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Sobre una condición de rigidez de los espacios de Berwald

Resumen. Se muestra que la conexión de Levi Civita de cualquier métrica
Riemanniana af́ınmente equivalente a una estructura de Berwald deja invari-
ante por transporte paralelo la indicatriz de dicha estructura de Berwald.
Tambin se demuestra el resultado recproco: Si (M, F ) es una estructura de
Finsler y existe una estructura Riemanniana cuya conexión de Levi Civita
deja invariante por transporte paralelo la indicatriz de la estructura de
Finsler, entonces (M, F ) es de Berwald. Como aplicación se obtiene una
condición necesaria para que una variedad sea de Landsberg pura. Y us-
ando este criterio se formula una estrategia para resolver el problema de la
existencia de superficies de Landsberg puras.

Introduction

A Riemannian structure on a manifold is given by a Riemannian metric.
As is well known, the Levi Civita connection is an important tool associ-
ated to the structure. A more general concept is that of a Finsler structure
(see Definition 1.1 below). In genreal, one cannot define a Levi Civita type
connection associated to a Finsler structure. Given a Finsler structure, one
can define several linear connections on the pull-back bundle π∗TM −→ N
determined by the Finsler function F and additional conditions, usually re-
strictions to the “torsion”. Cartan, Chern and Berwald’s linear connections
are notable examples ([1]). Although the relevant merits of these connec-
tions, compared with affine connections, are quite complicated objects. This
is one of the reasons that make Finsler geometry specially difficult to inves-
tigated, compared with the Riemannian case.

One step on the understanding of the structure of Finsler geometry
maybe achieved by the theory presented (or better suggested) in reference
[2], where it was introduced the averaged connection. The averaged connec-
tion is obtained from a linear connection on π∗TM → N by an averaged
procedure on a suitable subset Σ ⊂ Nx = π−1(x) ⊂ N. Usually this subset
is defined to be the indicatrix Ix over x ∈ M. The average connection is
an affine connection on the tangent bundle π : TM → M. If we perform
the averaged operation on convex combinations of connections that have the
same averaged connection, the result is the same averaged connection. We
called this property convex invariance. The connection coefficients of the
averaged connection are equal to the average of the connection coefficients
of the original connection on Σ.
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The main purpose of this note is to prove a necessary condition for
Berwald spaces. The condition is obtained using the averaged connection
and the convex invariance mentioned above. In particular two-dimensional
spaces are considered.

In section 1 we introduce the basic notions of Finsler structures that
we need. We will follow the notation from Bao-Chern-Shen [1] Usually, the
concepts of Finsler Geometry are introduced by using local coordinates, but
we show some intrinsic expressions (e.g., propositions 1.4 and 1.5; see also
[7]). In section 2 we recall the notion of average of a linear connection in
the pull back bundle π∗TM → N and other results from [2]. In section
3 we obtain proposition 3.6 which states that for a Berwald structure, any
Riemannian structure that is preserved by the Berwald connection leaves
the indicatrix invariant under horizontal parallel transport. We also obtain
the converse result, proposition 3.7: if (M, F ) is a Finsler structure such
that there exists a Riemannian structure that leaves invariant the indica-
trix under parallel transport of the associated Levi-Civita connection, then
the structure (M, F ) is Berwald. We finish showing that these results to-
gether with the notion of convex invariance, can be useful in the research
of pure Landsberg spaces through theorem 2.9 and a criterion for pure two
dimensional Landsberg space is given.

1 Basics notions on Finsler Geometry

In this section we introduce the notions of Finsler geometry as well the
notation that we will use in this work. The main reference that we follow is
[1].

Let M be an n-dimensional manifold and TM its tangent bundle. If
{xi} is a local coordinate system on M, the induced local coordinate system
on TM is denoted by {(xi, yi)}. This type of coordinate systems on TM are
called natural coordinate systems. The slit tangent bundle is N = TM\{0}.
Then we have,

Definition 1.1 A Finsler structure F on the manifold M is a non-negative,
real function F : TM → [0,∞[ such that

1. It is smooth in the slit tangent bundle N.

2. Positive homogeneity holds: F (x, λy) = λF (x, y) for every λ > 0.
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3. Strong convexity holds: the Hessian matrix

gij(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
(1.1)

is positive definite in N. The fundamental and the Cartan tensors are
defined by the equations:

g(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
dxi ⊗ dxj. (1.2)

Given a Finsler structure (M, F ) it is not possible to define a Levi-Civita
connection in the general case. In order to obtain a connection related with
the structure, one has to go to higher order bundles over M. This is done in
the following standard way. First, we introduce a non-linear connection on
the bundle πN : TN −→ N:

1. there is a splitting of each tangent space TuN in complementary sub-
spaces Vu and Hu

TuN = Vu ⊕Hu, ∀ u ∈ N

2. keru(πN ) = Vu, ∀u ∈ N.

This decomposition is invariant by the action of GL(n,R), which is induced
by the action of the linear group Gl(n,R) acting freely and by the right on
the tangent bundle manifold TM.

A Local basis for TuN is given by the distributions

{
δ

δx1
|u, ...,

δ

δxn
|u, F

∂

∂y1
|u, ..., F

∂

∂yn
|u},

δ

δxj
|u =

∂

∂xj
|u −N i

j

∂

∂yi
|u;

where the non-linear connection coefficients N i
j must be specified. The first

n elements develop the horizontal subspace Hu while the second half the
vertical subspace Vu. Similarly, for the cotangent space T∗

uN a dual basis
is defined by

{dx1|u, ..., dx
n|u,

δy1

F
|u, ...,

δyn

F
|u},

δyi

F
|u =

1

F
(dyi +N i

jdx
j)|u.
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The manifold π∗TM is a subset of the cartesian product TM×N. One has
the pull-back bundle π∗TM → N given by the square

π2
π∗TM −→ TM

π1 ↓ ↓ π

N −→ M

π

The projection on the first and second factors are

π1 : π
∗TM −→ N, (u, ξ) −→ u,

π2 : π
∗TM −→ TM, (u, ξ) −→ ξ, ξ ∈ π−1

1 (u).

Every vector field Y over M can be interpreted as a section of the tangent
bundle TM → M and has associated a section π∗Y of the vector bundle
π∗TM → N. In local coordinates, the associated π∗Y to Y is given in the
following way:

Y = Y i(x)
∂

∂xi
−→ π∗Y = Y i(x)π∗ ∂

∂xi
, π2(π

∗ ∂

∂xi
) =

∂

∂xi
.

We also use the following lifted fundamental tensor (or fiber metric):

π∗g(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
π∗dxi ⊗ π∗dxj . (1.3)

Definition 1.2 Let (M, F ) be a Finsler structure. The Cartan tensor is
defined by

A(x, y) :=
F

2

∂gij

∂yk
δyi

F
⊗ dxj ⊗ dxk = Aijk

δyi

F
⊗ dxj ⊗ dxk. (1.4)

One possible non-linear connection is introduced by defining the non-linear
connection coefficients as

N i
j

F
= γijk

yk

F
−Ai

jkγ
k
rs

yr

F

ys

F
, i, j, k, r, s = 1, ..., n.
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The coefficients γijk are defined in local coordinates by

γijk =
1

2
gis(

∂gsj

∂xk
−

∂gjk

∂xs
+

∂gsk

∂xj
), i, j, k, s = 1, ..., n;

Ai
jk = gilAljk and gilglj = δij .

As we have said, there is not a Levi-Civita connection associated to the
Finsler structure. However, there are several connections that one can define
and that play a similar role to the Levi-Civita connection in Riemannian
geometry. One of these connections is Chern’s connection, which introduced
through the following theorem ([1], pg 38),

Theorem 1.3 Let (M, F ) be a Finsler structure. The pull-back vector bun-
dle π∗TM → N admits a unique linear connection determined by the connec-
tion 1-forms {ωi

j, i, j = 1, ..., n} such that the following structure equations
hold:

1. Torsion free condition,

d(dxi)− dxj ∧ wi
j = 0, i, j = 1, ..., n. (1.5)

2. Almost g-compatibility condition,

dgij − gkjw
k
i − gikw

k
j = 2Aijk

δyk

F
, i, j, k = 1, ..., n, (1.6)

where Aijk are the components of the Cartan tensor.

A coordinate invariant characterization of Chern’s connection is given by the
following two propositions,

Proposition 1.4 Let (M, F ) be a Finsler structure. Then the almost g-
compatibility condition of the Chern’s connection is equivalent to the condi-
tions

∇ch
V (X̃)

π∗g = 2A(X, ·, ·), (1.7)

∇ch
H(X̃)

π∗g = 0, (1.8)

where V (X̃) is the vertical component and H(X̃) the horizontal component
of X̃ ∈ TuN.
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Proof: we write the above equations in local coordinates,

∇chπ∗g = d(gij(x, y))dx
i ⊗ dxj + gij∇

ch(dxi)⊗ dxj + gijdx
i ⊗∇chdxj =

=
∂gij

∂yk
δyk ⊗ dxi ⊗ dxj + (−gljω

l
ik − gliω

l
jk +

δgij

δxk
)dxk ⊗ dxi ⊗ dxj .

✷

Proposition 1.5 Let (M, F ) be a Finsler structure. The torsion-free con-
dition of the Chern connection is equivalent to the following conditions

1. Null vertical covariant derivative of sections of π∗TM: let X̃ ∈ TuN
and Y ∈ ΓM, then

∇ch
V (X̃)

π∗Y = 0. (1.9)

2. Let us consider X,Y ∈ TM and their horizontal lifts X̃ and Ỹ . Then

∇ch
X̃
π∗Y −∇ch

Ỹ
π∗X − π∗([X,Y ]) = 0. (1.10)

Proof: The expression (1.10) defines a section of the bundle π∗TM due to
the commutator term, as well as (1.9). Therefore, it is only necessary to
write the above equations in local coordinates: the commutator term is zero
when the vectors are X = ∂

∂xi , Y = ∂
∂xj . Then

∇ch
∂

∂xi
|u
π∗ ∂

∂xj
−∇ch

∂

∂xj
|u
π∗ ∂

∂xi
= (Γl

ij − Γl
ji)π

∗ ∂

∂xl
= 0,

because due to eq. (1.5), one has Γi
jk = Γi

kj ([1], pg 39). The result follows
from the characterization of the Chern connection. ✷

Definition 1.6 A Berwald space is a Finsler structure such that the coeffi-
cients of the Chern’s connection live on M.

The non-linear connection of the Cartan type is constructed in the fol-
lowing way([5]). By Finsler geodesic we mean the parameterized curves in
M that are extremal of the Finsler functional arc-length. They are solutions
of the differential equations (in the case of unit parameterized Finslerian
geodesics)

d2xi

ds2
+ γijk(x, y)

dxk

ds

dxj

ds
= 0, i, j, k = 1, ..., n. (1.11)

The associated spray coefficients are

Gi := (γisk(x, y)y
kys), i, s, k = 1, ..., n.
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The connection coefficients of the non-linear Cartan connection are given by
the derivative of the spray coefficients,

CN i
j =

1

2

∂2

∂yj
(γisk(x, y)y

kys). (1.12)

Using this non-linear connection on TN −→ N we can define the linear
Berwald connection through the following propositions:

Proposition 1.7 Let (M, F ) be a Finsler structure. Then the g-compatibility
condition of the Berwald connection is:

∇b
V (X)π

∗g = 2A(X, ·, ·), (1.13)

∇b
H(X)π

∗g = −2∇b
lA(·, ·,X), l =

yi

F

∂

∂xi
. (1.14)

Proposition 1.8 Let (M, F ) be a Finsler structure. Then the Berwald con-
nection is torsion free:

1. Null vertical covariant derivative of sections of π∗(TM): let X̃ ∈ TuN
and Y ∈ π∗(ΓM), then

∇b
V (X̃)

π∗Y = 0. (1.15)

2. Let us consider X,Y ∈ TM and the associated vector fields with hori-
zontal components Xi and Y i, X̃ and Ỹ . Then

∇b
X̃
π∗Y −∇b

Ỹ
π∗X − π∗([X,Y ]) = 0. (1.16)

In the case of Berwald structures, the Chern’s connection and the Berwald
connection coincide.

2 Averaged Connection

We introduced in [2] a method to obtain a linear connection over M from
the Chern connection on π∗TM. The structure of this averaged is natural:
it is defined using only canonical maps and the given Finsler structure. It is
not unique because depend on the measured used and also the sub-manifold
Σx where we perform the integration. Also one can see that the covariant
derivative associated with the averaged connection is the limit of a convex
sum of covariant derivatives in different directions of the tangent spaceTxM.
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However, since they are all points on the fiver π−1(x) ⊂ N, the convex sum
of covariant derivatives is still covariant under the structure group GL(2,R).
Therefore the averaged operation can be seen as a homomorphism between
Conn(π∗TM), the space of linear connections on π∗TM and Conn(TM),
the space of affine connections on TM,

< · >: Conn(π∗TM) −→ Conn(TM)

∇ −→< ∇ > .

The averaged connection was introduced in ref. [2]. We review briefly this
construction. The proof can be found in the original reference [2], although
for convenience of the reader we indicate the basics steps here too.

Let π∗, π1, π2 be the canonical projections of the pull-back bundle π∗ΓM,
being ΓM a tensor bundle over M:

π2
π∗ΓM −→ ΓM

π1 ↓ ↓ π

N −→ M
π

π∗
uΓM denotes the fiber over u ∈ N of the bundle π∗ΓM and ΓxM are the

tensors over x ∈ M, being Sx ∈ ΓxM a generic element of ΓxM. Su is the
evaluation of the section S of the bundle π∗ΓM at the point u ∈ N. The
indicatrix at the point x ∈ M is the compact submanifold

Ix := {y ∈ TxM | F (x, y) = 1} ⊂ TxM.

Let us consider the element Su ∈ π∗
uΓM and the tangent vector field X̃

of the horizontal path γ̃ : [0, 1] −→ N connecting the points u ∈ Ix and
v ∈ Iz. The parallel transport of the Chern connection along γ̃ of a section
S ∈ π∗TM is denoted by τγ̃S; the parallel transport along γ̃ of the point
u ∈ Ix is by definition τγ̃(u) = γ̃(1) ∈ π−1(z); the horizontal lift of a path is
defined using the non-linear connection in N.

The following is a standard result, although a simpler proof can also be
found in [2],

Proposition 2.1 Let (M, F ) be a Finsler structure and γ̃ : [0, 1] −→ N
the horizontal lift of a path γ : [0, 1] −→ M joining x and z points in M.
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Then F (x, y) is invariant by the horizontal parallel transport of the Chern’s
connection. In particular, let us consider the indicatrixes over x and z Ix ⊂
TxM and Iz ⊂ TzM. Then τγ̃π

∗(Ix) = π∗Iz. Therefore the horizontal
parallel transport maps Ix into Iz as submanifolds of N.

Proof: Let X̃ be the horizontal lift in TN of the tangent vector field X

along the path γ ⊂ M joining x and z, S1, S2 ∈ π∗(TxM). Then corollary
2.5 implies ∇X̃g(S1, S2) = 2A(X̃, S1, S2) = 0 because the vector field X̃ is
horizontal and the Cartan tensor is evaluated in the first argument. There-
fore the value of the Finslerian norm F (x, y) =

√

gij(x, y) yi yj, y ∈ TxM, Y

with Y = π∗y is conserved by horizontal parallel transport,

∇X̃(F 2(x, y)) = ∇X̃(g(x, y))(Y, Y ) + 2g(x,∇X̃Y ) = 0,

being X̃ ∈ TN an horizontal vector. The first term is zero because the
above calculation. The second term is zero because of the definition of
parallel transport of sections ∇X̃Y = 0. In particular the indicatrix Ix is
mapped to Iz because parallel transport is a diffeomorphism. ✷

Remark A similar statement also holds for the linear Cartan connec-
tion ∇c because it is a g-compatible connection. For the linear Berwald
connection ∇b the result is not true for general Finsler structure, because it
is not g-compatible. However, in the case of Berwald structure proposition
1.8 holds for ∇b because both Cartan and Berwald connections coincide.

Let us consider π∗
vΓM a fiber over v ∈ N and the tensor space over x,

the fiber ΓxM. For each Sx ∈ ΓxM and v ∈ π−1(z), z ∈ U we consider the
isomorphisms

π2|v : π∗
vΓM −→ ΓzM, Sv −→ Sz

π∗
v : ΓzM −→ π∗

vΓM, Sz −→ π∗
vSz.

Definition 2.2 Let (M, F ) be a Finsler structure, π(u) = x and f ∈ FM.
Then π∗f ∈ F(π∗TM) is defined by

π∗
uf = f(x), ∀u ∈ Ix ⊂ π−1(x) ⊂ N. (2.1)

Let us denote the horizontal lifted operator in the following way:

ι : TM −→ TN, X = Xi ∂

∂xi
|x −→ ι(X) = Xi δ

δxi
|u := Xiδi,

u ∈ Ix ⊂ π−1(x) ⊂ N, (2.2)
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and the horizontal lift, defined by the non-linear connection N i
j ,

ι : TM → TN, ι(X) = X̃, | X̃ ∈ H,

such that if ρ : TN → N is the canonical projection, π · ρ(ι(X)) = X for
X 6= 0.

Definition 2.3 Consider a family of operators Aw := {Aw : π∗
wTM −→

π∗
wTM} with w ∈ π−1(x) ⊂ N. The average of this family is another

operator Ax : TxM −→ TxM with x ∈ M given by the action on arbitrary
sections S ∈ ΓTM by the point-wise formula

< Aw > :=< π2|uAπ∗
u >u Sx =

1

vol(Ix)

(

∫

Ix

π2|uAuπ
∗
u dvol

)

Sx,

u ∈ π−1(x), Sx ∈ ΓxM; (2.3)

The volume form on dvol is the standard volume form induced from the indi-
catrix Ix from the Riemannian volume of the Riemannian structure (TxM−
{0}, gx).

Proposition 2.4 (Averaged connection of a Finsler connection [2]) Let (M, F )
be a Finsler structure and let us consider a linear connection ∇ on π∗TM.
Then, there is defined on M a linear covariant derivative along X, ∇̃X

characterized by the conditions:

1. ∀X ∈ TxM and Y ∈ ΓTM, the covariant derivative of Y in the
direction X is given by the following average operation:

∇̃XY =< ∇ >X Y :=< π2|u∇ιu(X)π
∗
uY >u, u ∈ Ix ⊂ π−1(x) ⊂ N,

(2.4)

2. For every smooth function f ∈ F(M) the covariant derivative is given
by the following average:

∇̃Xf =< ∇ >X f :=< π2|u∇ιu(X)π
∗
uf >u, u ∈ Ix ⊂ π−1(x) ⊂ N.

(2.5)

Proof: There is a complete proof in ref. [2, section 4] of this fact. It consists
on checking that effectively < ∇ > is a covariant derivative. Here we provide
a different argument. This argument also holds for different averages, like
the one used in [6] or the one used more recently in [10].

The argument follows in the following way. Consider a convex sum of
linear connections t1∇1 + ...tp∇p such that t1 + ...+ tp = 1; the connections

11



are linear connections on M. It is well known that t1∇1 + ...tp∇p is also a
linear connection. Now, consider a compact manifold Σx ⊂ π−1(X) ⊂ N
and a set of connections on M, all of them labelled by points on Σ, so there
is a map Θ : M −→ Mod(TM) such that

∫

ΣΘ = 1 and that Θ ≥ 0. Then,
using a limit argument of the convex sum of linear connections on M, we
have that the averaged of the family of connections {∇u} defines also a
linear connection on M. To apply to our case this argument, we only need
to specify that Σx = Ix and that Θ(u) = π2|u∇ιuπ

∗, where the right hand
side must be understood for fixed u ∈ Ix and as acting on sections of ΓM.✷

Let ∇ be a linear connection on π∗TM. Then the generalized torsion
operator acting on the vector fields X,Y ∈ TM is

Toru(∇) : TxM× ΓTM −→ π∗
uTM

Toru(∇)(X,Y ) = ∇ιu(X)π
∗
uY −∇ιu(Y )π

∗
uX − π∗

u[X,Y ], ∀u ∈ N.

Since this definition is point-wised, we can define globally the Tor(∇) as the
family of maps defined as before.

Proposition 2.5 Let (M,F) be a Finsler structure and let us define a linear
connection ∇ with Tor(∇) = 0. Then the torsion Tor(∇̃) of the average
connection is zero.

Proof: as with the proposition before, there is a proof in [2. section 4]; it
is just a calculation. However, one can see that the proof is rather direct
from the definition of torsion and from the fact that convex sum of linear
connections define a linear connection. ✷

3 A rigidity property of Berwald Spaces

We start considering a generalization of some well known properties of linear
connections over M ([3], section 5.4) to linear connections defined on the
bundle π∗TM → N.

Given two linear connections ∇1 and ∇2 on the bundle π∗TM → N, the
difference operator

B : HN⊗ π∗ΓTM → π∗ΓTM

B(ιu(X), π∗
uY ) = 1∇ιu(X)π

∗
uY − 2∇ιu(X)π

∗Y,

∀u ∈ N, X, Y ∈ ΓTM

12



is an homomorphism that holds the Leibnitz rule. It is essential in this
definition that we have to our disposition a non-linear connection to define
the horizontal lift ιuX.

The symmetric and skew-symmetric parts S and A of B are defined in
the following way

Su : TxM× ΓTM −→ π∗
uTM

Su(X,Y ) :=
1

2
(B(ιuX,π∗

uY ) +B(ιuY, π
∗
uX)).

∀u ∈ π−1(x), X ∈ TxM , Y ∈ ΓTM.

The antisymmetric part A is defined in a similar way,

Au : TxM× ΓTM −→ π∗
uTM

Au(X,Y ) :=
1

2
(B(ιuX,π∗Y )−B(ιuY, π

∗X)),

∀u ∈ π−1(x), X ∈ TxM , Y ∈ ΓTM.

As for the torsion, one can define the symmetric and skew-symmetric parts S
and A as a family of operators, because the above definitions are point-wise.

Consider to vector fields X and Y on M such that [X,Y ] =. Then, the
following relation holds:

2Au(X,Y ) = ∇1(ιu(X))π
∗
uY−∇2(ιu(X))π

∗
uY−(∇1(ιu(Y ))π

∗
uX−∇2(ιu(Y ))π

∗
uX) =

= Toru(∇1)(X,Y )− Toru(∇2)(X,Y ).

Since this relation holds point-wise for all u ∈ π−1(x) ∈⊂ N we can write

2A(X,Y ) = Tor(∇1)(X,Y )− Tor(∇2)(X,Y ). (3.1)

Definition 3.1 Let ∇ be a linear connection on the vector bundle π∗TM −→
N with connection coefficients Γi

jk. The geodesics of ∇ are the solutions of
the differential equations

d2xi

ds2
+ Γi

jk(x,
dx

ds
)
dxj

ds

dxk

ds
= 0, i, j, k = 1, ..., n, (3.2)

where Γi
jk are the connection coefficients of ∇.

13



This differential equation can be written as

∇ιu(X)π
∗
uX = 0, u =

dx

dt
(3.3)

being X the unit tangent vector to the solution in the given point. In order
to check eq. (2.3) one uses local coordinates.

The following propositions are direct generalizations of the analogous
results for affine connections over M ([3]).

Proposition 3.2 Let us consider two linear connections ∇1 and ∇2 on the
vector bundle π∗TM → N such that the covariant derivative along vertical
directions are zero. Then the following conditions are equivalent:

1. The connections ∇1 and ∇2 have the same geodesic curves in M.

2. B(X,X)=0, where B = ∇1 −∇2.

3. S=0.

4. B=A.

The proof follows the lines of ref. [3, pg 64-65] and it is omitted here.
However we should mention that the equivalence of the first statement and
the other requires that the covariant derivative of sections along vertical
directions must be zero. This condition allows to define geodesics in the
way we did, being independent of the derivative of sections of π∗TM along
vertical directions in TN and in this sense being independent of type of lift,
as soon as we have a complete horizontal lift.

Proposition 3.3 Let ∇1 and ∇2 be linear connections on the vector bundle
π∗TM → N such that they have null covariant derivative in vertical direc-
tions. Then ∇1 = ∇2 iff they have the same parameterized geodesics and
Tor(∇1) = Tor(∇2).

Proof: If∇1 and∇2 have the same geodesics, they have the same symmetric
part (the geodesic flow determines the symmetric part of a connection). If
they have the same torsion, then A = 0. ✷

Let us consider the bundles π∗TM → N and the tangent bundleTM → M
endowed with a linear connection ∇. The horizontal lift of ∇ (or pull-back
connection, ([8, pg 57])) is a connection on π∗TM → N defined by

(π∗∇)ι(X)π
∗S = π∗(∇XS), X̃ ∈ TM. (3.4)
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One can show, writing the geodesic equation in local coordinates, that the
parameterized geodesics of both connections π∗∇ and ∇ are the same,

(π∗∇)ιu(X)π
∗
uX = 0 ⇔ ∇XX = 0,

because the possibly non-zero connection coefficients are the same:

∇∂j∂k = Γi
jk∂i ⇒ π∗∇δjπ

∗∂k = π∗(Γi
jk∂i) = (Γi

jkπ
∗∂i).

Proposition 3.4 Let ∇ch be the Chern connection of a Finsler structure
(M,F), ∇b the linear Berwald connection and consider the average connec-
tion < ∇ch >. Then

1. The structure is Berwald iff π∗ < ∇ch >= ∇ch.

2. If π∗ < ∇b >= ∇b, the structure is Berwald.

Proof: If π∗ < ∇ch >= ∇ch, since the induced horizontal connection π∗ <

∇ch > has the same coefficients that < ∇ch > and they live on M, the
structure (M, F ) is Berwald.

Let us suppose that the structure is Berwald. Then π∗ < ∇ch >= π∗ <

1 > ∇ch = ∇ch. This relation is checked writing the action of the average
covariant derivative on arbitrary vector sections.

An alternative proof of is the following. We know that Tor(∇ch) =
Tor(< ∇ch >) = 0. On the other hand, the parameterized geodesics of
π∗ < ∇ch > are the same than the geodesics of < ∇ch >. But if the space is
Berwald, the geodesic equation of < ∇ch > are the same than the geodesic
equation of ∇ch. From this fact it follows π∗ < ∇ch >= ∇ch.

To proof the second statement we follow a similar reasoning. If π∗ <

∇b >= ∇b, the Berwald connection lives on M and therefore the structure
is Berwald. ✷

Proposition 3.5 Let (M, F ) be a Finsler structure. Then there is an affine
equivalent Riemannian structure (M, h) iff the structure is Berwald.

Proof: if there is an affine equivalence Riemannian structure h such that
its Levi-Civita connection ∇h has the same parameterized geodesics as the
linear Berwald connection ∇b and both connection have also null torsion,
then both connections are the same ([3], section 5.4) and since the connection
coefficients hΓi

ij live in M, the structure is Berwald. Conversely, if (M, F )
is Berwald, its Berwald connection is metrizable ([6]). ✷.
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Recall that for Berwald spaces ∇b = ∇ch. Then,

Proposition 3.6 Let (M, F ) be a Berwald structure. Then any Rieman-
nian h on M such that ∇bπ∗h = 0 then ∇h leaves invariant the indicatrix
under horizontal parallel transport.

Proof: If the Riemannian structure is conserved by the Berwald connection,
∇bπ∗h = 0. This implies that < ∇b > h = 0. In addition, < ∇b > is torsion
free. Therefore, < ∇b >= ∇h. If ∇b leaves invariant the indicatrix, also
π∗ < ∇b >= ∇h leaves invariant the structure. ✷

There is a converse of this result,

Proposition 3.7 Let (M, F ) be a Finsler structure. Then if there is a
Riemannian metric h that leaves invariant the indicatrix under the paral-
lel transport pull-back of its Levi-Civita connection π∗∇h, the structure is
Berwald.

Proof: Let us consider such Riemannian metric h and the associated Levi-
Civita connection ∇h. The induced connection π∗∇h is torsion free and
its connection coefficients in natural coordinates live on M. In addition,
the averaged connection < π∗∇h > coincides with ∇h, so π∗∇h = π∗ <

π∗∇h >= ∇b, the last equality because π∗ < π∗∇h > leaves invariant the
indicatrix and it is torsion-free. Therefore the result follows because the
connection π∗ < π∗∇h > has coefficients living on M. ✷

4 A corollary on pure Landsberg spaces

Let us consider a metric h such that its parallel Riemannian transport leaves
invariant the indicatrix of the Finsler metric F , following proposition 2.7.
Then, let us consider the interpolating set of metrics

Ft(x, y) = (1− t)F (x, y) + t

√

h(x)ijyiyj , i, j = 1, ..., n, t ∈ [0, 1]

and their indicatrix,

Ix(t) := {Ft(x, y) = 1, y ∈ TxM}.

Since the metric F is Berwald, all the above interpolating metrics define
indicatrix that are invariant under the Levi-Civita connection of h.

Let us consider the hypothesis that each of these indicatrix defines a
submanifold of TxM of co-dimension 1 and that they are non-intersecting.
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Therefore the union of indicatrix {Ix(t), ∈ [0, 1]} defines a submanifold of
TxM of codimension 0 that is invariant under the holonomy of the metric h.
This conditions are interesting for us because it help to provided a necessary
criteria for pure Landsberg spaces,

Definition 4.1 A Finsler structure (M, F ) is a Landsberg space if the hv-
curvature P is such that Ȧijk = Pn

ijk = 0, where the vector field is defined as
en = y

F (y) . A pure Landsberg space is such that it is Landsberg and it is not
Berwald or locally Minkowski.

This definition that we take of Landsberg space is a bit unusual, although
can be obtained from the standard characterizations straightforward. In
particular, Landsberg space is such that ([1], section 3.4)

0 = Ȧikl = −lj Pjikl = l̃j P
j
ikl := Pn

ikl.

Theorem 4.2 Let (M, F ) be a Landsberg space and suppose that the aver-
aged connection < ∇ch > does not leave invariant any compact submanifolds
Ix(t) ⊂ TxM of codimension zero. Then the structure (M, F ) is a pure
Landsberg space.

Proof: suppose that the Landsberg space is Berwald. Then we know from
a theorem of Szabo that this linear Berwald connection is metrizable ([6]).
Then, there is a Riemannian connection ∇h that is identified with the aver-
age connection < ∇ch > and this is in contradiction with the hypothesis of
the theorem because π∗∇h = π∗ < ∇ch >= ∇h leaves invariant the set of in-
dicatrix Ix(t), ∀t ∈ [0, 1] as we show before, the union defining a submanifold
of codimension zero of TxM. ✷

In this theorem, the hypothesis of Landsberg metric F can be substituted
by a general Finsler metric. Therefore, theorem 4.2 is essentially a criterion
for not being Berwald.

Application of the theorem 4.2 in dimension 2. Let us consider
the set of possible holonomy groups of affine free-torsion connections ([4]).
Then we look for the holonomy groups that can leave invariant a compact,
foliated manifold of dimension 2. The possible holonomy groups for averaged
connection of pure Landsberg spaces should be excluded from this list. In
particular, Riemannian holonomies are excluded. Since the torsion of the
averaged connection is zero, the only candidates for the holonomy of the
averaged connection in dimension 2 are of the form TR · SL(2,R) for real
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representations, where TR denotes any connected Lie subgroup of R. The
second possibility is the whole general group GL(2,R). From this family
of groups, SL(2,R) and GL(2,R) are the candidate that can supply the
additional Landsberg condition,

Corollary 4.3 Let M, F ) be a two-dimensional Finsler structure such that
the average connection is < ∇ch >. Then if the space is pure Landsberg, the
holonomy group of < ∇ch > is SL(2,R) or GL(2,R).

This result provides a strategy to solve the problem of the existence of pure
Landsberg spaces in dimension 2. We hope that future research could reveal
the existence of pure Landsberg spaces, following the direction of Corollary
2.10 (see ref. [9] for a suggestion of realization of this strategy).

A generalization of this strategy to higher dimensions can also be fruitful,
but additional techniques are required, due to the growth of the possible
holonomies.
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