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Abstract

The operator valued distributions which arise in quantum field theory

on the noncommutative Minkowski space can be symbolized by a general-

ization of chord diagrams, the dotted chord diagrams. In this framework,

the combinatorial aspects of quasiplanar Wick products are understood

in terms of the shuffle Hopf algebra of dotted chord diagrams, leading to

an algebraic characterization of quasiplanar Wick products as a convolu-

tion. Moreover, it is shown that the distributions do not provide a weight

system for universal knot invariants.

1 Introduction

Tensor products of the operator valued distributions that appear in quantum
field theory are in general ill-defined when pulled back to the diagonal, and
the process of renormalization is necessary to define products which are well-
defined distributions. For products of free field operators, the renormalization
procedure leads to what is called the Wick product of quantum fields.

In [1], the quasiplanar Wick products were defined as a generalization of
Wick products which is suitable for products of quantum fields on the noncom-
mutative Minkowski space. The definition is based on a certain notion of locality
and it is the first step towards a full renormalization theory in the Minkowskian
noncommutative framework. This paper elaborates on the quasiplanar Wick
products’ combinatorial and algebraic aspects, leaving the functional analytic
aspects aside. Its first aim is to clarify that the graphs we used in [1, 2] to
handle the combinatorics of quasiplanar Wick products, are a generalization of
the classic chord diagrams studied e.g. in knot theory [3, 4].

Chord diagrams carry a cocommutative Hopf structure, and it is natural to
try to reformulate the combinatorial aspects of quasiplanar Wick products in
this algebraic language, much in the spirit of [5]. So, the paper’s second aim is to
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reformulate the combinatorial aspects of quasiplanar Wick products as proved
in [1, 2] in this algebraic setting and to show that the Hopf structure with the
shuffle product and deconcatenation coproduct is the natural one in our context.
A completely algebraic characterization of quasiplanar Wick products in terms
of a convolution in the shuffle Hopf algebra is given in section 4. Section 5
is devoted to explicitely relating these algebraic objects and relations to the
operator valued distributions which arise in quantum field theory on the non-
commutative Minkowski space. In the last section, it is shown that, although
these distributions bear some similarity with weight systems [4], they do not
fulfill the 4T relation.

2 Dotted chord diagrams

Let us first recall the notion of a chord diagram. Let L denote a directed simple
polygonal arc in [0, 1] × R, let ∂L denote its boundary, that is, the set of its
two endpoints. A chord diagram on L is a finite set of ordered pairs of distinct
points on L\∂L. The pairs of points are usually symbolized by connecting lines,

the chords of the chord diagram, whose shape is irrelevant, e.g. q qq q ✲ for
the set {(x1, x3), (x2, x4)}, where x1, x2, x3, x4 appear on the arc from left to
right in that order.

Definition 1 Let L be an arc. A dotted chord diagram on L is a finite set of
ordered pairs of points on L \ ∂L.

Observe that in this definition, we admit pairs (x, x) of nondistinct points.
We refer to such pairs as dots. We continue to symbolize a pair of distinct points
by its connecting line and symbolize a pair (x, x) on the arc simply by the point

x itself, e.g. q qq q q✲ for a set {(x1, x3), (x2, x5), (x4, x4)} with xi 6= xj for
i 6= j and where x1, x2, x3, x4, x5 appear on the arc from left to right in that
order. Observe that a dotted chord diagram that only contains pairs of distinct
points is indeed a chord diagram in the usual sense. These diagrams thus appear
as special cases of dotted chord diagrams and will be called diagrams without
dots. Likewise, we will call the dotted chord diagrams containing only pairs of
non-distinct points diagrams without chords or chordless diagrams.

We say that a dotted chord diagram has dot-degreem, and write ddeg(D) =
m, if its pairs are built from m distinct points on the arc. For example, the two
dotted diagrams above have dot-degree 4 and 5, respectively. Note that usually,
the degree of a chord diagram is the number of its chords, hence, the dot-degree
of a chord diagram without dots is twice the ordinary degree.

Let Vm denote the finite dimensional vector space that is spanned over C by
all dotted chord diagrams of dot-degree m, and let V =

⊕
m≥0 Vm with V0 = C.

It is well known that the vector space of chord diagrams forms a Hopf algebra,
see for instance [4]. We will generalize this structure to the vector space of dotted
chord diagrams. The unique way to glue together two directed arcs L1 and L2

(in that order from left to right), such that the resulting arc is again directed,
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extends by linearity to an associative product µ : V ⊗V → V . Usually, we write
a · b or ab for µ(a ⊗ b). The unit for this product is the empty diagram ✲

which we also denote by ∅ or 1. Now consider the coproduct ∆ : V → V ⊗ V ,
defined on diagrams as

∆(D) =
∑

∅⊂D′⊂D

D′ ⊗ (D \D′)

where the sum runs over all subdiagrams (including the empty diagram as well
as D itself). Its counit is the map ǫ that is equal to 1 on the empty diagram and

0 elsewhere, and the primitive elements in V are q✲ and q q✲ It is standard
to check that (V, µ,∆) is a bialgebra, and since V is graded and connected,
it follows that V is a Hopf algebra. Its antipode is given inductively on the
dot-degree of a diagram by S(∅) = ∅, and for D 6= ∅,

S(D) = −D −
∑

∅(D′(D

S(D′) · (D \D′)

We have, for example,

S( q qq q ✲) = q qq q ✲+ q qq q ✲− q qq q ✲

S is an algebra-antihomomorphism, that is, S(ab) = S(b)S(a), and since ∆ is
cocommutative, we have S2 = idV , see [3].

3 The Quasiplanar Wick map

Let us recall and extend some definitions from [6] and [1], respectively. The
labelled intersection graph of a chord diagram without dots is a graph whose
vertices are the chords of D, numbered from 1 to ddeg(D)/2 in the order in
which their starting points appear along the arc, and where two vertices are
connected by an edge iff the corresponding two chords in D intersect.

To extend this definition to dotted chord diagrams, we first establish how to
label dotted chord diagrams. Let D be a dotted chord diagram, then we label
its chords and dots on the same footing in the order as they appear along the
arc, e.g.

q q q q

3
q q q q

5

1 2 4
✲

Definition 2 The labelled intersection graph of a dotted chord diagram D is a
graph with coloured vertices. It is composed of the labelled intersection graph
(with, say, white vertices) of the diagram D with all dots removed but keeping
the original labels of the diagramD, and an additional set of, say, black vertices,
one for each dot in D, also with the labels from D. An edge connects a black
vertex with a white vertex provided that on the arc, the dot corresponding to
the black vertex is between the two endpoints of the chord corresponding to
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the white vertex. The adjacency matrix of the labelled intersection matrix of a
dotted chord diagram was called the extended incidence matrix in [1]. A dotted
chord diagram is called connected if its labelled intersection graph is connected.

Example The labelled intersection graph of the dotted chord diagram
q q q q q q q q✲ is the graph

❜

1
❜

2
r

3
❜

4
r

5 Its adjacency matrix is
a symmetric 5× 5-matrix J with J12 = 1, J23 = 1.

Before reformulating the definition of quasiplanar Wick products from [1]
in the present context, we need some more definitions. We first extend the
definition of regular chord diagrams [7].

Definition 3 A dotted chord diagram is called regular, if for any two pairs of
distinct points (x, y) and (w, z) in the diagram whose chords do not intersect,
both x and y appear either on the right hand side or on the left hand side of
both z and w on the arc.

For example, the diagram q q q q✲ is regular (and connected), while the

diagram q q q q✲ is not regular.

Definition 4 A dotted chord diagram is called quasiplanar, if for any two pairs
of points (x, y) and (z, z) in the diagram, both x and y appear either on the
right hand side or on the left hand side of z on the arc.

Observe that a diagram is quasiplanar if and only if its labelled intersection
graph does not contain any edges between back and white vertices. For exam-
ple, the diagram q q q q q q q q✲ is quasiplanar (regular, not connected),

while the diagram q q q q q q q q✲ is not quasiplanar (but still regular).
Observe that any diagram without dots and any diagram without chords is
quasiplanar. In particular, the diagram q q q q✲ is quasiplanar (but not
regular).

We will now consider regular quasiplanar diagrams, and denote by V rq
n the

subspace of Vn that is spanned by regular quasiplanar dotted chord diagrams
of dot-degree n. We also use the notation V rq =

⊕
V rq
n .

Remark 5 It is not difficult to see that a product of connected quasiplanar
diagrams is regular quasiplanar and that any regular quasiplanar diagram can
be written in a unique way as a product of nontrivial connected quasiplanar
diagrams. More generally, any regular diagram can be written in a unique way
as a product of nontrivial connected diagrams.

For this reason, connected quasiplanar diagrams will turn out to be impor-
tant. Observe in particular, that a connected quasiplanar dotted chord diagram
D is either the diagram q✲ or it does not contain any dots. Unless it is of
dot-degree 1, a connected quasiplanar dotted diagram therefore has even dot-
degree. We will denote by Dcq

n the set of all connected quasiplanar dotted chord
diagrams of dot-degree n, and by Dcq the set of all connected quasiplanar dotted
chord diagrams.
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In what follows, let us denote an (unlabelled) diagram without chords of
dot-degree n by [n],

[n] = q q . . . q q✲

with the convention [0] = ∅.

Definition 6 We define a linear map W : V → V , called the quasiplanar Wick

map, by setting W(D) = 0 if D contains a chord, and for chordless diagrams,
we define W inductively by W(∅) = ∅, and for n ≥ 1,

W([n]) =
∑

06=m≤n

(−1)m+1 f([m]) W([n−m]) with f([m]) =
∑

D∈Dcq
m

D

where the sum in the definition of f runs over all connected quasiplanar diagrams
of dot-degreem. We call the imageW([n]) the n-fold quasiplanar Wick product.

Proposition 7 For any n ≥ 1, we have

W([n]) =

n∑

K=1

∑

Di

(−1)n+K D1 · · ·DK (1)

where the sum runs over all nontrivial diagrams Di ∈ Dcq whose dot-degrees
are a partition of n, i.e.

∑K
i=1 ddegDi = n.

Proof: The claim is almost obvious from the definition, although the formal
proof turns out to appear complicated. Clearly, the claim is true for n = 1, since
W([1]) = [1] which is the only connected quasiplanar diagram of dot-degree 1.
Now, assume the claim to be true for [n]. Then by the induction hypothesis and
inserting the definition for f([2l]), we have

W([n+ 1]) = f([1])W([n])−
[n+1

2 ]∑

l=1

f([2l])W([n+ 1− 2l])

= [1]
n∑

K=1

∑

Di ∈ D
cq

K
P

i=1
ddegDi = n

(−1)n+K D1 · · ·DK (2)

−
[n+1

2 ]∑

l=1

∑

D0∈Dcq

2l

n+1−2l∑

K=1

∑

Di ∈ D
cq

K
P

i=1
ddegDi = n + 1 − 2l

(−1)n+1+K−2l D0D1 · · ·DK (3)

Now, line (3) in the above can be rewritten as

−
n−1∑

K=0

∑

Di

(−1)n+1+K D0D1 · · ·DK

5



where the second sum runs over all nontrivial diagrams D0, D1, . . . , DK ∈ Dcq

with
∑K

i=0 ddegDi = n+ 1 and ddegD0 ≥ 2. Observe that for n even, the sum
actually starts with K = 1, since for K = 0, the second sum is empty (we would
have ddegD0 = n+ 1, in contradiction with the fact that the dot-degree of D0

has to be even). Shifting the summation index by one, we then find that line (3)
is equal to

−
n∑

M=1

∑

Di

(−1)n+M D1 · · ·DM

where the second sum now runs over all nontrivial diagrams D1, . . . , DM ∈ Dcq

with
∑M

i=1 ddegDi = n+ 1 and ddegD1 ≥ 2. Observe that this sum can be
extended to include the caseM = n+1, since the sum over the diagrams is empty
in that case (since the conditions ddegD1 ≥ 2 and ddegD1 + · · ·+ddegDn+1 =
n + 1 cannot be fulfilled simultanously). Using that the diagram [1] is in fact
the sum over all diagrams D0 ∈ Dcq with ddegD0 = 1, and again shifting the
summation index, we now rewrite line (2) in the above as follows

n+1∑

M=2

∑

Di

(−1)n+M+1 D1 · · ·DM

where the second sum runs over all nontrivial diagrams D1, . . . , DM ∈ Dcq with∑M
i=1 ddegDi = n + 1 and ddegD1 = 1. This sum can in fact be extended to

include M = 1, since for n ≥ 1, the sum over the diagrams is empty in this case
anyway. Putting both sums together proves the proposition.

Example With the notation from above, we have

W([4]) = [1] W([3]) − q q✲ W([2]) − q q q q✲

= q q q q✲

︸ ︷︷ ︸
K = 4

− q q q q✲ − q q q q✲ − q q q q✲

︸ ︷︷ ︸
K = 3

+ q q q q✲

︸ ︷︷ ︸
K = 2

− q q q q✲

︸ ︷︷ ︸
K = 1

Corollary 8 The image of the quasiplanar Wick map W is contained in the
space of regular quasiplanar diagrams V rq. It is a projection, W ◦ W = W .
Moreover, we have ∆

(
W([n])

)
∆
(
W([m])

)
= ∆

(
W([n])W([m])

)
.

Proof: All claims are a consequence of the equality given by Proposition 7.
The first claim follows immediately, since all terms on the right hand side of the
equation are regular and quasiplanar. All but the last term in the sum on the
right hand side (where K = ddeg([n]) = n) contain at least one chord, so the
second claim follows from the definition of W . The third claim is a consequence
of the fact that (V, µ,∆) is a bialgebra.
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Proposition 9 For the product of two quasiplanar Wick products W([n]) and
W([m]), we find the relation

W([n])W([m]) = W([n+m]) +

n+m∑

K=1

∑

Di

(−1)n+m+K+1 D1 · · ·DK (4)

where the sum runs over all nontrivial diagrams D1, . . . , DK ∈ Dcq such that∑K
i=1 ddegDi = n+m but where no 1 ≤ S ≤ n+m exists, such that

∑S
i=1 ddegDi =

n and
∑K

i=S+1 ddegDi = m.

Proof: We write down the expressions for W([n]), W([m]), and W([n+m]) ac-
cording to Proposition 7. It is then not difficult to establish that all terms which
appear in the product W([n])W([m]) also appear in W([n+m]). The converse is
not true; the diagrams that appear in W([n+m]) but not in W([n])W([m]) are
the regular diagrams which contain chords connecting some of the first n points
with some of the lastm−n+1 points. These diagrams are of the form D1 · · ·DK

with Di ∈ Dcq such that
∑K

i=1 ddegDi = n+m but where no 1 ≤ S ≤ n+m ex-

ists, such that
∑S

i=1 ddegDi = n and
∑K

i=S+1 ddegDi = m. They each appear

with prefactor (−1)n+m+K . Subtracting all such diagrams (with their prefac-
tors) from W([n+m]) therefore yields the product W([n])W([m]). This proves
the proposition.

The signs which appear in equation (4) above can also be given in terms of
the number of connected diagrams with dot-degree strictly larger than 1. More
generally, we have:

Remark 10 For any product D1 · · ·DK with nontrivial diagrams Di ∈ Dcq,
and

∑
ddegDi = n, we have

(−1)n+K D1 · · ·DK = (−1)d2 D1 · · ·DK

where d2 is the number of connected quasiplanar diagrams in D1 · · ·DK with
dot-degree strictly greater than 1. To see that this is true, observe that (−1)n+K =
(−1)n−K , and that K = d1 + d2, where d1 counts the number of connected dia-
grams of dot-degree 1. Now, any quasiplanar connected diagram of dot-degree
> 1 has even dot-degree, hence n− d1 is even, and the claim follows.

Example We have

W([2]) W([2]) = W([4]) + q q q q✲

︸ ︷︷ ︸
K = 1

+ q q q q✲

︸ ︷︷ ︸
K = 3

7



and

W([2]) W([3]) = W([5]) + q q q q q✲ + q q q q q✲

︸ ︷︷ ︸
K = 2

− q q q q q✲

︸ ︷︷ ︸
K = 3

+ q q q q q✲

︸ ︷︷ ︸
K = 4

For reasons inherent to quantum field theory, it is desirable to rewrite all terms
on the right hand side of equation (4) in terms of the quasiplanar Wick map
W . This is achieved by first extending W to diagrams with chords. The image
of this extension is contained in the vector space of quasiplanar diagrams, but
in general no longer in the vector space of regular quasiplanar diagrams. The
construction is not yet fully understood in algebraic terms and is not necessary
to understand the results presented in the remaining sections of this paper.

By Proposition 7, a dotted diagram without chords [n] can obviously be
rewritten as follows

[n] = W([n])−
n−1∑

K=1

∑

Di

(−1)n+K D1 · · ·DK

where the sum runs over all nontrivial diagrams Di ∈ Dcq with
∑K

i=1 ddegDi =
n. We would like to iterate this process of replacing dots by Wick products
also in diagrams containing chords (such as the terms of the sum over K in the
above).

The map W itself cannot be used to that end, since it maps any diagram
containing a chord to 0. We now define an extension W ′ of W which is equal to
W on diagrams without chords and on quasiplanar diagrams with chords acts
as W on the diagram’s dots while leaving the rest of the diagram unchanged.
Observe that W ′ takes values in the vector space of quasiplanar, but not neces-
sarily regular diagrams, i.e. the image of W ′ is not in general contained in V rq.
We again call a term of the form W ′(D), where D is a diagram, a quasiplanar
Wick product.

Example We have

W ′( q q q q q q✲ ) = q q q q q q✲ − q q q q q q✲

− q q q q q q✲ − q q q q q q✲

+ q q q q q q✲ − q q q q q q✲

Compare this with the quasiplanar Wick product W([4]) given on page 6.

Iterating the procedure of replacing products of dots by quasiplanar Wick
products using W ′, we can rewrite any quasiplanar dotted chord diagram D in
terms of elements of the image of W ′ and of diagrams without dots. This means
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that the image of W ′ together with diagrams without dots provides a basis for
quasiplanar dotted chord diagrams. The algebraic meaning of this, however,
remains to be understood.

Example The diagram q q q q q q✲ is equal to the sum

= W ′( q q q q q q✲ ) − q q q q q q✲ + q q q q q q✲

+ q q q q q q✲ + q q q q q q✲ + q q q q q q✲

= W ′( q q q q q q✲ ) − q q q q q q✲ + q q q q q q✲

+ W ′( q q q q q q✲ ) − q q q q q q✲

+ W ′( q q q q q q✲ ) − q q q q q q✲

+ W ′( q q q q q q✲ ) − q q q q q q✲

In particular, we can use the map W ′ to rewrite all terms on the right hand
side of equation (4) from Proposition 9 in terms of quasiplanar Wick products.
The resulting equation is what is called the quasiplanar Wick theorem in [1, 2].

4 The shuffle Hopf algebra

By Corollary 8, the image of the quasiplanar Wick map W is contained in
the space of quasiplanar regular diagrams V rq. We will now consider a Hopf
structure on V rq such that the quasiplanar Wick map can be understood as
a convolution in this Hopf algebra. Incidentally, the ordinary Hopf algebra of
chord diagrams does not seem to be natural in this context, but instead we have
to consider the Hopf structure.

By remark 5, any regular quasiplanar diagram can be uniquely written as a
product of connected quasiplanar diagrams. We use this to endow V rq with a
commutative product, the so-called shuffle product µ# : V rq ⊗ V rq → V rq,

µ#(D ⊗D′) =
∑

σ∈Shn,m

Dσ(1) · · ·Dσ(n+m)

where D = D1 · · ·Dn and D′ = Dn+1 · · ·Dn+m with Di nontrivial, quasiplanar,
and connected, and where Shn,m = Sn+m/Sn × Sm is the set of shuffle per-
mutations, that is all elements σ of Sn+m which leave the order of the first n
elements and that of the last m elements unchanged, i.e. σ(1) < σ(2) < . . . σ(n)
and σ(n + 1) < σ(n + 2) < · · · < σ(n + m). We will usually write a#b for
µ#(a⊗ b). It is known that the shuffle product allows for a Hopf structure with
the deconcatenation product as coproduct ∆dc : V

rq → V rq ⊗ V rq,

∆dc(D) = 1⊗D +D ⊗ 1 +

n−1∑

k=1

D1 · · ·Dk ⊗Dk+1 · · ·Dn

9



for D = D1 · · ·Dn with Di nontrivial, quasiplanar and connected. Here, 1 de-
notes the empty diagram ∅ = [0] which is the unit for the shuffle product. The
counit is the map ǫ that is equal to 1 on the empty diagram and 0 elsewhere. The
antipode of this Hopf algebra is S(D1 · · ·Dn) = (−1)nDn · · ·D1 where the dia-
grams Di are nontrivial, quasiplanar, and connected. Observe that (V, µ#,∆dc)
is a commutative non-cocommutative graded connected Hopf algebra.

Example We have

q q q q✲ # q q q q✲ =

= q q q q q q q q✲ + q q q q q q q q✲

+ q q q q q q q q✲ + q q q q q q q q✲

and

∆dc( q q q q q q q q✲ ) =

= 1⊗ q q q q q q q q✲ + q q q q q q q q✲ ⊗ 1

+ q q q q✲ ⊗ q q q q✲ + q q q q q✲ ⊗ q q q✲

+ q q q q q q q✲ ⊗ q✲

By definition, the primitive elements of this Hopf algebra are the connected
quasiplanar diagrams.

Proposition 11 Let h : V → V be the map defined by h([0]) = 1, h(D) = 0 for
any diagram D containing chords and for any diagram of the form D = [2k+1],
and let

h([n]) =

n∑

K=1

(−1)K
∑

Di

D1 · · ·DK

for even n, where the second sum runs over all connected quasiplanar diagrams
of dot-degree strictly greater than 1 with

∑
ddegDi = n. Then the quasiplanar

Wick product on diagrams without chords is the convolution of the identity map
with h with respect to the shuffle Hopf algebra,

W([n]) = id ⋆ h ([n]) = µ# ◦ (id⊗ h) ◦∆dc ([n])

Proof: By the definition of ∆dc, and observing that h([0]) = 1, we find

µ# ◦ (id⊗ h) ◦∆dc ([n]) = µ#

( n∑

r=0

[r]⊗ h([n− r])
)

= µ#

(
1⊗ h([n]) + [n]⊗ 1 +

n−1∑

r=1

[r]⊗ h([n− r])
)

10



Now, inserting the definition of h, we find for the third term

n−1∑

r=1

[r]⊗ h([n− r]) =

n−1∑

L=1

∑

Di

(−1)d2 D1 . . .Dr ⊗Dr+1 · · ·DL

Here, the sum runs over all nontrivial quasiplanar connected diagramsD1, . . . , DL

with
∑

ddegDi = n where at least one and at most n− 1 diagrams are of dot-
degree 1, d2 denotes the number of diagrams with dot-degree≥ 2, and moreover,
all diagrams Di of dot-degree 1 are in the tensor product’s first entry. Observe
that this last condition fixes the value of r in the above.

Application of the shuffle product µ# then yields h([n]) + [n] for the first
two terms and for the sum above it distributes the diagrams of dot-degree 1, i.e.
the dots [1] from the tensor product’s first entry, in all possible orders between
the connected components of higher dot-degree. This yields all the terms that
appear on the right hand side of equation (1) in Proposition 7, and by remark 10,
also the signs (−1)d2 match those appearing in equation (1). This proves the
proposition.

Example For the diagram [4], we have indeed

µ#(id⊗ h)∆dc ([4]) = µ#(id⊗ h)(1⊗ q q q q✲ + q✲ ⊗ q q q✲ +

+ q q✲ ⊗ q q✲ +

+ q q q✲ ⊗ q✲ + q q q q✲ ⊗ 1)

= µ#(− 1⊗ q q q q✲ + 1⊗ q q q q✲ + 0

− q q✲ ⊗ q q✲ + + 0 + q q q q✲ ⊗ 1)

= W([4])

There is reason to hope that the extension W ′ of W can be understood in alge-
braic terms in a similar manner, and that an algebraic version of the quasiplanar
Wick theorem can be given.

5 Relation to quantum fields on the noncommu-

tative Minkowski space

Let me now recall from [1, 2] how the graphical language of the previous sections
encodes certain operator valued distributions of quantum field theory on the
noncommutative Minkowski space. The noncommutative Minkowski space

Mθ := C〈q0, q1, q2, q3〉/Rθ
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is a quotient of the free algebra of 4 generators C〈q0, q1, q2, q3〉, where Rθ is the
ideal defined by qµqν − qνqµ − iθµν I for µ, ν ∈ {0, 1, 2, 3} with a nondegenerate

antisymmetric matrix (θµν) ∈ M(4 × 4,R). In order to define quantum fields
on Mθ, it is convenient to work with the corresponding Weyl algebra generated
by the Weyl operators

eikq , where kq =
3∑

µ=0
kµ qµ with k ∈ R

4 , kµ =
3∑

ν=0
kν η

νµ , η = diag(+,−,−,−)

such that for p, k ∈ R4,

eikq eipq = e−
i
2
kθp ei(p+k)q with kθp =

3∑
µ,ν=0

kµ θµν p
ν

The signs in the symmetric form η above (the Minkowski metric) are at this
point merely a convention with no important consequences. The signature of
η will, however, play a decisive role when the partial differential operators that
are relevant in field theory are considered. In fact, questions of renormalization
substantially depend on the signature of η, as I will show elsewhere [9].

Consider the operator valued distribution ϕ given by the free massive scalar
real Klein Gordon field. Let ω be a state (i.e. a positive linear functional) on the
Weyl algebra, and let ψω denote its associated Wigner function whose Fourier
transform is ψ̂ω(k) = ω(eikq). Then the free massive scalar real Klein Gordon
field φ on quantum spacetime E is defined as an affine functional on a dense set
of the state space of the Weyl algebra, with values in the endomorphisms of a
dense subset of Fock space, see [8], by the equation

φ(ω) = ϕ(ψω) . (5)

Let n > 0, let f be a Schwartz function onR4n, let ψ̂n
ω(k1, . . . , kn) := ω(

∏n
j=1 e

ikjq),
and let × denote the convolution. Then the regularized power of φ is defined by

φnf (ω) = ϕ⊗n(ψn
ω × f) . (6)

where ϕ⊗n is the operator valued distribution in n variables, formally defined
by its integral kernel ϕ⊗n(x1, . . . , xn) =

∏n
i=1 ϕ(xi) as usual. In our graphical

language, the regularized power φnf is symbolized by a dotted diagram of dot-
degree n without chords,

φnf ↔ [n] = q q . . . q q✲

We have defined a renormalization procedure [1, 2] for such powers of fields,
based on a certain notion of locality, which has lead to the definition of quasi-
planar Wick products. In [8] we will complete the proof that this procedure leads
to operator valued distributions that are still well-defined when the Schwartz
function f is replaced by a δ-distribution. The functional analytic details how-
ever, are not our concern here.
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Instead, I will take the definition of quasiplanar Wick products for granted
and merely recall how the distributions which appear in that definition can be
symbolized in terms of dotted chord diagrams.

Let D be a dotted chord diagram whose labelled intersection graph G has
adjacency matrix J . Let N denote the set of labels in G, let U ⊂ N and A ⊂ N
denote the subsets which label the black vertices (dots) and the white vertices
(chords) in G, respectively. Let f be a Schwartz function f ∈ S(R4n) which is
symmetric in its arguments, f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) for any π ∈ Sn.
Then the labelled intersection graph G of D determines a Schwartz function
fG ∈ S(R4u) where u = |U | by setting its Fourier transform to

f̂G(kU ) =

∫ ∏

a∈A

dµ(ka) exp
(
− i

∑

s<t ∈N

Jst ksθkt
)
f̂(kA,−kA, kU )

with the Lorentz invariant measure on the positive mass shell dµ(k), and where
for an index set I, the symbol kI abbreviates the tuple (ki)i∈I and where each
ki is an element of R4. The explicit form of these integrals is

∫
dµ(k)f(k) =∫

d3p
√
p2 +m2

−1
f(
√
p2 +m2 , p) for f ∈ S(R4), p ∈ R3. We extend the

correspondence D ↔ fG by linearity.
The operator valued distribution corresponding to G, evaluated in a test-

function f , is then given as follows

φufG(ω) which by (6) is equal to ϕ⊗u(ψu
ω × fG) .

Observe that the socalled twisting exp
(
− i

∑
s<t ∈N Jst ksθkt

)
contains prod-

ucts kuθka or kaθku where u ∈ U and a ∈ A, if and only if the dotted diagram
is not quasiplanar.

Translating all graphs from Definition 6 according to the above indeed yields
the definition of quasiplanar Wick products from [1, 2]. The quasiplanarity of
all terms on the right hand side of the equation in Proposition 7 means that the
corresponding distributions fulfill the locality condition requested in [1, 2].

Note that in the investigation of quantum fields on the noncommutative
Minkowski space, we also considered non-regular diagrams. It is known that
once we admit for non-regular diagrams, a chord diagram is no longer uniquely
determined by its labelled intersection graph. For example, the labelled inter-
section graph of q q q q✲ is the same as that of q q q q✲ To distinguish
such diagrams, we used a slightly more complicated definition of fG than the one
given above. It is based on the use of arbitrary Schwartz functions f (which are
in general not symmetric under reordering their arguments), where for a ∈ A,

the positions of the arguments ±ka in f̂ encode the starting and end point of
the chords. For instance, for the two examples above we would have
∫
dµ(k1)dµ(k2) f̂(k1, k2,−k2,−k1) and

∫
dµ(k1)dµ(k2) f̂(k1,−k1, k2, k2) ,

respectively. In this manner, the diagram itself, not only its labelled intersection
graph is encoded,

D ↔ fD
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and in particular, non-regular graphs can be distinguished. This more gen-
eral definition coincides with the one given above when we consider Schwartz
functions that are symmetric under rearranging their arguments.

6 Knots

By a theorem of Kontsevich, universal properties of knot invariants of finite
degree are captured in terms of the vector space of chord diagrams modulo
certain ideals given by the so-called framing independence and the 4T relation.
An important tool in this framework are weight systems.

A weight system of degree m is a linear functional on the quotient of chord
diagrams of degree m modulo the framing independence and the 4T relation. It
is natural to ask whether in the special special case of diagrams without dots,
the correspondence D ↔ fD, extended by linearity, defines a weight system.

Unfortunately, this does not seem to be the case, as the correspondence
is not well-defined on the quotient, as the 4T relation apparently cannot be
satisfied, even for modifications of the correspondence above. Let us recall that
the framing independence relation is that an arbitrary chord diagram containing
an isolated chord (i.e. one that does not intersect any other chord) is 0, and
that the 4T relation in terms of diagrams reads

q q q q ✲ − q q q q ✲ = q q q q ✲ − q q q q ✲

= q q q q ✲ − q q q q ✲

where arbitrary chords may be added in all 6 diagrams in the same positions in
such a way that the two points which are underlined remain neighbours.

We now consider the framing independence relation. Let D be a diagram
(without dots) of degree n (i.e. of dot-degree 2n), let J denote the adjacency
matrix of the corresponding labelled intersection graph G. Let f ∈ S(R3n) be
symmetric under reordering its arguments, and consider the map

G →
∫ n∏

i=1

dµ(pi) exp
(
− i

∑

s<t

Jst psθpt
)
f(p1, . . . ,pn) (7)

where p = (
√
p2 +m2 ,p). The right hand side is very similar to the definition

of fG, the sole difference being that we use a function f(k) in place of f̂(k,−k)
where k = (

√
k2 +m2 ,k). Now, let j be the label of an isolated chord in D. By

definition, we have Jjk = 0 and Jkj = 0 for all k. Hence, the integral above is
zero on diagrams with isolated chords as desired provided we choose a Schwartz
function f with total integral 0.

We now try to implement the 4T relation as well. To that end, we use
Lemma XX.3.1. from [3]: Let D be a diagram (without dots) containing at
least 2 chords, let x be the point on the arc that is furthest to the left, let (x, y)
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be the corresponding chord. Consider a point x′ to the right hand side of D on
the arc. Then the diagram D′ = (D \ (x, y)) ∪ (y, x′) and D coincide modulo
the 4T relation.

In order to define a weight system, the correspondence (7) must therefore
yield the same result for any two diagrams

q

x

q

y

✲ q

y

q

x′

✲

with an arbitrary number of additional chords placed in the same positions in
the two diagrams, as indicated by the dotted chords.

Now label the first of these diagrams starting with the label 0. Then the
map (7) gives the integral

∫
dµ(p0)

n−1∏

i=1

dµ(pi) exp
(
− i

∑

0<t≤n−1

J0t p0θpt
)
·

· exp
(
− i

∑

0<s<t≤n−1

Jst psθpt
)
f(p0, . . . ,pn−1)

Labelling the second diagram with labels 1, . . . , n, on the other hand yields the
integral

∫ n∏

i=1

dµ(pi) exp
(
−i

∑

0<s<t≤n−1

Jst psθpt
)
exp

(
−i

∑

0<t≤n−1

Jtn ptθpn
)
f(p1, . . . ,pn)

As the matrix θ is antisymmetric, one might think of changing the variables
pn = −p0, but this would leave a wrong sign in the exponentials which involve
the component

√
p2
n +m2 of pn = (

√
p2
n +m2 ,pn). We conclude that the

map (7) cannot well defined on the quotient given by the 4T relation.
One might therefore try to slightly change the map (7) by considering inte-

grals over R2n or R4n, instead of integrals over the mass shell1,

G →
∫ n∏

i=1

d4pi exp
(
− i

∑

s<t

Jst psθpt
)
f(p1, . . . , pn) (8)

where f ∈ S(R4n). In order to accomodate the framing independence relation,
we would again ask that the total integrals

∫
dpif(p1, . . . , pn) vanish.

The attempt to also implement the 4T relation however, leaves no other
possibility than to choose f = 0, thus producing the trivial weight system. To
see this, observe that according to the discussion of the map (7) this would
require that

f(p1, . . . , pn−1,−p0) = f(p0, p1, . . . , pn−1)

1Observe that an antisymmetric matrix has even rank, so even if θ has maximal rank, a
twisting exp(−ikθp) would be independent of one component of k ∈ R2k+1.
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in contradiction with the framing independence relation.
A last loophole might be to consider the map that is 0 on diagrams containing

isolated chords and is otherwise given by (8). However, even in this case, the
4T relation does not hold. To see this, suffice to calculate the twisting for

q q q q ✲ − q q q q ✲

and

q q q q ✲ − q q q q ✲

Notwithstanding, it remains worthwhile to investigate whether some weight sys-
tem can be associated with distributions from noncommutative field theories.
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