
ar
X

iv
:0

71
0.

27
51

v2
  [

m
at

h.
PR

] 
 6

 M
ay

 2
00

8

A note on mean volume and surface densities for a class of

birth-and-growth stochastic processes

Elena Villa

Dept. of Mathematics, University of Milan, via Saldini 50, 20133 Milano, Italy

email: elena.villa@mat.unimi.it

Abstract

Many real phenomena may be modelled as locally finite unions of d-dimensional time

dependent random closed sets in R
d, described by birth-and-growth stochastic processes, so

that their mean volume and surface densities, as well as the so called mean extended volume and

surface densities, may be studied in terms of relevant quantities characterizing the process. We

extend here known results in the Poissonian case to a wider class of birth-and-growth stochastic

processes, proving in particular the absolute continuity of the random time of capture of a

point x ∈ R
d by processes of this class.
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1 Problem and main results

A great variety of real phenomena in material science and in biomedicine, such as crystallization

processes (see [8], and references therein; see also [20] for the crystallization processes on sea

shells), tumor growth [3, 9], spread of fires in the woods, etc., can be described by space-time

structured stochastic birth-and-growth processes (see, e.g., [10]). Roughly speaking, a birth-and-

growth (stochastic) process is a dynamic germ-grain model [19, 14], used to model situations in

which nuclei are born in time and are located in space randomly, and each nucleus generates a

grain (a random closed set) evolving in time. So it can be described by a marked point process

N = {(Tj, Xj)}j∈N modelling births at random times Tj ∈ R+ and related random spatial locations

(nuclei) Xj ∈ R
d (d ≥ 2), and by a growth model according to which each nucleus generates a

grain Θt
Tj
(Xj) evolving in time. Under regularity assumptions on the birth and growth model,

the union set Θt of such grains at time t is then a locally finite union of random closed sets and

the mean volume and surface densities associated to the birth-and-growth process {Θt}t can be

defined. Sometimes it is of interest to consider the so-called mean extended densities of Θt, defined

as the mean densities of the union of the grains Θt
Tj
(Xj) ignoring overlapping; for instance the

mean density of the d−1-dimensional measure of the union of the topological boundaries ∂Θt
Tj
(Xj)

might be studied whenever the process {Θt}t is given by the union of (d − 1)-dimensional grains

free to grow in space. A natural question is whether any relationship exists between these densities

and, in particular, if it is possible to describe them in terms of relevant quantities associated

with the process, like the intensity measure of the nucleation process N and the growth rate.

In current literature, the particular case in which N is given by a marked Poisson process has
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been studied extensively, and great importance has been given to the concept of causal cone and

its relationship with the mean (extended) volume density (e.g., see [6, 7, 8, 16]). In particular

a relationship between the measure of the causal cone with respect to the intensity measure of

the nucleation process and the mean extended volume density has been proven in [6], where the

property of independence of the grains, due to the Poisson assumption, plays a fundamental role.

Since such quantities are well defined also for more general birth-and-growth processes, aim of the

present paper is to extend known results in the Poissonian case to a wider family of processes. To

this end we introduce here a class of birth-and-growth processes, denoted by G, satisfying quite

general assumptions, and we show that the quoted result on the mean extended volume density

(see Proposition 3.4) and, in particular, an equation for the mean extended surface density (see

Proposition 3.5) hold for any process in G. In particular, in order to do this, we prove that the so

called time of capture T (x) of a point x ∈ R
d associated with a process {Θt}t ∈ G is a continuous

random variable with density (see Theorem 3.3). Examples of non-Poissonian birth-and-growth

processes in G are also provided.

2 Preliminaries and notations

We recall that a random closed set Θ in R
d is a measurable map Θ : (Ω,F,P) −→ (F, σF), where

F denotes the class of the closed subsets in R
d, and σF is the σ-algebra generated by the so called

hit-or-miss topology (see [18]). Denoted by Tj the R+-valued random variable representing the

time of birth of the j-th nucleus, and by Xj the R
d-valued random variable representing the spatial

location of the nucleus born at time Tj , defined on the same probability space, let Θt
Tj
(Xj) be the

random closed set obtained as the evolution up to time t ≥ Tj of the nucleus born at time Tj in

Xj . The family {Θt}t of random closed sets given by

Θt =
⋃

Tj≤t

Θt
Tj
(Xj), t ∈ R+,

is called birth-and-growth (stochastic) process. The nucleation process {(Tj, Xj)} is usually de-

scribed by a marked point process (MPP) N in R+ with marks in R
d. (For basic definitions and

results about MPPs we refer to [13, 17, 19]). Thus, it is defined as a random measure given by

N =

∞∑

j=1

δTj ,Xj
,

where δt,x denotes here the Dirac measure on R+ ×R
d concentrated at (t, x); so, for any B ×A ∈

BR × BRd (BRd is the Borel σ-algebra of Rd), N(B × A) is the random number of nuclei born in

the region A, during time B. We recall that the marginal process Ñ(·) := N( · × R
d) is itself a

point process. Throughout the paper we denote by Λ and Λ̃ the intensity measure of N and Ñ ,

respectively, so defined

Λ(B ×A) := E[N(B ×A)], Λ̃(B) := E[Ñ (B)], A ∈ BRd , B ∈ BR;

the measure Λ̃ is usually assumed to be locally finite, and it is well known the following decompo-

sition of the intensity measure (see, e.g., [17]):

Λ(dt× dx) = Λ̃(dt)Q(t, dx), (1)
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where, ∀t ∈ R+, Q(t, ·) is a probability measure on R
d, called the mark distribution at time t.

Models of volume growth have been studied extensively, since the pioneering work by Kol-

mogorov [16] (see also [6]). We denote by Hn the n-dimensional Hausdorff measure and recall that

Hd(B) coincides with the usual d-dimensional Lebesgue measure of B for any Borel set B ⊂ R
d,

while for 1 ≤ n < d integer Hn(B) coincides with the classical n-dimensional measure of B if B

is contained in a C1 n-dimensional manifold embedded in R
d. Throughout the paper we assume

d ≥ 2 and the normal growth model (see, e.g., [7]), according to which at Hd−1-almost every point

of the actual grain surface at time t (i.e. at Hd−1-a.e. x ∈ ∂Θt
Tj
(Xj)) growth occurs with a given

strictly positive normal velocity

v(t, x) = G(t, x)n(t, x), (2)

where G(t, x) is a given deterministic growth field, and n(t, x) is the unit outer normal at point

x ∈ ∂Θt
T0
(X0). We assume that

0 < g0 ≤ G(t, x) ≤ G0 < ∞ ∀(t, x) ∈ R+× R
d,

for some g0, G0 ∈ R, and G(t, x) is sufficient regular such that the evolution problem given by (2)

for the growth front ∂Θt
t0
(x) is well posed. It follows that for any fixed t ∈ R+, the topological

boundary of each grain is a random closed set with locally finite Hd−1-measure P-almost surely

(see also [5]). Furthermore, for the birth-and-growth model defined above, the so-called causal

cone associated with a point x ∈ R
d and a time t ∈ R+ is well defined (see e.g. [7] for its analytical

properties).

Definition 2.1 (Causal cone) The causal cone C(t, x) of a point x at time t is the space-time

region in which at least one nucleation has to take place so that the point x is covered by grains by

time t:

C(t, x) := {(s, y) ∈ [0, t]× R
d : x ∈ Θt

s(y)}.

To any point x ∈ R
d it is also associated a random variable T (x), said the time of capture of

point x, defined by

T (x) := min{t > 0 : x ∈ Θt}. (3)

We know that any random closed set Θ in R
d with locally finite Hn measure P-a.s., induces a

random measure µΘ(·) := Hn(Θ ∩ · ) on R
d (for a discussion of the measurability of the random

variables Hn(Θ ∩ · ), we refer to [4, 21]), and it is clear that µΘ(ω) is singular with respect to Hd

for P-a.e. ω ∈ Ω if n < d. On the other hand, the expected measure E[µΘ](·) := E[Hn(Θ∩ ·)] may

be absolutely continuous with respect to Hd, in dependence of the probability law of Θ; in such

case the random closed set Θ is said to be absolutely continuous in mean (see [11]).

For any fixed t ∈ R+ the following measures on R
d associated to a birth-and-growth process {Θt}t

as above, and their respective densities (provided that the topological boundary ∂Θt
Tj
(Xj) of each

grain Θt
Tj
(Xj) is absolutely continuous in mean), can be introduced (see [6, 9]):

Definition 2.2 (Mean volume and surface measures and densities) For any t ∈ R+

• the measure E[µΘt ]( · ) := E[Hd(Θt ∩ · )] on R
d is said mean volume measure at time t, while

the quantity VV (t, x) such that, for any A ∈ BRd ,

E[µΘt ](A)] =

∫

A

VV (t, x)dx,

is called mean volume density (or crystallinity) at point x and time t (dx stands for Hd(dx));
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• the measure E[µex
Θt ]( · ) := E[

∑
j:Tj≤t H

d(Θt
Tj
(Xj)∩ · )] on R

d is said mean extended volume

measure at time t, while the quantity Vex(t, x) such that, for any A ∈ BRd,

E[µex
Θt ](A) =

∫

A

Vex(t, x)dx,

is called mean extended volume density at point x and time t;

• the measure E[µ∂Θt ]( · ) := E[Hd−1(∂Θ ∩ · )] on R
d is said mean surface measure at time t,

while the quantity SV (t, x) such that, for any A ∈ BRd,

E[µ∂Θt ](A) =

∫

A

SV (t, x)dx,

is called mean surface density at point x and time t;

• the measure E[µex
∂Θt ]( · ) := E[

∑
j:Tj≤t H

d−1(∂Θt
Tj
(Xj) ∩ · )] on R

d is said mean extended

surface measure at time t, while the quantity Sex(t, x) such that, for any A ∈ BRd,

E[µex
∂Θt ](A) =

∫

B

Sex(t, x)dx,

is called mean extended surface density at point x and time t.

In other words, the mean extended volume and surface measures represent the mean of the sum

of the volume measures and of the surface measures of the grains which are born and grown until

time t, supposed free to grow, ignoring overlapping. Note that in the particular case in which Θt is

stationary, VV (t, ·) and SV (t, ·) are constant and they are said volume fraction and surface density

of Θt, respectively (see, e.g., [19], p. 342).

We mentioned that a problem of interest in real applications is to find relationships about the above

mean densities, being relevant quantities describing the geometric process {Θt}t. Recent results

in this direction show that, if G(t, x) is such that the topological boundary of the grains satisfies

a certain regularity condition (related to rectifiability properties), then an evolution equation for

the mean densities can be proved; namely (see Proposition 25 in [12]),

Proposition 2.3 Let {Θt}t be a birth-and-growth process with growth model as above such that:

• the marginal process Ñ is such that E[Ñ([t, t+∆t])1
eN([t,t+∆t])≥2] = o(∆t) ∀t > 0;

• ∀t > 0, denoted by Θt
r the closed r-neighborhood of Θt (i.e. Θt

r := {x ∈ R
d : ∃y ∈ Θt with |x− y| ≤ r}),

the following limit holds for any bounded Borel set A with Hd(∂A) = 0

lim
r↓0

E[Hd((Θt
r \Θ

t) ∩ A)]

r
= E[Hd−1(∂Θt ∩ A)]; (4)

• the time of capture T (x) is a continuous random variable with density.

Then the following evolution equation holds in weak form

∂

∂t
VV (t, x) = G(t, x)SV (t, x). (5)
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(For a discussion about equation (4) see [1, 12].)

Note that, by linearity arguments, an analogous relationship for the mean extended densities

follows:
∂

∂t
Vex(t, x) = G(t, x)Sex(t, x), (6)

to be taken, as usual, in weak form.

While it is easily seen that VV (t, x) = P(x ∈ Θt) for Hd-a.e. x ∈ R
d (see Section 3.3), an analogous

result about Vex, and so about Sex by (6), is known in current literature only in the case of Poisson

type nucleation processes. Namely, it has been shown in [6], Theorem 1, that if N is a marked

Poisson process with intensity measure Λ(dt × dx) = α(t, x)dtdx with α such that Λ̃([0, t]) < ∞

and α(t, · ) ∈ L1(Rd) ∀t ∈ R+, then

Vex(t, x) = Λ(C(t, x)) (7)

for H1×Hd-a.e. (t, x) ∈ R+ × R
d.

By Definition 2.1 it follows that VV (t, x) = P(N(C(t, x)) > 0), therefore whenever the nucleation

process N is given by a marked Poisson process with intensity measure Λ as above we have that

∂

∂t
VV (t, x) = (1− VV (t, x))

∂

∂t
Vex(t, x). (8)

In the next section we will show that, while Eq. (8) is true only in the Poissonian case thanks

to the property of independence of increments which characterizes Poisson processes, Eq. (7), and

consequently a formula for the mean extended surface density Sex by (6), holds for a wider class

of birth-and-growth processes, which can be taken as model in various real applications.

3 Extensions to the non-Poissonian case

3.1 A class of birth-and-growth stochastic processes

Definition 3.1 (The class G) Let G be the family of all birth-and-growth processes {Θt}t with

growth model as above such that Θt satisfies equation (4) for any t ∈ R+ and the following as-

sumptions on the nucleation process N are fulfilled:

(A1) E[Ñ([t, t+∆t])1
eN([t,t+∆t])≥2] = o(∆t) for all t > 0;

(A2) with respect to the decomposition of Λ in (1), Λ̃ is locally finite with density λ, and for all

t > 0 the mark distribution Q(t, · ) admits density q(t, · ) on R
d.

A few comments about the assumptions defining the class G:

• Condition (A1) is closely related to the notion of simple point process (see, e.g., [15]) and it

is used in the proof of the evolution equation (5). Besides, observing that

P(Ñ([t, t+∆t]) ≥ 2) ≤
∞∑

n=2

nP(Ñ([t, t+∆t]) = 2)
(A1)
= o(∆t),

it guarantees that for any infinitesimal time interval ∆t at most one nucleation can occur,

i.e.

P(Ñ([t, t+∆t]) > 0) = P(Ñ([t, t+∆t]) = 1) + o(∆t), (9)

which is usually assumed in modelling many real situations.
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• Condition (A2) implies that Λ̃([0, t]) < ∞, which is a common assumption in the theory of

point processes, and, in particular, that the intensity measure Λ is absolutely continuous with

respect to H1 ×Hd, by (1). This, together with the growth model assumptions, guarantees

that the boundary of each grain is absolutely continuous in mean, so that the mean surface

density SV and the mean extended surface density Sex are well defined.

Further, denoted by Sx(s, t) := {y ∈ R
d : (s, y) ∈ C(t, x)} the section of the causal cone C(t, x)

at time s < t and S(y;x, t) := sup{s ≥ 0 | (y, s) ∈ C(t, x)} if (y, 0) ∈ C(t, x), Proposition 4.1

in [7] ensures that, if Λ is absolutely continuous with respect to H1×Hd with density α(t, x),

then Λ(C(t, x)) is continuously differentiable with respect to t and, in particular,

∂

∂t
Λ(C(t, x)) = G(t, x)

∫ t

0

∫

∂Sx(s,t)

α(s, y) dKx,t,s(y) ds, (10)

with the measure

dKx,t,s(y) =
|∇xS|(y;x, t)

|∇yS|(y;x, t)
dHd−1(y). (11)

So, by condition (A2), we have that (10) holds for any process in G with α(s, y) = λ(s)q(s, y).

Now we show by simple examples that the class G is not trivial and strictly contains the birth-

and-growth processes with Poissonian nucleation process.

Proposition 3.2 Let {Θt}t be a birth-and-growth process with G(t, x) sufficiently regular as in

previous assumptions and N marked Poisson process with intensity measure Λ satisfying condition

(A2). Then {Θt}t ∈ G.

Proof. By the well known definition of marked Poisson point process we have that the marginal

process Ñ is a Poisson process with intensity measure Λ̃(dt) = λ(t)dt, by assumption (A2). So

we have to prove only condition (A1). Let t ∈ R+ be fixed. Recalling the Poisson property

P(Ñ([t, t+∆t]) ≥ 1) = Λ̃([t, t+∆t]) + o(Λ̃([t, t+∆t])), we have that

E[Ñ([t, t+∆t])1
eN([t,t+∆t])≥2] =

∞∑

n=2

n
Λ̃([t, t+∆t])n

n!
e−

eΛ([t,t+∆t])

= Λ̃([t, t+∆t])P(Ñ([t, t+∆t]) ≥ 1) = o(∆t).

�

Example 1 Let {Θt}t be a birth-and-growth process withG(t, x) sufficiently regular as in previous

assumptions and nucleation process N (1) given by the birth of only one nucleus (T,X) with T ≥ 0

continuous random variable with density and X random point in R
d with distribution Q ≪ Hd.

Clearly {Θt}t ∈ G, and for any t ∈ R+, Vex(t, x) = VV (t, x) Hd-a.e. x ∈ R
d, since Θt = Θt

T (X)

(with Θt
T (X) = ∅ if T > t).

In the next example we provide a non-trivial (i.e. like N (1)) birth-and-growth process belonging to

the class G, with nucleation process N which is not given by a marked Poisson process.

Example 2 Let G(t, x) be sufficiently regular as in previous assumptions, and let T1 ≥ 0 be a

continuous random variable with probability density function f . We assume that the first nucleus

is born at the random time T1 and that a new nucleation occurs at times T1 + 1, T1 + 2, . . .
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(i.e. Tj = T1 + j − 1). Let the spatial locations X1, X2, . . . of the nuclei be IID and independent of

T1, with distribution Q ≪ Hd. It follows that

P(Ñ([0, t]) = 0) = P(T1 > t),

P(Ñ([0, t]) = n) = P(t− n < T1 ≤ t− n+ 1), for n = 1, 2, . . . , [t] + 1,

P(Ñ([0, t]) = n) = 0, for n > [t] + 1,

where [t] is the integer part of t. As a consequence, Ñ([0, t]) ≤ [t] + 1 P-a.s. and

Λ̃([0, t]) =

[t]+1∑

n=1

nP(t− n < T1 ≤ t− n+ 1) =

[t]∑

j=0

P(T1 ≤ t− j) =

[t]∑

j=0

∫ t−j

0

f(t)dt;

thus conditions (A1) and (A2) are satisfied.

3.2 Absolute continuity of the time of capture T (x)

Proposition 2.3 gives sufficient conditions on the birth-and-growth process for the existence of an

evolution equation for its mean densities. The condition of absolute continuity of the time of

capture T (x) (defined in (3)) of a given point x ∈ R
d is not trivial to check, in general. In [10]

it is shown that if the mark distribution Q(t, · ) admits density on R
d for all t > 0, then T (x)

is a continuous random variable, i.e. P(T (x) = t) = 0 for all t ∈ R; results about the absolutely

continuity of T (x) for general birth-and-growth processes are not available in current literature

yet. In the following theorem we prove that for any birth-and-growth process in G, T (x) is an

absolutely continuous random variable, i.e it admits a probability density function.

Theorem 3.3 For any birth-and-growth process in the class G, the random variable T (x) admits

probability density function for all x ∈ R
d.

Proof. By Besicovitch derivation theorem (see Theorem 2.22 in [2]) we know that every positive

Radon measure η on R
d can be represented in the form η = η≪ + η⊥, where η≪ and η⊥ are the

absolutely continuous part of η with respect to Hd and the singular part of η, respectively, and

that η⊥ is given by the restriction of η to the Hd-negligible set

E =
{
y ∈ R

d : lim
r↓0

η(Br(y))

Hd(Br(y))
= ∞

}
, (12)

where Br(y) is the ball of radius r centered in y.

Let P x be the probability measure on R of T (x), i.e. P x(A) := P(T (x) ∈ A) for all Borel sets

A ⊂ R, and observe that for all t > 0

P x(B∆t(t)) = P(T (x) ∈ [t−∆t, t+∆t]) (13)

= P(t < T (x) ≤ t+∆t) + P(t−∆t < T (x) ≤ t)

= P({N(C(t+∆t, x)) > 0} ∩ {N(C(t, x)) = 0})

+P({N(C(t, x)) > 0} ∩ {N(C(t−∆t, x)) = 0})

= P({N(C(t+∆t, x) \ C(t, x)) > 0)} ∩ {N(C(t, x)) = 0})

+P({N(C(t, x) \ C(t−∆t, x)) > 0} ∩ {N(C(t−∆t, x)) = 0})

≤ P(N(C(t+∆t, x) \ C(t, x)) > 0) + P(N(C(t, x) \ C(t−∆t, x)) > 0)

≤ E(N(C(t+∆t, x) \ C(t, x)) + E(N(C(t, x) \ C(t−∆t, x)))

= Λ(C(t+∆t, x) \ C(t, x)) + Λ(C(t, x) \ C(t−∆t, x)).
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Note that C(s1, x) ⊂ C(s2, x) for any s1, s2 with s1 < s2, and, by assumption (A2), we know that

Λ(C(t, x)) is continuously differentiable with respect to t with partial derivative given by equation

(10) (with α(s, y) = λ(s)q(s, y)). Then, being H1(B∆t(t)) = 2∆t, we get that for all t > 0

lim sup
∆t↓0

P x(B∆t(t))

2∆t

(13)

≤ lim sup
∆t↓0

Λ(C(t+∆t, x))− Λ(C(t, x))

2∆t
+ lim sup

∆t↓0

Λ(C(t, x)) − Λ(C(t−∆t, x))

2∆t

=
1

2

( ∂

∂t

+

Λ(C(t, x)) +
∂

∂t

−

Λ(C(t, x))
)

=
∂

∂t
Λ(C(t, x))

(10)
< ∞.

Thus we conclude that the set E in(12) is empty, and so P⊥ ≡ 0, i.e. T (x) is an absolutely

continuous random variable. �

3.3 Mean extended volume and surface densities and causal cone

Let us observe that for any d-dimensional random closed set Ξ, by applying Fubini’s theorem (in

Ω× R
d, with the product measure P×Hd), we have

E[Hd(Ξ ∩ A)] =

∫

A

P(x ∈ Ξ)dx ∀A ∈ BRd ,

and so, considering the birth-and-growth process {Θt}t, we have that for any t ∈ R+

VV (t, x) = P(x ∈ Θt), Hd-a.e. x ∈ R
d. (14)

Then it is clear that Eq. (7) may be true for non-Poisson birth-and-growth process as well. For

instance consider the process {Θt}t in Example 1; we know that in this case Vex(t, x) = VV (t, x),

so for any t ∈ R+ the following chain of equality holds for Hd-a.e. x ∈ R
d:

Vex(t, x) = P(x ∈ Θt) = P(N(C(t, x)) > 0) = E[N(C(t, x))] = Λ(C(t, x)).

Such relationship between Vex and the causal cone is proved in [6] in the Poissonian case, using

the fact that, since nuclei are assumed to be born accordingly with a marked Poisson process, for

any fixed t ∈ R+ the associated grains are independently and identically distributed as a typical

grain. We show here that Eq. (7) holds for any birth-and-growth process in G, ans so reobtaining

the Poissonian case as special case by Proposition 3.2.

Proposition 3.4 Let {Θt}t ∈ G. Then, for all t ∈ R+,

Vex(t, x) = Λ(C(t, x)) for Hd-a.e. x ∈ R
d.

Proof. Since Θt
Tj
(Xj) = ∅ if Tj > t, by the definition of the mean extended volume measure in

Definition 2.2 we have that, for any fixed t > 0,

E[µex
Θt ]( · ) =

∑

j

E[Hd(Θt
Tj
(Xj) ∩ · )],

8



and so its mean density Vex(t, ·) is given by the sum of the mean volume densities of each individual

grain. Hence we get that for Hd-a.e. x ∈ R
d

Vex(t, x) =
∑

j

P(x ∈ Θt
Tj
(Xj)) =

∑

j

E[1x∈Θt
Tj

(Xj)] =
∑

j

E[1(Tj ,Xj)∈C(t,x)]

= E[
∑

j

1(Tj ,Xj)∈C(t,x)] = E[N(C(t, x))] = Λ(C(t, x)).

�

Now we are ready to state the main result of this section, which follows as a corollary of

Theorem 3.3 and Proposition 3.4.

Proposition 3.5 For any birth-and-growth process {Θt}t ∈ G the following equality for the mean

extended surface density holds for all t ∈ R+:

Sex(t, x) =

∫ t

0

∫

∂Sx(s,t)

λ(s)q(s, y) dKx,t,s(y) ds, Hd-a.e. x ∈ R
d,

with dKx,t,s(y) defined as in (11).

Proof. By the definition of the class G and Theorem 3.3, Proposition 2.3 applies and so Eq. (6)

holds. Then the assertion directly follows by Proposition 3.4 and Eq. (10). �

4 Final remarks

From the previous sections we know that

∂

∂t
VV (t, x) = lim

∆t↓0

P(x ∈ Θt+∆t \Θt)

∆t
= lim

∆t↓0

P(N(C(t+∆t, x) \ C(t, x)) ≥ 1 ∩ N(C(t, x)) = 0)

∆t
,

(15)

while
∂

∂t
Vex(t, x) = lim

∆t↓0

Λ(C(t+∆t, x) \ C(t, x))

∆t
;

so, in general, VV cannot be written in terms of Vex only, except in the trivial case in which only one

nucleation may occur (see Example 1), and in the particular case of Poissonian nucleation process.

Indeed, if N is a marked Poisson process, then it is well known that it is a Poisson point process on

the product space R× R
d, and so the events {N(C(t+∆t, x) \ C(t, x)) ≥ 1} and {N(C(t, x)) = 0}

are independent because [C(t+∆t, x) \ C(t, x)] ∩ C(t, x) = ∅; therefore by (15) and observing that

P(N(C(t, x)) = 0) = 1− VV (t, x) and

P(N(C(t+∆t, x) \ C(t, x)) ≥ 1) = Λ(C(t+∆t, x) \ C(t, x)) + o(∆t),

we reobtain Eq. (8).

Furthermore, we mention that three different kinds of nucleation can be considered in order to

model various real situations.

1. Free nucleation. Nuclei are allowed to be born also in an already crystallized region; i.e. if

at a random time Tj a new nucleation occurs, the probability law associated to Xj does not

depend on the space occupied by ΘTj , so that Xj may belong to ΘTj .

9



2. Thinned nucleation. Nuclei which are born in an already crystallized region are removed;

i.e. if nucleation occurs according to a free process N0, then the considered nucleation process

N can be described as a “thinning” (e.g., see [19]) of the MPP N0. Namely, in accordance

to the previous notations, we have that if N0 =
∑

j δTj ,Xj
, then

N =
∑

j

δTj ,Xj
(1− 1Sj−1

i=1
Θ

Tj−

Ti
(Xi)

(Xj)).

We may notice that if N0 is a marked Poisson point process with intensity measure Λ0, then

the thinned process N is not Poissonian any longer, having intensity measure Λ(dt× dx) =

Λ0(dt× dx)(1 − P(x ∈ Θt−)).

3. New nuclei are forced to be born in the free space R
d \ Θ. Similarly to the thinned process

described above, in modelling real applications sometimes it is assumed that new nuclei can

be born only in the free space; for instance consider the case in which every new nucleation

occurs in the free space uniformly in a bounded region A ⊂ R
d, i.e. if a nucleation Xj occurs

at time Tj , then Xj is a random point uniformly distributed in A \ ΘTj−. It is clear that,

in this case, the probability distribution of every mark Xj associated to Tj depends on the

whole history of the process, and in particular on the crystallized region at time Tj.

Throughout the paper we have considered a general nucleation process N , so that our results apply

making no distinction between the three types of nucleation described above. Note that if {Θt}t is

a birth-and-growth process in G with free nucleation process N0, then the birth-and-growth process

with thinned nucleation N associated to N0 belongs to G as well. This might be useful whenever

the free nucleation process is simpler to handle.
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