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A classification of some Finsler connections
and their applications

By B. Bidabad and A. Tayebi

Abstract. Some general Finsler connections are defined. Emphasis is being made
on the Cartan tensor and its derivatives. Vanishing of the hv-curvature tensors of these
connections characterizes Landsbergian, Berwaldian as well as Riemannian structures.
This view point makes it possible to give a smart representation of connection theory
in Finsler geometry and yields to a classification of Finsler connections. Some practical
applications of these connections are also considered.

1. Introduction

There is always a hope of finding a solution to some of the unsolved problems
of Finsler geometry by developing a connection theory. This hope justifies the
introduction of new connections [2]. The study of hv-curvature of Finsler connec-
tions is, by some authors, thought to be even urgent for theoretical physics, see for
instance [7], [8] and [10]. Vanishing hv-curvatures of Berwald and Cartan connec-
tions characterize Berwaldian and Landsbergian structures respectively [4], [5].
Discovery of Shen connection whose hv-curvature characterizes the Riemannian
structure, seems to completes their works and permits the classification of Finsler
connections into three different categories [9].

In this paper, using the vanishing property of hv-curvatures, we define three
general kinds of Finsler connections and extend the above property to a general
family of Finsler connections. This point of view enables us to define a more
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general family of Finsler connections which contains some known Finsler connec-
tions as special cases. This characterization gives rise to the classification of some
Finsler connections with respect to the Cartan tensor and its derivatives, which is
a smart representation of Finsler connections (see table of section 5). The distin-
guished property of this connection is the flexibility of its reduced hv-curvature,
which makes it very useful. In fact its reduced hv-curvature may be chosen to be
equal to any linear differential equation formed in terms of Cartan tensor and its
derivatives. The above property makes the geometric interpretation of the solu-
tions of these differential equations easy. As application of this connection, we
consider some examples, especially those in which the flag curvature is constant.

2. Preliminaries

Let M be a n-dimensional C*° manifold. T,M denotes the tangent space
of M at z. The tangent bundle of M is the union of tangent spaces TM :=
Uzem T M. We will denote the elements of TM by (x,y) where y € T, M. Let
TMy =TM\ {0}. The natural projection 7 : TMy — M is given by w(z,y) := .

A Finsler structure on M is a function F : TM — [0,00) with the following
properties; (i) F' is C* on T'My, (ii) F is positively 1-homogeneous on the fibers
of tangent bundle TM, and (iii) the Hessian of F? with elements g;;(z,y) =
$[F?(2,y)]yiys is positively defined on TMy. The pair (M, F) is then called a
Finsler manifold. F is Riemannian if g;;(x,y) are independent of y # 0.

Let us consider the pull-back tangent bundle 7*T'M over T M, defined by
m*TM = {(u,v) € TMy x TMy|r(u) = w(v)}. Take a local coordinate system
(x%) in M, the local natural frame {%} of T, M determines a local natural frame
;| for miTM the fibers of 7*T'M, where 0;], = (v, 522 |5), and v = y' 22|, €
TMpy. The fiber m;TM is isomorphic to Ty (,yM where m(v) = 2. There is a
canonical section ¢ of 7*T M defined by ¢, = (v,v)/F(v).

Let TT'M be the tangent bundle of TM and p the canonical linear mapping
p : TTMy — m*TM defined by p(X) = (z,m(X)) where X € T.TM, and
z € TMy. The bundle map p satisfies p(2;) = 9; and p(a%i) = 0. Let V,TM

oz’
be the set of vertical vectors at z, that is, the set of vectors tangent to the fiber

through z, or equivalently V,TM = kerp, called the vertical space.

Let V be a linear connection on 7*T M, that is V : T, T Mox7*TM — 7w*TM
such that V : (X, Y) = VY. Consider the linear mapping p. : T.T Mo — Tr. M
defined by MZ(X) = V3 F{, where X € T,TM,. The connection V is called a
Finsler connection if for every z € T My, u, defines an isomorphism of V,T M
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onto T, M. Therefore, the tangent space TT M in z is decomposed as T, T My =
H.TM &V, TM, where H,TM = ker 1, is called the horizontal space defined by
V. Indeed any tangent vector X e T.TM, in z decomposes to X =HX+VX
where HX € H,TM and VX e V., T M. The structural equations of the Finsler

connection V are
To(X,V) = ViV - VyX — p[X, V], (1)

WX YV)Z=VVyZ-VyViZ— V5% (2)

where X = p(X), Y = p(Y) and Z = p(Z). The tensors Tv and Q are called
respectively the Torsion and Curvature tensors of V. They determine two tor-
sion tensors defined by S(X,Y) := Tw(HX,HY) and T(X,Y) := Tv(VX,HY)
and three curvature tensors defined by R(X,Y) := Q(HX,HY), P(X,Y) =
QHX,VY) and Q(X,Y) := Q(VX,VY), where X = u(X) and Y = pu(X).

Given a Finsler structure F on M, then at each point © € M, F(v) =
F(yl%u) is a function of (y*) € R™. The fundamental tensor g is defined by
g :mTM @ m*TM — [0,00) with the components g(9;|v, 9j|v) = gsj(z,y). Thus
(7*TM, g) becomes a Riemannian vector bundle over TMy. The Cartan tensor
A:m*TM @ m*TM @ m*TM — R is defined by A(0;|v, 0jlv, Oklv) = Aijr(z,y),
where A;ji(z,y) = $F(2,y)[F?(,y)]iysyr- If A=0 then F is Riemannian.

Flag curvature. A flag curvature is a geometrlcal invariant that generalizes
what in Riemannian geometry is called the sectional curvature. For all z € M
and 0 #y € T,M,V = V! 621' is called the transverse edge. Flag curvature is
obtained by carrying out the following computation at the point (z,y) € T My,
and viewing y and V' as sections of 7*T'M:

Vi(y! Rjim y)VE

K. V)= 0 ey - o VIE

If K is independent of the transverse edge V', then (M, F) is called of scalar flag
curvature. Denoting this scalar by A = A(x,y), if it has no dependence on either
x or y, then the Finsler manifold is said to be of constant flag curvature.

3. General-type Finsler connection

In this section we define a general family of Finsler connections which contains
some known Finsler connections as special cases.
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Definition 3.1. A tensor S : m*TM @ m*TM @ 7*T M — R is called “compatible”
if it has the following properties:

(1) S(X,Y, Z) is symmetric with respect to X, Y, Z.

(2) S(X,Y,¢) =0.

(3) S is homogeneous, i.e., Sijk(z,ty) = Sijr(z,y),Vt € R, where Siji(z,y) =
S(0;, 05, Ok)-

Definition 3.2. Consider a Finsler connection D on (M, F'). Let S and T be two
compatible tensors on 7*T M.
(i) The torsion tensor Tp of D, defined by (1), should satisfy

To(X,Y) = F'T(u(X),p(Y)) = F'T(uY), p(X)), (3)

where T(X,Y) is defined by g(T(X,Y), Z) := T(X,Y, Z), X,Y € T.TM,.

(i) Let (D49)(X,Y) := Zg(X, Y)=9(D;X,Y)—g(X,D;Y). Then the connection
D is called almost-compatible with the Finsler structure if for all XY € #*TM
and Z € T.T Mo,

(D,9)(X,Y) = 2A(p(Z),X,Y)+2F 'A(u(Z),X,Y)

(iii) D is called metric-compatible with Finsler structure if (D,g)(X,Y) = 0.

For torsion-free connections the bundle map p satisfies ,u(%) = 0; and
(%) = NFOp, where NF = FT% 47 and T% are Christoffel symbols of the
torsion-free Finsler connection D.

We have the following general theorem of existence and uniqueness of linear
connections in different versions.

Theorem A. ([9]) Let (M, F) be a Finsler manifold. Suppose S and T are two
compatible tensors in 7*T'M . Then there exists a unique almost-compatible linear
connection D with torsion Tp on w*T M satistying (i) and (%i).

Let ¢ denote the unique vector field in HT M such that p(¢) = ¢. We define

m+1

A,..., A from T*TM @ m*TM @ 7*TM to R as follows:

m+-1 m

A (XY, 2) = UAX,Y,2)~ADsX,Y, 2)~ A(X, DY, 2)~ A(X, Y, D;Z), (5)

where A := A, A= A, A= A,... and m € N. Obviously, Vm € N, the tensors
A are symmetric with respect to X,Y and Z. Moreover, using D7 ¢ = 0 we have
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m

A(X,Y,¢) = 0. A Finsler metric is called a Berwald metric if for any standard

local coordinate system (%, y") in "M, the Christoffel symbols I'f; = I'};(z) are

functions of € M alone. A Finsler metric is called a Landsberg metric if A = 0.
By mean of Theorem A, we can define the general Finsler connection.

Definition 3.3. Let (M, F) be a Finsler manifold. A general-type Finsler con-
nection is defined as a Finsler connection D on 7#*T'M such that its compatible
tensors S and T' can be defined as follows:

S:=K0A+I€1A+I€2A+---+Iim2 and T :=rA, (6)

where the coefficients x,, i = 1,...,m and r are real constants.

4. Curvature Tensors

Let D be a Finsler connection defined on M. Let {e;}}_; be a local or-
thonormal (with respect to g) frame field for the vector bundle #*T M such that
g(eiyen) = 0,i =1,..,n—1 and e, = 5. Let {w'}I_; be its dual co-frame
field. One readily finds that w” := g—yﬁdazi = w, which is called Hilbert form, and
wl) =1. Let p = W' @ e;, De; = w, @e; and Qe; = 2Q.7 ® e;, where {Q7}
and {wij } are called respectively, the curvature forms and connection forms of
D with respect to {e;}. We have u := DF{ = F{w,! + d(logF)&:} ® e;. Put
W't i=w, "+ d(logF)é:,. Tt is easy to show that {w’,w" "}, is a local basis for
T*(TMy). The equation (2) is equivalent to

dw,” —w;* A wkj =07 (7)

K2

Since the jS are 2-forms on 7'My, they can be expanded as

K2

1 4 1.
Q) = §R.3klwk Awh+ Pwk Awmt 4 EQijklw"Jrk AWt (8)

Let {€;,¢é;}"; be the local basis for T(T Mpy), which is dual to {w? w™T}2 .
ie, & € HTM,é; € VI'M such that p(&;) = e;,u(é;) = Fe;. The objects
R, P and @ are called, respectively, the hh-, hv- and vv-curvature tensors of the
connection D with the components R(éx, & )e; = Rijklej, P(ex, é)e; = })ij}-’clej
and  Q(ég,é)e; = Qijklej. From (8) we see that Rijkl = —Rij“C and Qijlk =
_Qijkl' Let we put

dgi; — ijwik - gikwjk = gij\kwk + gz’j.kwnJrka 9)
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! ! ! ! !
dAijk — Ajrw;’ — Aipw;' — Aijiwy, = Ay’ + Aijraw™™, (10)

where the slash ”| 7 and point ”. ” are horizontal and vertical covariant derivatives
with respect to the Finsler connection. In a similar way Vm € N, we have:

m . ;™ I ; m A .
dAijk — Ajjrw;' — Aarw;' — Agjiwy! = Agjpw’ + Aijraw™™, (11)

where Zijk = }nl(ei,ej,ek) and Akij = gkl;ﬂlijk. From (10) and (11), we see that
Aijiis Aijkds T/nlijk” and }nlijk,l, (Vm,l € N), are all symmetric with respect to i,
j and k. By definition of Landsberg tensor, we have Ay, = Aijk. Here we use

m m m m—+41
the notation Ak, = Ajjkf° and Ajji, = A k. From (10) and (11), we get

m

Apjin =0, Apjra = —Ajrr, Apjep =0 and Anjrs = —Ajp. (12)

Remark 4.1. In general-type connection, the horizontal and vertical covariant
derivatives of the metric tensor are given by

igie = 2((1 — #,) Aij — Ky Aijie + -+ £, Agip) and  gij = 2(1 — 1) Ay

5. A classification of some Finsler connections

The following results due to Berwald, Cartan and Shen, determine the rela-
tion between hv-curvature and special Finsler spaces. These results enable us to
classify some non-Riemannian Finsler connections and distinguish three different
categories.

Theorem B. ([4], [6]) Let (M, F) be a Finsler manifold. Then for the Berwald
connection (or Chern connection), hv-curvature vanishes if and only if F is a
Berwald metric.

Theorem C. ([5]) Let (M, F) be a Finsler manifold. Then for the Cartan con-
nection (or Hashiguchi connection), hv-curvature vanishes if and only if F is a
Landsberg metric.

Theorem D. ([9]) Let (M, F) be a Finsler manifold. Then for the Shen connec-
tion, hv-curvature vanishes if and only if F is Riemannian.

The remarkable property of Shen connection, proved by Theorem D, comes
from the fact that vanishing of its hv-curvature singles out Riemannian metrics. In
contrast, Cartan, Berwald, Chern and Hashiguchi connections do not possess this
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property. Thus we have three different types of Finsler connections. Theorems
5.1, 5.2 and 5.3 of this paper, deal with a more general case and give rise to
new families of Finsler connections that we call Berwald-type, Cartan-type and
Shen-type connections which are defined according to the behavior of their hv-
curvature.

Definition 5.1. Let (M, F) be a Finsler manifold. A Finsler connection is called of
Berwald-type (resp. of Cartan-type or Shen-type) if and only if vanishing of its hv-
curvature, reduces the Finsler structure to the Berwaldian (resp. Landsbergian
or Riemannian) one.

From this view point one can compare some of the non-Riemannian Finsler
connections according to the compatibility of the tensors S and T

A classification of Finsler connections according to their compatible
tensors S and T

Compatible tensors
Connection S || T Metric compatibility Torsion
1. Berwald A+ ;1 0 almost compatible free
2. Chern- Rund A 0 almost compatible free
3. Berwald-type A+ kg, A 4+ Km;i 0 almost compatible free
4. Cartan A A metric compatible not free
5. Hashiguchi A+ ;1 A almost compatible not free
6. Cartan-type A+ nlA 4+ 4 mm:?l A depends on x, not free
7. Shen 0 0 almost compatible free
8. Shen-type Ky A 4+ 4 nm?{ 0 almost compatible free
H 9. General-type H koA + nlA +- 4+ mm:?l H rA H depends on k, and r H depends on H

In this table A, A, A,..., A are Cartan tensor and their covariant derivatives, &,
and r are arbitrary real constants. The connections 1, 2, and 3 belong to the
Berwald-type category. The connections 4, 5, and 6 are Cartan-type connections.
The connections 7 and 8 belong to the Shen-type Category. The connection 9
contains all other connections. Looked at the freeness of torsion point of view,
the Shen connection is the one most similar to the Levi-Civita connection. But
from the metric compatibility view point, it is the Cartan connection which is
closest to the Levi-Civita connection.

Now we extend Theorem C to Cartan-type connections and show that the hv-
curvature tensor of this type of connections characterizes Landsbergian structures.
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Theorem 5.1. Let (M, F) be a Finsler manifold. Then for Cartan-type connec-
tions, hv-curvature vanishes if and only if F' is Landsbergian.

To prove Theorem 5.1, we need the following lemma.

Lemma 5.1. Let (M, F) be a Finsler manifold. Then for Cartan-type connec-
tions we have
D R+ Ry + Ry = C Ry + Gl R + Cl R
2) szlkl = szjl + Clzcl\jl - C;'zu; + C]l‘rpnrlkl - Clzcrpv;rjzv ‘
3) Q' =Q 1 +2(Ch —Chy) +2(Cr Ol — CLLC) + Ch (Q — Q1)
where Rijii = gsjR;%s Pijkl = 95 Py 5y Qijit = 955Q;%» Cl = F "™ A

PROOF. Let’s consider the Cartan-type connection with compatible tensors
S=A+rA+- -+ mm}nl and T = A. Following (3) and (4), there exits a
connection 1-forms {w;} satisfying the following torsion and almost compatibility
conditions.

dw' = w! Aw* = Cfy Wk AWt (13)

dgij = grjw;” + gikwjk — 2k, Agjpwt — - — 2nm:?1ijkwk. (14)
Differentiating (13) and using (7) and (10), we get:
W /\Qé = (C,illjwj—I—C’,il.jwnﬂ)/\wk/\wnﬂ —C}mCﬂwj/\w"Jrk/\w”H —CLwP AL
Replacing Q2 by (8), we prove the Lemma. O

Proof of Theorem 5.1: Let (M, F) be a Finsler manifold with Cartan-type
connection and compatible tensors S = A+ S and T = A, where S =k, A+---+
AMZ. Then the almost compatibility condition (14) becomes

dg;j = gkjwik + gikwjk — 2§7jjkwk. (15)
Differentiating this relation leads to
9" + giijk = 2(§ijk|sws + §ijk,sw"+s) AWk + QC;vgijkw“ AwT?,
From this relation and (8) we have
Rijut + Rjow = 2(Sijin — Sijuin) (16)
Pl + Piiry = —2(Sije1 — C18uij),s (17)

Qijkt + Qjirt = 0. (18)
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Permuting i, j and & in (17) and using Lemma 1 yields
Pijki = =Sijr1 + (CyiSuij + CiiSujk — CjiSuki) + (Crjtje — Cijuyz)

+ (C;ﬂ-UPU Cj;wPUil). (19)

njl — n

Multiplying this relation by %* and replacing S = IQIA + -+ mm?l, we get
Powi = Cijie + {k, Aij, + -+ + szijk}- (20)

If Fis a Landsbergian manifold, from the above relation, we have P, = 0.
Therefore by replacing this value in (19) we find P;jz; = Cjjiji — Chaj- In the case
of Landsbergian manifolds, Cjj; is totally symmetric in all of its four indices and
we have P;ji; = 0. Conversely, let hv-curvature be zero. Then by Lemma 1, we
have C,i”j = C;:”k, therefore M is Landsbergian. O

Theorem 5.2. Let (M, F) be a Finsler manifold. Then for Berwald-type con-
nections, hv-curvature vanishes if and only if F is a Berwaldian metric.

PRrOOF. The complete proof of this theorem, will not be given, but only a
sketch of the proof will be presented. For a Berwald-type connection, the hv-
curvature is

P = —{rAjra+- 45, Ajri} — (Agjie + Ajifi — Arir)j)
+Akis P51 — Ajks P i — Aijs P - (21)

Therefore, we have
P = {IilAjkl + -+ Iimﬂjkl} — Ajkl- (22)

Using these relations, the theorem will follow. ([

Theorem 5.3. Let (M, F) be a Finsler manifold. Then for Shen-type connec-
tions, hv-curvature vanishes if and only if F is Riemannian.

PRrROOF. The proof of this theorem is analogous to that of the Theorem 5.1
and is not presented here. ([

Theorem 5.4. Let (M, F) be a Finsler manifold. Then the hv-curvature of
general-type (respectively Berwald-type, Cartan-type or Shen-type) connections
vanishes if and only if F is Berwaldian, Landsbergian or Riemannian.
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6. Some applications of general-type connections

Much of the practical importance of this kind of connection results from the
fact that, it is adaptable, in the sense that it is useful for getting a geometric
interpretation for a given system of differential equation formed by Cartan tensor
and its derivatives. Suppose that we are given a differential equation of this
kind and we want to find a geometric meaning for its solutions. It would suffice
to consider a Finsler connection — by fixing the compatible tensors S and T —
for which the reduced hv-curvature coincides with the differential equation in
question. We then apply one of the Theorems 5.1, 5.2 or 5.3 as applicable.

6.1. Application of Shen-type connections. Here we define Shen-type con-
nection D as Sijr = (1 — k)Aji + kAijk — Aijk and T;j, = 0 for which the
reduced hv-curvature Pjy; := A Pijii is equal to the given differential equation
Pt = Ajp + kA

Theorem 6.1. Let (M,F) be a Finsler manifold with constant flag curvature A
such that Pj,; = 0. Then F' is Riemannian.

PROOF. Let’s consider the Shen-type connection D with S;j, = (1—k) Ak +
kAijk - Aijk, k # X and T = 0. Replacing S and T in (4) and by an argument
similar to the one used in the proof of the Theorem 1, we get

Pijii + Pjigt = —2{ Aijia + Aijea} — 2k{Aijrs — Aijiey = 2Aijm P, (23)
From (23) we have
P = —{Aijei+ Aijea} — kAijes + k{—Aijie + Ajriji — Arirs }

— 24iim B + 2Akim By i — 2A56m By (24)

Therefore Pji; = Aji + kAji. The equation Pji; = 0 holds, from which we have
A+kA=0. (25)

Since (M, F) is a Finsler manifold with constant flag curvature A, then
A+rA=0. (26)

From (25) and (26) one has (A — k)A = 0 which means that F' is a Riemannian
metric. g

Using the above special Shen-type connection again together with a hypoth-
esis on the topology of M, we have the following theorem.
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Theorem 6.2. Let (M,F) be a complete Finsler manifold with bounded Cartan
tensor. Then (M, F') is a Riemannian manifold if and only if Pjy; = 0.

PROOF. Let’s consider the above Shen-type connection on the complete
Finsler manifold (M,F). Then from the last theorem we have that the hv-curvature
of this connection reduces to Pji; = Ajkl + kAjp. Fix any XY, Z € o*TM at
vel,M={weT,M F(w)=1}. Let ¢c: R — M be the unit speed geodesic in
(M, F) with 9¢(0) = v and ¢ := % be the canonical lift of ¢ to M. Let X (t),
Y (t) and Z(t) denote the parallel sections along ¢ with X(0) = X, Y(0) =Y
and Z(0) = Z. Put A(t) = A(X(t),Y(t), Z(t)), A(t) = A(X(t),Y (t), Z(t)) and
A(t) = A(X(t),Y(t), Z(t)). Indeed along geodesics, we have %’x = A and from

Ajit + kAj =0, we get
A(t) = (¢ sinh VEt + ¢ cosh VEt) A(0). (27)

For v € T My, let’s define ||Al, := supA(X,Y, Z) where the supremum is taken
over all unit vectors of mTM. Let’s put || Al = supyerml||A|ls where IM =
Uzenr Lz M. Since M is complete and ||A[| < oo, by letting ¢ — +oc0 and ¢ — —oo,
we have ¢y = 0 and ¢ = 0. Therefore A = 0, and F' is Riemannian. [l

6.2. Application of Berwald-type connections. Here we consider a special
Berwald-type connection for which the hv-curvature is equal to the given differ-
ential equation.

Theorem 6.3. Let (M,F) be a complete Finsler manifold with bounded Lands-
berg tensor. Then F is a Landsberg metric if and only if Pj;; = 0.

PROOF. If we put kK, = k, = --- = Kk, = 0 and x, # 0 in (22) then we
find a special Berwald-type connection for which the hv-curvature is equal to
Pjr =k, Ajkl — Ajkz- Let F be a Landsberg metric, then from the above equation
we get Pjr; = 0. Conversely, if Pj; = 0, we will have:

Ky Aji — Aji = 0. (28)

By an argument like the one presented in the last theorem, we have along the
geodesics

A(t) = eF2t A(0). (29)

For v € TMoy, let’s define ||Al|, := supA(X,Y,Z) and ||A|| = supverar|| Al
Using completeness of M, ||A| < oo and letting t — 400 we have A(0) =
A(X,Y,Z) =0. From (29), we get A =0, that is, F is a Landsberg metric. ~ [
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Corollary 6.1. Every compact Finsler manifold is Landsbergian if and only if
Pji1 vanishe.

Next we consider another special Berwald-type connection and give a proof
of the following well-known result due to Akbar-Zadeh [1].

Corollary 6.2. . Let (M,F) be a complete Finsler manifold with negative con-
stant flag curvature A and bounded Cartan tensor. Then F is Riemannian.

PROOF. Letsput k, =k, ==k, =0 , K, =2and k, = + # 0 in (21).
We obtain a connection for which the hv-curvature becomes
. 1...
P = —{2411+ XAijk.l} — (Agjyk + Ajrapi — Araj)
+Akis Py — Ajis P — Aijs Py (30)

From which P, i = % 'A'jkl + Ajkl- As M has constant flag curvature we have
A+ XA =0. So by the same argument as in the above theorem we find

A(t) = (c1 + coe¥ ™ + c5e™ V) A(0). (31)

Using the boundary assumption on Cartan tensor and letting ¢ — oo and t — —o0,
we get cg = c3 = 0. Therefore A = ¢y and A = 0. It is easy to see that A =0. O

7. Relation between some connections

There is a well known result which can be used as a definition for Landsberg
spaces, see for example [3].

Theorem E. Let (M, F') be a Finsler manifold. Then M is a Landsberg manifold
if and only if the Berwald connection coincides with the Chern connection.

In this relation we prove the following theorem.

Theorem 7.1. Let (M, F) be a complete Finsler manifold with bounded Cartan
tensor. Then M is a Riemannian manifold if and only if the Berwald connection
coincides with the Shen connection.

PROOF. Simple calculation shows that T, =*T%, + A%, + A;k, where "T%,
and SF;k are the Christoffel coefficients of Berwald and Shen connections respec-
tively. If bFék = Fé-k, th.en Aé-k + A;k = 0. By the same argument as in the above
theorems, we find A + A = 0 whose solution is A(t) = e ?A(0). Completeness of
M and the bounded Cartan tensor hypothesis, imply that A = 0. O
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Lemma 7.1. The Christoffel symbols for Berwald-type, Cartan-type and Shen-
type connections denoted by PT, T and °T respectively, are given by:

0gsj  09gjk 69k o
B _ S] VL s i i i
P]k_7 Sx Sk Sxs }+A Jk—"_(li A +K;mA jk)7
09sj  Ogjk 5gk i "
C _ s) J S 7 7
ij_7 Szk 55[:5 }+ (HlAjk_'—"'_'—HmA jk)a
sei 97 0955 0gjk 59ks ™
T __{&Ck_(gxs }+( k+"'+’fmA k)
6 ._ 0 i_0
where 327 T Bxd ]\]‘7 Dy

PROOF. We prove this lemma for Cartan-type connections only. In the local
coordinate (z¢,y?) for T My, we write D o 0; Cl"’C Orand D o 0; = F’C O. Put

X oyt
d dgi _ 0gi
Nk :Cl—‘fj F{Wk 0 — AkAl 020%} where %j = 1" { i+ - qﬂ} For
Cartan-type connections we consider the compatible tensors S and T defined by

S=A+SandT = A, where S =k, A+---+ /qmjzl. From (3) and (4) we have

°ry = CFQ? + N.Sck N:CE, (32)
Fjj = Cj+y'FCL, (33)

0 ~
W(sz) = gu Clﬂij —91;°T % + 28, (34)
i( ) = CFL g FL (35)

8yk Gij = Gl — gl kj-
Permuting i, j and & in (34) and using (32), one obtains

“TF =~k + N;CE — ¢"™ N3 Cijs + S5 (36)

. is §ge;  Og; ; . .
Since %- 51,3 — f;s’“ %‘;"f} = %k g N5, Ciks, we get the desired Christoffel

symbols. For other connections same method can be used. (|

Corollary 7.1. Let (M, F) be a Finsler manifold. The Berwald-type connection
coincides with the Shen-type connection if and only if F' is Riemannian.
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