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ON A CLASSIFICATION OF THE GRADIENT SHRINKING

SOLITONS

Lei Ni & Nolan Wallach

Abstract

The main purpose of this article is to provide an alternate proof to a

result of Perelman on gradient shrinking solitons. In dimension three we

also generalize the result by removing the κ-non-collapsing assumption. In

high dimension this new method allows us to prove a classification result

on gradient shrinking solitons with vanishing Weyl curvature tensor, which

includes the rotationally symmetric ones.

1. Introduction

In his surgery paper Perelman proved the following statement [P2]:

Theorem 1.1. Any κ-non-collapsed gradient shrinking soliton M3 with bounded
positive sectional curvature must be compact.

Combining with Hamilton’s convergence (or curvature pinching) result [H1] (see
also [I]) one can conclude that M3 must be isometric to a quotient of S3. The use of
such a result is that it rules out the possible complications caused by the existence of
noncompact singularity models and implies a classification of finite time singularities
models, which then makes surgery procedure possible in the case of dimension three.
More precisely, ancient solutions, which are noncompact in interesting cases, can be
obtained as the Cheeger-Gromov limit of the sequence of blow-ups, via the compact-
ness result of Hamilton [H3], as we approach to the singular time. The gradient
shrinking solitons arise from the non-collapsed ancient solutions as the blow-down
limits [P1], at least in the case that the ancient solution has nonnegative curvature
operator. By ruling out the noncompact shrinking solitons with positive curvature
one can conclude that the shrinking soliton arisen from the ancient solutions must
be cylinder S2 ×R or its quotient. This provides the phototype for the surgery. This
relation of the gradient shrinking solitons with the Ricci flow suggests the importance
of studying the noncompact gradient shrinking solitons.

On the other hand, Perelman’s proof, of which one can find a detailed exposition
in [CZ, KL, MT] (see also pages 377-386 of [CLN]), is geometric and relies on
detailed analysis of the level sets of the potential function, and more importantly,
the Gauss-Bonnet formula for surfaces. The authors could not adapt Perelman’s
argument to the high dimensions. The main goal of this article is to provide an
alternate approach and generalize the above result of Perelman to the dimensions
greater than 3. Instead of assuming the uniform bound on curvature, we only need
very mild growth control on the curvature. Maybe more importantly we do not
assume that the gradient shrinking soliton is κ-non-collapsed, as required by the
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above mentioned result of Perelman. For the high dimensional case, our method
gives a classification of gradient shrinking solitons which are locally conformally flat.
The following is a consequence of our results.

Theorem 1.2. Let (Mn, g) be a gradient shrinking soliton whose Ricci curvature
is nonnegative. If n ≥ 4 we assume that (M, g) is locally conformally flat. Assume
further that

(1.1) |Rijkl|(x) ≤ exp(a(r(x) + 1))

for some a > 0, where r(x) is the distance function to a fixed point on the manifold.
Then its universal cover is either R

n, Sn or Sn−1×R. In the case that M is compact,
the assumptions that the Ricci curvature is nonnegative and the growth condition (1.1)
are not needed.

In particular, if (Mn, g) has positive Ricci curvature it must be compact.

As a corollary we have a more general result than Theorem 1.1.

Corollary 1.3. Let (M3, g) be a gradient shrinking soliton whose Ricci curvature
is positive and satisfying (1.1). Then M must be compact.

Some new invariant cones, which bounds the Weyl curvature by the scalar cur-
vature, have been discovered in [BW2] very recently. This might be related to our
result.

The rotationally symmetric gradient shrinking solitons has been studied in [K].
It can be easily checked that the rotational symmetric manifolds have vanishing
Weyl curvature. Hence our result gives a self-contained classification on rotationally
symmetric gradient shrinking solitons. (The proof in [K] appealed the strong result
of Böhm-Wilking. However it does not require the curvature growth condition for
the noncompact case.)

Acknowledgement. The first author would like to thank T. Ilmanen for his interests
and his hospitality during the first author’s visit at ETH this summer.

2. Preliminaries

Recall that (M, g) is a gradient shrinking soliton if there exists a function f such
that its Hessian fij satisfying

Rij + fij − 1

2
gij = 0.

As shown in [CLN], Theorem 4.1, there exists a family of metrics g(t), a solution to
Ricci flow with the property that g(0) = g and a family of diffeomorphisms φ(t), which
is generated by the vector field X = 1

τ
∇f , such that φ(0) = id and g(t) = τ (t)φ∗(t)g

with τ (t) = 1 − t, as well as f(t) = φ∗(t)f . The following can be checked some
straight forward computations [CLN].

Lemma 2.1. For τ > 0,

∂

∂τ
|Ric |2 = − 2

τ
|Ric |2 − 〈∇|Ric |2,∇f〉,(2.1)

∂

∂τ
S2 = − 2

τ
S2 − 〈∇S2,∇f〉.(2.2)

Here S is the scalar curvature.

This particularly holds at t = 0 (namely τ = 1). A direct consequence is that

(2.3)
∂

∂t

„

|Ric |2
S2

«

= 〈∇
„

|Ric |2
S2

«

,∇f〉.
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We shall also need the following results. First we need Proposition 1.1 of [N] to
bound the scalar curvature from below.

Proposition 2.2. Assume that (M, g) is a non-flat gradient shrinking soliton.
Assume that it has nonnegative Ricci curvature. Then there exists δ = δ(M) > 0
such that S ≥ δ.

The following result on the bound of f as well as its gradient is implicit in the
argument of [P2] (see also the proof of Proposition 1.1 of [N]).

Lemma 2.3. Assume the same assumption as in Proposition 2.2. There exist
constants B = B(M,f), C = C(M,f) > 0 such that

(2.4) f(x) ≥ 1

8
r2(x)− C

and

(2.5) f(x) ≤ 2r2(x), |∇f |(x) ≤ 4r(x)

for r(x) ≥ B. Here r(x) is the distance function to some fixed point o ∈ M with
respect to g(0) metric.

Under the assumption that (M, g) has nonnegative Ricci curvature, it is also easy,
from the soliton equation, to have that (e.g. from the proof of Proposition 1.1 in [N])

(2.6) |∇S|2 ≤ 4S2|∇f |2.
Using the soliton equation and the assumption that Rij ≥ 0 we also have that

(2.7) |fij |2 ≤ max{n
2
, S2}.

We need these inequalities to justify the finiteness of some integrals. Most impor-
tantly recall the following local derivative estimates of Shi (cf. Theorem 13.1 of
[H3]).

Theorem 2.4. For any α > 0 there exists a constant C(n,K, r, α) such that if
(M, g(t)) is a solution to Ricci flow with t ∈ [0, t1], 0 < t1 ≤ α

K
, p ∈M and

|Rijkl|(x, t) ≤ K

for all x ∈ Bg(0)(p, r), t ∈ [0, t1], then

|∇sRijkl|(y, t) ≤
C(n,

√
Kr,α)K√
t

for all y ∈ Bg(0)(p,
r
2
) and t ∈ (0, t1]. Moreover, for the above (y, t)

|∇mRijkl|(y, t) ≤
C(n,m,K, r, α)

t
m
2

.

3. Three dimensional case

We first give a different proof to Perelman’s theorem mentioned in the intro-
duction. In fact what we prove is a more general result since we assume neither
that gradient shrinking soliton is κ-noncollapsed nor that the curvature is uniformly
bounded. Most argument of the proof can also be used in dimensions n ≥ 4.

We assume that the Ricci curvature satisfies that for any ǫ > 0, there exists
β(ǫ) > 0 such that

(3.1) |Ric |(y, t) ≤ exp(ǫr2(x) + β(ǫ))

for all y ∈ Bg(− 1

2
)(x,

r(x)
2

) and t ∈ [− 1
2
, 0]. Here r(x) is the distance function to some

fixed point o ∈ M with respect to the metric g(0). Notice that (3.1) can be easily
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verified if we assume that |Ric | is uniformly bounded at t = 0. The main purpose
of this section is to show the following result.

Theorem 3.1. Let (M3, g) be a complete gradient shrinking soliton with the pos-
itive sectional curvature and the Ricci curvature satisfies (3.1). Then M must be the
quotient of S3.

Note that we do not need to assume (M, g) is κ-non-collapsed. The proof also
concludes that M = S

3/Γ directly without appealing to Hamilton’s result. In the
later section we in fact directly obtain a classification of solitons under the assumption
that Ric ≥ 0.

First we recall a result of Hamilton. In [H1], the following result was proved for
solutions to Ricci flow on three manifold M .

Proposition 3.2.

(3.2)
„

∂

∂t
−∆

« „

|Ric |2
S2

«

= − 2

S4
|S∇pRij −∇pSRij |2 − P

S3
+ 〈∇

„

|Ric |2
S2

«

,∇ log S2〉,

where

P =
1

2

`

(µ+ ν − λ)2(µ− ν)2 + (λ+ ν − µ)2(λ− ν)2 + (λ+ µ− ν)2(λ− µ)2
´

with µ, ν and λ are eigenvalues of Ric.

If (M3, g) is gradient shrinking soliton, combining the discussions above we have
that at t = 0,

0 = ∆

„

|Ric |2
S2

«

− 〈∇
„

|Ric |2
S2

«

,∇f〉 − 2

S4
|S∇pRij −∇pSRij |2(3.3)

− P

S3
+ 〈∇

„ |Ric |2
S2

«

,∇ log S2〉.

Now multiply |Ric |2e−f on the both sides of the above equation then integrate by
parts. Here we have assumed that all integrals involved are finite and the integration
by parts can be performed, which we justify later.

0 =

Z

M

−〈∇
„ |Ric |2

S2

«

,∇|Ric |2〉e−f − 2|Ric |2
S4

|S∇pRij −∇pSRij |2 e−f

Z

M

− P

S3
|Ric |2e−f + 〈∇

„

|Ric |2
S2

«

,∇ log S2〉|Ric |2e−f .

Using that

∇
„

|Ric |2
S2

«

=
∇|Ric |2
S2

− ∇S2

S4
|Ric |2

we have that
Z

M

−〈∇
„ |Ric |2

S2

«

,∇|Ric |2〉e−f + 〈∇
„ |Ric |2

S2

«

,∇ log S2〉|Ric |2e−f

= −
Z

M

˛

˛

˛

˛

∇
„ |Ric |2

S2

«

˛

˛

˛

˛

2

S2e−f .

Hence we have that

0 =

Z

M

−
˛

˛

˛

˛

∇
„ |Ric |2

S2

«

˛

˛

˛

˛

2

S2e−f − 2|Ric |2
S4

|S∇pRij −∇pSRij |2 e−f

Z

M

− P

S3
|Ric |2e−f .
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In particular, |Ric |2
S2 is a constant,

(3.4) S∇pRij −∇pSRij = 0

and P = 0. If we choose a orthornormal frame such Rij is diagonal, the equality
(3.4) implies that

S∇pRjj = ∇pSRjj(3.5)

S∇pRij = 0, for i 6= j(3.6)

Using the second Bianchi identity:

1

2
∇iS =

X

p

∇pRip = ∇iRii

we have that
1

2
S∇iS = S∇jRjj = ∇iSRii.

On the other hand, P = 0 implies that R11 = R22 = R33 = 1
3
S. We thus have that

1

2
S∇iS = (∇iS)

S

3

which implies that S is a constant. Then (3.5) and (3.6) implies that ∇pRij = 0 for
any p, i, j. This implies that M is a compact locally symmetric space with positive
curvature. The claim then follows from classical known results.

Now with the help of Proposition 2.2 and Lemma 2.3 we now justify the finiteness
of the integrals involved and the integration by parts.

First note that if we assume that supx∈M |Rijkl|(x) ≤ C for some C > 0, namely
the curvature is bounded, invoking the Bernstein-Bando-Shi type derivative estimates
(cf. [CK], Theorem 7.1), we have that |∇mRijkl| are uniformly bounded on M .
Hence all the integrals involved are finite which then implies, via cut-off function
argument, that the integrations by parts are completely legal, in view of the fast
decay of e−f ensured by lemma 2.3 and the lower bound of S provided by Proposition
2.2.

For the general case, notice first that the assumption on |Ric | is equivalent to the
same assumption on |Rijkl| (with some factor of absolute constant). Hence we have
that for any ǫ > 0, there exists β(ǫ) > 0 such that

(3.7) |Rijkl|(y, t) ≤ exp(ǫr2(x) + β(ǫ))

for all y ∈ Bg(− 1

2
)(x,

r(x)
2

) and t ∈ [− 1
2
, 0].

Below we estimate ∆
“

|Ric |2
S2

”

|Ric |2. The others are similar. Applying the local

derivative estimate of Shi (cf. Theorem 13.1 of [H3]) we have that

|∇pRijkl|(x, 0) ≤ C1 exp(
3

2
ǫr2(x) + β1(ǫ))

|∇p∇qRijkl|(x, 0) ≤ C2 exp(
9

4
ǫr2(x) + β2(ǫ)).

Direct computation shows that

∆

„

|Ric |2
S2

«

=
∆|Ric |2
S2

− 2
〈∇|Ric |2,∇ log S2〉

S2
+ 2|Ric |2 |∇ log S2|2

S2

−∆S2

S4
|Ric |2.
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At t = 0 there exists absolute constants Ci, i = 3, 4, 5 and β3(ǫ) depending only on
β1 and β2 such that for r(x) >> 1,

I =

„

˛

˛

˛

˛

∆|Ric |2
S2

˛

˛

˛

˛

|Ric |2
«

(x, 0) ≤ C3

δ2
exp(6ǫr2(x) + β3(ǫ)),

II =

„

˛

˛

˛

˛

〈∇|Ric |2,∇ log S2〉
S2

˛

˛

˛

˛

|Ric |2 + |Ric |4 |∇ log S2|2
S2

«

(x, 0)

≤ C4

δ2
exp(6ǫr2(x) + β3(ǫ)),

III =

„

˛

˛

˛

˛

∆S2

S4

˛

˛

˛

˛

|Ric |4
«

(x, 0) ≤ C5

δ2
exp(6ǫr2(x) + β3(ǫ)).

In the last one we have used the estimates (2.5), (2.6), (2.7), as well as

∇iS = 2Rijfj

which then implies

∆S = 〈∇S,∇f〉+ 2Rijfij ≤ |∇S||∇f | + 2S|
X

ij

f2
ij |1/2.

Putting the above estimates together with (2.4) we conclude that at t = 0,
Z

M

˛

˛

˛

˛

∆

„

|Ric |2
S2

«

˛

˛

˛

˛

|Ric |2e−f dµ0 <∞.

Similarly one can establish the finiteness of other integrals involved. Once we have
the the finiteness of the integration, the integrations by parts can be checked by
approximation via the cut-off functions. This is somewhat standard we hence omit
the details.

Remark 3.3. An argument similar to the one used here was originated by Huisken
in his classification of mean convex shrinking solitons of mean curvature flow in R

n+1

[Hu2].

4. High dimension-preliminaries

Most results in this section are either known (cf. [Hu1, H2]) or can be derived
easily from the known ones in the literature. We include them here for the complete-
ness. We also adapt them into the form needed by us.

Recall the evolution formula of the curvature under the Ricci flow [H1]:
„

∂

∂t
−∆

«

Rijkl = 2(R2 +R
#)ijkl

− (RipRpjkl +RjpRipkl +RkpRijpl +RlpRijkp)

where Q(R) = R2 +R# is defined via the Lie algebra structure of ∧2(n), which can
be identified with the Lie algebra of O(n). The below is a brief explanation.

Let (E, g) be a Euclidean space with metric g. We can make the following identi-
fications: ⊗2E, the tensor space, can be identified with GL(n,R), the linear transfor-
mations on E (for any x⊗ y ∈ ⊗2E, x⊗ y(z) = 〈y, z〉x is the corresponding element
of GL(n,R)); under this identification, the space symmetric two tensors S2E corre-
sponds to the symmetric transformations S2(E); ∧2E can be identified with so(n)
(ei ∧ ej = ei ⊗ ej − ej ⊗ ei is identified with Eij with 1 at (i, j)-th position and −1 at
(j, i)-th position. The metric on TM extends naturally to all the related tensor spaces
such as ⊗2TM , S2TM , ∧2TM . With respect to the previous identification, the met-
ric on so(n) is given by 〈A,B〉 = − 1

2
tr(AB) (= 1

2
tr(AtB)) such that {ei ∧ ej}i<j

is an orthonormal basis of ∧2TM . The identification also equips ∧2TM with a Lie
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algebra structure, which is of fundamental importance in the study of evolution of
curvature operators under Ricci flow. This was first observed by Hamilton [H2]. Let
us recall this fact first. For an orthonormal basis φα of ∧2TM (say φα = ei ∧ ej ,
which is identified with Eij), the Lie bracket is given by

[φα, φβ] = cαβγφγ .

It is easy to check, by simple linear algebra, that

〈[φ, ψ], ω〉 = −〈[ω,ψ], φ〉.
This immediately implies that cαβγ is anti-symmetric. If A,B ∈ S2(∧2TM) one can
define

(A#B)αβ =
1

2
cαγηcβδθAγδBηθ.

It is easy to see that A#B is symmetric too. Also from the anti-symmetry of cαβγ

A#B = B#A.

The easy computation also shows that

〈(A#B)(φ),ψ〉 = 1

2

X

αβ

〈[A(ωα), B(ωβ)], φ〉 · 〈[ωα, ωβ], ψ〉

if {ωα} is an orthonormal basis. This particularly implies that tr((A#B) · C) is
symmetric in A,B,C since

tr((A#B) · C) =
X

γ

〈(A#B) · C(ωγ), ωγ〉

=
1

2

X

αβγ

〈[A(ωα), B(ωβ)], C(ωγ)〉〈[ωα, ωβ], ωγ〉.

Now define
tri(A,B,C) = tr((AB +BA+ 2A#B)C)

which is symmetric in all variables. If we write

R(ei ∧ ej) = 1

2

X

k,l

Rijklek ∧ el

we would have that
|Rijkl|2 = 4〈R,R〉.

We denote tri(R) = tri(R,R,R) = 〈2(R2 +R#),R〉 and Q(R) = R2 +R#.
The curvature operator R has an orthogonal splitting, with respect irreducible

O(n) representation, into the trace part RI = S
n(n−1)

I, the traceless Ricci part

RRic0 = 2
n−2

Ric0 ∧ id, where Ric0 denotes the traceless part of the Ricci curva-

ture, and the Weyl curvature RW (cf. [BW1]). We denote the three subspaces by
〈I〉, 〈Ric0〉 and 〈W 〉 respectively. Equipped with the above notations we have that

Lemma 4.1.

(4.1)

„

∂

∂t
−∆

«

|Rijkl|2 = 8 tri(R)− 2|∇pRijkl|2.

Direct calculation then yields the following

Proposition 4.2. Assume that S > 0. Then
„

∂

∂t
−∆

« „

|Rijkl|2
S2

«

=
4

S3

`

2 tri(R)S − σ2|Rijkl|2
´

(4.2)

− 2

S4
|S∇pRijkl −∇pSRijkl|2 + 〈∇

„

|Rijkl|2
S2

«

,∇ log S2〉,

where σ2 = |Ric |2.
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Note that Tachibana [T] proved that (see also [CLN], pages 267-269), under the
assumption that R ≥ 0,

−2 tri(R) + Ric(R,R) ≥ 0

where Ric(R,R) = RipRijklRpjkl.
In [Hu1], Huisken obtained the following identities.

(RI)ijkl(Q(R))ijkl = 4〈Q(R),RI〉 = 2

n(n− 1)
Sσ2;(4.3)

(RRic0)ijkl(Q(R))ijkl =
4

n(n− 1)
Sσ̃2 − 8

(n− 2)2
λ3
i +

4

n− 2
(RW )ijijλiλj ;(4.4)

(RW )ijkl(Q(R))ijkl = 2 tri(RW ) +
2

n− 2
(RW )ijijλiλj ;(4.5)

where λi are the eigenvalues of Ric0 and σ̃2 =
P

λ2
i . Below we first show these

equations via the following lemma, which essentially follows from [BW1]. In [Hu1],
the result was shown by direct but long computations which were omitted. With the
help of [BW1], the result can be obtained without much computation. We include
the derivation for the sake of completeness. First we need to following lemma which
has been essentially proved in [BW1].

Lemma 4.3.

(4.6) R+R#I = Ric(R) ∧ id .

Hence for any R1,R2 ∈ SB(∧2(n)), let

B(R1,R2) = R1 R2 +R2 R1 +2R1 #R2 .

Let Ri
I ∈ 〈I〉, R0 ∈ 〈Ric0〉, Wi,W ∈ 〈W 〉 (i = 1, 2). Then the following hold

B(RI,W ) = 0,

B(R1
I ,R

2
I ) ∈ 〈I〉

B(W1,W2) ∈ 〈W 〉
B(RI,R0) ∈ 〈Ric0〉
B(R0,W ) ∈ 〈Ric0〉

1

2
B(R0,R0) =

1

n− 2
Ric0 ∧Ric0 − 2

(n− 2)2
(Ric20)0 ∧ id+

σ̃2

n(n− 2)
I .(4.7)

Moreover

(4.8) Ric0 ∧Ric0 = − σ̃2

n(n− 1)
I− 2

n− 2
(Ric20)0 ∧ id+ (Ric0 ∧Ric0)W .

Equipped with the above lemma we have that

tri(R,R,RI) = tri(R,RI,R)

=
2S

n(n− 1)
〈Ric∧ id,R〉

=
2S

n(n− 1)
〈S
n
id∧ id+Ric0 ∧ id,

S

n(n− 1)
id∧ id+

2

n− 2
Ric0 ∧ id〉

If we let λ̄ = S
n
, we have that

〈S
n
id∧ id+Ric0 ∧ id,

S

n(n− 1)
id∧ id+

2

n− 2
Ric0 ∧ id〉

= 〈λ̄ id∧ id+Ric0 ∧ id,
λ̄

n− 1
id∧ id+

2

n− 2
Ric0 ∧ id〉 = n

2
λ̄2 +

1

2

X

λ2
i

=
1

2
σ2.
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This proves (4.3). For (4.4), let R0 = RRic0 . We need to compute tri(R,R,R0).
Using the symmetry

tri(R,R,R0) = tri(R,R0,R)

= 〈B(RI,R0),R〉+ 〈B(R0,R0),R〉+ 〈B(RW ,R0),R〉
= 〈B(RI,R0),R0〉+ 〈B(R0,R0),RI +R0 +RW 〉+ 〈B(RW ,R0),R0〉
= 2 tri(R0,R0,RI) + 2 tri(R0,R0,RW ) + tri(R0,R0,R0).

Using (4.7) and (4.8) we have that

tri(R0,R0,RI) =
1

n(n− 1)
σ̃2S

In a similar way,

tri(R0,R0,R0) = − 4

(n− 2)2

X

λ3
i

and

2 tri(R0,R0,RW ) =
2

n− 2
(RW )ijijλiλj .

The above three give (4.4). For (4.5), notice that

tri(RW ,R,R) = tri(R0,RW ,R0) + tri(RW ,RW ,RW ).

Then the claimed equality follows from the above computation on tri(R0,R0,RW ).
Finally one can arrive at the following formula.

2 tri(R)S − σ2|Rijkl|2 = −4|RW |2σ2 + 2S tri(RW ,RW ,RW )

− 4

n(n− 1)(n− 2)
S2σ̃2 − 4

n− 2
σ̃4(4.9)

− 8

(n− 2)2
S

X

λ3
i +

6

n− 2
S(RW )ijijλiλj .

This follows from (4.3)-(4.5) along with the observation that

|R |2 = |RI |2 + |RRic0 |2 + |RW |2

=
S2

2n(n− 1)
+

1

n− 2

X

λ2
j + |RW |2

and

σ2 =
S2

n
+ σ̃2.

Hence

4σ2|R |2 =
2S2

n(n− 1)
σ2 +

4S2σ̃2

(n− 2)n
+

4

n− 2
σ̃4 + 4|RW |2σ2.

In the case that RW = 0, which is automatical if n = 3 and amounts to that (M, g)
is locally conformally flat if n ≥ 4, we have that

(4.10) 2 tri(R)S−σ2|Rijkl|2 = − 4

n(n− 1)(n− 2)
S2σ̃2− 4

n− 2
σ̃4− 8

(n− 2)2
S

X

λ3
i .

Similarly, using that
„

∂

∂t
−∆

«

Rik = 2RijklRjl − 2RilRlk

we also have the high dimensional analogue of Proposition 3.2.
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Proposition 4.4. Assume that S > 0. Then
„

∂

∂t
−∆

« „

σ2

S2

«

=
4

S3

`

SRijklRjlRik − σ4
´

(4.11)

− 2

S4
|S∇pRij −∇pSRij |2 + 〈∇

„

σ2

S2

«

,∇ log S2〉.

In the case dim(M) = 3 the above recovers Hamilton’s computation Proposition
3.2.

5. High dimension-locally conformally flat

We first prove the following algebraic result.

Proposition 5.1. Assume that (M, g) is locally conformally flat. Let σ, σ̃, λi be
as in the last section. Then

2 tri(R)S − σ2|Rijkl|2 = − 4

n− 2

„

1

n(n− 1)
S2σ̃2 + σ̃4 +

2

n− 2
S

X

λ3
i

«

≤ 0.

If the equality holds, then either
(i) λi = 0 for all 1 ≤ i ≤ n, or
(ii) there exists a > 0 such that

λl =
1

p

n(n− 1)
a, for 1 ≤ l ≤ n− 1;

λn = −
r

n− 1

n
a

and S =
p

n(n− 1)a.

Proof. Let

f(S, λ1, · · ·, λn) =
1

n(n− 1)
S2

X

λ2
i +

2

n− 2
S

X

λ3
i +

“

X

λ2
i

”2

.

The goal is to show that f ≥ 0 under the constraint that
P

λi = 0 and analyze the
equality case. Since it is homogenous we can consider the extremal values of f under
the further constraint

P

λ2
i = 1. Viewing f as a quadratic form in S, the result

follows, by elementary consideration, if we show that
“

X

λ3
i

”2

≤ (n− 2)2

n(n− 1)

under the constraints
P

λi = 0 and
P

λ2
i = 1. Let g =

P

i λ
3
i . By the Lagrangian

multipliers methods, at the critical points we have that

3λ2
j − λ− 2µλj = 0, for 1 ≤ j ≤ n,

X

λi = 0,
X

λ2
i = 1.

This implies that λ = 3
n
and

λj =
µ+ ǫj

q

µ2 + 9
n

3

with ǫj ∈ {−1, 1}. We shall compute all possible values of λj . We shall divide into
two cases.

Case 1 : n = 2k. Let ǫ =
P

j ǫj which takes value in {−2k,−2(k−1), ···,−2, 0, 2, ··
·, 2(k − 1), 2k}. Since P

j λj = 0, it is easy to see that ǫ can not take the value 2k or
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−2k. If ǫ = 0 we have that µ = 0, which then implies that, after permutation of the
index λj = 1√

n
for 1 ≤ j ≤ k and λj = − 1√

n
for k ≤ j ≤ 2k. In this case g = 0.

In general assume that ǫ = 2(k− i) for some 1 ≤ i ≤ k. We shall consider only the
case 1 ≤ i ≤ k−1 since the rest is symmetric to it. Without the loss of the generality
we may assume that ǫj = 1 for 1 ≤ j ≤ 2k − i and ǫj = −1 for 2k − i ≤ j ≤ 2k. In
this case

µ = − 3(k − i)
p

(2k − i)2ki
,

λl =

s

i

2k(2k − i)
, if 1 ≤ l ≤ 2k − i,

λl = −
r

2k − i

2ki
, if 2k − i < l ≤ 2k.

This implies that

g = − n− 2i
p

(n− i)i
√
n
.

Noticing that (n−2i)2

(n−i)i
is monotone decreasing in i, we can conclude that g ≥ − n−2√

n(n−1)
.

Symmetrically, for ǫ = −2(k − i) we can find g = n−2i√
(n−i)i

√
n
. Combining them to-

gether we have that

− n− 2
p

n(n− 1)
≤ g ≤ n− 2

p

n(n− 1)
.

The minimum is achieved when i = 1, which implies the second part of the statement
in the proposition.

Case 2: n = 2k + 1. Again due to the fact that
P

λi = 0, ǫ takes value in
{−(2k− 1), · · ·,−1, 1, · · ·, 2k− 1}. Assume that ǫ = 2(k− i) + 1 for some 1 ≤ i ≤ 2k.
We shall only consider 1 ≤ i ≤ k since the other half is symmetric to this case. Now
we assume that ǫj = 1 for all 1 ≤ j ≤ 2k−i+1, and ǫj = −1 for 2k−i+2 ≤ j ≤ 2k+1.
Now we have that

µ = −3

2
· 2(k − i) + 1√

2k + 1
√
i
√
2k − i+ 1

,

λl =

√
j√

2k − j + 1
√
2k + 1

, for 1 ≤ 1 ≤ l ≤ 2k − i+ 1,

λl = −
√
2k − i+ 1√
i
√
2k + 1

, for 2k − i+ 2 ≤ l ≤ 2k + 1.

From this we can compute that

g = − n− 2i√
n
√
n− i

√
i
.

Again by elementary inequality

− n− 2i√
n− i

√
i
≥ − n− 2√

n− 1
√
n
.

Hence we conclude that g2 ≤ (n−2)2

(n−1)n
. The minimum achieves when i = 1.

Combining the above two cases, we complete the proof that f ≥ 0. From the
above discussion, it is straight forward to check that the listed cases are the only two
when the inequality can achieve the equality. q.e.d.

Corollary 5.2. Let (Mn, g) (n ≥ 4) be a locally conformally flat gradient shrink-
ing soliton whose Ricci curvature is nonnegative satisfying (3.7). Then its universal
cover is either R

n, Sn or S
n−1 × R. In the case that M is compact, the assumptions
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that the Ricci curvature is nonnegative and the growth condition (3.7) are not needed.
In particular, if (Mn, g) has positive Ricci curvature it must be compact.

Proof. Notice that S satisfies the equation
`

∂
∂t

−∆
´

S = 2|Ric |2. By the strong
maximum principle we may assume that S > 0, otherwise M = R

n.
Now as in Section 3 we have that

0 = ∆

„ |Rijkl|2
S2

«

− 〈∇
„ |Rijkl|2

S2

«

,∇f〉 − 2

S4
|S∇pRijkl −∇pSRijkl|2(5.1)

− P

S3
+ 〈∇

„

|Rijkl|2
S2

«

,∇ log S2〉.

Here

P = −4(2 tri(R)S − σ2|Rijkl|2),
which is nonnegative by the lemma. Multiplying |Rijkl|2e−f and integrating by parts,
which can be justified similarly as in Section 3, we have that

0 =

Z

M

−
˛

˛

˛

˛

∇
„

|Rijkl|2
S2

«

˛

˛

˛

˛

2

S2e−f − 2|Rijkl|2
S4

|S∇pRijkl −∇pSRijkl|2 e−f

Z

M

− P

S3
|Rijkl|2e−f .

By the lemma we have that

(5.2) ∇pSRijkl = S∇pRijkl

which implies that

∇pSRik = S∇pRik.

Also the argument of Section 3 implies that

2 tri(R)S − σ2|Rijkl|2 = −2

„

1

12
S2σ̃2 + σ̃4 + S

X

λ3
i

«

= 0

and
|Rijkl|2

S2 is a constant.

If λi = 0, then Rik = S
n
δik. By the second Bianchi identity we have that

1

2
S∇iS = S∇pRip =

S

4
δip∇pS.

which implies that ∇pS = 0. Then we have ∇pRijkl = 0 by (5.2).

If the second case happens, by the lemma we have that Rij =
δij
n−1

S for 1 ≤ i, j ≤
n − 1 and Rnj = 0 for 1 ≤ j ≤ n. The same computation as in n = 3 shows that
∇pS = 0, hence ∇pRijkl = 0, which means that (M, g) is locally symmetric. The
conclusion follows from the fact that (M, g) is either Einstein or its Ricci curvature
has constant rank n− 1 and with n− 1 identical nonzero eigenvalues. q.e.d.

Remark 5.3. (1) The compactness part should be compared with the result in
[NW], where under certain curvature operator pinching condition, the manifold is
shown to be compact.

(2) Whether or not the argument here is sufficient to show that any shrinking
gradient soliton with positive curvature operator must be compact is an interesting
question. The Kähler case has been resolved in [N]. We hope to return to the
remaining cases in the future study.

Since Proposition 5.1 also holds when n = 3, and RW = 0 automatically we have
the following corollary which generalizes Theorem 1.1.
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Corollary 5.4. Let (M3, g) be a gradient shrinking soliton whose Ricci curvature
is nonnegative satisfying (3.1). Then its universal cover is either R3, S3 or S2×R. In
the case that M is compact, the assumptions that the Ricci curvature is nonnegative is
not needed. In particular, if (M3, g) has positive Ricci curvature it must be compact.
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