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SPECTRAL ISOLATION OF BI-INVARIANT METRICS ON COMPACT

LIE GROUPS

CAROLYN S. GORDON †, DOROTHEE SCHUETH ‡, AND CRAIG J. SUTTON ♯

Abstract. We show that a bi-invariant metric on a compact connected Lie group G is spec-

trally isolated within the class of left-invariant metrics. In fact, we prove that given a bi-

invariant metric g0 on G there is a positive integer N such that, within a neighborhood of g0

in the class of left-invariant metrics of at most the same volume, g0 is uniquely determined by

the first N distinct non-zero eigenvalues of its Laplacian (ignoring multiplicities). In the case

where G is simple, N can be chosen to be two.

RÉSUMÉ. Soit G un groupe de Lie compact et connexe, et soit g0 une métrique bi-invariante

sur G. On démontre que g0 est isolée spectralement dans la classe des métriques invariantes

à gauche: Plus précisément, il existe un entier positif N tel que, dans un voisinage de g0 dans

la classe des métriques invariantes à gauche et de volume égal ou inférieur à celui de g0, la

métrique g0 est determinée de manière unique par les N premières valeurs propres strictement

positives de son Laplacien (sans multiplicités). Si G est simple, on peut choisir N = 2.

1. Introduction

Given a connected closed Riemannian manifold (M,g) its spectrum, denoted Spec(M,g),

is defined to be the sequence of eigenvalues, counted with multiplicities, of the associated

Laplacian ∆ acting on smooth functions. Two Riemannian manifolds (M1, g1) and (M2, g2)

are said to be isospectral if their spectra (counting multiplicities) agree. Inverse spectral

geometry is the study of the extent to which geometric properties of a Riemannian manifold

(M,g) are determined by its spectrum.

A long standing question is whether very special Riemannian manifolds – e.g., manifolds

of constant curvature or symmetric spaces – may be spectrally distinguishable from other

Riemannian manifolds. The strongest results are for constant curvature: Tanno showed that

a round sphere of dimension at most six is uniquely determined by its spectrum among all

orientable Riemannian manifolds [T1], and in arbitrary dimensions round metrics on spheres

are at least spectrally isolated among all Riemannian metrics on spheres [T2]. In contrast,
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the first and third author have shown that in dimension 7 and higher there are isospectrally

deformable metrics on spheres arbitrarily close to the standard metric [G, Sch2]. Hence, for

geometries that are in some sense extremely close to being “nice” or “ideal”, spectral uniqueness

can fail profoundly.

While many examples exist of isospectral flat manifolds, Kuwabara [K] has proven that

flat metrics are at least spectrally isolated within the space of all metrics. However, even the

question of whether a flat torus may be isospectral to a non-flat manifold remains open! One

cannot resolve this question by appealing to the heat invariants of a Riemannian manifold as

there are examples of non-flat manifolds all of whose heat invariants vanish [Pa].

Outside of the setting of constant curvature, we are not aware of any examples of Riemannian

metrics that are known to be spectrally isolated among arbitrary Riemannian metrics. Various

results show that within certain classes of Riemannian metrics, isospectral sets are finite. Even

here, many of the results involve constant curvature. For example, isospectral sets of flat tori

are finite (see [W] or unpublished work of Kneser) as are isospectral sets of Riemann surfaces

[McK]. As for the class of symmetric spaces, the first and third author have recently shown

that any collection of mutually isospectral compact symmetric spaces is finite [GS].

This article is motivated by the question of whether one can tell from the spectrum whether

a compact Riemannian manifold is symmetric. Given that this question has resisted solution

even in the case of spheres, it does not appear tractable at this time to compare the spectrum of

a symmetric space with that of a completely arbitrary Riemannian manifold. Instead, we ask

whether symmetric spaces can be spectrally distinguished within a larger class of homogeneous

Riemannian manifolds.

The compact symmetric spaces fall into two types; the type we consider are those given

by bi-invariant Riemannian metrics on compact (not necessarily semisimple) Lie groups. We

compare the spectrum of each such symmetric space with the spectra of arbitrary left-invariant

metrics on the Lie group. As a departure point we note that the second author showed that

there are no non-trivial continuous isospectral deformations of a bi-invariant metric within the

class of left-invariant metrics on a compact Lie group [Sch1]. This prompts one to ask whether

a bi-invariant metric on a compact Lie group G is spectrally isolated within the class of left-

invariant metrics. We give an affirmative answer; in fact we obtain a significantly stronger

result.

Let Mleft(G) denote the set of left-invariant metrics on a Lie group G. This set can be

canonically identified with the set of Euclidean inner products on the Lie algebra of G. The

latter set can in turn be identified, after some choice of basis, with the set of positive definite

symmetric (m × m)-matrices, where m is the dimension of G. The canonical topology on

this set of matrices gives rise to a topology on Mleft (G) (independent of the choice of basis),

and it is this topology that we consider. We call a left-invariant metric g0 on G spectrally

isolated in Mleft(G) if it is locally spectrally determined within Mleft(G); that is, there is a
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neighborhood U of g0 in Mleft(G) such that no g ∈ U \{g0} is isospectral to g0. We prove the

following:

Result. Let g0 be a bi-invariant metric on a compact Lie group G.

(1) There is a neighborhood U of g0 in Mleft(G) and a positive integer N such that if g is

any metric in U with vol(g) ≤ vol(g0) and whose first N distinct eigenvalues (ignoring

multiplicities) agree with those of g0, then g is isometric to g0. (See Theorem 2.3.)

(2) The metric g0 is spectrally isolated in Mleft(G). (See Corollary 2.4.)

(3) Let α1 < α2 < α3 be three distinct consecutive eigenvalues (ignoring multiplicities) of

the associated Laplacian ∆0. If G is simple, then there exists a neighborhood U of g0
in Mleft(G) such that if g ∈ U satisfies vol(g) ≤ vol(g0) and the condition that three

consecutive distinct eigenvalues of ∆g agree with α1, α2 and α3 (again ignoring multi-

plicities), then g = g0. In particular, letting α1 = 0, then the first two distinct non-zero

eigenvalues along with the volume bound distinguish g0 withing U . (See Theorem 3.3.)

The second result above is immediate from the first since the spectrum of a compact Rie-

mannian manifold determines its volume. Hence, within the class of left-invariant metrics on

a compact Lie group G, any metric g 6= g0 that is isospectral to a bi-invariant metric g0 must

be sufficiently far away from g0. In contrast, we note that the second author exhibited the

first examples of continuous isospectral families of left-invariant metrics on compact simple Lie

groups [Sch1]; see also [Pr].

In light of the fact that most examples of isospectral manifolds in the literature exploit

metrics with “large” symmetry groups, the spectral isolation results above lend strong support

to the conjecture that a bi-invariant metric on a compact Lie group G is spectrally isolated

within the class of all metrics on G. In fact, these results lead one to speculate on whether

a bi-invariant metric on a semisimple Lie group is uniquely determined by its spectrum.1 In

Section 3 we present strong evidence that the bi-invariant metric on a compact simple Lie

group is uniquely determined by its spectrum within the class of left-invaraint metrics. In

particular, we show the following.

Result. Let g0 be a bi-invariant metric on a compact simple Lie group G, and let g 6= g0 be a

left-invariant metric on G, which is isospectral to g0. Then there is a constant C ≡ C(g) > 1,

such that for every subspace V ≤ L2(G) that is invariant under the right regular action of G,

we have
Tr(∆g ↾ V )

Tr(∆0 ↾ V )
≡ C > 1.

(See Proposition 3.1 for a more precise statement.)

This implies that if g 6= g0 ∈ Mleft(G) is isospectral to the bi-invariant metric g0, then a very

special rearrangement of the eigenvalues must occur.

1We must restrict our attention to semisimple Lie groups due to the existence of nontrivial pairs of isospectral

flat tori (e.g., [M] and [CS]).
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The outline of this paper is as follows. In Section 2 we establish the main results for bi-

invariant metrics on arbitrary compact Lie groups. In Section 3 we restrict our attention to

compact simple Lie groups to obtain the stronger results in this setting.

2. Proof of the main result

Following [LMNR] we introduce the notion of eigenvalue equivalence, which is weaker than

that of isospectrality. The same notion was introduced earlier by Z.I. Szabo [Sz, p. 212], who

referred to it as isotonality. We also define a notion of partial eigenvalue equivalence.

2.1. Definition. Given a compact Riemannian manifold (M,g), we define the eigenvalue

set of (M,g) to be the ordered collection of eigenvalues of the associated Laplace operator ∆g

on functions on M , not counting multiplicities. We will say that two compact Riemannian

manifolds are eigenvalue equivalent if their eigenvalue sets coincide. For N a positive

integer, we will say that two compact Riemannian manifolds are eigenvalue equivalent up

to level N if the first N elements of their eigenvalue sets coincide.

2.2. Lemma. Let G be a compact Lie group, and let g0 be a bi-invariant metric on G with

associated Laplacian ∆0. Let V ≤ L2(G) be a finite dimensional subspace which is invariant

under the right-regular representation of G on L2(G). Then there exists a positive integer N

and a neighborhood U of g0 in Mleft(G) such that if g ∈ U is eigenvalue equivalent to g0 up

to level N , then

∆g ↾ V = ∆0 ↾ V.

Proof. First note that V , being a finite dimensional subspace of L2(G) which is invariant under

the right-regular representation, contains only smooth functions. Moreover, V is a direct sum

of finitely many irreducible representations of G; it is therefore enough to prove the result in

the case that V is irreducible. For any g ∈ Mleft(G) and any g-orthonormal basis {Y1, . . . , Yn}

of the Lie algebra of G, the associated Laplace operator on smooth functions on G is given by

∆g = −

n
∑

j=1

(ρ∗Yj)
2,

where ρ : G → U(L2(G)) is the right-regular representation of G. Thus, V is invariant

under ∆g. Since g0 is bi-invariant, right translations in G are g0-isometries; hence ∆0 : V → V

commutes with the action of G on V . Irreducibility of V implies by Schur’s Lemma that

∆0 ↾ V is a multiple of the identity, say ∆0 ↾ V = λ IdV . We may choose ǫ > 0 such that

(λ − ǫ, λ + ǫ) ∩ Spec(∆0) = {λ}. Choose N large enough so that the Nth element of the

eigenvalue set is greater than λ (and hence greater than λ + ǫ). The hermitian operators

∆g ↾ V on the finite dimensional vector space V depend continuously on g. Therefore, their

eigenvalues also depend continuously on g. Consequently, there is a neighborhood U of g0 in

Mleft(G) such that for each g ∈ U the eigenvalues of ∆g ↾ V must lie in (λ− ǫ, λ+ ǫ). If g ∈ U

is eigenvalue equivalent to g0 up to level N , it follows that ∆ ↾ V = ∆0 ↾ V = λ IdV . �
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We now establish the spectral isolation of bi-invariant metrics on compact connected Lie

groups. In fact, we prove a little more; namely, we replace the isospectrality condition by the

much weaker condition of partial eigenvalue equivalence together with an upper volume bound.

2.3. Theorem. Let g0 be a bi-invariant metric on a compact connected Lie group G. Then

there is a positive integer N , depending only on g0, and a neighborhood U of g0 in Mleft(G)

such that if g ∈ U is eigenvalue equivalent to g0 up to order N and satisfies vol(g) ≤ vol(g0),

then g = g0.

2.4. Corollary. Let g0 be a bi-invariant metric on a compact connected Lie group G. Then

g0 is spectrally isolated in Mleft(G).

The corollary follows from the theorem by the fact that isospectrality implies eigenvalue

equivalence and equality of volumes; in fact, the volume is the first of the classical heat invari-

ants.

Proof of Theorem 2.3. We have G = GssT where Gss is semisimple, T is a torus and Gss ∩ T

is finite. The Lie algebra of G is a direct sum g = gss ⊕ t, where gss and t are the Lie algebras

of Gss and T . In particular, Gss and T commute, and gss is g0-orthogonal to t.

We first claim that there exists a positive integer N ′ and a neighborhood U ′ of g0 inMleft(G)

such that if g ∈ U ′ is eigenvalue equivalent to g0 up to level N ′, then g and g0, viewed as inner

products on g, induce the same inner product on g/gss. By the inner product induced by g we

mean the one obtained by identifying g/gss with the g-orthogonal complement of gss in g. To

prove the claim, note that the Lie group T := G/Gss
∼= T/(Gss ∩T ) is a torus which is finitely

covered by T . In particular, the Lie algebra of T is canonically identified with t. Let p : G → T

be the homomorphic projection. Given g ∈ Mleft(G), denote by ḡ the induced (flat) metric

on T (i.e., the metric for which p : (G, g) → (T , ḡ) becomes a Riemannian submersion). Let L

be the lattice in t which is the kernel of the Lie group exponential map t → T , and let L∗ ⊂ t∗

be the dual lattice. For µ ∈ L∗, denote by ‖µ‖ḡ the norm of µ with respect to the dual inner

product on t∗. Let ν1, . . . , νk be a basis of L∗, where k = dim(T ). Write L := k +
(

k
2

)

, and let

{µ1, . . . , µL} be the set containing the vectors νi as well as the νi + νj for i 6= j. Note that, by

polarization, the norm ‖ . ‖ḡ on t∗ – and hence ḡ itself – is uniquely determined by the norms

of the vectors µ1, . . . , µL. For each s ∈ {1, . . . , L} let f̄s : T → U(1) (where U(1) is the unitary

group of unit complex numbers) be the associated character of T . Then ∆ḡf̄s = 4π2‖µs‖
2
ḡf̄s.

Now fs := f̄s ◦p is a character on G. Since the Riemannian submersion p : G → T has minimal

fibers, fs is an eigenfunction of ∆g with eigenvalue 4π2‖µs‖
2
ḡ for each s = 1, . . . , L. (One can

also verify this fact by direct computation.)

The one-dimensional space Fs ≤ L2(G) spanned by the character fs is invariant under the

right-regular representation. Let N ′ be a positive integer and U ′ be a neighborhood of g0
in Mleft(G) satisfying the property from Lemma 2.2 with respect to F1 ⊕ . . . ⊕ FL, and let

g ∈ U ′ be eigenvalue equivalent to g0 up to level N ′. Then we must have ‖µs‖ḡ = ‖µs‖ḡ0 for

each s = 1, . . . , L. As remarked above, this implies ḡ = ḡ0. The claim follows.
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In the case of the bi-invariant metric g0, the metric ḡ0 on t coincides with the restriction

of the inner product g0 to t since gss and t are g0-orthogonal. However, for more general g,

one has only that the differential p∗ : g → t of the projection p : G → T restricts to an inner

product space isometry p∗ : (g
⊥g
ss , g) → (t, ḡ). In particular, if g ∈ U ′, then it follows from the

claim that

(2.5) the projection from (g
⊥g
ss , g) to (t, g0) along gss is an isometry.

For the remaining part of the argument, let gss = g1 ⊕ . . .⊕ gr be the decomposition of gss
into simple Lie subalgebras. The adjoint representation of G on g, restricted to the invariant

subspace gℓ, is an irreducible representation of G for each ℓ = 1, . . . , r. Note that for ℓ 6= ℓ′

these representations of G are inequivalent even in the case when gℓ and gℓ′ happen to be

isomorphic as Lie algebras. By the Peter-Weyl Theorem, every irreducible representation

of G occurs in the right-regular representation of G on L2(G) (with multiplicity equal to its

dimension). Thus, for each ℓ = 1, . . . , r we can choose a corresponding irreducible subspace

Vℓ ≤ L2(G), and the action of G on the subspace V1⊕ . . .⊕Vr of L
2(G) will then be equivalent

to the adjoint representation of G acting on gss.

Let N ′′ be a positive integer and U ′′ be a neighborhood of g0 in Mleft(G) satisfying the

property from Lemma 2.2 with respect to V1 ⊕ . . . ⊕ Vr. We are going to show that N :=

max{N ′, N ′′} and U := U ′ ∩ U ′′ satisfy the property stated in the Theorem.

If g is any left-invariant metric on G and {U1, . . . , Um} is a g-orthonormal basis of g, then

(2.6) Tr(∆g ↾ Vℓ) = −

m
∑

j=1

Tr
(

(adUj
↾ gℓ)

2
)

.

Since g0 is bi-invariant, gℓ is g0-orthogonal to gℓ′ for ℓ 6= ℓ′. Let nℓ denote the dimension of gℓ,

and let n = n1+ . . .+nr be the dimension of gss. Choose a g0-orthonormal basis {X1, . . . ,Xn}

of gss such that the first n1 elements lie in g1, the next n2 elements lie in g2, etc. Complete to

a g0-orthonormal basis B0 = {X1, . . . ,Xn, Z1, . . . , Zk}, where (necessarily) Z1, . . . , Zk ∈ t.

Let g be a metric in U which is eigenvalue equivalent to g0 up to level N and satisfies

vol(g) ≤ vol(g0). Since g ∈ U ′ and N ≥ N ′, statement (2.5) holds and thus there exist elements

Wi ∈ gss such that {Z1 + W1, . . . , Zk + Wk} is a g-orthonormal basis of g
⊥g
ss . Complete to a

g-orthonormal basis B = {Y1, . . . , Yn, Z1 +W1, . . . , Zk +Wk} of g with Y1, . . . , Yk ∈ gss. The

change of basis matrix which expresses the elements of B in terms of B0 is given by
[

A R

0 Ik

]

,

where A = (aij) ∈ Matn×n(R), R = (rij) ∈ Matn×k(R) and Ik is the k × k identity matrix.

Hence, Yj =
∑n

i=1 aijXi for j = 1, . . . , n and Ws =
∑n

i=1 risXi for s = 1, . . . , k. The condition

vol(g) ≤ vol(g0) implies that |det(A)| ≥ 1. Without loss of generality we assume det(A) > 0

and hence det(A) ≥ 1.
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Since g0 is bi-invariant, there exist numbers cℓ > 0 for ℓ = 1, . . . , r such that the restriction

of g0 to gℓ coincides with −cℓBℓ, where Bℓ is the Killing form of gℓ (which in turn coincides

with the restriction to gℓ of the Killing form B : (X,Y ) 7→ Tr(adX ◦ adY ) of g). In particular,

by equation (2.6), we have

Tr(∆0 ↾ Vℓ) =
nℓ

cℓ
.

Since g ∈ U ⊂ U ′′ and N ≥ N ′′, we have ∆g ↾ Vℓ = ∆0 ↾ Vℓ for each ℓ = 1, . . . , r. In particular,

for ℓ = 1:

n1

c1
= Tr(∆0 ↾ V1) = Tr(∆g ↾ V1) = −

n
∑

j=1

Tr
(

(adYj
↾ g1)

2
)

−

k
∑

s=1

Tr
(

(adZs+Ws ↾ g1)
2
)

= −

n1
∑

i=1

n
∑

j=1

a2ij Tr
(

(adXi
↾ g1)

2
)

−

n1
∑

i=1

k
∑

s=1

r2isTr
(

(adXi
↾ g1)

2
)

=
1

c1

n1
∑

i=1

n
∑

j=1

a2ij +
1

c1

n1
∑

i=1

k
∑

s=1

r2is,

where the fourth equality holds because adX ↾ g1 = 0 for X ∈ gℓ with ℓ 6= 1 and because

{X1, . . . ,Xn1
} is orthonormal with respect to −c1B1. We hence obtain n1 =

∑n1

i=1

∑n
j=1 a

2
ij +

∑n1

i=1

∑k
s=1 r

2
is. Summing over the analogous equations for ℓ = 1, . . . , r we conclude that

n = ‖A‖2 + ‖R‖2,

where ‖ . ‖ denotes the standard Euclidean norm of matrices viewed as points in the appro-

priate R
N . However, n is the minimal value (in fact, the only critical value) of the function

SL(n,R) ∋ C 7→ ‖C‖2 ∈ R and is attained precisely on SO(n). It thus follows from det(A) ≥ 1

that A ∈ SO(n) and R = 0; hence g = g0. �

2.7. Remark. Some of the techniques used in this section are similar to those used by Urakawa

in [U].

3. A stronger spectral isolation result for simple groups

In the proof of Lemma 2.2 it was observed that if g is a left-invariant metric on a compact

Lie group G, with associated Laplacian ∆g, then any subspace V ≤ L2(G) that is invariant

under the right-regular representation of G is also invariant under ∆g. With this in mind we

have the following result concerning the trace of the Laplacian on compact simple Lie groups.

3.1. Proposition. Let g0 be a bi-invariant metric on a compact simple Lie group G, and let

g 6= g0 be a left-invariant metric on G which satisfies vol(g) ≤ vol(g0). Then there exists a

constant C = C(g) > 1 such that

Tr(∆g ↾ V ) = C Tr(∆0 ↾ V )



8 C.S. GORDON, D. SCHUETH, AND C. J. SUTTON

for every finite dimensional subspace V ≤ L2(G) which is invariant under the right-regular

representation ρ of G and on which G acts nontrivially.

Proof. By rescaling g and g0 we can assume without loss of generality that g0 coincides with

−B on the Lie algebra g of G, where B is the Killing form on g. Define h : g× g → R by

h(X,Y ) := −Tr
(

((ρ∗X) ↾ V ) ◦ ((ρ∗Y ) ↾ V )
)

.

Obviously h is bilinear, symmetric, and AdG-invariant. The map X 7→ (ρ∗X) ↾ V is nonzero

because V is not a trivial representation space of G. Since g is simple, this map has trivial

kernel, which implies that h is positive-definite; in particular, there exists some c > 0 such

that h = −cB. We now proceed similarly as in the last part of the proof of Theorem 2.3: Let

{X1, . . . ,Xn} be a g0-orthonormal basis and {Y1, . . . , Yn} be a g-orthonormal basis of g, and

define A = (aij) by Yj =
∑n

i=1 aijXi for j = 1, . . . , n. By the volume condition, |det(A)| ≥ 1;

we can assume det(A) ≥ 1. Moreover, g 6= g0 implies A /∈ SO(n) and therefore ‖A‖2 > n.

Thus,

Tr(∆g ↾ V ) =

n
∑

j=1

h(Yj , Yj) = −c

n
∑

j=1

B(Yj, Yj) = −c

n
∑

i,j=1

a2ijB(Xi,Xi) = c‖A‖2

> cn =
n
∑

i=1

h(Xi,Xi) = Tr(∆0 ↾ V ).

The proposition follows with C = ‖A‖2

n
. �

3.2. Remark. Since volume is a spectral invariant the previous proposition implies the follow-

ing: Let g0 be a bi-invariant metric on a compact simple Lie group G, and suppose there exists a

left-invariant metric g 6= g0 on G which is isospectral to g0. Then Tr(∆g ↾ V ) > Tr(∆0 ↾ V ) for

any finite dimensional invariant subspace V of L2(G) on which G acts nontrivially. Thus ∆g,

although isospectral to ∆0, must have greater trace than ∆0 on every ∆0-eigenspace (except

for the eigenvalue 0), even on each irreducible subspace. This is not a priori a contradiction

because some wild reordering of eigenvalues could occur to produce this situation. Neverthe-

less, this seems a strong indication in support of the conjecture that a bi-invariant metric on

a compact simple Lie group is globally spectrally determined among left-invariant metrics.

3.3. Theorem. Let g0 be a bi-invariant metric on a compact simple Lie group G. Let α1 <

α2 < α3 be three consecutive elements of the eigenvalue set of (G, g0). (See Definition 2.1.)

Then there exists a neighborhood U of g0 in Mleft(G) (depending on α1, α2, α3) such that

if g ∈ U satisfies vol(g) ≤ vol(g0) and if α1, α2 and α3 are also consecutive elements of the

eigenvalue set of (G, g), then g = g0.

3.4. Corollary. A bi-invariant metric on a compact simple Lie group is locally determined

within the set of left-invariant metrics of at most the same volume by its first two distinct

non-zero eigenvalues 0 < λ1 < λ2 (ignoring multiplicities).
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The corollary follows from the theorem since 0, λ1, λ2 are three consecutive elements of the

eigenvalue set.

Proof of Theorem 3.3. Since ∆0 commutes with right translations in G, the α2-eigenspace V

of ∆0 is invariant under the right-regular representation. Note that V is finite dimensional.

As remarked in the proof of Lemma 2.2, the eigenvalues of ∆g ↾ V depend continuously on g.

Thus there exists a neighborhood U of g0 in Mleft(G) such that for any g ∈ U the eigenvalues

of ∆g on V are contained in the interval (α1, α3). Let g ∈ U be a metric which satisfies

vol(g) ≤ vol(g0) and the condition that α1, α2 and α3 are also consecutive eigenvalues of ∆g.

Then necessarily ∆g ↾ V = α2 IdV = ∆0 ↾ V . Finally, note that G acts nontrivially on V since

α2 6= 0. Proposition 3.1 now implies g = g0. �
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