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A classification of some Finsler connections

and their applications

By B. Bidabad and A. Tayebi

Abstract. Some general Finsler connections are defined. Emphasis is being made

on the Cartan tensor and its derivatives. Vanishing of the hv-curvature tensors of these

connections characterizes Landsbergian, Berwaldian as well as Riemannian structures.

This view point makes it possible to give a smart representation of connection theory

in Finsler geometry and yields to a classification of Finsler connections. Some practical

applications of these connections are also considered.

1. Introduction

There is always a hope of finding a solution to some of the unsolved problems

of Finsler geometry by developing a connection theory. This hope justifies the

introduction of new connections [2]. The study of hv-curvature of Finsler connec-

tions is, by some authors, thought to be even urgent for theoretical physics, see for

instance [7], [8] and [10]. Vanishing hv-curvatures of Berwald and Cartan connec-

tions characterize Berwaldian and Landsbergian structures respectively [4], [5].

Discovery of Shen connection whose hv-curvature characterizes the Riemannian

structure, seems to completes their works and permits the classification of Finsler

connections into three different categories [9].

In this paper, using the vanishing property of hv-curvatures, we define three

general kinds of Finsler connections and extend the above property to a general

family of Finsler connections. This point of view enables us to define a more
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general family of Finsler connections which contains some known Finsler connec-

tions as special cases. This characterization gives rise to the classification of some

Finsler connections with respect to the Cartan tensor and its derivatives, which is

a smart representation of Finsler connections (see table of section 5). The distin-

guished property of this connection is the flexibility of its reduced hv-curvature,

which makes it very useful. In fact its reduced hv-curvature may be chosen to be

equal to any linear differential equation formed in terms of Cartan tensor and its

derivatives. The above property makes the geometric interpretation of the solu-

tions of these differential equations easy. As application of this connection, we

consider some examples, especially those in which the flag curvature is constant.

2. Preliminaries

Let M be a n-dimensional C∞ manifold. TxM denotes the tangent space

of M at x. The tangent bundle of M is the union of tangent spaces TM :=

∪x∈MTxM . We will denote the elements of TM by (x, y) where y ∈ TxM . Let

TM0 = TM \ {0}. The natural projection π : TM0 → M is given by π(x, y) := x.

A Finsler structure on M is a function F : TM → [0,∞) with the following

properties; (i) F is C∞ on TM0, (ii) F is positively 1-homogeneous on the fibers

of tangent bundle TM , and (iii) the Hessian of F 2 with elements gij(x, y) :=
1
2 [F

2(x, y)]yiyj is positively defined on TM0. The pair (M,F ) is then called a

Finsler manifold. F is Riemannian if gij(x, y) are independent of y 6= 0.

Let us consider the pull-back tangent bundle π∗TM over TM0 defined by

π∗TM = {(u, v) ∈ TM0 × TM0|π(u) = π(v)}. Take a local coordinate system

(xi) in M, the local natural frame { ∂
∂xi } of TxM determines a local natural frame

∂i|v for π∗
vTM the fibers of π∗TM , where ∂i|v = (v, ∂

∂xi |x), and v = yi ∂
∂xi |x ∈

TM0. The fiber π∗
vTM is isomorphic to Tπ(v)M where π(v) = x. There is a

canonical section ℓ of π∗TM defined by ℓv = (v, v)/F (v).

Let TTM be the tangent bundle of TM and ρ the canonical linear mapping

ρ : TTM0 → π∗TM defined by ρ(X̂) = (z, π∗(X̂)) where X̂ ∈ TzTM0 and

z ∈ TM0. The bundle map ρ satisfies ρ( ∂
∂xi ) = ∂i and ρ( ∂

∂yi ) = 0. Let VzTM

be the set of vertical vectors at z, that is, the set of vectors tangent to the fiber

through z, or equivalently VzTM = kerρ, called the vertical space.

Let ∇ be a linear connection on π∗TM , that is ∇ : TzTM0×π∗TM → π∗TM

such that ∇ : (X̂, Y ) → ∇
X̂
Y . Consider the linear mapping µz : TzTM0 → TπzM

defined by µz(X̂) = ∇
X̂
Fℓ, where X̂ ∈ TzTM0. The connection ∇ is called a

Finsler connection if for every z ∈ TM0, µz defines an isomorphism of VzTM0
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onto TπzM . Therefore, the tangent space TTM0 in z is decomposed as TzTM0 =

HzTM ⊕ VzTM , where HzTM = kerµz is called the horizontal space defined by

∇. Indeed any tangent vector X̂ ∈ TzTM0 in z decomposes to X̂ = HX̂ + V X̂

where HX̂ ∈ HzTM and V X̂ ∈ VzTM . The structural equations of the Finsler

connection ∇ are

T∇(X̂, Ŷ ) = ∇
X̂
Y −∇

Ŷ
X − ρ[X̂, Ŷ ], (1)

Ω(X̂, Ŷ )Z = ∇
X̂
∇

Ŷ
Z −∇

Ŷ
∇

X̂
Z −∇[X̂,Ŷ ]Z, (2)

where X = ρ(X̂), Y = ρ(Ŷ ) and Z = ρ(Ẑ). The tensors T∇ and Ω are called

respectively the Torsion and Curvature tensors of ∇. They determine two tor-

sion tensors defined by S(X,Y ) := T∇(HX̂,HŶ ) and T (Ẋ, Y ) := T∇(V X̂,HŶ )

and three curvature tensors defined by R(X,Y ) := Ω(HX̂,HŶ ), P (X, Ẏ ) :=

Ω(HX̂, V Ŷ ) and Q(Ẋ, Ẏ ) := Ω(V X̂, V Ŷ ), where Ẋ = µ(X̂) and Ẏ = µ(X̂).

Given a Finsler structure F on M, then at each point x ∈ M , F (v) =

F (yi ∂
∂xi |x) is a function of (yi) ∈ R

n. The fundamental tensor g is defined by

g : π∗TM ⊗ π∗TM → [0,∞) with the components g(∂i|v, ∂j |v) = gij(x, y). Thus

(π∗TM, g) becomes a Riemannian vector bundle over TM0. The Cartan tensor

A : π∗TM ⊗ π∗TM ⊗ π∗TM → R is defined by A(∂i|v, ∂j |v, ∂k|v) = Aijk(x, y),

where Aijk(x, y) =
1
2F (x, y)[F 2(x, y)]yiyjyk . If A = 0 then F is Riemannian.

Flag curvature. A flag curvature is a geometrical invariant that generalizes

what in Riemannian geometry is called the sectional curvature. For all x ∈ M

and 0 6= y ∈ TxM , V := V i ∂
∂xi is called the transverse edge. Flag curvature is

obtained by carrying out the following computation at the point (x, y) ∈ TM0,

and viewing y and V as sections of π∗TM :

K(y, V ) :=
V i(yj Rjikl y

l)V k

g(y, y)g(V, V )− [g(y, V )]2

If K is independent of the transverse edge V , then (M,F ) is called of scalar flag

curvature. Denoting this scalar by λ = λ(x, y), if it has no dependence on either

x or y, then the Finsler manifold is said to be of constant flag curvature.

3. General-type Finsler connection

In this section we define a general family of Finsler connections which contains

some known Finsler connections as special cases.
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Definition 3.1. A tensor S : π∗TM ⊗π∗TM ⊗π∗TM → R is called “compatible”

if it has the following properties:

(1) S(X,Y, Z) is symmetric with respect to X , Y , Z.

(2) S(X,Y, ℓ) = 0.

(3) S is homogeneous, i.e., Sijk(x, ty) = Sijk(x, y), ∀t ∈ R, where Sijk(x, y) =

S(∂i, ∂j , ∂k).

Definition 3.2. Consider a Finsler connection D on (M,F ). Let S and T be two

compatible tensors on π∗TM .

(i) The torsion tensor TD of D, defined by (1), should satisfy

TD(X̂, Ŷ ) = F−1T (µ(X̂), ρ(Ŷ )))− F−1T (µ(Ŷ ), ρ(X̂)), (3)

where T (X,Y ) is defined by g(T (X,Y ), Z) := T (X,Y, Z), X̂, Ŷ ∈ TzTM0.

(ii) Let (D
Ẑ
g)(X,Y ) := Ẑg(X,Y )−g(D

Ẑ
X,Y )−g(X,D

Ẑ
Y ). Then the connection

D is called almost-compatible with the Finsler structure if for all X,Y ∈ π∗TM

and Ẑ ∈ TzTM0,

(D
Ẑ
g)(X,Y ) = 2A(ρ(Ẑ), X, Y ) + 2F−1A(µ(Ẑ), X, Y )

− 2S(ρ(Ẑ), X, Y )− 2F−1T (µ(Ẑ), X, Y ). (4)

(iii) D is called metric-compatible with Finsler structure if (D
Ẑ
g)(X,Y ) = 0.

For torsion-free connections the bundle map µ satisfies µ( ∂
∂yi ) = ∂i and

µ( ∂
∂xi ) = Nk

i ∂k, where Nk
i = FΓk

ijℓ
j and Γk

ij are Christoffel symbols of the

torsion-free Finsler connection D.

We have the following general theorem of existence and uniqueness of linear

connections in different versions.

Theorem A. ([9]) Let (M,F ) be a Finsler manifold. Suppose S and T are two

compatible tensors in π∗TM . Then there exists a unique almost-compatible linear

connection D with torsion TD on π∗TM satisfying (i) and (ii).

Let ℓ̄ denote the unique vector field in HTM such that ρ(ℓ̄) = ℓ. We define

Ȧ, ...,
m+1

A from π∗TM ⊗ π∗TM ⊗ π∗TM to R as follows:

Ȧ(X,Y, Z) := ℓ̄A(X,Y, Z)−A(Dℓ̄X,Y, Z)−A(X,Dℓ̄Y, Z)−A(X,Y,Dℓ̄Z),

m+1

A (X,Y, Z) := ℓ̄
m

A(X,Y, Z)−
m

A(Dℓ̄X,Y, Z)−
m

A(X,Dℓ̄Y, Z)−
m

A(X,Y,Dℓ̄Z), (5)

where
0

A := A,
1

A := Ȧ,
2

A := Ä,... and m ∈ N. Obviously, ∀m ∈ N, the tensors
m

A are symmetric with respect to X,Y and Z. Moreover, using Dℓ̄ ℓ = 0 we have
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m

A (X,Y, ℓ) = 0. A Finsler metric is called a Berwald metric if for any standard

local coordinate system (xi, yi) in TM0, the Christoffel symbols Γk
ij = Γk

ij(x) are

functions of x ∈ M alone. A Finsler metric is called a Landsberg metric if Ȧ = 0.

By mean of Theorem A, we can define the general Finsler connection.

Definition 3.3. Let (M,F ) be a Finsler manifold. A general-type Finsler con-

nection is defined as a Finsler connection D on π∗TM such that its compatible

tensors S and T can be defined as follows:

S := κ
0
A+ κ

1
Ȧ+ κ

2
Ä+ · · ·+ κ

m

m

A and T := rA, (6)

where the coefficients κ
i
, i = 1, ...,m and r are real constants.

4. Curvature Tensors

Let D be a Finsler connection defined on M . Let {ei}ni=1 be a local or-

thonormal (with respect to g) frame field for the vector bundle π∗TM such that

g(ei, en) = 0, i = 1, ..., n − 1 and en = ℓi ∂
∂xi . Let {ωi}ni=1 be its dual co-frame

field. One readily finds that ωn := ∂F
∂yi dx

i = ω, which is called Hilbert form, and

ω(ℓ) = 1. Let ρ = ωi ⊗ ei, Dei = ω j
i ⊗ ej and Ωei = 2Ω j

i ⊗ ej , where {Ω j
i }

and {ω j
i } are called respectively, the curvature forms and connection forms of

D with respect to {ei}. We have µ := DFℓ = F{ω i
n + d(logF )δin} ⊗ ei. Put

ωn+i := ω i
n + d(logF )δin. It is easy to show that {ωi, ωn+i}ni=1 is a local basis for

T ∗(TM0). The equation (2) is equivalent to

dω j
i − ω k

i ∧ ω j
k = Ω j

i . (7)

Since the Ω i
j are 2-forms on TM0, they can be expanded as

Ω j
i =

1

2
R j

i klω
k ∧ ωl + P j

i klω
k ∧ ωn+l +

1

2
Q j

i klω
n+k ∧ ωn+l. (8)

Let {ēi, ėi}ni=1 be the local basis for T (TM0), which is dual to {ωi, ωn+i}ni=1,

i.e., ēi ∈ HTM, ėi ∈ V TM such that ρ(ēi) = ei, µ(ėi) = Fei. The objects

R, P and Q are called, respectively, the hh-, hv- and vv-curvature tensors of the

connectionD with the componentsR(ēk, ēl)ei = R j
i klej, P (ēk, ėl)ei = P j

i klej
and Q(ėk, ėl)ei = Q j

i klej. From (8) we see that R j
i kl = −R j

i lk and Q j
i lk =

−Q j
i kl. Let we put

dgij − gkjω
k

i − gikω
k

j = gij|kω
k + gij.kω

n+k, (9)
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dAijk −Aljkω
l

i −Ailkω
l

j −Aijlω
l

k = Aijk|lω
l +Aijk.lω

n+l, (10)

where the slash ”| ” and point ”. ” are horizontal and vertical covariant derivatives

with respect to the Finsler connection. In a similar way ∀m ∈ N, we have:

d
m

Aijk −
m

Aljkω
l

i −
m

Ailkω
l

j −
m

Aijlω
l

k =
m

Aijk|lω
l +

m

Aijk.lω
n+l, (11)

where
m

Aijk =
m

A(ei, ej, ek) and
m

Ak
ij = gkl

m

Aijk. From (10) and (11), we see that

Aijk|l , Aijk.l ,
m

Aijk|l and
m

Aijk.l, (∀m, l ∈ N), are all symmetric with respect to i,

j and k. By definition of Landsberg tensor, we have Aijk|n = Ȧijk . Here we use

the notation
m

Aijk|n =
m

Aijk|sℓ
s and

m

Aijk|n =
m+1

A ijk. From (10) and (11), we get

Anjk|l = 0, Anjk.l = −Ajkl,
m

Anjk|l = 0 and
m

Anjk.l = −
m

Ajkl. (12)

Remark 4.1. In general-type connection, the horizontal and vertical covariant

derivatives of the metric tensor are given by

gij|k = 2((1− κ
0
)Aijk − κ

1
Ȧijk + · · ·+ κ

m

m

Aijk) and gij.k = 2(1− r)Aijk .

5. A classification of some Finsler connections

The following results due to Berwald, Cartan and Shen, determine the rela-

tion between hv-curvature and special Finsler spaces. These results enable us to

classify some non-Riemannian Finsler connections and distinguish three different

categories.

Theorem B. ([4], [6]) Let (M,F ) be a Finsler manifold. Then for the Berwald

connection (or Chern connection), hv-curvature vanishes if and only if F is a

Berwald metric.

Theorem C. ([5]) Let (M,F ) be a Finsler manifold. Then for the Cartan con-

nection (or Hashiguchi connection), hv-curvature vanishes if and only if F is a

Landsberg metric.

Theorem D. ([9]) Let (M,F ) be a Finsler manifold. Then for the Shen connec-

tion, hv-curvature vanishes if and only if F is Riemannian.

The remarkable property of Shen connection, proved by Theorem D, comes

from the fact that vanishing of its hv-curvature singles out Riemannian metrics. In

contrast, Cartan, Berwald, Chern and Hashiguchi connections do not possess this
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property. Thus we have three different types of Finsler connections. Theorems

5.1, 5.2 and 5.3 of this paper, deal with a more general case and give rise to

new families of Finsler connections that we call Berwald-type, Cartan-type and

Shen-type connections which are defined according to the behavior of their hv-

curvature.

Definition 5.1. Let (M,F ) be a Finsler manifold. A Finsler connection is called of

Berwald-type (resp. of Cartan-type or Shen-type) if and only if vanishing of its hv-

curvature, reduces the Finsler structure to the Berwaldian (resp. Landsbergian

or Riemannian) one.

From this view point one can compare some of the non-Riemannian Finsler

connections according to the compatibility of the tensors S and T .

A classification of Finsler connections according to their compatible

tensors S and T

Compatible tensors

Connection S T Metric compatibility Torsion

1. Berwald A+
•

A 0 almost compatible free

2. Chern- Rund A 0 almost compatible free

3. Berwald-type A+ κ
1

•

A+ · · ·+ κm

m

A 0 almost compatible free

4. Cartan A A metric compatible not free

5. Hashiguchi A+
•

A A almost compatible not free

6. Cartan-type A+ κ
1

•

A+ · · ·+ κm

m

A A depends on κi not free

7. Shen 0 0 almost compatible free

8. Shen-type κ1

•

A+ · · ·+ κm

m

A 0 almost compatible free

9. General-type κ
0
A+ κ

1

•

A+ · · ·+ κm

m

A rA depends on κi and r depends on r

In this table A, Ȧ, Ä,...,
m

A are Cartan tensor and their covariant derivatives, κ
i

and r are arbitrary real constants. The connections 1, 2, and 3 belong to the

Berwald-type category. The connections 4, 5, and 6 are Cartan-type connections.

The connections 7 and 8 belong to the Shen-type Category. The connection 9

contains all other connections. Looked at the freeness of torsion point of view,

the Shen connection is the one most similar to the Levi-Civita connection. But

from the metric compatibility view point, it is the Cartan connection which is

closest to the Levi-Civita connection.

Now we extend Theorem C to Cartan-type connections and show that the hv-

curvature tensor of this type of connections characterizes Landsbergian structures.
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Theorem 5.1. Let (M,F ) be a Finsler manifold. Then for Cartan-type connec-

tions, hv-curvature vanishes if and only if F is Landsbergian.

To prove Theorem 5.1, we need the following lemma.

Lemma 5.1. Let (M,F ) be a Finsler manifold. Then for Cartan-type connec-

tions we have

1) R i
j kl +R i

k lj + R i
l jk = Ci

jmR m
n kl + Ci

kmR m
n lj + Ci

lmR m
n jk,

2) P i
j kl = P i

k jl + Ci
kl|j − Ci

jl|k + Ci
jrP

r
n kl − Ci

krP
r

n jl,

3) Q i
j kl = Q i

j lk +2(Ci
jk.l −Ci

jl.k)+2(Ci
mkC

m
jl −Ci

mlC
m
jk)+Ci

jm(Q m
n kl−Q m

n lk),

where Rijkl = gsjR
s
i kl, Pijkl = gsjP

s
i kl, Qijkl = gsjQ

s
i kl, C

i
jk = F−1gimAmjk.

Proof. Let’s consider the Cartan-type connection with compatible tensors

S = A + κ
1
Ȧ + · · · + κ

m

m

A and T = A. Following (3) and (4), there exits a

connection 1-forms {ωi
j} satisfying the following torsion and almost compatibility

conditions.

dωi = ωj ∧ ω i
j − Ci

kl ω
k ∧ ωn+l, (13)

dgij = gkjω
k

i + gikω
k

j − 2κ
1
Ȧijkω

k − · · · − 2κ
m

m

Aijkω
k. (14)

Differentiating (13) and using (7) and (10), we get:

ωj∧Ωi
j = (Ci

kl|jω
j+Ci

kl.jω
n+j)∧ωk∧ωn+l−Ci

lmCm
jkω

j∧ωn+k∧ωn+l−Ci
klω

k∧Ωl
n.

Replacing Ωi
j by (8), we prove the Lemma. �

Proof of Theorem 5.1: Let (M,F ) be a Finsler manifold with Cartan-type

connection and compatible tensors S = A+ S̃ and T = A, where S̃ = κ
1
Ȧ+ · · ·+

κ
m

m

A. Then the almost compatibility condition (14) becomes

dgij = gkjω
k

i + gikω
k

j − 2S̃ijkω
k. (15)

Differentiating this relation leads to

gkjΩ
k
i + gikΩ

k
j = 2(S̃ijk|sω

s + S̃ijk.sω
n+s) ∧ ωk + 2Ci

uvS̃ijkω
u ∧ ωn+v.

From this relation and (8) we have

Rijkl +Rjikl = 2(S̃ijl|k − S̃ijk|l), (16)

Pijkl + Pjikl = −2(S̃ijk.l − Cu
klS̃uij), (17)

Qijkl +Qjikl = 0. (18)
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Permuting i, j and k in (17) and using Lemma 1 yields

Pijkl = −S̃ijk.l + (Cu
klS̃uij + Cu

ilS̃ujk − Cu
jlS̃uki) + (Ckjl|i − Cijl|j)

+ (CkivP
v
njl − CjkvP

v
nil). (19)

Multiplying this relation by yi and replacing S̃ = κ
1
Ȧ+ · · ·+ κ

m

m

A, we get

Pnjkl = Ċijk + {κ
1
Ȧijk + · · ·+ κ

m

m

Aijk}. (20)

If F is a Landsbergian manifold, from the above relation, we have Pnjkl = 0.

Therefore by replacing this value in (19) we find Pijkl = Ckjl|i−Ckil|j . In the case

of Landsbergian manifolds, Cijk|l is totally symmetric in all of its four indices and

we have Pijkl = 0. Conversely, let hv-curvature be zero. Then by Lemma 1, we

have Ci
kl|j = Ci

jl|k, thereforeM is Landsbergian. �

Theorem 5.2. Let (M,F ) be a Finsler manifold. Then for Berwald-type con-

nections, hv-curvature vanishes if and only if F is a Berwaldian metric.

Proof. The complete proof of this theorem, will not be given, but only a

sketch of the proof will be presented. For a Berwald-type connection, the hv-

curvature is

Pijkl = −{κ
1
Ȧijk.l + · · ·+ κ

m

m

Aijk.l} − (Aijl|k +Ajkl|i −Akil|j)

+AkisP
s

n jl −AjksP
s

n il −AijsP
s

n kl. (21)

Therefore, we have

Pnjkl = {κ
1
Ȧjkl + · · ·+ κ

m

m

Ajkl} − Ȧjkl . (22)

Using these relations, the theorem will follow. �

Theorem 5.3. Let (M,F ) be a Finsler manifold. Then for Shen-type connec-

tions, hv-curvature vanishes if and only if F is Riemannian.

Proof. The proof of this theorem is analogous to that of the Theorem 5.1

and is not presented here. �

Theorem 5.4. Let (M,F ) be a Finsler manifold. Then the hv-curvature of

general-type (respectively Berwald-type, Cartan-type or Shen-type) connections

vanishes if and only if F is Berwaldian, Landsbergian or Riemannian.
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6. Some applications of general-type connections

Much of the practical importance of this kind of connection results from the

fact that, it is adaptable, in the sense that it is useful for getting a geometric

interpretation for a given system of differential equation formed by Cartan tensor

and its derivatives. Suppose that we are given a differential equation of this

kind and we want to find a geometric meaning for its solutions. It would suffice

to consider a Finsler connection – by fixing the compatible tensors S and T –

for which the reduced hv-curvature coincides with the differential equation in

question. We then apply one of the Theorems 5.1, 5.2 or 5.3 as applicable.

6.1. Application of Shen-type connections. Here we define Shen-type con-

nection D as Sijk = (1 − k)Aijk + kȦijk − Äijk and Tijk = 0 for which the

reduced hv-curvature Pjkl := ℓi Pijkl is equal to the given differential equation

Pjkl = Äjkl + kAjkl.

Theorem 6.1. Let (M,F) be a Finsler manifold with constant flag curvature λ

such that Pjkl = 0. Then F is Riemannian.

Proof. Let’s consider the Shen-type connection D with Sijk = (1−k)Aijk+

kȦijk − Äijk, k 6= λ and T = 0. Replacing S and T in (4) and by an argument

similar to the one used in the proof of the Theorem 1, we get

Pijkl + Pjikl = −2{Ȧijk.l + Äijk.l} − 2k{Aijk.l −Aijl|k} − 2AijmP m
n kl. (23)

From (23) we have

Pijkl = −{Ȧijk.l + Äijk.l} − kAijk.l + k{−Aijl|k +Ajkl|i −Akil|j}
− 2AijmP m

n kl + 2AkimP m
n jl − 2AjkmP m

n il. (24)

Therefore Pjkl = Äjkl + kAjkl. The equation Pjkl = 0 holds, from which we have

Ä+ kA = 0. (25)

Since (M,F ) is a Finsler manifold with constant flag curvature λ, then

Ä+ λA = 0. (26)

From (25) and (26) one has (λ − k)A = 0 which means that F is a Riemannian

metric. �

Using the above special Shen-type connection again together with a hypoth-

esis on the topology of M , we have the following theorem.
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Theorem 6.2. Let (M,F) be a complete Finsler manifold with bounded Cartan

tensor. Then (M,F ) is a Riemannian manifold if and only if Pjkl = 0.

Proof. Let’s consider the above Shen-type connection on the complete

Finsler manifold (M,F). Then from the last theorem we have that the hv-curvature

of this connection reduces to Pjkl = Äjkl + kAjkl . Fix any X,Y, Z ∈ π∗TM at

v ∈ IxM = {w ∈ TxM,F (w) = 1}. Let c : R → M be the unit speed geodesic in

(M,F ) with dc
dt
(0) = v and ĉ := dc

dt
be the canonical lift of c to TM0. Let X(t),

Y (t) and Z(t) denote the parallel sections along ĉ with X(0) = X , Y (0) = Y

and Z(0) = Z. Put A(t) = A(X(t), Y (t), Z(t)), Ȧ(t) = Ȧ(X(t), Y (t), Z(t)) and

Ä(t) = Ä(X(t), Y (t), Z(t)). Indeed along geodesics, we have dȦ
dt

= Ä and from

Äjkl + kAjkl = 0, we get

A(t) = (c1 sinh
√
kt+ c2 cosh

√
kt)A(0). (27)

For v ∈ TM0, let’s define ‖A‖v := supA(X,Y, Z) where the supremum is taken

over all unit vectors of π∗
vTM . Let’s put ‖A‖ = supv∈IM‖A‖v where IM =⋃

x∈M IxM . Since M is complete and ‖A‖ < ∞, by letting t → +∞ and t → −∞,

we have c1 = 0 and c2 = 0. Therefore A = 0, and F is Riemannian. �

6.2. Application of Berwald-type connections. Here we consider a special

Berwald-type connection for which the hv-curvature is equal to the given differ-

ential equation.

Theorem 6.3. Let (M,F) be a complete Finsler manifold with bounded Lands-

berg tensor. Then F is a Landsberg metric if and only if Pjkl = 0.

Proof. If we put κ
1
= κ

3
= · · · = κ

m
= 0 and κ

2
6= 0 in (22) then we

find a special Berwald-type connection for which the hv-curvature is equal to

Pjkl = κ
2
Äjkl− Ȧjkl . Let F be a Landsberg metric, then from the above equation

we get Pjkl = 0. Conversely, if Pjkl = 0, we will have:

κ
2
Äjkl − Ȧjkl = 0. (28)

By an argument like the one presented in the last theorem, we have along the

geodesics

Ȧ(t) = ek2
tȦ(0). (29)

For v ∈ TM0, let’s define ‖Ȧ‖v := supȦ(X,Y, Z) and ‖Ȧ‖ = supv∈IM‖Ȧ‖v.
Using completeness of M , ‖Ȧ‖ < ∞ and letting t → +∞ we have Ȧ(0) =

Ȧ(X,Y, Z) = 0. From (29), we get Ȧ = 0, that is, F is a Landsberg metric. �
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Corollary 6.1. Every compact Finsler manifold is Landsbergian if and only if

Pjkl vanishe.

Next we consider another special Berwald-type connection and give a proof

of the following well-known result due to Akbar-Zadeh [1].

Corollary 6.2. . Let (M,F) be a complete Finsler manifold with negative con-

stant flag curvature λ and bounded Cartan tensor. Then F is Riemannian.

Proof. Let’s put κ
2
= κ

4
= · · · = κ

m
= 0 , κ

1
= 2 and κ

3
= 1

λ
6= 0 in (21).

We obtain a connection for which the hv-curvature becomes

Pijkl = −{2Ȧijk.l +
1

λ

...
Aijk.l} − (Aijl|k +Ajkl|i −Akil|j)

+AkisP
s

n jl −AjksP
s

n il −AijsP
s

n kl. (30)

From which Pnjkl =
1
λ

...
Ajkl + Ȧjkl. As M has constant flag curvature we have

Ä+ λA = 0. So by the same argument as in the above theorem we find

A(t) = (c1 + c2e
√
−λt + c3e

−
√
−λt)A(0). (31)

Using the boundary assumption on Cartan tensor and letting t → ∞ and t → −∞,

we get c2 = c3 = 0. Therefore A = c1 and Ȧ = 0. It is easy to see that A = 0. �

7. Relation between some connections

There is a well known result which can be used as a definition for Landsberg

spaces, see for example [3].

Theorem E. Let (M,F ) be a Finsler manifold. ThenM is a Landsberg manifold

if and only if the Berwald connection coincides with the Chern connection.

In this relation we prove the following theorem.

Theorem 7.1. Let (M,F ) be a complete Finsler manifold with bounded Cartan

tensor. Then M is a Riemannian manifold if and only if the Berwald connection

coincides with the Shen connection.

Proof. Simple calculation shows that bΓi
jk =sΓi

jk +Ai
jk + Ȧi

jk, where
bΓi

jk

and sΓi
jk are the Christoffel coefficients of Berwald and Shen connections respec-

tively. If bΓi
jk =sΓi

jk, then Ai
jk + Ȧi

jk = 0. By the same argument as in the above

theorems, we find A+ Ȧ = 0 whose solution is A(t) = e−tA(0). Completeness of

M and the bounded Cartan tensor hypothesis, imply that A = 0. �
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Lemma 7.1. The Christoffel symbols for Berwald-type, Cartan-type and Shen-

type connections denoted by BΓ, CΓ and SΓ respectively, are given by:

BΓi
jk =

gis

2
{δgsj
δxk

− δgjk
δxs

+
δgks
δxj

}+Ai
jk + (κ

1
Ȧi

jk + · · ·+ κ
m

m

Ai
jk),

CΓi
jk =

gis

2
{δgsj
δxk

− δgjk
δxs

+
δgks
δxj

}+ Ci
jsN

s
k + (κ

1
Ȧi

jk + · · ·+ κ
m

m

Ai
jk),

SΓi
jk =

gis

2
{δgsj
δxk

− δgjk
δxs

+
δgks
δxj

}+ (κ
1
Ȧi

jk + · · ·+ κ
m

m

Ai
jk),

where δ
δxj := ∂

∂xj −N i
j

∂
∂yi .

Proof. We prove this lemma for Cartan-type connections only. In the local

coordinate (xi, yi) for TM0, we write D ∂

∂xi
∂j =

CΓk
ij∂k and D ∂

∂yi
∂j = F k

ij∂k. Put

Nk
i =CΓk

ijy
j = F{γk

ijℓ
j − Ak

ilγ
l
abℓ

aℓb} where γk
ij = 1

2g
kl
{

∂gjl
∂xi + ∂gil

∂xj − ∂gij
∂xl

}
. For

Cartan-type connections we consider the compatible tensors S and T defined by

S = A+ S̃ and T = A, where S̃ = κ
1
Ȧ+ · · ·+ κ

m

m

A. From (3) and (4) we have

CΓk
ij = CΓk

ji +Ns
i C

k
sj −Ns

jC
k
si, (32)

F k
ij = Ck

ij + ylF s
jlC

k
si, (33)

∂

∂xk
(gij) = gli

CΓl
kj − glj

CΓl
ki + 2S̃ijk, (34)

∂

∂yk
(gij) = gjlF

l
ik − gliF

l
kj . (35)

Permuting i, j and k in (34) and using (32), one obtains

CΓk
ij = γk

ij +Ns
jC

k
is − gkmNs

mCijs + S̃k
ij . (36)

Since gis

2 { δgsj
δxk − δgjk

δxs + δgks

δxj } = γi
jk − gimNs

mCjks, we get the desired Christoffel

symbols. For other connections same method can be used. �

Corollary 7.1. Let (M,F ) be a Finsler manifold. The Berwald-type connection

coincides with the Shen-type connection if and only if F is Riemannian.
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