be the isomorphisms corresponding to thei-th projections defined
in Theorem7.9 (2). Put

ζ ≔ ζ−1
2 ◦ ζ1 : pr∗1M1

∼−→ pr∗2M1 ,

µ ≔ µ−1
2 ◦ µ1 : pr∗1N1

∼−→ pr∗2N1 .

Then

pr∗23(ζ) ◦ pr∗12(ζ) = pr∗13(ζ) and pr∗23(η) ◦ pr∗12(η) = pr∗13(η) .

Proof. For eachi = 1, 2, 3, let λ′i : pr
−1
i P1

∼−→ P3 be the isomorphism corresponding to thei-th
projection. For each1 6 i < j 6 3, let λ′′ij : pr

−1
ij P2

∼−→ P3 be the isomorphism corresponding to
prij : X3 → X2. By Theorem 7.9, we have

λ′′ij ◦ pr−1
ij (λ1) = λ′i and λ′′ij ◦ pr−1

ij (λ2) = λ′j .

Thus

pr−1
ij (λ) = pr−1

ij (λ−1
2 ) ◦ pr−1

ij (λ1) = (λ′j)
−1 ◦ λ′j .

The other three equations are similar. �
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7.3. Properties under inverse limit.

Theorem 7.11.LetS0 be a noetherian scheme,(Sλ, sµλ)λ,µ∈Λ an inverse system of noetherian affine
S0-schemes such that allsµλ are affine morphisms. Let(S, sλ) be its inverse limit. Assume thatS is
also noetherian.

(1) Letf0 : X0 → S0 be a morphism of finite type. PutX ≔ X0×S0 S andf ≔ (f0)S : X → S.
For eachλ ∈ Λ, putXλ ≔ X0 ×S0 Sλ andfλ ≔ (f0)Sλ

: Xλ → Sλ. Thenf satisfies(N1)
(resp.(N2) or (N3)) if and only if there exists an indexλ0 ∈ Λ such that for anyλ > λ0, fλ
satisfies(N1) (resp.(N2) or (N3)).

(2) Let f : X → S be a morphism which satisfies(N1) (resp.(N2) or (N3)). Then there exists
an indexλ0 ∈ Λ and a morphismfλ0 : Xλ0 → Sλ0 which satisfies(N1) (resp.(N2) or (N3))
such thatX is S-isomorphic toXλ0 ×Sλ0

S.

Proof. See [7,§8]. Note that every local chart (resp. refined local chart) off can be descended to
some indexλ0 ∈ Λ andX can be covered by a finite number of local chart (resp. refined local chart)
of f . �

Corollary 7.12. Let f : X → S be a morphism of finite type of locally noetherian schemes. Thenf
satisfies(N1) (resp.(N2) or (N3)) if and only if for every pointy ∈ S,X×S SpecOS,ȳ → SpecOS,ȳ
satisfies(N1) (resp.(N2) or (N3)).

7.4. Properties under flat descent.

Lemma 7.13. LetX ′ → X be a faithfully flat morphism locally of finite presentation of schemes,
U → X anétale morphism of schemes,M a fine saturated log structure onX. PutX ′′

≔ X ′×XX ′,
and letM ′ andM ′′ be the pull-back ofM onX ′ andX ′′ respectively. Then

M (U) // M ′(U ×X X ′) // // M ′′(U ×X X ′′)

is exact.

Proof. [15, Lemma 1.1.3]. �

Lemma 7.14. Letp : X ′ → X be a faithfully flat morphism locally of finite presentation of schemes.
PutX ′′

≔ X ′ ×X X ′ andX ′′′
≔ X ′ ×X X ′ ×X X ′. LetM be a fine saturated log structure onX ′

andφ : pr∗1M
∼−→ pr∗2M an isomorphism of log structures onX ′′ such that onX ′′′ we have

pr∗13(φ) = pr∗23(φ) ◦ pr∗12(φ) .
Then there exists a unique (up to isomorphism) pair(N , s) onX, whereN is a fine saturated log
structure onX ands : p∗N

∼−→M is an isomorphism of log structures onX ′, such that the following
diagram

pr∗1p
∗N

pr∗1(s) // pr∗1M

φ
��

pr∗2p
∗N

pr∗2(s) // pr∗2M

is commutative.

Proof. [15, Theorem 1.1.5]. �

Lemma 7.15. Let f : (X,M ) → (Y,N ) be a morphism of fine saturated log schemes,C the
cokernel off∗N → M , x̄ a geometric point onX, ȳ ≔ f(x̄), Q → N a chart withQ fine
saturated. Assume that

(1) Q→ N ȳ is isomorphic;
(2) N ȳ →M x̄ is injective;
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(3) the torsion part ofC gp
x̄ is a finite group of order invertible inκ(x̄).

Then there exists a chart
(P →M |U , Q→ N |V , Q→ P )

of f at x̄ such thatP →M x̄ is isomorphic.

Proof. [14, Theorem 2.13]. �

Lemma 7.16. If S is a scheme,x is a point onS, and F is anOS -module, we defineF (x) ≔
Fx̄ ⊗ κ(x̄).

LetX† = (X,M ) andY † = (Y,N ) be two fine log schemes,f : X† → Y † a morphism of log
schemes,x ∈ X a point,C the cokernel of the morphismf∗N →M . Then there is a commutative
diagram

M gp
x̄

//

π

))SSSSSSSSSSSSSSSSSS

dlog
��

C gp
x̄

π̄

��
ΩX/Y (x) // ΩX†/Y †(x)

ρ
X†/Y †,x̄

//κ(x̄)⊗Z C gp
x̄ ,

whereπ̄(m) = 1 ⊗m for eachm ∈ C gp
x̄ , and the bottom row is an exact sequence of linear space

overκ(x̄).
The homomorphismρX†/Y †,x̄ is sometimes called thePoincaré residue mappingat x.

Proof. See [14, Proposition 2.22]. �

Lemma 7.17. Let f : (X,M ) → (Y,N ) be a log smooth morphism of fine saturated log schemes,
x ∈ X, y ≔ f(x), and let

(P →M , Q→ N , Q
ι−→ P )

be a chart off . Assume thatι : Q → P is injective,P
∼−→ M x̄ andQ

∼−→ N ȳ are isomorphisms.
PutZ ≔ Y ×SpecZ[Q] SpecZ[P ] andg : X → Z the induced morphism. Theng is smooth at̄x.

Proof. In this proof, for a log scheme(X,M ), we use simplyX† to denote it. First we have

ΩZ†/Y † = OY ⊗Z (P gp/Qgp) .

Hence
κ(x̄)⊗ (g∗ΩZ†/Y †)

∼−→ κ(x̄)⊗Z (P gp/Qgp) .

Let C denote the cokernel of the morphismf∗N →M . Then the composite

κ(x̄)⊗ (g∗ΩZ†/Y †)→ κ(x̄)⊗ΩX†/Y †

ρ
X†/Y †,x̄−−−−−−→ κ(x̄)⊗Z C gp

x̄

is isomorphic, whereρX†/Y †,x̄ is defined in Lemma 7.16. Hence

κ(x̄)⊗ (g∗ΩZ†/Y †)→ κ(x̄)⊗ΩX†/Y †

is injective. Henceg∗ΩZ†/Y † → ΩX†/Y † has a left inverse in some open neighborhoodU of x. So
g|U : U → Z is smooth. �

Theorem 7.18.Let

X ′
f ′

//

p

��
�

S′

q

��
X

f
// S

be a Cartesian square of locally noetherian schemes such that q is faithfully flat and locally of finite
type, andf ′ satisfies(N3). Thenf satisfies(N3) too.
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Proof. LetP ′, Q′, θ′,ϑ′ andd′ be the notations forf ′ defined in Remark 3.20; and let(M ′,N ′, σ′, τ ′, ϕ′)
be the semistable log structure off ′. By Theorem 7.10 and Lemma 7.14, there exist fine saturated log
structuresM onX andN onS, a morphism of log structuresϕ : f∗N → M , two isomorphisms
of log structuresp∗M

∼−→M ′ andq∗N
∼−→ N ′ which makes a commutative diagram.

f ′∗q∗N = p∗f∗N
p∗(ϕ)

//

∼=
��

p∗M

∼=

��
f ′∗N ′

ϕ′
// M ′

Let x be a point onX andy ≔ f(x). Letx′ ∈ p−1(x) and puty′ ≔ f ′(x′). Thenq(y′) = y. We have

M x̄
∼= M ′

x̄′
∼= N

m and N ȳ
∼= N ′

ȳ′
∼= N

n

for somem,n ∈ N. Furthermore the homomorphism

d ≔ ϕ̄x̄ : N ȳ →M x̄

is defined asd(εi) =
si∑
j=1

ηij for i ∈ [1, r] andd(εi) = ηi for i ∈ [r + 1, n], where{ε1, ε2, . . . , εn} is

a basis ofNn,
{η11, . . . , η1s1 , . . . , ηr1, . . . , ηrsr , ηr+1, . . . , ηn}

is a basis ofNm, andm =
r∑
i=1

si + n− r. By Lemma 7.15, there exists a chart

(Nm →M |U ,Nn → N |V ,Nn d−→ N
m)

of f at x̄ such thatNm
∼−→ M x̄ andNn

∼−→ N ȳ are isomorphic. PutU ′
≔ U ×X X ′ andV ′

≔

V ×S S′. By Lemma 7.17,
U ′ → V ′ ×SpecZ[Nn] SpecZ[N

m]

is smooth at̄x′. By [7, (17.7.1)],

U → V ×SpecZ[Nn] SpecZ[N
m]

is smooth at̄x. Therefore we may contractU/V suitable to obtain a local chart atx. Furthermore it
is easy to verify that(M ,N , ϕ) is just the semistable log structure off . �

8. SEMISTABLE CURVES

Definition 8.1. Let k be a separably closed field. Asemistable curveoverk is a connected proper
1-equidimensionalk-schemeX such that for any closed pointx ∈ X, eitherX is smooth atx over
k, or ÔX,x is k-isomorphic tok[[T1, T2]]

/
(T1T2).

Lemma 8.2. Letk be a separably closed field andX a semistable curve overk. Then

(1) X is reduced.
(2) X has only a finite number of singular points and all singular points arek-rational.

Definition 8.3. Let S be a scheme. Asemistable curveoverS is anS-schemef : X → S such that
f is proper, faithfully flat, of finite presentation, and everygeometric fiber is a semistable curve in the
sense of Definition 8.1.

Remark 8.4. The notation ofsemistable curvehere is slightly weaker than the notation ofstable
curvein [2].

Lemma 8.5. LetS be a locally noetherian scheme,f : X → S a morphism which satisfies(N1) in
Definition7.1and is of relative dimension1. Thenf also satisfies(N3) in Definition7.1.
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Proof. By Corollary 7.12, we may assume thatS is the spectrum of a strictly Henselian ringR. Letm
be the maximal ideal ofR andy1 the closed point ofS. If f is smooth, the question is trivial. Assume
thatf is not smooth. ThenD(f) 6= ∅. LetD1,D2, . . . ,Dn be the connected components ofD(f).
For eachi ∈ [1, n], select an elementai ∈ m such that̄ai = ωȳ1(Di). ThenDi = SpecR/(ai). Let
zi be the closed point ofDi and letli : Di → X be the inclusion. Then there exists a refined local
chart atli(zi) of the form

(Ui, S;Ti1, Ti2; a1, a2, . . . , an)

satisfying thatUi ×X Dj = ∅ for all j ∈ [1, n]− {i}. Let Mi be the log structure onUi associate to
α′
i : N

n+1
Ui
→ OUi , where if

ηi1, ηi2, η1, . . . , η̂i, . . . , ηn

is a basis ofNn+1, thenα′
i(ηij) = Tij for j = 1, 2, andα′

i(ηk) = ak for k ∈ [1, n] − {i}. Let
αi : N

n+1
Ui
→ Mi be the induced morphism. Letε1, ε2, . . . , εn be a basis ofNn. We define three

homomorphisms of monoids
∂i, ∂i1, ∂i2 : N

n → N
n+1

as follows: fork ∈ [1, n]− {i},
∂i(εk) = ∂i1(εk) = ∂i2(εk) = ηk ,

and
∂i(εi) = ηi1 + ηi2 , ∂i1(εi) = ηi1 , ∂i2(εi) = ηi2 .

Then
ρi ≔ αi ◦ ∂i : NnUi

→Mi

is a lifting of γ|Ui : N
n
Ui
→ P|Ui , where Letγ : NnX → P be the notation defined in§5. Put

U0 ≔ X −D(f) andM0 the log structure onU0 induced by

N
n
U0
→ OU0 , εi 7→ ai .

Let ρ0 : NnU0
→M0 be the induced morphism. Thenρ0 is a lifting of γ|U0 : N

n
U0
→P|U0 .

For anyi ∈ [1, n] and any pointx onU0 ×X Ui, there exists an étale neighborhoodW of x̄ such
thatTi1|W or Ti2|W is invertible. Without lose of generality, we may assume that Ti2|W is invertible.
ThenTi1|W = (Ti2|W )−1 · ai and

αi|W ◦ ∂i1 : Nn →Mi|W
is a chart ofMi|W . So there exists an isomorphismφ : Mi|W ∼−→M0|W of log structures such that

φ ◦ αi|W ◦ ∂i1 = (u1, u2, . . . , un) · ρ0|W ,

whereui = (Ti2|W )−1 anduk = 1 for k ∈ [1, n]− {i}. Thusφ ◦ ρi|W = ρ0|W .
For any pair of integers1 6 i < j 6 n and any pointx on Ui ×X Uj , there exists an étale

neighborhoodW of x̄ such thatTi1|W or Ti2|W is invertible, andTj1|W or Tj2|W is invertible.
Without lose of generality, we may assume thatTi2|W andTj2|W are invertible. Then fors = i, j,
Ts1|W = (Ts2|W )−1 · as and

αs|W ◦ ∂s1 : Nn →Ms|W
is a chart ofMs|W . So there exists an isomorphismφ : Mi|W ∼−→Mj|W of log structures such that

φ ◦ αi|W ◦ ∂i1 = (u1, u2, . . . , un) · (αj |W ◦ ∂j1) ,
whereui = (Ti2|W )−1, uj = Tj2|W , anduk = 1 for k ∈ [1, n]− {i, j}. Thusφ ◦ ρi|W = ρj|W .

Now we translate above analysis into the language in§5. We obtains an étale coveringU → X,
an objectM in X(U), and a morphismρ : NnU →M which is a lifting ofγ|U : NnU →P|U , an étale
coveringV → U ×X U , and an isomorphismφ : p∗10(M )

∼−→ p∗11(M ) of log structures onV , such
thatφ ◦ p∗10(ρ) = p∗11(ρ). SoLȳ1 is trivial. �
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Lemma 8.6. LetR,A be two complete noetherian local rings with maximal idealsm,M and residue
fieldsk,K respectively,R→ A a flat local homomorphism,R[[T1, T2]] a ring of power series overR
with variablesT1 andT2. Assume that exists two elementsx11, x12 ∈M such that the homomorphism
of k-algebras

k[[T1, T2]]
/
(T1T2)

∼−→ A/mA , Ti 7→ x̄1i (i = 1, 2)

is an isomorphism. Then there exists an elementa ∈ m, two elementsx1, x2 ∈ M such that the
homomorphism ofR-algebras

R[[T1, T2]]
/
(T1T2 − a) ∼−→ A , Ti 7→ xi (i = 1, 2)

is an isomorphism.

Proof. Put a1 ≔ 0 andP1 ≔ k[[T1, T2]]
/
(T1T2). For eachn ∈ N, putRn ≔ R/mn andAn ≔

A/mnA. Letψ1 : P1
∼−→ A1 be the isomorphism defined in the lemma. Assume that we have found

an ∈ R andxn1, xn2 ∈ A such that

ψn : Pn ≔ (R/mn)[[T1, T2]]
/
(T1T2 − ān) ∼−→ An , Ti 7→ x̄ni (i = 1, 2)

is an isomorphism. Then

z ≔ xn1xn2 − an ∈ mnA .

Put z =
n∑
j=1

bjzj , wherebj ∈ mn and zj ∈ A. Obviously we haveA = R + M andM =

mA+ xn1A+ xn2A. So for eachj ∈ [1, n], we may writezj as

zj = cj + djuj + xn1vj + xn2wj ,

wherecj ∈ R, dj ∈ m, uj, vj , wj ∈ A. Put

xn+1,1 ≔ xn1 −
n∑
j=1

bjwj ,

xn+1,2 ≔ xn2 −
n∑
j=1

bjvj ,

an+1 ≔ an +
n∑
j=1

bjcj .

Then we have

xn+1,1xn+1,2 − an+1 =
n∑
j=1

bjdjuj +
( n∑
j=1

bjvj

)( n∑
j=1

bjwj

)
∈ mn+1A .

Put

Pn+1 ≔ (R/mn+1)[[T1, T2]]
/
(T1T2 − ān+1)

and letψn+1 : Pn+1 → An+1 be the homomorphism ofR-algebras defined byψn+1(Ti) = x̄n+1,i

for i = 1, 2. Obviouslyψn+1 is surjective. We shall prove thatψn+1 is injective. Assume that
I ≔ Ker(ψn+1) 6= 0. If m = mn+1, thenψn+1 = ψ1 is an isomorphism. So we may assume that
mn+1 6= m. Since the diagram

Pn+1
ψn+1 //

��

An+1

��
Pn

ψn // An
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is commutative,I is contained in(mn/mn+1) · Pn+1. Since bothPn+1 andAn+1 are flat overRn+1,
so isI. As I is a finitely generatedPn+1-module, by [11, Ch. 2, COROLLARY of (4.A)],I is
faithfully flat overRn+1. And becausem/mn+1 6= 0,

(m/mn+1) · I ∼= (m/mn+1)⊗R I 6= 0

by [11, Ch. 2, (4.A)]. But it contradicts that

(m/mn+1) · I ⊆ (m/mn+1) · (mn/mn+1) · Pn+1 = 0 .

Thusψn+1 is an isomorphism.
Clearly{an} is a Cauchy sequence inR, and{xn1} and{xn2} are Cauchy sequences inA. Since

R andA are complete, we may leta ≔ lim an andxi ≔ limxni for i = 1, 2. �

Lemma 8.7. Let R be a ring,A and B two R-algebras,a, I and J be ideals ofR, A and B
respectively such thataA ⊆ I andaB ⊆ J . LetC andD denote the topologicalR-algebrasA⊗RB
andÂ⊗ bR B̂ equipped with(IC + JC)-adic and(ID + JD)-adic topologies. Then̂C ∼= D̂.

Proof. Note that for alln ∈ N,
InC + JnC ⊆ (IC + JC)n

and
(IC + JC)2n ⊆ InC + JnC .

Thus
Ĉ ∼= lim←−C/(I

nC + JnC) ∼= lim←−(A/I
n)⊗R/an (B/Jn) .

Similarly we have

D̂ ∼= lim←−(Â/I
nÂ)⊗ bR/an bR (B̂/JnB̂) ∼= lim←−(A/I

n)⊗R/an (B/Jn) .

HenceĈ ∼= D̂. �

Lemma 8.8. LetS be a scheme of finite type over a field or an excellent dedekind domain,X1 and
X2 twoS-schemes of finite type,x1 ∈ X1 andx2 ∈ X2 two points which map onto the same point
s on S. Assume that̂OX1,x1 and ÔX2,x2 areOS,s-isomorphic. Then there exists anS-schemeU , a
point u ∈ U , two étaleS-morphismsϕ1 : U → X1 andϕ2 : U → X2, such thatϕi(u) = xi and
κ(xi)

∼−→ κ(u) for i = 1, 2.

Proof. See [1, (2.6)]. �

Remark 8.9. Note thatZ is an excellent dedekind domain. So to use this lemma, we usually apply
the inverse limit of schemes to descend the base scheme to become of finite type overZ.

Lemma 8.10. LetA be a strictly Henselian noetherian local ring,S ≔ SpecA, s the closed point of
S, f : X → S a faithfully flat, proper morphism such thatXs is a semistable curve overκ(s). Then
X is a semistable curve overS and satisfies(N3) in Definition7.1.

Proof. Let m be the maximal ideal ofA andk ≔ A/m the residue field. IfXs is smooth overk,
thenX is smooth overS and the lemma is valid. So we may assume thatXs is not smooth overk.
Let x1, x2, . . . , xn be all singular points ofXs. By Lemma 8.2, allxi arek-rational. Soxi defines a
closed immersionγi : Spec k → Xs. As ÔXs,xi

∼= k[[T1, T2]]
/
(T1T2), by Lemma 8.8, there exists a

k-schemeVi of finite type, a pointyi onVi, two étalek-morphismspi : Vi → Xs and

qi : Vi → Spec k[T1, T2]/(T1T2)

such thatpi(yi) = xi andqi(yi) = 0, andκ(yi) = κ(xi) = k. Soyi is ak-rational point onVi, and
it defines a closed immersionδi : Speck → Vi. LetU denote the set of points at whichX is smooth
overS. ThenU is open inX and

Us = Xs − {x1, x2, . . . , xn} .
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By [7, §(8.8), §(8.6), (8.10.5), (11.2.6), (17.7.8)], there exists a finitely generatedZ-subalgebra
R of A, a proper and faithfully flatR-schemeY such thatX is S-isomorphic toY ⊗R A, an open
subschemeU ′ of Y such thatU ′ is smooth overR andU is the inverse image ofU ′ under the
morphismX → Y , an ideala ofR such thataA = m; and for eachi ∈ [1, n], an(R/a)-schemeV ′

i of
finite type, two closed(R/a)-immersionsγ′i : Spec(R/a)→ Y ⊗R (R/a) andδ′i : Spec(R/a)→ V ′

i
such that (

U ′ ⊗R (R/a)
)∐

Spec(R/a)
∐ · · ·∐ Spec(R/a)︸ ︷︷ ︸

n

γ0
∐

γ′1

∐
···
∐

γ′n−−−−−−−−−−−−→ Y ⊗R (R/a)

(8.1)

is surjective whereγ0 : U ′ ⊗R (R/a) → Y ⊗R (R/a) is the inclusion, two étale(R/a)-morphisms
p′i : V

′
i → Y ⊗R (R/a) and

q′i : V
′
i → Spec(R/a)[T1, T2]/(T1T2) ,

finally a commutative diagram

Spec k

γi

ttiiiiiiiiiiiiiiiiiiiii

δi
tt

tt
t

zzttt
tt

��

0

))TTTTTTTTTTTTTTTT

Xs

��

Vipi
oo

qi
//

��

Spec k[T1, T2]/(T1T2)

��

Spec(R/a)

γ′i

ttjjjjjjjjjjjjjjjj

δ′i
uuuu

zzuuuu

0

))SSSSSSSSSSSSSSS

Y ⊗R (R/a) V ′
ip′i

oo
q′i

// Spec(R/a)[T1, T2]/(T1T2)

(8.2)

with all vertical squares Cartesian.
Putp ≔ m ∩ R andk′ ≔ κ(p). Thena ⊆ p. PutA0 ≔ (Rp)

h, S0 ≔ SpecA0, Ŝ ≔ Spec Â0,
X0 ≔ Y ×SpecR S0, X̂ ≔ Y ×SpecR Ŝ. Let s′ be the point onSpecR defined byp. Thens′ is the
image ofs underS → SpecR. Let s0 andŝ be the closed points ofS0 andŜ respectively. As

κ(ŝ) = κ(s0) = κ(s′) = k′ ,

we may regard that
X̂ŝ = (X0)s0 = Ys′ .

For eachi ∈ [1, n], γ′i induces ak′-rational pointx′i onYs′ which is the image ofxi underX → Y .
By the bottom part of Diagram (8.2), we have

ÔYs′ ,x′i ∼= k′[[T1, T2]]
/
(T1T2) . (8.3)

By the surjective morphism (8.1), we know thatx′1, x
′
2, . . . , x

′
n are all singular points ofYs′ overk′.

By Lemma 8.6 and Lemma 8.7,

ÔY,x′i = ÔX̂,x′i = ÔX0,x′i
∼= Â0[[T1, T2]]/(T1T2 − ai) (8.4)

for someai ∈ pÂ0. LetR′ be theR-subalgebra of̂A0 generated bya1, a2, . . . , an. Putq ≔ pÂ0∩R′,
T ≔ SpecR′, Y ′

≔ Y ×SpecR T . Let t ∈ T be the point defined byq. Thenκ(t) = k′ andY ′
t = Ys′ .

By (8.4) and Lemma 8.7, we have

ÔY ′,x′i
∼= ÔT,t[[T1, T2]]/(T1T2 − ai) .
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By Lemma 8.8, there exists aT -schemeW ′
i of finite type, two étaleT -morphismsp′′i : W

′
i → Y ′ and

q′′i : W
′
i → SpecR′[T1, T2]/(T1T2 − ai) ,

a pointz′i onW ′
i such thatp′′i (z

′
i) = x′i, q

′′
i (z

′
i) is the point defined by the prime ideal generated by

q ∪ {T1, T2}, andκ(z′i) = k′. PutWi ≔W ′
i ×T Ŝ,

p̂i ≔ p′′i × idŜ : Wi → X1 ,

q̂i ≔ q′′i × idŜ : Wi → SpecA1[T1, T2]/(T1T2 − ai) .

As z′i ∈W ′
i andŝ ∈ Ŝ both map ontot ∈ T , there is a pointzi ∈Wi which maps onto bothz′i andŝ.

Thenp̂i(zi) = x′i andq̂i(zi) is the point defined by the prime ideal generated byp ∪ {T1, T2}. Thus
Wi may be contracted to a local chart ofx′i. ThereforeX̂ → Ŝ satisfies(N1). By Lemma 8.5X̂ → Ŝ

satisfies(N3). Let D̂i denote the connected component of

SpecOWi

/(
(q̂i)

#(T1), (q̂i)
#(T2)

)

containingzi. ThenD̂i is étale overSpec Â0/(ai). Sinceκ(zi) = k′ and Â0/(ai) is complete, a
fortiori Henselian, by Lemma 3.4̂Di = Spec Â0/(ai). ThusD̂i → Ŝ is a closed immersion. Since
X̂ → Ŝ is separated, the composite morphism

D̂i →֒Wi
p′′′i−−→ X̂

is a closed immersion. So we may regardD̂i as a closed subscheme ofX̂. Sincex′1, x
′
2, . . . , x

′
n are

all singular points ofX̂ŝ overk′, we have

D(X̂/Ŝ) =

n∐

i=1

D̂i .

Note that as subsets of̂X , D̂i ∩ D̂j = ∅ for all 1 6 i < j 6 n. ThusD(X̂/Ŝ) is also a closed
subscheme of̂X.

In the following we shall descendai to elements inA0. Put

A1 ≔
̂
(Rp)

sh , A2 ≔ A1 ⊗A0 A1 , A3 ≔ A1 ⊗A0 A1 ⊗A0 A1 .

For eachi ∈ [1, 3], putSi ≔ SpecAi andXi ≔ Y ×SpecR Si. Obviously we may regard̂A0 as a
subring ofA1. So there is a canonical morphismS1 → Ŝ. ThusX1 → S1 satisfies(N3). For each
i ∈ [1, n], putDi ≔ D̂i ×Ŝ S1. ThenD1,D2, . . . ,Dn are all connected components ofD(X1/S1).
Note thatS2 andS3 might not be noetherian. We shall use the trick of inverse limits of schemes to
avoid this difficult. By Theorem 7.11 and [7,§(8.6)], there exists a finitely generatedA0-subalgebra
A′ of A1 which containsa1, a2, . . . , an such that if letS′

≔ SpecA′ andX ′
≔ X0 ×S0 S

′, then
X ′ → S′ satisfies(N3); and closed subschemesD′

1,D
′
2, . . . ,D

′
n of X ′ such thatD′

i×S′ S1 = Di for

all i ∈ [1, n] andD(X ′/S′) =
n∐
i=1

D′
i. Put

A′′
≔ A′ ⊗A0 A

′ S′′
≔ SpecA′′ X ′′

≔ X0 ×S0 S
′′

A′′′
≔ A′ ⊗A0 A

′ ⊗A0 A
′ S′′′

≔ SpecA′′′ X ′′′
≔ X0 ×S0 S

′′′ .
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Let g1 : X1 → X ′, g2 : X2 → X ′′, g3 : X3 → X ′′′, h1 : S1 → S′, h2 : S2 → S′′, h3 : S3 → S′′′ be
the canonical morphisms. Then we have a commutative diagramwith all squares Cartesian.

X ′′′ // ////

��

X ′′ ////

��

X ′ //

��

X0

��

X3
// ////

g3
���

??
���

��

X2
// //

g2
�

�

??
���

��

X1

g1
�

�

@@
���

//

��

X0

��

������

������

S′′′ ////// S′′ //// S′ // S0

S3
// ////

h3
��

??
��

S2
////

h2
��

??
��

S1

h1
��

@@
��

// S0

������

������

Let s1 be the closed point ofS1 and puts′ ≔ h1(s1) ∈ S′. By Theorem 3.3, we have

pr∗1D(X ′/S′) = pr∗2D(X ′/S′) = D(X ′′/S′′) .

Pulling back toX2, we have

pr∗1D(X1/S1) = pr∗2D(X1/S1) .

By [3, VIII, 1.9], there exists a closed subschemeC of X0 such thatD(X1/S1) = C ×X0 X1. Let
C1, C2, . . . , Cn′ be all connected components ofX0. By Lemma 3.5,n′ = n, and by rearranging the
order ofC1, C2, . . . , Cn′ , we may assume thatCi ×X0 X1 = Di for all i ∈ [1, n]. By [7, §(8.6)]
and by replacingB with a suitably large finitely generatedA0-subalgebra ofA1, we may assume that
Ci ×X0 X

′ = D′
i for all i ∈ [1, n]. Then these dataX ′ → S′,D′

1,D
′
2, . . . ,D

′
n, a1, a2, . . . , an satisfy

conditions in the begin of§5. Let P ′, Q′, θ′, ϑ′ andd′ be the notations forf ′ defined in Remark
3.20; and let(M ′,N ′, σ′, τ ′, ϕ′) be a semistable log structure off ′. Let ρ′ : NnS′ → OS′ be the
homomorphism of monoids defined byρ′(εi) = ai, whereε1, ε2, . . . , εn is a basis ofNn. Then there
is a commutative diagram

NnS′

ρ′
//

γ

��

OS′

��

Q
ϑ

// OS′/O∗
S′

whereγ : NnS′ → Q is the canonical morphism. Asγs̄′ is an isomorphism, by Lemma 5.1 there exists
an affine étale neighborhoodN of s̄′ such thatγ|N lifts to a chatNnN → N ′|N . Note thatA1 is a
strictly Henselian local ring. By [7, (18.8.1)],S1 → S′ factors throughN . So by replacingS′ with
N , we obtains thatγ lifts to a chatρ : NnS′ → N ′ and the composite morphism

N
n
S′

ρ−→ N ′ → OS′

is equal toρ′. By Theorem 7.10, there is an isomorphismϕ : pr∗1N
′ ∼−→ pr∗2N

′ of log structures on
X ′′ such thatpr∗23(ϕ) ◦ pr∗12(ϕ) = pr13(ϕ) onX ′′′. By Lemma 3.21, bothpr∗1(ρ) andpr∗2(ρ) are
lifts of the canonical morphismNnS′′ → Q′′, whereQ′′ is defined in Remark 3.20. So there exists an
element

u = (u1, u2, . . . , un) ∈ (O∗
S′′)n(S′′)

such thatϕ ◦ pr∗1(ρ) = u · pr∗2(ρ) andpr∗23(ui) ◦ pr∗12(ui) = pr13(ui) in O∗
S′′′(S′′′) for all i ∈ [1, n].

We haveai⊗1 = ui ·(1⊗ai) inA′′. Letvi denote the image ofui in A∗
2. Thenai⊗1 = vi ·(1⊗ai) in

A2 andvi defines an isomorphismψi : OS2

∼−→ OS2 ofOS2-modules such thatpr∗23(ψi) ◦pr∗12(ψi) =
pr13(ψi) onS3. By flat descent of quasi-coherent sheaf, there exists an invertibleOS-moduleLi and
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an isomorphismφi : q∗Li
∼−→ OS1 of OS1-modules such that

pr∗1q
∗L

pr∗1(φi) // OS2

ψi

��
pr∗2q

∗L
pr∗2(φi)

// OS2

is commutative, whereq : S1 → S0 is the canonical morphism. SinceA0 is a noetherian local ring,
Li
∼= OS0 . Soφi defines an elementwi ∈ A∗

1 such thatvi = w−1
i ⊗ wi. Put bi ≔ wiai. Then

bi ⊗ 1 = 1 ⊗ bi in A2. By [13, I, 2.18],bi ∈ A0. SinceA1 is flat overÂ0, by Lemma 3.1,bi = w′
iai

for somew′
i ∈ Â∗

0. Now replacingT1 with (w′
i)
−1T1 in (8.4), we obtain

ÔX0,x′i
∼= Â0[[T1, T2]]/(T1T2 − bi) . (8.5)

As A0 = (Rp)
h, there exists a finitely generated étaleR-algebraB, a prime idealq of B, elements

c1, c2, . . . , cn ∈ q, and an isomorphismν : (Bq)
h ∼−→ A0 of R-algebras such thatν(ci) = bi for all

i ∈ [1, n]. PutL ≔ SpecB andZ ≔ Y ×SpecR L. Let l ∈ L be the point defined byq. Asκ(l) = k′,
we may regard thatZl = (X0)s0 . By (8.5) and Lemma 8.7, we have

ÔZ,x′i ∼= ÔL,l[[T1, T2]]/(T1T2 − ci) .
AsB is finitely generated overZ, by Lemma 8.8 there exists a local chart ofZ → L atx′i. By base
extensionS0 → L, we obtains a local chart ofX0 → S0 at x′i. SoX0 → S0 satisfies(N1). By
Lemma 8.5X0 → S0 also satisfies(N3). By base extensionS → S0, we know thatf : X → S
satisfies(N3) and is a semistable curve overS. �

From above lemma and Corollary 7.12, we obtains that

Theorem 8.11. Any semistable curve over a locally noetherian scheme satisfies (N3), thus has a
canonical semistable log structure.

Theorem 8.12. Let S be a noetherian scheme andf : X → S be a proper and faithfully flat
morphism. ThenX is a semistable curve overS if and only if for every closed pointy ∈ S,
X ×S Specκ(y)s → Specκ(y)s is a semistable curve.

Theorem 8.13.Let

X ′
f ′

//

p

��
�

S′

q

��
X

f
// S

be a Cartesian square of schemes such that

(1) f ′ is a semistable curve,
(2) q is faithfully flat,
(3) f is proper and of finite presentation.

Thenf is also a semistable curve.

Proof. Obviouslyf is also faithfully flat. So by Definition 8.3, we may assume that S = Spec k
wherek is a separably closed field, andS′ is affine. By Theorem 7.11, we may further assume that
S′ is of finite type overS. Then the theorem is by Theorem 7.18. �
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