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IRREDUCIBLE POLYNOMIALS WITH PRESCRIBED
TRACE AND RESTRICTED NORM

K. KONONEN, M. MOISIO, M. RINTA-AHO, AND K. VAANANEN

ABSTRACT. Let [F,, ¢ = p", be a finite field with a primitive ele-
ment g. In this paper we use exponential sums and Jacobi sums
to compute the number of the irreducible polynomials of degree m
over [, with trace fixed and norm restricted to a coset of a sub-
group (¢°), s | (¢ —1). We give the number explicitly for s = 2,
3, 4 when ¢ = p, and for s | (p® + 1) when r = 2en. Finally, we
give explicit formulae for the number when both trace and norm
are fixed, p =2 and m < 30.

1. INTRODUCTION

Let p be a prime number, [, a finite field with ¢ = p" elements, and
g a primitive element of F,. The explicit enumeration of irreducible
polynomials

flz)=am —az™ '+ + (=1)"b € F,[z]

with some preassigned coefficients fixed is quite hard problem in general
and it has been tackled only in certain special cases. For example,
Carlitz [4] and Yucas [18] obtained explicit formulae for the number of
f(z) with a or b fixed. Carlitz also obtained explicit formulae for the
number of f(x) with a fixed and b in a fixed coset of the group of squares
in Fy. Moisio [I0] considered the enumeration problem when both a
and b are fixed, and gave the number of f(x) in terms of exponential
sums and in terms of the number of rational points on certain algebraic
varieties defined over I,. Especially, the number of irreducible cubic
polynomials with a and b fixed was given in terms of cubic Gauss sums
(case a = 0) and in terms of the number of rational points on the
elliptic curves over F, defined by & : y* + ba—y + xy = 2%, which, in a
way, indicates the hardness of the explicit enumeration problem. For
results on the enumeration problem when some other coefficients than
a and b are fixed we refer to the survey by Cohen [5], and to a recent
work by Moisio and Ranto [I1].

The aim of this paper is to generalize results of [4] by giving explicit
formulae for the number of f(z) with a fixed and b in a fixed coset of a
subgroup (g°®). Actually, we shall do this in the following three special
cases:

Key words and phrases. Irreducible polynomials; Monomial exponential sums;
Gauss sums; Jacobi sums.
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e s =2 (Carlitz’s case),

e 5s=23,

o 5 =4

e 7 =2en and s (> 1) is any factor of p® + 1.

Moreover, we shall give explicit formulae for the number of f(z) with
both a and b fixed under the assumptions ¢ = 2" and m < 30.

The method used in this paper is essentially the one used in [I0] but
here explicit evaluation of Jacobi sums and certain exponential sums
are used instead of the theory of algebraic varieties. We also note that
our method is more elementary than the method used in [4] in the sense
that the use of L-functions is avoided.

2. NOTATIONS AND BASIC FORMULAE

We fix the following notations.

P, q, T, S, h, m, t positive integers, p prime, ¢ =p", s | (¢ —1),
he{0,1,....,s=1}, m>2t|m

d,l d = gcd(7F,s), I = ged(t, )
Tr;, Norm, the trace and norm from F; onto I,
Y= Ym a fixed primitive element of Fym
Vi the primitive element of [F: that is the norm
of v onto [
g Norm,,,(7m), a primitive elment of F,; also
g =1 = Normy(y)
P, (a,s,h) the number of the irreducible polynomials

flz) =a™ —az™ "+ + (=1)"b € F,[z],
where a is fixed and b € g"(¢*) C F;
Sy = Si(a,s,h)  the set of = in F, with Tr,(x) = a and
Normy,(z) € g"(g°)
T; = Ti(a,s,h)  the set of x in S; with & ¢ F« for any k£ < ¢
N, the number of elements in S;
e the canonical additive character e;(z) =
M @/p of F,., where tr; is the absolute
trace iy — [F,

Note that Ny, = >, [T; and the Mébius inversion gives, see [10]
Lemma 1],

P, (a,s,h) Z,um (1)
t\m

Thus the knowledge of N; for ¢ | m gives P,,(a, s, h), and therefore we
consider IV;.
From the definition of S; it follows that

x €S, < ™Tr(z) =aand Normy(z7) € ¢"(g°).
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By denoting z = ~¢, i € {0,1,...,¢" — 2}, we see that the condition
Norm, (z™/*) € g"(g®) is satisfied if and only if the congruence

?i =h (mod s) (2)
holds. If d 1 h then (2) has no solution, and if d | h then (2) has
solutions

S d
=1 j— i=0,1,..., (¢ =1)—1 3
? 2 +]d7 J y Ly ) S(Q ) ) ( )
where i is the solution of
m. _h 5 s
o= (modg), O<ZO<E' (4)
Thus we obtain
Lemma 1. (i) Ny =0 ifd{h.
(ii) Ny=0ifp |5 and a # 0.
(iii) Ny =4(¢" = 1) if p| 2, d | h and a = 0.
In the remaining cases
pt % and d|h. (5)

To state a formula for IV, in this case we use the canonical additive
character e;.

Lemma 2. If (3) holds then
d
Ni=—(¢" =1+ M),
sq

where

M, =Y en(—tea) 3 elerport). (

cEIFq* J:EIE‘q*t

Proof. By the definition of S;, equation (B and the orthogonality of
characters we obtain
d(gt—1)—1

o= 30 D ald(Ta™) ~ o)

j=0 celfy,
4(¢'-1)-1
io+j5
= E e1(—Lca) g 1 (Trg(ey,” ™))
celfy,
d(gt—1)-1
lo+]
= E e1(—=Lca) g 4)
cEIE‘q j=0
= — E e1(—Lca) E eyioxd)
c€]Fq IF

This proves Lemma 2 O
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We shall now consider separately the cases a = 0 and a # 0. For this
consideration let n | (¢ — 1) and let H,, denote the subgroup of order n
of the multiplicative character group of F, and H;; = H, \ {\o}, where
Ao is the trivial multiplicative character of F,. If \ is a multiplicative
character of IF,, then A o Norm, is a multiplicative character of F,:. We
define the Gauss sum G¢(\) over Fy: as follows:

Gi(\) = Z ei(x) (X o Normy)(x).

xe]Fq*t

The following Lemma 4 of [10] gives a connection of these sums with
monomial exponential sums.

Lemma 3. Let n be a positive factor of ¢ — 1 and let o € K. Then

D eax™) = > Gy(A)(Ao Norm)(a),

zeFy, AeH,

where A = \ L.

3. CASEa =0

Assume in this section that a = 0. Then M, in (6]) has the following
expressions.

Lemma 4. Assume that ({3) holds and a = 0. Then

My=(q=1) ) e(ra) = (a=1) Y G(MAg"),

z€F?, €H,

where | = ged(t, 5) is defined at the beginning of Section [2

Proof. The claimed formulae for M, are equal by Lemma [B] (recall that
Normy () = g). Substituting a = 0 into ([6) we get by Lemma [3]

M =3 S aleriei) = 30 3 GuMANorm, (1))

ceFy z€FY,; c€lFF NeH, /4
= > GG DA, (7)
NE€H, g cely

Setting n = ged(q — 1,¢) we have
£\
Z M) = Z N (e) = {0 i )\n # Ao,
ceFy ceFy g—1 A" =X

Since A € H,/y in (@), the condition \" = Ag is equivalent to \ €
H, N H,/q = H, and the lemma follows. O
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Furthermore, we present M, in terms of (a special class of) Jacobi

sums
T = Y Aay-eem),

:L‘l,...,$t€]Fq

T1tetre=1

where )\ is a multiplicative character of F, and, as usual, we define
A(0) =0, if A # Ao, and Ap(0) =1

Lemma 5. Assume that ({3) holds and a = 0. Then
M= (g=1)(=1+(=1'g > LA™,
AEH]

where | = ged(t, 5).

Proof. In Lemma @ G;(X\g)Ao(g%°) = —1. For A # )¢, the Davenport-
Hasse identity (see e.g. [7, Theorem 5.14|) gives Gi(\) = (—1)1G(\)!
and [3, Theorem 10.3.1] gives G1(A\)! = —qJ;()\) since [ | t. O

As we shall see, Lemmas [ and [3 give M; explicitly in many cases.

4. CASE a # 0

The result corresponding to Lemmasand Blis for a # 0 the following
lemma.

Lemma 6. Assume that ({3) holds and a # 0. Then
= Y GNG(N)Aagg®)

AeHs/d
= 1 + q Z Jt 5\ t ZO)
NeH?,,
where ag = — 1.
Proof. Substituting ¢ — —"¢ = qgc into (B) we get by Lemma [3 and

the Davenport-Hasse 1dent1ty

My =Y eile) Y Gu(MA(Normy(aoey;”))

CG]F; AeHs/d

=) ele) Y GMN)A(ahc'g®)

CG]F; AEHs/d

= Z Gt(j\) (af)glo)zel(C)At(C)

NEH, /g ceFy

= (=1 Y GiN) Gi(A)A(apg™)

)\EHS/d

=1+ (=11 Y GiV) GLi(A)A(apg™).

AeH;/d
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Thus
(_l)t 1 Z Gl Gl )\t )\( t 20)
AEH]
t t i (8)
Y GV GIN)Aapg™)-
)\EH;“/d\H;‘

By Theorems 10.3.1 and 1.1.4 (b) of [3],

t_ —qJi(N) iFA"= o,
ae {A«—l)tm(x)alw) R

For A € H, C Hy, Gi(\') = —1 and A((—1)") = 1. Hence in (g))
> GG (abg®) =q > J(A )'g®).  (9)

AEH AEH

For A € H}),\ Hy, Gi(A\)G1(N) = |G1 () = ¢ and in (8)

Z G1(A)'G1(A)A(abg™) = ¢ Z TN ((—a0)'g™)

NeH?, \H; NeH?,,\H;
i £ HON )~ T ).
AeH?, AeH;
Combining this with (ISI) and (@) we obtain the lemma. O

In some cases we are able to compute monomial sums > _p. e;(az™)
t

explicitly. In such cases Lemma [4] is useful for a = 0. The qfollowing
lemma gives similar formula for a # 0.

Lemma 7. Assume that ({3) holds and a # 0. Then

- St )

where ag = — 3, to = Cf;—l, and v = 5 with | = ged(t, 5) = ged(to, ).

Proof. First we observe that tg = (¢ —1)(¢" 2 +2¢" 3+ -+ (t —2)q+
t — 1)+t and therefore [ = gcd(to, ).
Substituting ¢ + agc and noting that g = ~/°, (6) transforms into

q—2

M= 3 ea0) 3 elaoerivai) = 3 e(3) 3 eulagyt o).

ceFy IGF; i IGF;

Il
o

By the partitition (y/°) = Uj= 01%503 (v/o") each element in (7{°) can
tog - touk

be written in the form ~;*~°*" with j € {0,...,u — 1} and k €
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{0,..., 21 — 1}. Thus,
Z et(ao’)/fOHiO:E%) _ Z et(ao’%Oj—HO(’Yfm/l:E)%)

xe[ﬁ‘;t erE‘q*t
_ toj+io,.5
= E et(aoy; zd),
zqu*t
and consequently
u—1 %*1
_ toj+io, .3 toj touk
M; = E et(aoy zd) § er(7:" ™).
J=0 z€FY, k=0
Here the inner sum equals

q—2

) 1 )
7 ku — jou
e1(g’g™) uzel(gc ),

k=0 cely

SN

and the proof is complete. O

5. NUMBER OF POLYNOMIALS IN CERTAIN SPECIAL CASES

In this section we consider some special cases when M;, and hence
P,.(a, s, h), can be given expicitly. One case is that s is small. Then X in
the summations of Lemmas Bl and [l has small order. The Jacobi sums
for characters of several small orders have been computed explicitly in
13].

Another classes when M; can be computed explicitly (or up to two
choices) are the semiprimitive and index 2 cases for p = 2 (see Subsec-
tion 0.5 p. [I6] for definitions). In these cases the monomial sums, or
at least their value distribution, in Lemmas [ and [7 can be evaluated.

We shall consider several small s and semiprimitive and index 2 cases
in the following subsections.

5.1. Case s = 2 (Carlitz’s case). The case s = 2 was studied already
by Carlitz in [4]. Now b € g"(g?) and h = 0 or 1 according to whether
b is a square or a non-square in Fy. In addition, p must be odd since
2| (¢ —1). We have now three possibilities for d and I:

(L1) 242 24t
(d.)=40,2) ifr2tz 2]t
(2,1) if2] %
Let us now compute M, and N; assuming (B]). For other cases, IV; can

be computed with Lemma [Il After computing M; the N; is obtained
from Lemma 2], see Theorem [ below.
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If (d,1) = (1,1) then iy = h in (). For a = 0 we have by Lemma [
My=(q—-1)> elyz)=1—q.

zelf”,
For a # 0, let p be the multiplicative character of order 2 of I,. Then
p = p and p(g") = (—=1)". Further,

—p((=1)2)g= if t is even,
J, = t—=1, t—1 10
() {p((—l)T) Sttt is odd, (10)
by [3, Theorem 10.2.2]. As now ¢ is odd, Lemma [6] and (I0]) give
N
M, =1+ qJi(p)p((—ao)'g") = 1+ ap((=1) = )a = p(({2)'s")

=1+ (=1)"q? p((-1)7 2).
If (d,1) = (1,2) then again ip = h in (@). Now ¢ is even, so Lemma
and (I0) give for a =0

My, = (q — 1)(=1+ qJi(p)p(g"))
= (¢ — 1) (-1 - qp((-1)%)gT (-1)")
= (g - 1) (=1 - (=1)g2p((~1)2)).

For a # 0 we get by Lemma [@] and (I0)
M, =1—qJi(p)p((—a0)'g") = 1+ qp((—1)%)g T (—1)"
=1+ (=1)"p((~1)7)qg>.
If (d,1) = (2,1) then (B can hold only if h =0 (N; = 0 for h =1 by

Lemma(Il). By Lemmas@ and 6] M; =1 — ¢ for a = 0 and M, = 1 for
a # 0. Lemma [2l now gives the following theorem.

Theorem 1. The values of Ny for s = 2 and assuming (3) are those
listed in Table [l

TABLE 1: Values of V; for s = 2 assuming (&]).

a Ny (d,1)

0 =0 S TR (Y
W™ —1—(g—1)(=D"qg= p((-1)2)) (1,2)

¢ -1 (2,1)

a0 g7 (DT p((-DFR) (L)
3@+ (D)2 p((=1)2)) (1,2)

¢! (2,1)

Equation () now gives P,,(a,2,h) explicitly when the structure of
the factorization of m is known. In particular, if m > 2 is prime then
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P.(a,2,h) = %(Nm — Ny), and d =1 =1 for both t = 1, m. First,
from Table [, N,, = 1(¢™ ' — 1) for a = 0 and

— m—1 m—1
N =5(@" "+ (=1)"¢ = p((-1) "= a))
for a # 0. If m = p then by Lemma [ N; = % for a = 0 and
Ny =0 for a # 0. If m # p then Table [l yields N; = 0 for a = 0 and
Ny = (14 (=1)"p(ma)) for a # 0. Combining these we obtain

1 (p—1 . B
Pa(0,2,h) = { @@ —a) ifm=p,
%(qm— - 1) lf m 75 D,

and, for a # 0,
L1+ S if m = p.
Poa2ny =y @ F5 o
(@ + S = (=1)"p(ma) — 1) if m #p,

m—1

where S = (—1)hqu4p((—1) 2 a). These results are in accordance

with [4] egs. (5.8) and (5.9)].

5.2. Case s = 4 = 22. For s = 4 we assume that ¢ = p, i.e. r = 1.
Then [3, Theorem 10.2.5| applies directly. The more general ¢ will be
considered in a future work. Since 4 | (¢ — 1), p = 4f + 1 for some
f € Z. This time we have six possibilities for d and [:

(1,1) if % and ¢ are odd,
(1,2) if %t odd and ¢t = 2 (mod 4),
(d1) = (1,4) if % odd and 4 | t,
’ (2,1) if 2 =2 (mod4) and ¢ odd,
(2,2) if % =2 (mod4) and ¢ even,
((4,1) if4|m

Let x4 be the multiplicative character of order 4 of [F, = F, satisfy-
ing x4(g) = i. Furthermore, let a4 and by be integers satisfying (see
Theorems 3.2.1 and 3.2.2 in [3])

p—1

ai+bi=p, as= —(%) (mod4), by=asg 1 (modp),
where (%) denotes the Legendre symbol. Set
7y = (— 1) (aq +iby) € ZJi]. (11)

Then 7474, = p and, since g = p,

—p i} ift=0 (mod 4),
t—1 =1
pr o, ift=1 (mod 4),
B =7, | (mod 4) (12)
p 1w ift=2 (mod 4),
(~1)/p=r,? ift=3 (mod4)
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by [3, Therem 10.2.5]. Note also that x% = p (see s = 2), xi = Xa,
and consequently J;(x1) = J;(x4). Further, p(—=1) = x3(=1) = 1 and
q = p, so ([I0) simplifies into

LX) = Jilp) = {

=2 ..
—p=2 if tis even,

¢ 13
p 2 if ¢ is odd. (13)

Let us now assume () and compute the numbers M; and N;. As in
the previous subsection, /V; is obtained in the other cases from Lemma
[ We use the above results on Jacobi sums, and Lemmas [ and [ in
the cases a = 0 and a # 0, respectively. Let first a = 0. If [ = 1,
Lemma 5] gives M; = 1 — p. In the case [ = 2 we have

M, = (p— 1)(=1+ (=1)'pJ(p)a(g"))
by Lemma Bl Here p(g%) = p(g®) = (=1)%. As now t is even, (I3)
gives M,. Finally, if [ = 4,

My (=1’ Y A(NAG™)

-1 AEH

= =1+ (=1)'p(L(xa)xi(g") + J(p)p(g”) + T(XD)xa(9"))

= 14+ (=1)'p((=1)"Ji(p) + 2Re(Li(xa)i*")).
The formula for M, is obtained from this by using (I2) and (I3]) and
by remembering that 4 | ¢ in the case | = 4.

Let us next consider the case a # 0. If 5 =1, M; = 1 by Lemma [6l

This corresponds to (d,l) = (4,1). If 5 =2 then (d,]) = (2,1) and ¢ is
odd or (d,1) = (2,2) and ¢ is even. Again by Lemma [6]

My =1+ (=1)"""pJi(p)p((—a0)'g")-
Here p((—a0)'g™) = (~1)op((—1)")p(ah) = (—1)p(an) when ¢ is odd

and p((—ag)'g™®) = (=1)™ when ¢ is even. The equation (I3) now
gives M,. If 5 = 4 we have three possibilities for (d,[). In the cases
(d,1) = (1,2), (1,4) we know ¢ modulo 4 but in the case (d,l) = (1,1)
there are two possibilities: ¢ =1 (mod 4) or t =3 (mod 4). Lemma [6]
now gives

My = 1+ (=1)"p(2 Re(u(xa)xa((—ao)™)i¥) + (—1) Ji(p) plaby)-
Again numbers M; can be obtained from this by using the knowledge

on ¢t modulo 4 and the equations (12]) and (I3).
We summarize these results in the following theorem.

Theorem 2. Assume q = p and (1), and let

1 t—1

pT Ty Xa(—ag)i® ift=1 (mod 4),
t—3 tt1 .
(—1)fPTS7T4g Xa(—ag)i® ift=3 (mod4).

In addition, let 74 be as in (1), iy as in ({4) and let a9 = —7. Then
the values of Ny for s = 4 are those listed in Table[2

Qua =
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TABLE 2: Values of N, for s = 4 assuming (Bl and ¢ = p.

a N, CR)
a=0 T - 1)t 2 (1,1)
i =1= (=D (p-1)) (1,2)

Lp = 1= (=1)pT (p—1)(p7 + 2Re(nfi®))) (1,4)

30 = 1) (2,1)

s 1= (=D"p= (p-1)) (2,2)

P o1 (4,1)

a#0 L+ ()" (0T plao) + 2ReQra)) (1,1)
Lptt+ (—D)p' T (p'T — 2p(ag) Re(rfi®)))  (1,2)
i@“k+@4wﬁ%(%i33qwm») (1,4)

2 (0 (=1)*p T plao)) (2,1)

(P (=DPp ) (2,2)

P! (4,1)

If m > 2 is prime then we can use Theorem 2] to obtain P,,(a,4,h).
As with s = 2, P,,(a,4,h) = —(N,, — N7) and it is enough to consider
N;fort =1, m.

If t =1, we have d = 1 by the assumption m > 2, and [ = 1. In the
case p = m we have by Lemma, [Il

N ip—1) ifa=0,
"7 o if a # 0.

1
m

If p # m, (@) holds and from Table 2] N; = 0 for a = 0 and

Ni = 3(1+ (=1)" (p(ao) + 2 Re(Xa(—a0)i®)))

1

for a # 0. Here ag = —% = —ma~" and, modulo 4,

. _Jh ifm=1 (mod4),
T3k ifm=3 (mod4).

Thus p(a) = p(=1)p(m)p(a) = p(ma) and Xa(—ag) = Xa(ma™') =
Ti(ma) = xa(mda).

If t = m, we have d = 1 and, by the assumption m > 2, [ = 1.
Clearly, () holds in this case. So for a = 0 we have N,, = 1(p™ ' —1).
For a # 0 we have 4o = h (mod 4) by @) and ag = —2 = —a~'. Thus
plao) = p(=1)p(a) = p(a) and xa(—ao) = xa(a™') = Xa(a) = xa(a?).
Table 2l now yields N, for both m =1 (mod 4) and m = 3 (mod 4).
Note that if m = p then m = ¢=1 (mod 4).
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Combining the above we have

P04y = 4P im=p
" =1 ifm#p

for a = 0. If a # 0 then

Pyla4,h) = £ (07 + (~1)" (0" p(a) + 20"7 Re(m,” xa(a)i")))

for m = p and

P, (a,4,h) = ﬁ(pm_1 -1+ (—1)"(,0(@)(1)T — p(m)) +2Re Rm))

for m # p, where

R P 7r4 xa(a)i* = xa(mPa)i ifm=1 (mod4),
: (=1)7p"s Wf Xa(a)i" = xa(m3a)i®"  ifm=3 (mod 4).

5.3. Case s = 3. For s = 3 we again assume that ¢ = p, i.e. r =
1. Since 3 | (p—1), p =1 (mod 3). As for s = 2, we have three
possibilities for d and I:

(1,1) if?ﬂ(%,?ﬂ(t,
(d.)=1(1,3) if31m, 31,
(3,1) if3|m

Let x3 be the multiplicative character of order 3 of F, satisfying x3(g) =
¢ = /3. Obviously Xz = x3° = X2 and consequently J;(x3) =
Ji(x%). We also note the useful properties x3(—1) = x3((—=1)?) = 1
and x3(—1) = x3(—1) = 1. Let az and b3 be integers satisfying (see
Theorems 3.1.1 and 3.1.2 in [3])

a3 +3b; =p, az=—1(mod3), 3bs3= (2ng_1 + 1)az (mod p),
and denote
s = x3(2)(as + ibsV/3) € Z[C]. (14)

Since we assume ¢ = p, [3] Theorem 10.2.4] is applicable and it yields
together with w373 = p that

—p%ﬂé ift=0 (mod 3),
t—1 t=1
Ji(xs) = pTﬂ33 ift=1 (mod 3), (15)
t+1

pEmy®  ift=2 (mod 3).

Let us now assume (B and compute the numbers M; and N;. Again,
in the other cases NV, is obtained from Lemma [Tl
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If (d,1) = (1,1) then t =1 (mod 3) or t = 2 (mod 3). In the case
a = 0 we again obtain M; = 1 — ¢ by Lemma 4l For a # 0 Lemma
gives

= Ji(xs)x3((—a0)'g") + Ji(x3)x3((—ao)tg)
= 2Re(J(x3)x3(ag))C*™).

As (I5) tells the value of the Jacobi sum in the above equation, M, and
N, are easily obtained from this.

If (d,1) = (1,3) then t =0 (mod 3). The numbers N; can again be
obtained as above using Jacobi sums and Lemmas [l and [ for a = 0
and a # 0, respectively. Finally, for (d,l) = (3,1) Lemmas 5 and [l give
My;=1—¢qifa=0,and M; =1ifa #0.

Again, Lemma 2] completes the following theorem.

Theorem 3. Assume q = p and (1), and let

t—1

-1 .
Qs = {pTW;:,B Xs(ap)¢*, ift=1 (mod 3),
rg =

t—9 t4+1

p 3 m;° xs(ag)C*, ift=2 (mod 3).

Further, let w3 be as in (14), io as in (4), and let ap = —3=. Then the
values of Ny for s = 3 are those listed in Table[3.
TABLE 3: Values of N, for s = 3 assuming (Bl and ¢ = p.
a N, (d,1)
a=10 =) 1)
L = 1= 2(=1)p T (p— D Re(m5¢*0))  (1,3)
ptil —1 (3a ]-)
a0 L™ —2(=1)"Re Q3) (1,1)
5(07 +2(=1)'p’5 Re(my ¢*)) (1,3)
P (3, 1)

Again, we shall finally consider the situation when m > 3 is prime.
The computations are straightforward and similar as in the case s =4
so we just state the results:

1(pp—2 :

3 -1 fm=
P(0,3,h) = 31(pp o ) 1 m =p,

n@" T = 1) ifm#p,

for a = 0 and

P, (a,3,h) = :%Lp(ppi1 + QPPT_I Re(ngX?,(a)C?h)) if m =p,
(P —1+2ReL,) if m £ p,

3m
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for a # 0, where

I {((pﬂg)m?_lﬂ— X3(m)) xs(a)¢?" ifm=1 (mod 3),
" (me_QﬂaTxg(a)Ch — E(m))xg(a){'h ifm=2 (mod 3).

5.4. Case s | (p®+ 1). Assume r = 2en and let s > 1 be a factor of
p® 4+ 1. Then —1 is a power of p in Z,, and s is called semiprimitive.
The semiprimitive numbers N appear also in [I} [I7] in connection to
semiprimitive cyclic codes. We recall Theorem 1 in [9], which we shall
use in the following form:

Proposition 1. If s | (p° + 1) and r = 2en then
i s (—D)"Vq' -1 if 1 £ ks (mod s),
Zet(%x): (—)" Ys =1V -1 ifi=k, (mods)
b= s q ifi=ks (mod s),
where ks = s/2 ifp > 2, 24nt and 2t (p°+1)/s, and ks = 0 otherwise.

Note that Proposition [l holds for s = 1, too.
If a =0, Lemma [4] and Proposition [[l immediately give

My {(-1)%/@ if (I7) holds, (16)
g—1 (=)™ —1)/qt if (IR) holds,
where the conditions are
[ > 1 and ig #Z k; (mod ), (17)
l=1; or I>1andiy=k (modl). (18)

Assume next that a # 0. We combine Proposition [l with Lemma [7]
and observe first that the congruence ind., ag +toj +io = ksjq (mod %)
is solvable in j if and only if

U] (keya—io — indy, ap) and  foj = L0 idn 0 (154 ). (19)

Assume first that [ { (ks/q — 90 — ind,, ag). Now, by Lemma [ and
Proposition [I, we get

u—1
ully = (1)"Va' = 1) DD ealg’e”)
cely j=0
= (-1)"'/¢ +1)u. (20)
Assume next that [ | (ky/q — o — ind,, ag). Since the congruence in

(I9) has unique solution jy € {0, ...,u— 1}, Lemma[f and Proposition
[ imply

udy = ()" (5~ DV = 1) 3 ealge”)

ceFy

+ ()" = 1) DD eilg’e).

J#jo €y
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Here
u—1
S el@ey =D elge) = > elgiet),
J#3jo c€F; j=0 ceFy; cely

and therefore

uM; = )yt fz (g°c") 1)"“1@4—1)%

ceFy
Finally, by applying Proposition [[l with ¢ = 1, we get

o (_1)71\/6_1 if (IZ:I) holds,
> e(ghet) = {(_1)n1(u_ 1)/g—1 if (22) holds.

CEE;
where the conditions are

u > 1 and jy # k, (mod u), (21)
u=1; or wu>1and jy=k, (modu). (22)

Altogether, if [ | (ks/q — 1o — ind,, ag), then

M,—1= (23)
(=D)L (((-D)"yg — DI+ 1)V/g if (ZI)) holds,
(=)™ (=)™ Hu —1)\/g — 1)l + 1)/q" if 22) holds.

Combining (I6]), (20) and [23) with Lemma 2 we get the values of
N; which we gather in the following theorem.

Theorem 4. Assume s | (p°+ 1) and r = 2en. Then the N; are those
listed in Table[]l FEspecially, if a =0 and ! =1 then Ny = s( =1 1),
and if a # 0 and d = s then N, = ¢'~1.

TABLE 4: Values of N; for s | (p°+ 1) and r = 2en with “|” and
“f” telling whether [ divides k4 — o — ind,, ag or not.

a Nt with
a=0 gt =1+ (- 1)v/q'2) (@
g -1 (- 1> i B m

a0 e = (=D ?) f

2q " = (=1 (- 1)%—1l+ Dva?) , @D
g — (=) (((-1 )l ©2)

|
)" Hu—1)/g— 1)L+ 1)/¢"2) |,
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5.5. The semiprimitive and index 2 cases for p = 2. In this sub-
section we assume that p = 2 and show how to calculate P,,(a,q—1,h)
in semiprimitive or index 2 cases by applying the results from [ II]
and [T4]. In particular, we give P,,(0,q— 1, h) explicitly for all m < 30.
We also give a table of these numbers for ¢ = 2, 4, 8, and small val-
ues of m to cross-check our formulae against the results given by the
irreducible polynomial generator in [15].

As p = 2, the semiprimitive case holds for an odd integer N > 1 if
—1 is a power of 2 in Zy. Correspondingly, the index 2 case is said
to hold for N if —1 ¢ (2) C Zy and ordy 2 = ¢(IN)/2 where ¢ is the
Euler function.

If s is semiprimitive then clearly its factors, especially [, s/d and u
in Lemmas (4] and [7, are too. Proposition Il can be written for charac-
teristic p = 2 in the following form, see also [8] IT Theorem 1|.

Proposition 2. Assume that rt = N'ordy 2, N > 1 and —1 is a power
of 2 modulo N. Then

a, Ny — <_1)N,\/? ZfNJ(aJ’
Z e(yiat) = {<_1)N/—1<N _ 1)@ if N | a.

Similarly, if the index 2 case holds for N then its factors satisfy either
the index 2 or the semiprimitive case, see [8, IT Lemmas 2 and 5|. In
what follows we consider only square-free N in the index 2 cases. From
the general classification result 8, IT Lemmas 3 and 6| it follows that
the following three cases are then possible, where p; and p, are primes:

1. N=py =7 (mod 8);

2. N = pip2, p1 = 5 (mod 8), p» = 3 (mod 8), 2 is a primitive
root modulo p; and modulo po;

3. N=pip2, p1 =3, 5 (mod 8), pp =7 (mod 8), ord,, 2 =p; — 1,
and ord,, 2 = (p2 — 1)/2 with —1 ¢ (2) C Z,,.

The value distribution of the monomial sums in the above square-free
cases were studied in 2] (case[I]) and [16] (cases 2l and B]). The general
(characteristic 2) index 2 cases has been studied in [8] (cases [ and [))
and in [I4] (case B). We are able to compute the value distribution
except for few case [3] parameters. Knowing only the value distribution
and not the exact values is not enough to compute the P, (a,s,h)
exactly but with the methods from [8] and [14] we get (except for some
cases[3) at most two possibilities for the values of each P,,(a, s, h) when
the index 2 case holds for m.

Let us next recall how the index 2 sums Zzqut ei(vixN) can be

:L‘E]th

computed in our three cases. For the results and methods we refer to
[13, 8] for cases [Il and 2 and to [I4], especially Theorems 4, 6 and 7,
for case Bl Also [2, [I6] can be used. Let rt = r't’ with ' = ¢(N)/2 =
ordy 2 and denote by 6 = Norm(y;) a primitive element of [, where
Norm is the norm from F,: onto F,,. Further, since N | (2" — 1), there
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exists a multiplicative character x of I, for which y(d) = €*™/V. The
character y has order N and x’ = yoNorm is a multiplicative character
of order N of .

The value of the monomial index 2 sum - e (y;z") can now be
q
computed in terms of Gy(x) = X ,ep- €:(2)x'(x) by using [8, Theorem
q

2] in the case[I] |8, Theorem 3| in the case[2and [14] eq. (16), Theorem
4] in the case Bl By the Davenport-Hasse identity

Gi(x)=—(-F.(x))",  F.(x)= Y x(@e(x),  (24)

$EF2T/

where in the last Gauss sum over [, e is the canonical additive char-
acter of I,,». These latter Gauss sums can be computed up to the sign
of the imaginary part, see [13, p. 1245] and [14], p. 9 and Theorem 7|.

The above cases cover all values m < 30, so we able to compute
(possibly up to two choices) P,,(0,s,h) for m < 30 by Lemma [ and
P(a,s,h) for a # 0, m < 30, by Lemma [l As an example we give
P, := P,(0,g—1,h) for m < 30. Since s = g — 1, we have b fixed and
h = indb = indy,b. We consider the values m < 30 in the following
order: 2% (2, 4, 8, 16), semiprimitive primes v (3, 5, 11, 13, 17, 19, 29)
and the cases related to these: 2v (6, 10, 22, 26), 4v (12, 20), 8v (24),
v? (9, 25), 202 (18), v* (27). Finally, we cover the index 2 cases: 7, 23
with related 14, 28 (case [l), 15 with related 30 (case ), and 21 (case
3).
If m = 2% then () gives P, = %(Nm — Npy2). By Lemma [l N, /o =

qm/2_1 qm—l_l

T Lemma [l gives M,, =1 — ¢q and then N,, = p
2l Thus, as in [10, Example 2],

by Lemma

m m/2

¢" "t —q
m(q—1)

In the case m = v equation (I) implies P, = (N, —Ny). If v { (¢—1)
then d = [ = 1 for both values t = 1, v. By Lemmald, M; = M, =1—¢q

v—l_l

P, =

and therefore Lemma 2] gives N; =0 and N, = 4 pasat Thus
v—1 _ 1
p 1 =1
v(g—1)

Assume now that v | (¢—1). If t =1 then d = v and [ = 1. By Lemma
MN, =0ifvth. Ifv]|hthen M; =1— g by Lemma [ and therefore
Lemma [2 gives N7 = 0 in this case, too. If t = v then d =1 and | = v.
By Lemma [ and Proposition 2l we now have

A = dla=D=1EVe) if vth,
" g = D(=1F (v=1)/F@) ifv]|h,
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where + = (—1)¥ with rv = v/ ord, 2. Since v is odd, & = (—1)2.
By using Lemma [2l and combining the above results we get

-1 0 if ord, 21 r,
P, — h = £1 /g2 iford, 2|7, vtindb, (25)
q :FUT—l q*=2 iford,2 |7, v |indb.

To consider the case m = 2v we note the following. If 7 is odd we
have p(m)Ny + p(%)Ny = 0. Namely, for t = 1, d = ged(m,q — 1) =
ged(F,q — 1), and Lemma [ gives Ny = 0 or dif d { h or d | h,
respectively. For ¢ = 2 we have d = gcd(%,¢ — 1) again and [ =
ged(2, %) = 1. If d{ h then Ny = 0 by Lemmalll If d | h then Lemma
gives My = 1 — ¢ and therefore Ny = (q—dl)q (¢*—1+4+1—¢q) =d. This
proves the claim p(m)N; 4+ p(5)N2 = 0 for odd 3. Note that this
claim holds true also if 8 | m or m is non-square-free. The use of (TI)
now gives Py, = %(NQU — N,) by the above consideration.

Fort=wv,d=gcd(2,¢g—1)=1and 2 | 7. By Lemmadl N, = q;:f.
For t = 2v, d = 1 again and | = ged(2v,q — 1) = ged(v,q — 1), If

v1(g—1) then [ = 1 and Lemmas 2] and [ yield

1 20—-1 __ 1

Ny = 7 (¢® —1+1—¢q) =
? (q—l)q( )

If v|(¢g—1) then [ = v and Lemma [ and Proposition 2 give

qg—1

A = Jla=1D(=1+¢") if v {h,
2v — v .
(=D(-1=(v—-1)¢") ifv][h,
since now 035:2 is even. The use of Lemma[2 together with these results
gives
e 0 if ord, 217,
Py, = Lgv! if ord, 2 | 7, v {indb,

T oy N 2.4
20(g—1 o
(=1 —22¢7t iford, 2 | r, v |indb.

For the remaining cases related to semiprimitive primes v the use of
Lemmas Il 2 and d] and Proposition 2] gives the following results. The
details of the calculations are given in [6].

If m = 4v (12, 20) then

(g — 1) —2;?1 if ord, 217,
L v e if ord, 2 | r, v { indb,

—2=lg2=t — (4)2 iford, 2 | 7, v | indb.
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If m = 24 then
a*(¢®~1) i
¢2(q" — 1) ~24e-1) 21,
p24_m: L if 2 | r, 34indb,
q _d! @D o |7, 3| indb
2 8(¢—1) ’ '

If m = v? (9, 25, which are semiprimitive) then
qU2—1 -1 B qv—l -1

B = =) T vl

for ord, 217,

p ¢t -1 +151/qV 2 if v1{indb,
w2 — e = v—1_ o o . .
v2(q — 1) _Z,(q_nl F1 5@ 2 ifv|indb
for ord, 2 | r, ord,2 2 { r, and
2-1
|
pa_ oL
v (g —1)

+95/q" 2 if v find b,

+y 5/ 2 -1 qv__l_l +1 /¢ 2 if v | ind b, v? { ind b,
v v q—1 L

F2lm /g2 = N (0 - 1)4/g0) i o? | ind D

for ord,2 2 | r, where £, = (—1)°%i* for i =1, 2.

If m = 18 then
@ -1 Pt
FI8(g - 1) 18
for 24 r,
po @0 _[E if 3 4 ind b,
PUBE-D) | -%(5+ %) i3] indb
for 2 | r and 6 1 r, and
8 . .
¢"(¢" — 1) B if 3{indb,
Ps =R~ T 52 e if 3| indb, 91indb,
(q - ) _q2(8q6+31(]8(q+1)76) if 9 | nd b
for 6 | r.
If m = 27 then
q26 —1 q8 _1
Py — - _
27(g—1)  27(qg—1)
for 24 r,
P et B =V if 3 4 indb,
T |~ (R £2/%) i3] indb
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for2|r,61r,

% _q 27\/ if 31indb,
Pyp— L —° _ g‘gq—})i (Vg% — 3+/¢7) if 3] indb, 91 indb,

27(q — 1)
—&—=0 2 \/ 3\F ) if 9 | indb

\II

for 6 | r, 18 t r, and

26
—1
P 0L
27(q - 1)

57 V¢ if 34 ind b,
= —gq(q‘i) + L(\/g® —3\/q)  if3]indb, 271 indb,
— =5 T 2(18V/¢% — 124/q7) i 27| ind b

for 18 | r, where & = (—1)z.

In the index 2 case[ll m = p, (7, 23) and we have P,, = L(N,, — N})
by (). In considering N7 we have d = ged(m,q — 1) and [ = 1. Thus
Lemma 1l gives Ny = 0 if d 1 h. In the case d | h the use of Lemmas
and 4 implies N; = 0, too.

If t=m then d =1 and | = ged(m,q—1). f m{(¢g—1) then [ =1
and M,, =1— ¢ by Lemma[. Thus Lemma [ gives N,, = qn; 1. For
m | (¢ — 1) we have

by Lemmas [2] and [4]
To determine N7 we note that v’ = ¢(7)/2 =3 = ord;2 and t' = 7r/3
in (24). Further, as given on [12} p. 3],

F3(x) =—-14c¢v-T, ce{l,—-1},
in (24) and the use of [12, Lemma 3] togehter with the above consid-
eration gives

0 if 3¢,

r Tr

-1 )z + 0P NP if 3|7, 7 |indb,

71"1

=t T
T(q—1) @(% + 7 )W if3|r, indbe 7,

*?(wf’ i +w3+1)\/q5 if 3], indb e C”,,

w

where w; = (1 ++/=7)/+/8, bar denotes the complex conjugation and
CH denotes the 2-cyclotomic coset modulo N containing 4.

In the related case m = 2-7 = 14 we see as above in the case m = 2v
that ,u(14)N1 +M(7)NQ =0in (IID Thus P14 = i(N14 — N7) Ife="7

then d = ged(2,¢ — 1) = 1. Since 7 = 2, Lemma [ can be applied to

get Ny = %. In the case t = 14, d = 1 and | = ged(14,q — 1) =
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ged(7,g —1). If 74 (¢ — 1) then | = 1 and Lemmas 2] and [] give
Ny = and @ we have

1

N14= - Zem

xéEE‘n1

if 7| (¢—1). Now rm = m/ord; 2 or m’ = 14r/3, and therefore we get
as above

0 if 3¢r,
14r 14r
» (¢ —1) ) —glw® +&7 )¢’ if 3|r, 7]indb,
14— T 1y 1y
14(q — 1) g(wﬁ +@,* )g® if 3|7, indbe C,
ST e BTG CE s N S . 7
Y= (wr +w;®  )¢® if3]|r, indbe C’,

with the same ¢ and w; as in Px.
For the details of the cases m = 4 -7 = 28 and m = 23 we refer to
[6] and state here the results:

14,13 _ 1
Pyl =D
28(¢g—1)
_% if 31 r,
28r
_ 2w+ ) — (92 if3|r, 7| indb,
- ﬁ(w%f I Nt if3]r indbe C7
28 \*7 7 q if 3|7, indb e C/,
28r &
\2/—85((4}73 +1 +w7 +1)q13 if 3 | r, indb e Czc

with the same ¢ and w; as in P;. For m = 23 the Gauss sum Fi;(x)
can be calculated with the method described on [12] p. 3]. We obtain
Fii1(x) = 23(=3 + ¢v/—23), where ¢ € {1,—1}. Then

0 if 1147,
23r 23r

¢2—1 — o5 (Wt +w23 )qit if 11| r, 23 | ind b,
=
23— 1) | ZiRe (w23 (1++v=23)) if11|r, indbe C%,
69
11

C

- Re(w23 (1—+/=23)) if11|r, indbe O,

where wqe3 = 3 — /—23.

The index 2 case [2 holds for m = 15. Now Fy(x) = 1 + ¢v/—15 in
(24) is given in [12, Lemma 5|, where ¢ € {1, —1}. We again just state
the results for m = 15 and the related m = 30, and refer to [6] for the
details. If m = 15 then

q14_1 _ q4+q2_2

B DT e
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for 21,
PG B ot { (R VUL if 3 4ind b,
P - 1) |~ (C —2/gB + (g +1)?) if 3| indb
for 2| r, 4¢r, and
q14_1 B
P15_15(q—1)_
( 157
15(2(W15 + Wi )+1i2)\/q
(q‘1$4f) )2 if 15 | ind b,
%(wlls%ljwlél—ﬁl)\/q - (q*li\f) if indb € CL5,
L(2(wd +w15)+1:p4)\/7 Hg+1+/q) ifindbe CP,
157"
%5(2( P rod T +1£1)/g0 if indb e C13,
L 1! i e 15
[ 15 (2(w ( + w5 )+1i1)\/q if indb € C*5,

for 4 | r, where & = (—=1)7 and w5 = —(1 +v/—15) /4.
If m = 30 then

15 14 3(,.,6
q’(g*—1 ¢(¢° —1
p_ 006" =) Pl

30(¢—1)  30(¢—1)
for 217,
p, =) {—qszo(f’:;)) j_%(q”?— 1) it 31 indb,
30(g—1) | —LBE2al — (g2 — 1) if 3] indb
for 2| r, 4¢r, and
Pyy — 76'1;50(6114 —
(¢—1)
15 (2(%? + W115 )+ 3) )
- qléfq;)) ~L(g+ 14) 2(6¢>+5) if 15 | indb,
] S +@ —1)gM - ey if ind b € C3,
T\ beeF o) -8t - 29D irindbe cb,
IS (wgﬂ + @1155 ) if indb e C15,
\1_15(“’1?71 + w3 L4 1)6114 if indb € C13,

for 4 | r, where wy5 = —(1 4+ +/—15)/4.

The index 2 case [ holds for m = 21. The Gauss sums Fy(x) =
—2(34+cy/=7) and Fy(x®) = 2(3+cv/—7) = —Fs(x), where c € {1, -1},
are computed in [I4, Example 11]. Then

IEITTr) R Ty
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for 247,311,
pm_& _ —%(gjli(qg—l)\/a) if 34indb,
21(g— 1) | - (3= £2(¢° - 1)y/g) if 3| indb
for2|r,31r,
20
-1
Py — st =
21(¢ — 1)
( 6 2 5 - " 1 ) )
_(qzir(zq—ns + \/7;((“’? + 0" + (Wi +wf ))) if 7| ind b,
6__ 2 5 r— Y, ﬂ+1 7ﬂ+1
~sien T a (W el e = (T o)
if indb € C7,
6_ \/2¢° - 7 .
_zf(q—ln + Vo (i + ol g — (Wi 4+ wf )
\ ifindbe C7,
for 24r,3|r, and
20
-1
Pp— o=
21(¢ - 1)
r T T
(e 0w+ of) £ 20) VT
+1(4 = 3w +&7 )V) +5(1F va)) if 21 | ind b,
5t B F )(wyi +@1) £47)Ve® — 5(¢ + 1+ /) for C21
5 ir ir
Y (2 Re(usf (1 + V7)) £ Re(ws (1~ v=7) 7 2¢7)
T ™
_%(q;—_f + (w7 "+ w7’ 1)\/ 2(]5) for C2!,
5 ir r
Y (3Re(wy (1 = V=) £ Re(wy (1+ 7)) F 2¢7)
7 et
_% (qu:11 + (w7’ o + w7 +1)\/ 26]5) for C%,

r

21q5 (_ Re(wyy (1 —v/=7)) £ Re(wg%r(l +/-7)) £ q7) for C?!,
\ 235 (- Re(W§(1 +v/=T7)) £ Re(w§(1 —V=1) £q") for C%,

for 6 | r, where C?! indicates the cyclotomic coset that indb belongs
to and + = (—1)2. In addition, w; = (1 ++/=7)/v/8 is as in P; and
Wo1 = 3+ \/—_7

The irreducible polynomial generator in [I5] can be used to cross-
check our formulae for small values of ¢ and m. It lists every irreducible
polynomial over F,, ¢ < 8, of a given degree m if there are at most 1000
such polynomials. We can use [I5] to list every irreducible polynomial
of degree m < 13, 6, 3 over Fy, Fy, g, respectively. One can then
pick the polynomials with @ = 0 from this list. On the other hand,
the formulae of this subsection give the number of these polynomials.
For example, let m = 3. If ¢ = 2, 8, then (25]) gives P = % for
every b. The P; equals to 1 if ¢ = 2, and to 3 if ¢ = 8. If ¢ = 4 then

3

3
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(28) gives Py = 3(q 1 —3y/q =1for 31indb (b # 1; 2 values), and

Py = 3‘1(q_11) +2,/g=3for3|indb (b= 1; 1 value). The other values in
Table [Bl are obtained similarly. Our results agree with those obtained

using [15].

TABLE 5: The number of the irreducible polynomials with a = 0
and b fixed for small ¢ and m.

q m
234 5 6 7 8 9 10 11 12 13
2 011 3 4 9 14 28 48 93 165 315
4,b=1 0 3 4 17 48
4,b#1 0 1 4 17 56
8 0 3
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