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We discuss the classical statement of group classification problem and some its extensions
in the general case. After that, we carry out the complete extended group classification
for a class of (1+1)-dimensional nonlinear diffusion–convection equations with coefficients
depending on the space variable. At first, we construct the usual equivalence group and
the extended one including transformations which are nonlocal with respect to arbitrary
elements. The extended equivalence group has interesting structure since it contains a
non-trivial subgroup of non-local gauge equivalence transformations. The complete group
classification of the class under consideration is carried out with respect to the extended
equivalence group and with respect to the set of all point transformations. Usage of extended
equivalence and correct choice of gauges of arbitrary elements play the major role for simple
and clear formulation of the final results. The set of admissible transformations of this class
is preliminary investigated.

1 Introduction

In the present series of papers we perform extended symmetry analysis of a class of variable
coefficient nonlinear diffusion–convection equations of the general form

f(x)ut = (g(x)A(u)ux)x + h(x)B(u)ux, (1)

where f = f(x), g = g(x), h = h(x), A = A(u) and B = B(u) are arbitrary smooth functions of
their variables, fghA 6= 0 and (Au, Bu) 6= (0, 0). If B = 0, it is convenient to assume h = 1 for
determinacy. Different kinds of properties and objects related to the framework of symmetry
approach such as Lie, nonclassical and potential symmetries, equivalence groups, admissible
transformations, exact solutions and conservation laws are investigated for these equations.

Equations from class (1) can be used to model a wide variety of phenomena in physics,
chemistry, mathematical biology etc. Constant coefficient equations of the form (1), often called
the Richard’s equations, describe vertical one-dimensional transport of water in a homogeneous
non-deformable porous media. This equation arises naturally in certain physical applications.
Thus, for example, superdiffusivities of this type have been proposed in [24] as a model for long-
range Van der Waals interactions in thin films spreading on solid surfaces. Equation (1) also
appears in the study of cellular automata and interacting particle systems with self-organized
criticality (see [13] and references therein). It is a model of water flow in unsaturated soil [59].
When B(u) = 0 equation (1) describes stationary motion of a boundary layer of a fluid over
a flat plate, vortex of an incompressible fluid in porous medium for polytropic relations of gas
density and pressure [4]. The outstanding representative of the class of equations (1) is the
Burgers equation that is the mathematical model of a large number of physical phenomena.
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The Lie symmetry transformations of linear equations of form (1) (A,B = const) were deter-
mined by Lie [41] in his classification of linear second-order PDEs with two independent variables.
(See also a modern treatment of this subject in [48].) Investigation of the nonlinear equations
from class (1) by means of symmetry methods were started in 1959 with the paper [47] by Ovsian-
nikov where he studied Lie symmetries of the nonlinear diffusion equations ut = (A(u)ux)x. The
next considered class [35] covers the generalized Burgers equations ut = uxx + B(u)ux. Dorod-
nitsyn [17] carried out the group classification of the class ut = (A(u)ux)x + C(u). Akhatov,
Gazizov and Ibragimov [1] classified the equations ut = A(ux)uxx. This latter classification
gave quasi-local symmetries of the nonlinear diffusion equations ut = (A(u)ux)x. A number of
authors [46, 18, 68] investigated Lie symmetries of the class of the constant-coefficient diffusion–
convection equations

ut = (A(u)ux)x +B(u)ux.

However, its complete and strong group classification was obtained only recently [53]. M.L. Gan-
darias [20] supplemented this list considering Lie symmetries of the variable-coefficient equation
ut = (un)xx + g(x)um + f(x)usux. These results were generalized in [14], where Lie symmetries
of nonlinear reaction–diffusion equations with convection term ut = (A(u)ux)x+B(u)ux+C(u)
were studied. The complete group classification of the variable-coefficient diffusion–convection
equations

f(x)ut = (g(x)A(u)ux)x +B(u)ux,

was carried out in [53]. In the recent papers [63, 64] the complete group classification of the
class of reaction–diffusion equations f(x)ut = (g(x)unux)x + h(x)um were presented. In [34]
we classified Lie symmetries of equations from class (1) with respect to its usual equivalence
group. It should be noted that all the above mentioned equations are particular cases of the
more general class of equations

ut = F (t, x, u, ux)uxx +G(t, x, u, ux),

that was classified in [5]. However, since the equivalence group of the latter class is essentially
wider than those for the considered subclasses, the results of [5] cannot be directly used to
symmetry classification of the above mentioned equations. Nevertheless, these results are useful
to find additional equivalence transformations for the above classes.

Equations of form (1) have been also investigated from points of view of other kinds of
symmetries. For instance, potential symmetries of subclasses of (1), where e.g. either f = g =
h = 1 or B = 0, were studied in [7, 8, 33, 56, 60, 61, 62]. Conditional symmetries (usual and
potential ones) for some subclasses of (1), in particular for the fast diffusion equation, were
constructed in [9, 21, 58].

Study of group classification problems is interesting not only from the purely mathematical
point of view, but is also important for applications [48]. Physical models are often constrained
with a priori requirements to symmetry properties following from physical laws, for example,
from the Galilean or special relativity principals. Moreover, modelling differential equations
could contain parameters or functions which have been found experimentally and so are not
strictly fixed. (These parameters and functions are called arbitrary elements.) At the same time,
mathematical models should be enough simple to analyze and solve them. Symmetry approach
allows us to take the following relevancy criterion for choosing parameter values. Modelling
differential equations have to admit a symmetry group with certain properties or the most
extensive symmetry group from the possible ones. This directly leads to necessity of solving
group classification problems.
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The group classification in a class of differential equations is reduced to integration of a
complicated overdetermined system of partial differential equations with respect to both coef-
ficients of infinitesimal symmetry operators and arbitrary elements. This is why it is a much
more complicated problem than finding the Lie symmetry group of a single system of differential
equation. Whereas programs for solving the latter problem had been created for the most of
existing symbolic calculations packages, the significant progress in computer realization of the
group classification algorithm was achieved only recently [66]. There were a lot of attempts
in computation of Lie symmetries of differential equations using different systems of computer
algebras, such as MATHEMATICA, MAPLE, MACSYMA, REDUCE, AXIOM, MuPAD etc.
Different symbolic calculation packages [15, 16, 25, 67] (see also detailed review in [26, 27])
created within the above mentioned systems are able to construct determining equations for
symmetry operators and integrate them in simple cases. However, the existing packages have a
number of essential disadvantages (e.g., restrictions on nonlinearities) and cannot perform the
correct and exhaustive group classification in quite complicated classes of differential equations.

In general, problems of group classification, except for really trivial cases, are very difficult.
This can be illustrated by a multitude of papers where classification problems are solved incor-
rectly or incompletely. There are also many papers on “preliminary group classification” where
authors list some cases of Lie symmetry extension but do not claim that classification problems
are solved completely. For this reason finding an effective approach to simplification of a group
classification problem is essentially equivalent to feasibility of solving the problem at all.

The ultimate goal of the first part of this paper series is to present a modern treatment
of group classification and to give an example of exhaustive solution of a group classification
problem in quite a difficult case. After discussing this problem and some its possible extensions
in the general setting, we carry out the enhanced group classification for class (1). Different
original tools are applied that allows us to solve the problem completely.

Thus, we construct both the usual equivalence group G∼ and the extended one Ĝ∼ includ-
ing transformations which are nonlocal with respect to arbitrary elements. The structure of
the extended equivalence group Ĝ∼ is investigated. It has a non-trivial subgroup of (nonlocal)
gauge equivalence transformations. Acting by these transformations is equivalent to rewriting
equations in another form. In spite of real equivalence transformations, a role of gauge ones in
group classification comes not to choice of representatives in sets of equivalent equations but
to choice of form of these representatives. Application of the nonlocal gauge transformations
is important under solving the group classification problem in class (1). Moreover, it seems
practically impossible to obtain closed classification results for the class under consideration
without using ‘unusual’ transformations from the extended equivalence group. This conclusion
was made after the preliminary group classification of class (1) with respect to the usual equiva-
lence group G∼ [29]. The corresponding list of equations is not optimal since for some equations
it includes a number of their different representatives.

Another substantial improvement proposed in this paper to group classification methods is
the technique of variable gauges of arbitrary elements by equivalence transformations. Two
gauges g = 1 and g = h are used simultaneously. Both of them are natural generalizations of
the gauge g = 1 effectively applied in [53] for the subclass h = 1 of (1) although the gauge g = h
seems more complicated than the gauge g = 1. Indeed, we present complete group classifications
in both the gauges to compare the obtained results. The comparison shows that the best way
for gauging arbitrary elements of class (1) is to combine the gauges depending on classification
cases. For optimality of presentation, the classification list enhanced with the variable gauge
will be given in the second part of the series [30] where it will be utilized for the construction of
exact solutions of equations from class (1) via Lie reductions.

The method of furcate split is also used under the classification. It is a simple and effective tool
based on a specific way of working with classifying conditions without their complete integration.
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First the method was proposed in [44] and then applied in different modifications to solve a
number of group classification problems [12, 34, 51, 53, 65]. Its application is not crucial for the
classification problem of class (1) but the achieved simplifications of the proof are considerable.

The last but not least tool is the regular usage of additional equivalences between cases of Lie
symmetry extension, which are not generated by transformations from the (extended) equiva-
lence group. Nontrivial additional equivalence transformations were first constructed in [39] for
special cases of (constant coefficient) nonlinear reaction–diffusion equations. (The group classi-
fication of these equations was carried out in [17]. See also [3, Chapter 10].) In this paper all the
additional equivalences in class (1) are constructed and explicitly presented. The usage of these
equivalences gives an auxiliary test for the classification results and simplifies further applica-
tion of them, e.g., to finding exact solutions. Additional equivalences are naturally embedded
in the framework of admissible transformations that gives a constructive way for the exhaustive
description of them. The structure of the set of admissible transformations of class (1) is too
complicated. In this paper only preliminary results about this set, sufficient for the description
of additional equivalences, are presented.

The rest of the paper is organized as follows. First of all (Section 2) we describe the general
formulation of group classification problems and an algorithm of their solution. In Section 3
we adduce some basic notions on admissible transformations and different generalizations of
equivalence groups of classes of differential equations. Then (Section 4) the complete group of
usual equivalence transformations for class (1) and the extended one including transformations
which are nonlocal with respect to arbitrary elements are found. Taking the non-trivial subgroup
of gauge equivalence transformations into account strongly simplifies the solution of the group
classification problem. The results of group classification for class (1) in two different gauges
(g = 1 and g = h) are presented and analyzed in Section 5. We note that for both gauges two
essentially different classifications are presented: the classification with respect to the (extended)
equivalence group and the classification with respect to all possible point transformations. The
sketch of the proof of the obtained results is given in Section 6. Section 7 is devoted to the
preliminary investigation of admissible transformations for equations from class (1).

The derived results form a basis of the further consideration of class (1) from the symmetry
point of view. An important notion of contractions of differential equations will be introduced
and developed in the second part [30] of the series. Contractions between cases of Lie symmetry
extensions in class (1) will be found. Lie and non-Lie reductions and exact solutions of equations
from these class also will be constructed. In the third part [31] we study the local and potential
conservation laws of equations from class (1) and find all possible inequivalent potential systems
of equations from class (1). The “contraction concept” will be further generalized via introducing
the notion of contractions of conservation laws. In the last, fourth, part [32] of the series we
investigate symmetry properties of potential systems associated with equations (1) and describe
connections between the potential and point symmetries of diffusion–convection equations.

2 Classical algorithm of group classification and

additional equivalences

Group classification is one of symmetry tools used to choose physically relevant models from
parametric classes of systems of (ordinary or partial) differential equations. The parameters can
be constants or functions of independent variables, unknown functions and their derivatives.

Since in the literature there exist different points of view on the framework of group classi-
fication, below we give a modern exposition of the classical Lie–Ovsiannikov approach [48] in
detail and then briefly formulate its possible modifications with extensions of equivalences under
consideration or with investigation of wider classes of symmetries.
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Consider the class L|S of systems Lθ: L(x, u(p), θ(x, u(p))) = 0 of l differential equations for
m unknown functions u = (u1, . . . , um) of n independent variables x = (x1, . . . , xn), which is
parameterized with the functions θ = θ(x, u(p)). Here u(p) denotes the set of all the derivatives
of u with respect to x of order not greater than p, including u as the derivatives of the zero
order. L = (L1, . . . , Ll) is a tuple of l fixed functions depending on x, u(p) and θ. θ denotes

the tuple of arbitrary (parametric) functions θ(x, u(n)) = (θ1(x, u(p)), . . . , θ
k(x, u(p))) running

through the set S of solutions of the system S(x, u(p), θ(q)(x, u(p))) = 0. This system consists of
differential equations with respect to θ, where x and u(p) play the role of independent variables
and θ(q) stands for the set of all the partial derivatives of θ of order not greater than q. Usually
the set S is additionally constrained by the non-vanish condition Σ(x, u(p), θ(q)(x, u(p))) 6= 0
with a differential function Σ. In what follows we call the functions θ arbitrary elements of the
class L|S .

Let Lθ
(k) denote the set of all algebraically independent differential consequences of the sys-

tem Lθ that have, as differential equations, orders not greater than k. Under the local approach,
the system Lθ

(k) is identified with the manifold determined by Lθ
(k) in the jet space J (k).

Each one-parametric group of point transformations that leaves the system Lθ invariant
corresponds to an infinitesimal symmetry operator of the form

Q = ξi(x, u)∂xi + ηa(x, u)∂ua .

Here and below the summation over the repeated indices is assumed. The indices i and a run
from 1 to n and from 1 to m, respectively.

The complete set of such groups generates the maximal Lie invariance (or principal) group
Gθ = Gmax(Lθ) of the system Lθ. The group Gθ is the connected component of the unity in
the group Ḡθ of all point symmetry transformations of Lθ. A subgroup Gθ

d of Ḡθ, which can
be canonically identified with Ḡθ/Gθ, is called the group of discrete symmetries in contrast to
the group Gθ of continuous symmetries. The maximal Lie invariance (or principal) algebra
Aθ = Amax(Lθ) formed by the infinitesimal symmetry operators of Lθ is the Lie algebra of the
principal group Gθ.

The infinitesimal invariance criterion of the system Lθ with respect to the Lie symmetry
operator Q has the form [48, 45],

Q(p)L(x, u(p), θ(x, u(p)))
∣

∣

Lθ
(p)

= 0, Q(p) := Q+
∑

0<|α|6p

ηaα∂ua
α
,

i.e., the result of acting by Q(p) on L vanishes on the manifold Lθ
(p). Here Q(p) denotes the

standard p-th prolongation of the operator Q, ηaα = Dα1
1 . . . Dαn

n Q[ua]+ξiuaα,i, Di = ∂i+uaα,i∂ua
α

is the operator of total differentiation with respect to the variable xi, Q[ua] = ηa(x, u)−ξi(x, u)uai
is the characteristic of operator Q, associated with ua. The tuple α = (α1, . . . , αn) is a multi-
index, αi ∈ N ∪ {0}, |α|: = α1 + · · · + αn. The variables uaα and uaα,i of the jet space J (r)

correspond to the derivatives

∂|α|ua

∂xα1
1 . . . ∂xαn

n
and

∂|α|+1ua

∂xα1
1 . . . ∂x

αi−1

i−1 ∂xαi+1
i ∂x

αi+1

i+1 . . . ∂xαn
n

.

The kernel of principal groups of the class L|S is the group G∩ = G∩(L|S) =
⋂

θ∈S Gθ. Its Lie
algebra is the kernel of principal algebras (or, the kernel algebra) A∩ = A∩(L|S) =

⋂

θ∈S Aθ.
The group of point transformations in the space of the variables (x, u, θ), which preserve the

form of the systems from L|S (i.e., transforming any system from L|S to the system from the
same class) is called the equivalence group of the class L|S and is denoted by G∼ = G∼(L|S).
The conventional direct method is the most effective for calculating the entire equivalence group.
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Sometimes a subgroup of G∼ is considered instead of the complete (point) equivalence group. For
example, it can be the group of continuous equivalence transformations which can be calculated
by the simpler infinitesimal method adopted to the case of equivalence transformations.

Different extensions of the standard notion of equivalence group are also possible [50]. Usually
one considers only transformations being projectible on the space of the variables x and u. Let
us remind that the point transformation ϕ: z̃ = ϕ(z) in the space of the variables z = (z1, . . . , zk)
is called projectible on the space of variables z′ = (zi1 , . . . , zik′ ), where 1 ≤ i1 < · · · < ik′ ≤ k,
if the expressions for z̃′ depend only on z′. We denote the restriction of ϕ on the space of z′ as
ϕ|z′ : z̃′ = ϕ|z′(z

′). If the arbitrary elements θ explicitly depend on x and u only (one always
can do it, assuming derivatives as new dependent variables), we may consider the generalized
equivalence group G∼

gen(L|S) [43], admitting dependence of transformations of (x, u) on θ.
Sometimes it is possible to consider other generalizations of equivalence groups, e.g., groups of

transformations involving nonlocality with respect to arbitrary elements (see [29] and Section 4
of the present paper).

The problem of group classification is to find all possible inequivalent cases of extensions
of Amax, i.e., to list all G∼-inequivalent values of the arbitrary parameters θ satisfying the
condition Aθ 6= A∩. The exhaustive investigation of this problem in the classical statement
involves finding the kernel A∩ of the principal algebras, the construction of the equivalence
group G∼ and the description of all possible G∼-inequivalent values of parameters θ that admit
the principal algebras wider than A∩. The corresponding procedure is presented in the form of
the following algorithm [2, 48].

Step 1. Determining equations. The infinitesimal invariance criterion implies a linear system
of differential equations for coefficients of an arbitrary Lie symmetry operatorQ of the system Lθ.

This system is obviously parameterized with the arbitrary elements θ. After splitting it
with respect to the unconstrained variables (i.e., unconstrained derivatives of u), we may obtain
that some of the determining equations do not contain arbitrary elements and therefore can be
integrated immediately. The others (i.e., the equations containing arbitrary elements explicitly)
are called the classifying equations. The main difficulty of group classification is the need to
solve the classifying equations with respect to the coefficients of the operator Q and arbitrary
elements simultaneously.

Step 2. Kernel algebra. The decomposition of the determining equations with respect to all
the unconstrained derivatives of arbitrary elements results in a linear system of partial differential
equations for coefficients of the infinitesimal operator Q only. Solving this system yields the
algebra A∩.

Step 3. Equivalence group. In order to construct the equivalence group G∼ of the class L|S,
we have to investigate the point symmetry transformations of the united system Lθ and S,
considering it as a system of partial differential equations with respect to θ with the independent
variables x and u(p). The transformation components for kth order derivatives of u are obtained
by kth order prolongation of the transformation components for u. After restricting ourselves
in studying the connected component of unity in G∼, we can use the Lie infinitesimal method.
To find the complete equivalence group (including discrete transformations), we have to use the
more complicated direct method.

Step 4. Symmetry extensions. If Aθ is an extension of A∩ (i.e., Aθ 6= A∩) then the classifying
equations define a system of nontrivial equations for θ. Depending on their form and number, we
obtain different cases of extensions of A∩. To integrate completely the determining equations, we
have to investigate a large number of such cases. In order to avoid a cumbersome enumeration
of possibilities in solving the determining equations, we can use, for instance, algebraic methods
[5, 22, 40, 69], a method which involves the investigation of compatibility of the classifying
equations [12, 44, 51, 53, 65] or combined methods, in particular, methods based on the (strong)
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normalization property of a class of systems [28, 50, 52, 54, 55].

The latter step can be completed with calculating explicit conditions (namely, systems of
differential equations) on arbitrary elements, providing extensions of Lie symmetry. (See, e.g.,
[10, 11] for examples of such calculations.) In other words, the subsets of values of arbitrary
elements, each of which is formed by the equations equivalent to a listed inequivalent extension
case, should be constructively described.

The result of application of the above algorithm is a list of equations with their Lie invariance
algebras. The problem of group classification is assumed to be completely solved if

i) the list contains all the possible inequivalent cases of extensions;

ii) all the equations from the list are mutually inequivalent with respect to the transformations
from G∼ (or the considered generalization of G∼);

iii) the obtained algebras are the maximal invariance algebras of the corresponding equations.

The list may include equations being mutually equivalent with respect to point transformations
which do not belong to G∼. Knowing such additional equivalences allows ones to essentially
simplify further investigation of L|S. Constructing them can be considered as the fifth step
of the algorithm of group classification. Then, the above enumeration of requirements to the
resulting list of classification can be completed by the following item:

iv) all the possible additional equivalences between the listed equations are constructed in an
explicit form.

A way for finding additional equivalences is based on the fact that similar equations have sim-
ilar maximal invariance algebras. Another way is systematical study of all possible admissible
transformations. The precise definition of such transformations is given in the next section.

Besides the above mentioned generalizations of the problem of group classification to clas-
sification of Lie symmetries with respect to different generalized groups of equivalence trans-
formations, one can consider classifications of different kinds of symmetries (potential, contact,
conditional etc.) with respect to different sets of transformations. For example, in [23] Gazi-
zov carried out the group classification of contact symmetries of nonlinear potential filtration
equations with respect to the group of contact equivalence transformations.

Different approaches can be used for classifications of potential symmetries. The most natural
one is the classification with respect to the group of transformations which is (in some sense) a
simple extension of the usual (generalized) point equivalence group to the potential variables [7,
8, 56, 60, 61, 62]. Another possibility is to additionally consider purely potential equivalence
transformations [56].

The most common classification problems for the nonclassical (conditional) symmetries [6]
is the one of the classification of (systems of) differential equations admitting conditional sym-
metries and classification of conditional symmetries of a single system with respect to its Lie
symmetry group. (See, e.g., [19, 58, 70] for precise definitions and examples of solving classifi-
cation problems.)

3 Admissible transformations, conditional equivalence groups

and other generalizations

For θ, θ̃ ∈ S we call the set of point transformations that map the system Lθ into the system Lθ̃

the set of admissible transformations from Lθ into Lθ̃ and denote it by T(θ, θ̃). If the systems Lθ

and Lθ̃ are equivalent with respect to point transformations then T(θ, θ̃) = Gθ ◦ ϕ0 = ϕ0 ◦ Gθ̃,
where ϕ0 is a fixed transformation from T(θ, θ̃). Otherwise T(θ, θ̃) = ∅. The set T(θ,L|S) =

7



{ (θ̃, ϕ) | θ̃ ∈ S, T(θ, θ̃) 6= ∅, ϕ ∈ T(θ, θ̃) } is called the set of admissible transformations of the
equation Lθ in the class L|S . The set T(L|S) = { (θ, θ̃, ϕ) | θ, θ̃ ∈ S, T(θ, θ̃) 6= ∅, ϕ ∈ T(θ, θ̃) }
is called the set of admissible transformations in L|S .

Note 1. The first set of admissible transformations was described by Kingston and Sophocleous
in [36] for a class of generalized Burgers equations. These authors call transformations of such
type as form-preserving ones [37, 38]. The admissible transformations of a class of variable-
coefficient reaction–diffusion equations were studied in [63]. The admissible transformations of
different classes of nonlinear Schrödinger equations are exhaustively described in the series of
papers [28, 52, 54, 55, 57] in terms of normalized classes of differential equations. Admissible
transformations within the infinitesimal approach were studied in [10].

Note 2. In the case of one dependent variable (m = 1) all the above and below notions can be
extended to contact transformations.

The notions introduced in Section 2 can be re-defined in terms of admissible transformations.
Thus, e.g., the point symmetry group Gθ of the system Lθ coincides with T(θ, θ). Any element Φ
from the usual equivalence group G∼(L|S) is a point transformation in the space of (x, u(p), θ),
which is projectible on the space of (x, u(p′)) for any 0 ≤ p′ ≤ p, and Φ|(x,u(p′))

being the p′-th

order prolongation of Φ|(x,u), and ∀θ ∈ S: Φθ ∈ S and Φ|(x,u) ∈ T(θ,Φθ).
Similarly, any element Φ from the generalized equivalence group G∼

gen is a point transformation
in (x, u, θ)-space such that ∀θ ∈ S: Φθ ∈ S and Φ(·, ·, θ(·, ·))|(x,u) ∈ T(θ,Φθ). Roughly speaking,
G∼(L|S) is the set of admissible transformations which can be applied to any θ ∈ S andG∼

gen(L|S)
is formed by the admissible transformations which can be separated to classes parameterized
with θ running the whole S.

The extended equivalence group Ḡ∼ = Ḡ∼(L|S) of the class L|S is formed by the transfor-
mations each of which is represented by the pair Φ = (Φ̌, Φ̂). Here Φ̌ is a one-to-one mapping
in the set of arbitrary elements assumed as functions of (x, u(p)) and Φ̂ = Φ|(x,u) is a point

transformation of (x, u) belonging to T(θ, Φ̌θ) for any θ from S.
The generalized extended equivalence group Ḡ∼

gen = Ḡ∼
gen(L|S) of the class L|S consists of

transformations each of which is represented by the tuple Φ = (Φ̌, {Φ̂θ, θ∈S}). Here Φ̌ is a
one-to-one mapping in the set of arbitrary elements assumed as functions of (x, u(p)) and for

any θ from S the element Φ̂θ = Φ|θ(x,u) is a point transformation of (x, u) belonging to T(θ, Φ̌θ).
Imposing additional constraints on arbitrary elements, we may single out a subclass in the

class under consideration whose equivalence group is not contained in the equivalence group of
the whole class. Let L|S′ be the subclass of the class L|S , which is constrained by the additional
system of equations S′(x, u(p), θ(q′)) = 0 and inequalities Σ′(x, u(p), θ(q′)) 6= 0 with respect to the
arbitrary elements θ = θ(x, u(p)). (Σ

′ can be the 0-tuple.) Here S ′ ⊂ S is the set of solutions of
the united system S = 0, S′ = 0, ΣΣ′ 6= 0. We assume that the united system is compatible for
the subclass L|S′ to be nonempty. The equivalence group G∼(L|S′) of the subclass L|S′ is called
a conditional equivalence group of the whole class L|S under the conditions S′ = 0, Σ′ 6= 0. The
conditional equivalence group G∼(L|S′) of the class L|S under the additional conditions S′ = 0,
Σ′ 6= 0 is called maximal if for any subclass L|S′′ of the class L|S containing the subclass L|S′

we have G∼(L|S′) * G∼(L|S′′). Only maximal conditional equivalence groups are interesting.
The equivalence group G∼(L|S) generates an equivalence relation on the set of pairs of ad-

ditional auxiliary conditions and the corresponding conditional equivalence groups. Namely, if
a transformation from G∼(L|S) transforms the system S′ = 0, Σ′ 6= 0 to the system S′′ = 0,
Σ′′ 6= 0 then the conditional equivalence groups G∼(L|S′) and G∼(L|S′′) are similar with respect
to this transformation and will be called G∼-equivalent. If a conditional equivalence group is
maximal then any conditional equivalence group G∼-equivalent to it is also maximal.

Building on the concept of conditional equivalence, we can formulate the problem of describing
T(L|S) analogously to the usual group classification problem. Nontrivial additional auxiliary
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conditions for arbitrary elements naturally arise when studying T(L|S). Typically, the following
steps have to be carried out:

1. Construction of G∼(L|S) (or G
∼
gen(L|S), etc.).

2. Classification of conditional equivalence groups in the class L|S , i.e., searching for a com-
plete family of G∼-inequivalent additional auxiliary conditions Sγ = 0, Σγ 6= 0, γ ∈ Γ,
such that G∼(L|Sγ ) is a maximal conditional equivalence group of the class L|S for any
γ ∈ Γ. Here Sγ ⊂ S is the set of solutions of the united system S = 0, Sγ = 0, ΣΣγ 6= 0.

3. Classification of admissible transformations in the class L|S , which do not belong to any
conditional equivalence groups (purely partial equivalence transformations), i.e., searching
for a complete family of G∼-inequivalent pairs (S̃λ,Φλ), λ ∈ Λ, where for every λ ∈ Λ the
subset S̃λ of S is associated with a well-defined subclass L|S̃λ

of L|S , the point transfor-
mation Φλ does not belong to the equivalence group of any subclass of L|S containing the
subclass L|S̃λ

and Φλ(L|S̃λ
) ⊂ L|S .

It is obvious that any conditional equivalence is a partial one under the same additional
constraint and any point symmetry transformation for a fixed value θ = θ0(x, u(p)) is a partial
equivalence transformation under the constraint θ = θ0.

Actually, the proposed procedure is far from optimal. More elaborate techniques are based
on the notion of normalized classes [57].

4 Equivalence transformations and choice

of investigated class

We start the investigation of Lie symmetry properties of equations from class (1) by finding
equivalence groups of this class.

The usual equivalence group G∼ of class (1) is formed by the nondegenerate point transfor-
mations in the space of (t, x, u, f, g, h,A,B), which are projectible on the space of (t, x, u), i.e.,
they have the form

(t̃, x̃, ũ) = (T t, T x, T u)(t, x, u),

(f̃ , g̃, h̃, Ã, B̃) = (T f , T g, T h, TA, TB)(t, x, u, f, g, h,A,B) (2)

and transform any equation from class (1) for the function u = u(t, x) with the arbitrary
elements (f, g, h,A,B) to an equation from the same class for the function ũ = ũ(t̃, x̃) with the
new arbitrary elements (f̃ , g̃, h̃, Ã, B̃).

Theorem 1. The group G∼ consists of the transformations

t̃ = δ1t+ δ2, x̃ = X(x), ũ = δ3u+ δ4,

f̃ =
ε1δ1
Xx

f, g̃ = ε1ε
−1
2 Xx g, h̃ = ε1ε

−1
3 h, Ã = ε2A, B̃ = ε3B,

where δj (j = 1, . . . , 4) and εi (i = 1, . . . , 3) are arbitrary constants, δ1δ3ε1ε2ε3 6= 0, X is an
arbitrary smooth function of x, Xx 6= 0.

It appears that class (1) admits other equivalence transformations which do not belong to G∼

and form, together with usual equivalence transformations, an extended equivalence group. We
demand for these transformations to be point with respect to (t, x, u). The explicit form of
the new arbitrary elements (f̃ , g̃, h̃, Ã, B̃) is determined via (t, x, u, f, g, h,A,B) in some non-
fixed (possibly, nonlocal) way. We construct the complete (in this sense) extended equivalence
group Ĝ∼ of class (1), using the direct method.

9



Theorem 2. The equivalence group Ĝ∼ is formed by the transformations

t̃ = δ1t+ δ2, x̃ = X(x), ũ = δ3u+ δ4,

f̃ =
ε1δ1ϕ

Xx
f, g̃ = ε1ε

−1
2 Xxϕg, h̃ = ε1ε

−1
3 ϕh, Ã = ε2A, B̃ = ε3(B + ε4A),

where δj (j = 1, . . . , 4) and εi (i = 1, . . . , 4) are arbitrary constants, δ1δ3ε1ε2ε3 6= 0, X is an

arbitrary smooth function of x, Xx 6= 0, ϕ = e
−ε4

∫ h(x)
g(x)

dx
.

Existence of such equivalence transformations can be explained in many respects by features
of representation of equations in the form (1). This form leads to an ambiguity since the same
equation has an infinite series of different representations. More exactly, two representations (1)
with the arbitrary element tuples (f, g, h,A,B) and (f̃ , g̃, h̃, Ã, B̃) determine the same equation
if and only if

f̃ = ε1ϕf, g̃ = ε1ε
−1
2 ϕg, h̃ = ε1ε

−1
3 ϕh, Ã = ε2A, B̃ = ε3(B + ε4A), (3)

where ϕ = e
−ε4

∫ h(x)
g(x)

dx
, εi (i = 1, . . . , 4) are arbitrary constants, ε1ε2ε3 6= 0 (the variables t, x

and u are not transformed!).
Transformations (3) act only on arbitrary elements, but not on the variables t, x, u and

therefore, do not really change the equations. In general, transformations of such type can be
considered as trivial [42] (“gauge”) equivalence transformations and form the “gauge” (normal)
subgroup Ĝ∼g of the extended equivalence group Ĝ∼.

We note that transformations (3) with ε4 6= 0 are nonlocal with respect to arbitrary elements,
otherwise they belong to G∼ and form the “gauge” (normal) subgroup G∼g of the equivalence
group G∼.

The factor-group Ĝ∼/Ĝ∼g coincides for class (1) with G∼/G∼g and can be assumed to consist
of the transformations

t̃ = δ1t+ δ2, x̃ = X(x), ũ = δ3u+ δ4,

f̃ =
δ1
Xx

f, g̃ = Xx g, h̃ = h, Ã = A, B̃ = B,
(4)

where δi (i = 1, . . . , 4) are arbitrary constants, δ1δ3 6= 0, X is an arbitrary smooth function of x,
Xx 6= 0.

Note 3. After extending the set of arbitrary elements of class (1) with one more arbitrary
element l = l(x) constrained by the equation lx = h/g, we can consider the extended equivalence
group Ĝ∼ of class (1), up to gauge transformations of translations with respect to l, as the usual
equivalence group of the modified class. The transformation components corresponding to the
arbitrary elements depending on x take the form

f̃ =
ε1δ1e

−ε4l

Xx
f, g̃ = ε1ε

−1
2 Xxe

−ε4l g, h̃ = ε1ε
−1
3 e−ε4l h, l̃ = ε2ε

−1
3 l + ε5.

It was convenient during investigation of the subclass of the class (1) with the additional
condition h = 1 to gauge the parameter-function g to 1 [53]. In the same way, using the
transformation t̃ = t, x̃ =

∫

dx
g(x) , ũ = u from G∼/G∼g, we can reduce equation (1) to

f̃(x̃)ũt̃ = (A(ũ)ũx̃)x̃ + h̃(x̃)B(ũ)ũx̃,

where f̃(x̃) = g(x)f(x), g̃(x̃) = 1 and h̃(x̃) = h(x). (Likewise any equation of form (1) can be
reduced to the same form with f̃(x̃) = 1.) That is why, without loss of generality we can restrict
ourselves to investigation of the equation

f(x)ut = (A(u)ux)x + h(x)B(u)ux. (5)

10



Any transformation from Ĝ∼, which preserves the condition g = 1, has the form

t̃ = δ1t+ δ2, x̃ = δ5
∫

eδ8
∫
hdx+ δ6, ũ = δ3u+ δ4,

f̃ = δ1δ
−1
5 δ9fe

−2δ8
∫
h, h̃ = δ9δ

−1
7 he−δ8

∫
h, g̃ = g,

Ã = δ5δ9A, B̃ = δ7(B + δ8A),

where δi (i = 1, . . . , 9) are arbitrary constants, δ1δ3δ5δ7δ9 6= 0 and
∫

h =
∫

h(x) dx. The set

of such transformations is a subgroup of Ĝ∼. Its projection Ĝ∼
1 to the condition g = 1 can be

considered as the generalized extended equivalence group of class (5) after admitting dependence
of transformations of variables on arbitrary elements [43] and additional supposition that such
dependence can be nonlocal [57]. The group G∼

1 of usual (local) equivalence transformations
of class (5) coincides with the subgroup singled out from Ĝ∼

1 via the condition δ8 = 0. The
transformations from Ĝ∼

1 with non-vanishing values of the parameter δ8 are nonlocal in the
arbitrary element h and are projections of compositions of usual equivalence and nonlocal gauge
transformations from Ĝ∼.

There exists a way to avoid operations with nonlocal equivalence transformations. More ex-
actly, we can assume that the parameter-function B is determined up to an additive term pro-
portional to A and subtract such term from B before applying equivalence transformations (4).

At the same time, there is another possible generalization of the gauge g = 1 from the case
h = 1 to the general case of h, namely the gauge g = h. Any equation of the form (1) can be
reduced to the equation

f(x)ut = (h(x)A(u)ux)x + h(x)B(u)ux (6)

by the transformation t̃ = t, x̃ =
∫ h(x)

g(x)dx, ũ = u from G∼/G∼g. The usual equivalence group G∼
h

of the subclass (6) consists of the transformations

t̃ = δ1t+ δ2, x̃ = δ5x+ δ6, ũ = δ3u+ δ4,

f̃ = δ1δ
−1
5 δ9fe

δ8x, h̃ = δ9δ
−1
7 heδ8x, Ã = δ5A, B̃ = δ7(B − δ8A),

where δi (i = 1, . . . , 9) are arbitrary constants, δ1δ3δ5δ7δ9 6= 0. It is the projection of the
subgroup of Ĝ∼ preserving the constraint g = h to the subclass (6). One of the advantages of
the gauge g = h over the gauge g = 1 is that the generalized extended equivalence group of
class (6) coincides with G∼

h .
To simplify our consideration, we will use the gauges g = 1 and g = h simultaneously. Any

equation with g = 1 can be reduced to that with g̃ = h̃ by means of the simple equivalence
transformation

t̃ = t, x̃ =
∫

hdx, ũ = u, f̃ =
f

h
, h̃ = h, Ã = A, B̃ = B. (7)

5 Group classification of diffusion–convection equations

We consider a one-parameter Lie group of point transformations in (t, x, u) with an infinitesimal
operator of the form Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u, which leaves equation (1)
invariant. The Lie criterion of infinitesimal invariance yields the following system of determining
equations for τ, ξ and η:

τx = τu = ξu = 0, ηuu = 0, (8)

ξ
fx
f

− ξ
gx
g

− τt + 2ξx = η
Au

A
, (9)
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(gηx)xA+ hηxB = ηtf, (10)

(gxη + 2gηx)Au +

(

(2ηxu − ξxx)g +

(

τt − ξx − ξ
fx
f

)

gx + ξgxx

)

A

+ hηBu +

(

τt − ξx − ξ
fx
f

+ ξ
hx
h

)

hB + ξtf = 0. (11)

Equations (8) do not contain arbitrary elements. Integration of them yields

τ = τ(t), ξ = ξ(t, x), η = η1(t, x)u+ η0(t, x). (12)

Thus, group classification of (1) reduces to solution of classifying conditions (9)–(11).
Splitting system (9)–(11) with respect to the arbitrary elements and their non-vanishing

derivatives gives the equations τt = 0, ξ = 0, η = 0 on the coefficients of operators from the Lie
algebra A∩ of the kernel of principal groups of (1). As a result, the following theorem is true.

Theorem 3. The Lie algebra of the kernel of principal groups of (1) is A∩ = 〈∂t〉.

Studying all possible cases of integration of equations (9)–(11) under condition (12) up to
the extended equivalence group Ĝ∼ in the both gauges g = 1 and g = h leads to the following
theorem.

Theorem 4. A complete set of Ĝ∼-inequivalent equations (1) which have the wider Lie invari-
ance algebras than A∩ is exhausted by cases given in tables 1–3 or tables 1′–3′.

The proof of theorem 4 is briefly sketched in the next section.
In tables 1–3 and in tables 1′–3′ we list all possible Ĝ∼-inequivalent sets of functions f(x),

h(x), A(u) and B(u) with different Lie symmetry properties and the corresponding invariance
algebras under the gauges g = 1 and g = h, respectively. Detailed explanatory notes to clas-
sification results are presented only for the first gauge. We give the same numbers for the
corresponding (Ĝ∼-equivalent) cases in the gauges g = 1 and g = h. The asterisked cases from
tables 2 and 3 are equivalent to the cases from tables 2′ and 3′ with the same numbers, where
the parameter-function h takes the value h = x. The similar non-asterisked cases correspond to
the same cases from tables 2′ and 3′, where

p′ =
p− q

q + 1
, q′ =

q

q + 1
or p′ = −

1

p+ 2
if q = p+ 1.

For convenience we use double numeration T.N of classification cases and point equivalence
transformations, where T denotes the number of table and N does the number of case (or
transformation) in table T. The notion “equation T.N” is used for the equation of form (5)
where the parameter-functions take values from the corresponding case.

The operators from tables 1–3 or tables 1′–3′ form bases of the maximal invariance algebras
if and only if the associated sets of the arbitrary elements f , h, A and B are Ĝ∼-inequivalent
to ones with more extensive invariance algebras. For example, the operators from case 3.1 have
the above property if and only if f 6= f3, where the expression for f3 is given after table 3. We
indicate only some of constraints on parameters which arise in such way.

In spite of the fact that for the classification we used the generalized extended equivalence
group, the classification lists include similar equations that are equivalent only with respect to
additional equivalence transformations. Class (1) is very reach from this point of view. As one
can see from the tables, there exist a lot of nontrivial additional transformations between the
classified equations. In fact, for both gauges g = 1 and g = h we carried out two essentially
different classification: the classification with respect to the generalized equivalence group Ĝ∼

and the classification with respect to the set of all possible point transformations.
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Numbers with the same Arabic numerals and different Roman letters correspond to cases that
are equivalent with respect to additional equivalence transformations. Explicit formulas for these
transformations are presented after the corresponding tables 1–3. Any additional equivalence
transformation between cases from tables 1′–3′ is obtained via the composition of the inverse of
transformation (7), an additional equivalence transformation between the corresponding cases
from tables 1–3 and transformation (7). The cases which are contained in tables with different
Arabic numbers or are numbered with different Arabic numerals are reciprocally inequivalent
with respect to point transformations. The exclusion is case 3.6 (resp. 3′.6) which is reduced to
a subcase of case 1.2a (resp. 1′.2a).

Theorem 5. Up to point transformations, a complete list of extensions of the maximal Lie
invariance group of equations from class (1) is exhausted by the cases from tables 1–3 (resp.
tables 1′–3′) numbered with Arabic numbers without Roman letters and subcases “a” of each
multi-case, excluding case 3.6 (resp. 3′.6).

The proof of theorem 5 involves arguments on differences in structure of maximal Lie in-
variance algebras of listed cases and preliminary description of admissible transformations given
in Section 7. We plan to present it in the new version of the second part of the series. The
multifarious structure of additional equivalence transformations of class (1) displays a structure
complexity of the entire set of admissible transformations.

Analyzing the classification results in a way similar to [53] leads to the following theorem.

Theorem 6. If an equation of form (1) is invariant with respect to a Lie algebra of dimension
not less than 4 then it can be reduced by a point transformation to a one with f = g = h = 1.

Note 4. The simultaneous usage of two gauges g = 1 and g = h also allows us to explain
singularity of some values of parameters with respect to Lie symmetry properties. For instance,
in case 3.14e the singular values of µ are −2, −4/3 and −1. Singularity of µ = −1 is obvious since
µ+ 1 is in the denominator of the power of |x| in f . Singularity of µ = −4/3 can be explained
by the fact that the power in f vanishes for this value of µ. At the same time, singularity of
µ = −2 becomes apparent only after change of the gauge g = 1 to g = h where the power of |x|
in f equals (µ + 1)/(µ + 2).
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Table 1. Case of ∀A(u) (gauge g = 1)

N B(u) f(x) h(x) Basis of Amax

1 ∀ ∀ ∀ ∂t

2a ∀ epx 1 ∂t, pt∂t + ∂x

2a′ ∀ |x|p x−1 ∂t, (p+ 2)t∂t + x∂x

2b 1 ex ex + β ∂t, e
−t(∂t − ∂x)

2c 1 |x|p x|x|p + βx−1 ∂t, e
−(p+2)t(∂t − x∂x)

3 1 x−2 x−1 ln |x| ∂t, e
−tx∂x

4a 0 1 1 ∂t, ∂x, 2t∂t + x∂x

4b 1 1 x ∂t, e
−t∂x, e

−2t(∂t − x∂x)

4c 1 1 1 ∂t, ∂x, 2t∂t + (x− t)∂x

Here p ∈ {0, 1} in case 2a; p 6= −2 in case 2c; β ∈ {0,±1} in cases 2b and 2c. Case 2a′ is equivalent to case 2a
with respect to the transformation t̃ = t, x̃ = ln |x|, ũ = u, Ã = A, B̃ = B − A, p̃ = p+ 2 from Ĝ∼

1 . It is given
for the convenience of presentation of results only.

Additional equivalence transformations:

1. 2a(p = 0, B = 1) → 2a(p = 0, B = 0): t̃ = t, x̃ = x+ t, ũ = u;

1′. 2a′(p = −2, B = 1) → 2a′(p = −2, B = 0): t̃ = t, x̃ = xet, ũ = u;

2. 2b → 2a(B = β, p = 1): t̃ = et, x̃ = x+ t, ũ = u;

3. 2c(p 6= −2) → 2a′(p 6= −2): t̃ = (e(p+2)t − 1)/(p+ 2), x̃ = xet, ũ = u;

4. 4b → 4a: t̃ = e2t/2, x̃ = xet, ũ = u;

5. 4c → 4a: t̃ = t, x̃ = x+ t, ũ = u.

Table 2. Case of A(u) = eµu (gauge g = 1)

N B(u) f(x) h(x) Basis of Amax

1 0 ∀ 1 ∂t, t∂t − ∂u

2 eνu |x|p |x|q ∂t, (pµ− pν − 2ν − qµ+ µ)t∂t + (µ− ν)x∂x + (q + 1)∂u

2∗ eνu epx εex ∂t, (pµ− pν − µ)t∂t + (µ− ν)∂x + ∂u

3 ueu h2eq
∫
h (h−1)′′ = −2ph ∂t, (2p+ q)t∂t + h−1∂x − 2p∂u

4 eu + κ 1 1 ∂t, ∂x, (µ− 2)t∂t + ((µ− 1)x+ κt)∂x + ∂u

5 u 1 1 ∂t, ∂x, t∂t + (x− t)∂x + ∂u

6a 0 f1(x) 1 ∂t, t∂t − ∂u, (βx
2 + γ1x+ γ0)∂x + (βx+ α)∂u

6b 1 |x|p εx|x|p ∂t, x∂x + (p+ 2)∂u, e
−ε(p+2)t(∂t − εx∂x)

6b∗ 1 ex εex ∂t, ∂x + ∂u, e
−εt(∂t − ε∂x)

6c 1 x−2 εx−1 ∂t, x∂x, t∂t − εtx∂x − ∂u

7a 0 1 1 ∂t, t∂t − ∂u, 2t∂t + x∂x, ∂x

7b 1 1 1 ∂t, ∂x, t∂t − t∂x − ∂u, 2t∂t + (x− t)∂x

7c 1 1 εx ∂t, x∂x + 2∂u, e
−εt∂x, e

−2εt(∂t − εx∂x)

7d 0 x−3 1 ∂t, t∂t − ∂u, x∂x − ∂u, x
2∂x + x∂u

7e 1 x−3 x−2 ∂t, x∂x − ∂u, e
t(∂t − x∂x), e

t(x2∂x + x∂u)

Here (µ, ν) ∈ {(0, 1), (1, ν)}, ν 6= µ in cases 2 and 2∗; µ 6= 1 and κ ∈ {−1, 0, 1} in case 4; µ = 1 in cases 1, 5–7e;
q 6= −1 in case 2 (otherwise it is a subcase of case 1.2a′); ε = ±1 in cases 2∗, 6b, 6b∗, 6c and 7c; p 6∈ {−3,−2, 0}
in case 6b; (β, γ1, γ0, α) ∈ {(1, 0,±1, α̂), (1, 0, 0, 1), (0, 1, 0, α̌), (0, 0, 1, 1)}, α̂, α̌ = const, α̂ > 0 and

f1(x) = exp

{∫

−3βx− 2γ1 + α

βx2 + γ1x+ γ0
dx

}

.

Additional equivalence transformations:

1. 4(κ 6= 0) → 4(κ = 0): t̃ = t, x̃ = x+ κt, ũ = u;

2. 6b → 6a (β = γ0 = 0, α = (p+ 2)γ1): t̃ = (eε(p+2)t − 1)/(ε(p+ 2)), x̃ = xeεt, ũ = u;

3. 6b∗ → 6a (β = γ1 = 0, α = γ0): t̃ = eεt/ε, x̃ = x+ εt, ũ = u;

4. 6c → 6a (β = γ0 = α = 0): t̃ = t, x̃ = xeεt, ũ = u;

5. 7b→7a: t̃ = t, x̃ = x+ t, ũ = u;

6. 7c→7a: t̃ = e2εt/(2ε), x̃ = xeεt, ũ = u;

7. 7d→7a: t̃ = t sign x, x̃ = 1/x, ũ = u− ln |x|;

8. 7e→7a: t̃ = (e2tt sign x)/2, x̃ = e−t/x, ũ = u− t− ln |x|.
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Table 3. Case of A(u) = |u|µ (gauge g = 1)

N µ B(u) f(x) h(x) Basis of Amax

1 ∀ 0 ∀ 1 ∂t, µt∂t − u∂u

2 ∀ |u|ν |x|p |x|q ∂t, (µ+ pµ− qµ− pν − 2ν)t∂t

+ (µ− ν)x∂x + (q + 1)u∂u

2∗ ∀ |u|ν epx εex ∂t, (pµ− pν − µ)t∂t + (µ− ν)∂x + u∂u

3 ∀ |u|µ ln |u| h2eq
∫
h (h−1)′′ = −2ph ∂t, (2pµ+ q)t∂t + h−1∂x − 2pu∂u

4 ∀ 1 f2(x) εxf2(x) ∂t,

eεt(∂t − ε((µ+ 1)βx2 + x)∂x − εβxu∂u)

5 0 ∀ h2 (h−1)′′ = −2ph ∂t, e
−2pth−1∂x

6 0 ∀ x−2/ ln |x| x−1/ ln |x| ∂t, e
t(∂t + x ln |x|∂x)

7 0 u h2e
∫
h

(

h−1
)′′

= −2ph ∂t, t∂t + h−1∂x − 2p∂u

8 ∀ |u|ν + κ 1 1 ∂t, ∂x,

(µ− 2ν)t∂t + ((µ− ν)x+ νκt)∂x + u∂u

9 ∀ ln |u| 1 1 ∂t, ∂x, µt∂t + (µx− t)∂x + u∂u

10 0 u h2
(

h−1
)′′

= −2ph ∂t, e
−2pth−1∂x, h

−1∂x − 2p∂u

11 0 ln |u| h2
(

h−1
)′′

= −2ph ∂t, e
−2pth−1∂x, h

−1∂x − 2pu∂u

12a ∀ 0 f3(x) 1 ∂t, µt∂t − u∂u,

αt∂t + ((µ+ 1)βx2 + γ1x+ γ0)∂x + βxu∂u

12b ∀ 1 |x|p εx|x|p ∂t, µx∂x + (p+ 2)u∂u, e
−ε(p+2)t(∂t − εx∂x)

12b∗ 6= −1 1 ex εex ∂t, µ∂x + u∂u, e
−εt(∂t − ε∂x)

12c 6= −2 1 x−2 εx−1 ∂t, x∂x, µt∂t − εµtx∂x − u∂u

13 −6/5 1 x2 x2 ∂t, 2t∂t + 2x∂x − 5u∂u,

t2∂t + (2tx+ x2)∂x − 5(t+ x)u∂u

14a 6= −4/3 0 1 1 ∂t, µt∂t − u∂u, ∂x, 2t∂t + x∂x

14b 6= −4/3 1 1 1 ∂t, µt∂t − µt∂x − u∂u, ∂x, 2t∂t + (x− t)∂x

14c 6= −4/3 1 1 εx ∂t, µx∂x + 2u∂u, e
−εt∂x, e

−2εt(∂t − εx∂x)

14d 6= −4/3,−1 0 |x|−
3µ+4

µ+1 1 ∂t, µt∂t − u∂u, (µ+ 2)t∂t − (µ+ 1)x∂x,

(µ+ 1)x2∂x + xu∂u

14e 6= −2, 1 |x|
− 3µ+4

µ+1 εx|x|
− 3µ+4

µ+1 ∂t, µ(µ+ 1)x∂x − (µ+ 2)u∂u,

−4/3,−1 eε
µ+2

µ+1
t(∂t − εx∂x), e

εt((µ+ 1)x2∂x + xu∂u)

14f −1 0 ex 1 ∂t, t∂t + u∂u, ∂x − u∂u, 2t∂t + x∂x − xu∂u

14g −1 1 ex εex ∂t, ∂x − u∂u, (x+ εt− 2)∂x − (x+ εt)u∂u,

e−εt(∂t − ε∂x)

14h −2 1 x−2 εx−1 ∂t, x∂x, 2t∂t − 2εtx∂x + u∂u,

eεt(x2∂x − xu∂u)

15a −4/3 0 1 1 ∂t, 4t∂t + 3u∂u, ∂x, 2t∂t + x∂x,

x2∂x − 3xu∂u

15b −4/3 1 1 1 ∂t, 4t∂t + 4x∂x − 3u∂u, 2t∂t + (x− t)∂x,

∂x, (x+ t)2∂x − 3(x+ t)u∂u

15c −4/3 1 1 εx ∂t, 2x∂x − 3u∂u, e
−εt∂x,

e−2εt(∂t − εx∂x), e
εt(x2∂x − 3xu∂u)

16 0 u 1 1 ∂t, ∂x, t∂x − ∂u, 2t∂t + x∂x − u∂u,

t2∂t + tx∂x − (tu+ x)∂u

Here ν 6= µ; ε = ±1; κ ∈ {−1, 0, 1} in case 8; q 6= −1 in case 2 (otherwise it is a subcase of case 1.2a′); p 6= 0 in
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cases 3 and 7 (otherwise they are subcases of case 1.2a); p = ±1 in cases 5, 10 and 11; p 6= −2,−(3µ+ 4)/(µ+1)
in case 12b; α, β, γ1, γ0 = const; β 6= 0 in case 4 (otherwise it is a subcase of case 12.b); in case 12a (β, γ1, γ0, α) ∈
{(±1, 0, 1, α̂), (1, 1, 0, α̌), (0, 1, 0, α̌)} if µ = −1 and (β, γ1, γ0, α) ∈ {(1, 0,±1, α̂), (1, 0, 0, 1), (0, 1, 0, α̌), (0, 0, 1, 1)}
if µ 6= −1, where α̂, α̌ = const, α̂ > 0;

f2(x) = exp

{
∫

−(3µ+ 4)βx− 3

(µ+ 1)βx2 + x
dx

}

, f3(x) = exp

{
∫

−(3µ+ 4)βx− 2γ1 + α

(µ+ 1)βx2 + γ1x+ γ0
dx

}

.

Additional equivalence transformations:

1. 8(κ 6= 0) → 8(κ = 0): t̃ = t, x̃ = x+ κt, ũ = u;

2. 12b → 12a(β = γ0 = 0, α = (p+2)γ1), 14e → 14a(p = − 3µ+4
µ+1

): t̃ = (eε(p+2)t − 1)/(ε(p+2)), x̃ = xeεt, ũ = u;

3. 12b∗ → 12a(β = γ1 = 0, α = γ0): t̃ = eεt/ε, x̃ = x+ εt, ũ = u;

4. 12c → 12a(β = γ0 = α = 0), 14h → 14a: t̃ = t, x̃ = xeεt, ũ = u;

5. 14b → 14a, 15b → 15a: t̃ = t, x̃ = x− t, ũ = u;

6. 14c → 14a, 15c → 15a: t̃ = e2εt/(2ε), x̃ = xeεt, ũ = u;

7. 14d → 14a: t̃ = t, x̃ = −1/x, ũ = |x|−
1

1+µ u;

8. 14f → 14a(µ = −1): t̃ = t, x̃ = x, ũ = exu;

9. 14g → 14a(µ = −1): t̃ = eεt/ε, x̃ = x+ εt, ũ = ex+εtu.

Additional equivalence transformations between cases from different tables:

1. 3.6 → 1.2a′(A = 1, p = −1): t̃ = −e−t sign ln |x|, x̃ = e−t ln |x|, ũ = u.

Table 1′. Case of ∀A(u) (gauge g = h)

N B(u) f(x) h(x) Basis of Amax

1 ∀ ∀ ∀ ∂t

2a ∀ epx 1 ∂t, pt∂t + ∂x

2b 1 hx (hhx)x = hx ∂t, e
−t(∂t − h∂x)

2c 1 h−1|Ĝ(h)|p hhx = G′(Ĝ(h)) ∂t, e
−(p+2)t(∂t − hĜ(h)∂x)

3 1 |x|−1/2e−|x|1/2 |x|−1/2e|x|
1/2

∂t, e
−t/2|x|1/2∂x

4a 0 1 1 ∂t, ∂x, 2t∂t + x∂x

4b 1 |x|−1/2 |x|1/2 ∂t, e
−t/2|x|1/2∂x, e

−t(∂t − x∂x)

4c 1 1 1 ∂t, ∂x, 2t∂t + (x− t)∂x

Here p 6= −2 in case 2c, G(z) = z|z|p + βz, β = const, Ĝ is the inverse function of G.

Table 2′. Case of A(u) = eµu (gauge g = h)

N B(u) f(x) h(x) Basis of Amax

1 0 ∀ 1 ∂t, t∂t − ∂u

2 eνu |x|p |x|q ∂t, ((p− q + 1)µ− (p− q + 2)ν)t∂t + (µ− ν)x∂x + ∂u

3 ueu epx
2+qx epx

2

∂t, (2p+ q)t∂t + ∂x − 2p∂u

4 eu + κ 1 1 ∂t, ∂x, (µ− 2)t∂t + ((µ− 1)x+ κt)∂x + ∂u

5 u 1 1 ∂t, ∂x, t∂t + (x− t)∂x + ∂u

6a 0 f1(x) 1 ∂t, t∂t − ∂u, (βx
2 + γ1x+ γ0)∂x + (βx+ α)∂u

6b 1 |x|p x|x|p ∂t, x∂x + ∂u, e
−t(∂t − x∂x)

6c 1 e−x e−x ∂t, ∂x, t∂t − t∂x − ∂u

7a 0 1 1 ∂t, t∂t − ∂u, 2t∂t + x∂x, ∂x

7b 1 1 1 ∂t, ∂x, t∂t − t∂x − ∂u, 2t∂t + (x− t)∂x

7c 1 |x|−1/2 |x|1/2 ∂t, x∂x + ∂u, e
−t/2|x|1/2∂x, e

−t(∂t − x∂x)

7d 0 x−3 1 ∂t, t∂t − ∂u, x∂x − ∂u, x
2∂x + x∂u

7e 1 x x2 ∂t, x∂x + ∂u, e
−t(∂t − x∂x), e

−t(∂x − x−1∂u)

Here (µ, ν) ∈ {(0, 1), (1, ν)}, ν 6= µ in case 2; µ 6= 1 in case 4; µ = 1 in cases 1, 5–7e; p 6= − 1
2
, 1 in case 6b.
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Table 3′. Case of A(u) = |u|µ (gauge g = h)

N µ B(u) f(x) h(x) Basis of Amax

1 ∀ 0 ∀ 1 ∂t, µt∂t − u∂u

2 ∀ |u|ν |x|p |x|q ∂t, ((p− q + 1)µ− (p− q + 2)ν)t∂t

+ (µ− ν)x∂x + u∂u

3 ∀ |u|µ ln |u| epx
2+qx epx

2

∂t, (2µp+ q)t∂t + ∂x − 2pu∂u

4 ∀ 1 (Ĝ(hx))
−1 h ∂t, e

t(∂t +

+ ((2µ+ 3)βĜ(hx) + 2)h−1
x ∂x − βxu∂u)

5 0 ∀ epx
2

epx
2

∂t, e
−2pt∂x

6 0 ∀ ex+γex eγe
x

∂t, e
−γt(∂t − γ∂x)

7 0 u epx
2+x epx

2

∂t, t∂t + ∂x − 2p∂u

8 ∀ |u|ν + κ 1 1 ∂t, ∂x,

(µ− 2ν)t∂t + ((µ− ν)x+ νκt)∂x + u∂u

9 ∀ ln |u| 1 1 ∂t, ∂x, µt∂t + (µx− t)∂x + u∂u

10 0 u epx
2

epx
2

∂t, e
−2pt∂x, ∂x − 2p∂u

11 0 ln |u| epx
2

epx
2

∂t, e
−2pt∂x, ∂x − 2pu∂u

12a ∀ 0 f3(x) 1 ∂t, µt∂t − u∂u,

αt∂t + ((µ+ 1)βx2 + γ1x+ γ0)∂x + βxu∂u

12b ∀ 1 |x|p x|x|p ∂t, µx∂x + u∂u, e
−t(∂t − x∂x)

12c 6= −2 1 e−x e−x ∂t, ∂x, µt∂t − µt∂x − u∂u

13 −6/5 1 1 x2/3 ∂t, 2t∂t + 6x∂x − 5u∂u,

t2∂t + (9x4/3 + 6tx)∂x − 5(t+ 3x1/3)u∂u

14a 6= −4/3 0 1 1 ∂t, µt∂t − u∂u, ∂x, 2t∂t + x∂x

14b 6= −4/3 1 1 1 ∂t, µt∂t − µt∂x − u∂u, ∂x, 2t∂t + (x− t)∂x

14c 6= −4/3 1 |x|−1/2 |x|1/2 ∂t, µx∂x + ∂u, e
−t/2|x|1/2∂x, e

−t(∂t − x∂x)

14d 6= −4/3,−1 0 |x|
− 3µ+4

µ+1 1 ∂t, µt∂t − u∂u, (µ+ 2)t∂t − (µ+ 1)x∂x,

(µ+ 1)x2∂x + xu∂u

14e 6= −2,−4/3,−1 1 |x|
µ+1

µ+2 x|x|
µ+1

µ+2 ∂t, µx∂x + u∂u, e
−t(∂t − x∂x),

e
−µ+1

µ+2 ((µ+ 2)x
1

µ+2 ∂x − x
−µ+1

µ+2 u∂u)

14f −1 0 ex 1 ∂t, t∂t + u∂u, ∂x − u∂u, 2t∂t + x∂x − xu∂u

14g −1 1 1 x ∂t, x∂x − u∂u, e
−t(∂t − x∂x),

x(lnx+ t− 2)∂x − (ln x+ t)u∂u

14h −2 1 e−x e−x ∂t, ∂x, 2t∂t − 2t∂x + u∂u, e
t+x(∂x − u∂u)

15a −4/3 0 1 1 ∂t, 4t∂t + 3u∂u, ∂x, 2t∂t + x∂x,

x2∂x − 3xu∂u

15b −4/3 1 1 1 ∂t, 4t∂t + 4x∂x − 3u∂u, 2t∂t + (x− t)∂x,

∂x, (x+ t)2∂x − 3(x+ t)u∂u

15c −4/3 1 |x|−1/2 |x|1/2 ∂t, 4x∂x − 3u∂u, e
−t(∂t − x∂x),

e−t/2|x|1/2∂x, e
t/2(2x3/2∂x − 3x1/2u∂u)

16 0 u 1 1 ∂t, ∂x, t∂x − ∂u, 2t∂t + x∂x − u∂u,

t2∂t + tx∂x − (tu+ x)∂u

Here ν 6= µ. In case 4 G(z) = −
(2µ+ 3)βz + 2

(µ+ 1)βz2 + z
, β = const, Ĝ is the inverse function of G and h satisfies the

equation hxxh = G′(Ĝ(hx)). p = ±1 in cases 5, 10 and 11; γ = ±1 in case 6; κ ∈ {−1, 0, 1} in case 8.
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6 Proof of results of group classification

It seems impossible to formulate complete results of group classification of class (1) with respect
to the usual equivalence group G∼ in a closed form [34]. At the same time, it is quite easy to
solve the problem of group classification with respect to the extended equivalence group Ĝ∼.

Our method is based on the fact that the substitution of the coefficients of any operator from
Amax\A∩ into the classifying equations (9)–(11) results in nonidentity equations for arbitrary
elements.

In the problem under consideration, the procedure of looking for the possible cases of ex-
tensions mostly depends on equation (9). For any operator Q ∈ Amax the substitution of its
coefficients into equation (9) gives some equations on A of the general form

(αu+ β)Au = γA, (13)

where α, β and γ are constants. The set of coefficient triples (α, β, γ) collected for all operators
from Amax is a linear space. The dimension k = k(Amax) of this space is not greater than 2
otherwise the corresponding equations form an incompatible system on A. The value of k is an
invariant of the transformations from Ĝ∼. Therefore, there exist three Ĝ∼-inequivalent cases
for the value of k: k = 0, k = 1 and k = 2. We consider these possibilities separately (furcate
split), omitting cumbersome technical calculations.

Note 5. The choice of a gauge for the arbitrary elements is very important for solving and for
the final presentation of results. It is more convenient to constrain the parameter-function g
instead of f in class (1). The next problem is the choice between different gauges of g. The
case B 6∈ 〈1, A〉 and k > 1 is easier to be investigated in the gauge g = h. In the other cases we
obtain results in a simpler explicit form and in an easier way using the gauge g = 1.

k = 0 (the gauge g = 1, table 1). Then the coefficients of any operator from Amax are to satisfy
the system

η = 0, 2ξx − τt +
fx
f
ξ = 0, fξt = Aξxx −B(hξ)x. (14)

Let us suppose that B /∈ 〈1, A〉. It follows from the last equation of the system (14) that up
to Ĝ∼-equivalence ξx = ξt = 0. Therefore, the second equation is a nonidentity equation for f
of the form fx = µf without fail. Solving this equation yields case 2a.

Now let B ∈ 〈1, A〉, i.e., B = δ mod Ĝ∼
1 , where δ ∈ {0, 1}. Then the last equation of (14) can

be decomposed into the equations ξxx = 0, δ(hξ)x + fξt = 0. Integrating the latter equations
up to Ĝ∼

1 -equivalence results in cases 2b–4c of table 1.

k = 1 (the gauges g = 1 and g = h, tables 2, 3 and 2′, 3′). Then A ∈ {uµ, µ 6= 0, eu} mod G∼
1 ,

and we can assume that there exists Q ∈ Amax with η 6= 0, otherwise there is no additional
extension of the maximal Lie invariance algebra in comparison with the case k = 0. Below we
consider the exponential and power cases of A simultaneously and write down the differences of
the case A = eu with the one A = uµ in brackets. If A = eu, we assume µ = 1.

Equations (8) and (9) imply that η = ζ(t, x)u (η = ζ(t, x)). Then equation (11) with respect
to B looks like

uBu = νB + λA+ κ (Bu = νB + λA+ κ)

where ν, λ and κ are constants, otherwise η ≡ 0.
Consider first the case B 6∈ 〈1, A〉 using the gauge g = h. Under the above suppositions,

equations (8)–(11) can be rewritten as

ϕx

ϕ
ξ = (2ν − µ)ζ + τt, ζt = ζx = 0, ξxx = ξtx = ξtt = τtt = 0,
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ξx = (µ− ν)ζ,

(

ξ
hx
h

)

x

= −λζ, ϕξt = −κζ.

Here and below ϕ = f/h. (Note, that the gauge g = 1 leads to the determining equations that
cannot be integrated explicitly. See, e.g., case 2.3.)

If κ 6= 0 then there exists Q ∈ Amax such that ξt 6= 0. Therefore, ϕx = 0, i.e., ϕ = 1 mod G∼
h

and τ = (µ−2ν)ζt+c0, ξ = (µ−ν)ζx−κζt+c1. Hence (hx/h)x = 0, i.e., h = h0e
h1x = 1 mod Ĝ∼

h

and then f = g = h = 1, uBu = νB + κ (Bu = νB + κ). Solving this equation up to G∼
h yields

B = |u|ν − κ/ν (B = eνu − κ/ν) if ν 6= 0 and B = ln |u| (B = u) if ν = 0. Scaling the value of
an arbitrary constant κ, we obtain cases 3′.8 and 3′.9 (2′.4 and 2′.5).

Now let κ = 0. Then ξt = 0 and ϕ ∈ {ex, |x|r, r 6= 0, 1} mod G∼
h . For ϕ = ex the determining

equations implies that ξx = 0, ν = µ, λ 6= 0, (hx/h)x = 2α. Therefore, h = h0e
αx2+h1x =

eαx
2
mod G∼

h , α 6= 0, f = eαx
2+x and B = λ|u|µ ln |u| mod G∼

h (B = λueu mod G∼
h ) that falls,

after rescaling x, precisely into case 3′.3 (2′.3).
If ϕ = |x|r with r 6= 0 then rξ/x = (2ν−µ)ζ+ τt. Hence, ξ = (µ−ν)ζx, τt = ((r+1)µ− (r+

2)ν)ζ and (µ − ν)(xhx/h)x = −λ. Since µ 6= ν (otherwise, B ∈ 〈1, A〉) we have λ = 0 mod Ĝ∼
h .

Therefore, h = |x|q mod Ĝ∼. Then f = |x|p, p 6= q, and we obtain case 3′.2 (2′.2).
The value ϕ = 1 results in τt = (µ−2ν)ζ, ξ = (µ−ν)ζx+ ξ0. If ν = µ then λ 6= 0 (otherwise,

B ∈ 〈1, A〉), λ = 1 mod G∼
h , (hx/h)x = 2α. Therefore, h = h0e

αx2+h1x = eαx
2
mod G∼

h ,
B = |u|µ ln |u| (B = ueu) that follows to case 3′.3 (2′.3). If ν 6= µ, then λ = 0 mod G∼

h .
Therefore, h ∈ {|x|q, 1, ex} mod G∼

h that yields special subcases of 3′.2, 3′.8 and 1.2a. (2′.2, 2′.4
and 1.2a), respectively.

All the remaining cases are investigated similarly to the above one. We present only the main
steps of the integration procedure.

In contrast to the previous case, it is more convenient to study the case B ∈ 〈1, A〉 and
A 6=constant using the gauge g = 1. In this case B ∈ {0, 1} mod Ĝ∼

1 and the determining
equations are reduced to the system

2ξx +
fx
f
ξ = µζ + τt, ζxx = 0, Bζx = ϕζt,

(

ξx +
ϕx

ϕ
ξ − τt

)

B = ϕξt, ξxx = 2(ζxµ+ η1x),

where η1 = ζ (η1 = 0). Therefore, ζ = ζ1(t)x + ζ0(t) and ξ = ξ2(t)x2 + ξ1(t)x + ξ0(t), where
ξ2(t) = µζ1 + η11 and η11 = ζ1(t) (η11 = 0). Plugging these values to the first determining
equation, we obtain

(ξ2x2 + ξ1x+ ξ0)
fx
f

= −(3µζ1 + 4η11)x+ µζ0 + τt − 2ξ1.

This condition gives equations of the form (α2x
2 + α1x + α0)fx = (β1x + β0)f for f , whose

coefficient tuples collected for all operators from Amax form a linear space. Denote by l the
dimension of the space. If l = 0 then ξ = 0, ζ1 = 0 and τt = −µζ0. Considering the case l = 1,
we get (α2, β1) 6= (0, 0) and (α0, β0) 6= (0, 0) otherwise l > 1. At last, the condition l > 2 implies
f ∈ {1, epx, |x|p, p 6= 0} mod G∼

1 .
The direct substitution of the above values into the determining equations for B = 0 and

obvious integration lead to the cases 3′.1 (2′.1) (case l = 0), 3′.12a (2′.6a) (case l = 1) and 3′.14a
(2′.7a), 3′.15, 3′.14f, 3′.14d (2′.7d) (case l = 2).

The classification in the case B = 1 is more cumbersome. First we show that if l = 0 then
ζ = 0 and therefore, η = 0 and Amax = A∩. To complete the consideration of this case, one
should classify separately three essentially different cases: ϕ is arbitrary (ϕ 6= 1, ε/x mod G∼

1 ),
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ϕ = 1 and ϕ = ε/x. Each of these cases can be studied in a way that is similar to the above
consideration.

k = 2 (the gauge g = h, tables 2′ and 3′). The assumption on two independent equations of
form (9) on A yields A = const, i.e., A = 1 mod G∼

h . Consider the case Bu 6= 0 (otherwise,
equation (5) is linear). The most suitable gauge here is g = h. Equations (8)–(11) can be
rewritten as

2ξx − τt +

(

fx
f

−
hx
h

)

ξ = 0, (hηx)x +Bhηx − fηt = 0,

ηBu + ξxB + ϕξt + ξ
hxx
h

− ξxx + 2η1x +

(

ξ

h

)

x

hx = 0.

The latter equation looks as (αu + β)Bu = γB + δ with respect to B, where α, β, γ, δ = const.
Therefore, up to Ĝ∼

h -equivalence B is to take one of the values:

B − ∀; B = uν , ν 6= 0, 1; B = lnu; B = eu; B = u.

Classification for these values is carried out in the way similar to the above. The derived
extensions are entered in either table 2′ or table 3′.

7 Admissible transformations

The presence of the nontrivial extended equivalence group and many additional equivalence
transformations indicates that the set of all admissible transformations of class (1) has a compli-
cated structure. In this section we describe only basic properties of admissible transformations
of class (1), which are useful for finding additional equivalence transformations. In fact, the
problems of finding of all possible admissible transformations are very difficult to solve even for
classes of simpler structure. See, e.g., [28, 36, 37, 38, 49, 50, 57, 63, 64].

Any point transformation in the space of the variables (t, x, u) has the form

t̃ = T (t, x, u), x̃ = X(t, x, u), ũ = U(t, x, u)

where the nonsingularity condition J = ∂(T,X,U)/∂(t, x, u) 6= 0 is satisfied. In what follows
tilde (resp. non-tilde) arbitrary elements depend on tilde (resp. non-tilde) variables.

It is well known (see, e.g., [37]) that for any point transformation between two evolutionary
equations of order n greater than 1 (i.e., equations of the form ut = H(t, x, u, u1, . . . , un) where
uk = ∂ku/∂xk, k = 1, 2, . . . , Hun 6= 0) the component corresponding to the variable t depends
only on t. That is, t̃ = T (t). The right hand sides H and H̃ of the initial and transformed
equations are related by the formula

(XxUu −XuUx)H = (Xx + uxXu)TtH̃ +Xt(Ux + uxUu)− (Xx + uxXu)Ut. (15)

Lemma 1. Any point transformation between two evolutionary second-order quasi-linear equa-
tions having the form ut = F (t, x, u)uxx+G(t, x, u, ux) where F 6= 0 is projectible, i.e., t̃ = T (t),
x̃ = X(t, x), ũ = U(t, x, u).

Proof. We set in (15) H = F (t, x, u)uxx + G(t, x, u, ux) and H̃ = F̃ (t̃, x̃, ũ)ũx̃x̃ + G̃(t̃, x̃, ũ, ũx̃).
Note that ux̃ = V := (DxX)−1DxU , ũx̃x̃ = (DxX)−1DxV , where Dx stands for the total
derivative with respect to the variable x, Dx = ∂x + ux∂u +uxx∂ux + · · · . Collecting coefficients
of uxx in the simplified (15) gives (Xx + uxXu)

2F = TtF̃ . Splitting the last equations with
respect to ux implies that Xu = 0.
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We prove the following lemmas for the particular case of class (1) although there exist sim-
ilar statements for more general classes of evolutionary equations. Using Lemma 1 and the
representations of H and H̃ for equations from class (1), we have that J = TtXxUu 6= 0 and

(gAuxx + gAuu
2
x + gxAux + hBux)

Uu

f
=

(g̃Ãũx̃x̃ + g̃Ãũũ
2
x̃ + g̃x̃Ãũx̃ + h̃B̃ũx̃)

Tt

f̃
+

Xt

Xx
(Ux + uxUu)− Ut. (16)

Lemma 2. Any point transformation between two equations from class (1) is linear with respect
to u: t̃ = T (t), x̃ = X(t, x), ũ = U1(t, x)u+ U0(t, x), where TtXxU

1 6= 0.

Proof. Collecting coefficients of uxx and u2x in (16) respectively gives

A = KÃ, Au =
K

Uu
(UuuÃ+ U2

uÃũ), K :=
Tt

X2
x

f

g

g̃

f̃
. (17)

We differentiate the first equation of (17) with respect to u and subtract from the second one.
As a result, we obtain that KUuuÃ/Uu = 0. Hence Uuu = 0.

Lemma 3. Modulo G∼, there exist no point transformations changing the coefficient A.

Proof. Since Tu = Xu = Uuu = 0, the first equation of (17) implies that the arbitrary elements A
and Ã are related by the formula ε2A(u) = Ã(δ3u + δ4), where ε2, δ3 and δ4 are constants,
ε2δ3 6= 0. Such transformation of A can be realized via a usual equivalence transformation (cf.
Theorem 1).

Lemma 4. (Ut, Ux) 6= (0, 0) for a point transformation between two equations from class (1)
only if A ∈ {uµ, eu} mod G∼.

Proof. Differentiating the first equation of (17) with respect to t and x, we obtain

KtÃ+K(U1
t u+ U0

t )Ãũ = 0, KxÃ+K(U1
xu+ U0

x)Ãũ = 0.

If (Ut, Ux) 6= (0, 0), this differential consequences implies that the arbitrary element Ã necessarily
satisfies an ordinary differential equation of the form (λ1ũ+λ2)Ãũ+λ3Ã = 0, where (λ1, λ2) 6= 0.
Solving this ordinary differential equation and using the G∼-equivalence, we conclude that either
Ã = ũµ or Ã = eũ modulo G∼. Therefore, also A ∈ {uµ, eu} mod G∼.

Lemma 5. U0 = 0 if A = uµ and Ã = ũµ, where µ 6= 0. U1 = 1 if A = eu and Ã = eũ.

The proof directly follows from the first equation of (17). The proof of the next lemma is
more complicated and will be presented in the second part of the series.

Lemma 6. The arbitrary elements B and B̃ of similar equations from class (1) are related by
the formula ε3(B(u) + ε4A(u) + ε5) = B̃(δ3u+ δ4),

8 Conclusion

The present paper is the first part of a series of works on investigation of variable-coefficient
diffusion–convection equations (1) in the framework of modern group analysis of differential
equations. After discussing precise definitions, the algorithm of group classification and its mod-
ifications in the general case, we have carried out the extended group classification of class (1).
The success in the classification and the clear presentation of the final result have been achieved
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by the methodical applications of four original tools. Namely, involving the equivalence relation
with respect to the extended equivalence group instead of the usual one, the choice of appropri-
ate gauges, furcate split and systematic usage of additional equivalences, based on preliminary
description of admissible transformations. Two of them (the extended equivalence group and ap-
propriate gauges) are of crucial importance for obtaining a closed and explicit classification list.
The extended equivalence group of class (1) is the extension of the usual one with the non-trivial
group of gauge equivalence transformations including transformations which are nonlocal in ar-
bitrary elements. Neglecting these transformations leads to critical swelling and complication of
both calculations and results. Moreover, under the presence of nonlocal gauge transformations,
the group classification with respect to the usual equivalence group cannot be done in the best
way, since the corresponding classification list necessarily contains different cases which are in
fact associated with the same equation. Class (1) has been exhaustively classified for the two
“best” gauges g = 1 and g = h and then the comparative analysis of them has been comprehen-
sively made. However, for future applications it is more suitable to use the variable gauge when
the value of g (1 or h) depends on values of other arbitrary elements. The classification under
the variable gauge will be presented in the second part [30].

Results adduced above can be developed to several directions. In particular, the set of
admissible transformations in class (1) could be studied more profoundly or even exhaustively
described. The group classification can be used for the construction of exact invariant solutions of
equations from class (1) in different ways. One of them involves additional equivalences. In [53]
known exact solutions of “constant coefficient” diffusion–convection equations were transformed
by additional equivalence transformations to new solutions of equations (5) with h = 1 and
complicated values of the parameter–function f . The same trick can be used for the entire
class (1) since in view of Theorem 6 all equations from this class, possessing four-dimensional Lie
invariance algebras, are reduced by point transformations to constant coefficient ones. Another
way is the standard method of Lie reduction. In the second part of the series we will investigate
the unique sl(2,R)-invariant equation 3.13 which is “essentially variable coefficient” in the sense
that it is not reducible to equations of form (1) with constant values of f , g and h.

Analyzing Lie symmetries of class (1) implies a number of interesting conjectures. For ex-
ample, the cases of exponential nonlinearities collected in table 2 can be regarded as limits of
cases with power nonlinearities from table 3. This observation leads to the important and useful
notion of contractions of equations and symmetries, which also will be introduced, developed
and applied in [30]. This notion will be naturally generalized to the notion of contractions of
conservation laws in the third part [31] of the series, where we will study the local and potential
conservation laws of equations (5).
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