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THE DECOMPOSITION OF THE SPINOR BUNDLE OF
GRASSMANN MANIFOLDS

FRANK KLINKER

ABSTRACT. The decomposition of the spinor bundle of the spin Grassmann
manifolds Gm,n = SO(m+n)/SO(m) x SO(n) into irreducible representations
of so(m) @ so(n) is presented. A universal construction is developed and the
general statement is proven for Gogy1,3, G2g,a, and Gagq41,5 for all k. The
decomposition is used to discuss properties of the spectrum and the eigenspaces
of the Dirac operator.

1. INTRODUCTION

The discussion of the spectrum of differential operators on spin symmetric and spin
homogeneous spaces has been part of the literature for many years (see for example,
[31,[25],[26],[27] or [22]). This topic brings together different aspects of geometry
and representation theory, such as existence of spin structures on homogeneous
spaces (e.g., [2] or [19]) and branching rules for representations (e.g., [29], [20], [14],
[24], [12], [16], [15], [I7], [4]). In particular the work of Parthasarathy [25] yields

an important theoretical tool to describe the spectrum and the eigenspaces of the
Dirac operator of a spin symmetric space G/K. It may roughly be summarized
as follows. In the first step, decompose the spinor bundle of M in irreps of K.
In the second step, list all G-representation which decomposition with respect to
K admits a summand from the list obtained in the first step. In [22] and [23]
these tools have been noticed to be very powerful for the discussion of the first
eigenvalue of the Dirac operator. Nevertheless the practical application of the
theoretical tools contains many difficulties which are of course the reason why most
authors, including ourselves, restrict to examples. If we consider symmetric spaces,
in particular where both parts are of the same rank, the second step has mainly
been solved for the classical groups in the literature cited above. For the first
step we need branching rules for the isotropy group of M with respect to the
subgroup K. Therefore this step is more sophisticated in so far as the rank difference
between K and the isotropy group is big, in general. For example, this difference
is rk(so(4k¢)) — rk(so(2k) @ s0(2¢)) = 2kl — k — ¢ for the Grassmannian Gay, 2.

In this text we prove a formula for the decomposition of the spinor bundle of
the spin Grassmannians G, , = SO(m + n)/SO(m) x SO(n) for n < 5. The
construction also yields the decomposition of the spinor bundle of Gy, , in the
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general case. See theorem[[3 and theorem [ as well as conjecture[I2]and conjecture
I8 This decomposition can be rephrased as branching of the spin representation
of so(mn) with respect to the subalgebra so(m) @ so(n) for which there are no
general statement proven so far but only partial results for n = 1,2 (see, e.g.,
[27]). Our proof needs the explicit construction of the weights cf. (24) and (28] but
also a dimension analysis. For the case (m,n) = (2k,4) this dimension analysis is
reformulated in lemma [I6l Here as well as in the odd dimensional cases with n < 5
we need closed expressions for sums over binomial terms which we prove in appendix
[Al Why and how the techniques provided in the proofs for n < 5 can be used for
the general case and what the practical difficulties are, is explained in section
Nevertheless for fixed (m, n) one can let any computer algebra system — for example,
MAPLE — do the dimension calculation to tell one that the decomposition results
are right in all these cases. But this is not the only evidence of the correctness of
our general result. In section Ml we discuss some aspects of the spectrum and the
eigenspaces of the Dirac operator on Grassmann manifolds. We compare our results
of section Bl with the results of [22] and [23]. The perfect match also substantiates
the statement on the decompositions (29) and (37 in the general case. As a further
result we identify the smallest summand of the eigenspace to the first eigenvalue of
the Dirac operator, see propositions 25l and B0 and conjectures 24] and Small in
this situation means with respect to the ordering which is induced by the ordering
of weights. We show that this eigenspace is nondegenerate in the case G4 4 (see

example 27)).

The text is organized as follows. In section [2] we recall the theoretical basis and
explain the projection method at a well known simple example before we use this
method to decompose the spinor bundle of the Grassmannians in section In
section @l we turn to the discussion of the Dirac operator and its spectrum and end
up with some concluding remarks in section

2. DECOMPOSING THE SPINOR REPRESENTATION OF G/K

2.1. Symmetric spaces: The Parthasarathy formula. Consider a homoge-
neous spaces M = G/K, K c G, g = t®p together with its G-invariant Riemannian
metric induced by the Killing form b[] Then

p={veg|b(v,h)=OVheK},
[e.¢]ce, [tp]cp, [pp]ct@p.

Suppose M is a symmetric space. Then, in particular, the bracket of p with itself
closes into €. Suppose ¢ and g are of the same rank

Let ¢ : K — SO(p) be the isotropy representation of M. ¢ induces a representation
(s« on Lie algebra level given by

(1) Ce E—s0(p),  Cu(h)(v) = (ady)], (v) = projy[h,v].

Remark 1. M = G/K admits a G-invariant spin structure if and only if ¢ lifts to
¢: K — Spin(p).

1For M isotropy irreducible we get an Einstein space with scalar curvature s = %

2This is true in almost all cases of symmetric spaces up to two series, see, for example, [11].



THE DECOMPOSITION OF THE SPINOR BUNDLE OF GRASSMANN MANIFOLDS 3

Let {e;} be an orthonormal basis of p. Then (s and (s : € — so(p) are connected
via

(2) Gulh) = 3 Der Galb)(en)

where - denotes the Clifford multiplication in C¢(p). We denote by ~ : Spin(p) —
End(A) the spinor representation and write p := o 5 . The following construction
is due to [25] and has been used to calculate the eigenvalues of Dirac operators, see
section [

Let S = G x, A be the spinor bundle of M = G/K, where G is viewed as a principle
bundle over M. S splits under the action of £ into certain subbundles which are
labeled by an index set W

(3) S=@ S,.

G’EW()

Let @; and @; be the the sets of g-positive roots and £-positive roots, respectively.
We define @ := & \®{ and

(4) QB:Z%ZO" ozyz%Zoz.

aedd agdy
Let W be the Weyl group of g. Then W, is given by
(5) Wo={oceW|®f cod}}.
The spinor representation p decomposes as p = Zaewo Po, Where
(6) ﬂgzaag—a{z— Z «
OtE(T‘I>

is the highest weight of the irreducible representation p, of K. The latter appears
with multiplicity one in the sum. The corresponding representation space S, is of
dimension

(7) dimS, = 3 <BU<Z zi @ _ 5 <fgg£>

acdt aedy

Ezample 2. We consider g = s0(2n + 1) D s0(2n) = £. The embedding is due to
the usual (2n+1) = 2n @ 1 splitting. The roots of so(2n + 1) are { * ey, +e; +
and those of s0(2n) are given by the subset { £ e; £ ej}1<Z<J<n

j}1<k<n 1<i<j<n
The positive roots are @ro@n“) {ek,eZ + ej}1<k<n 1<i<j<n and <I> o(2n) = {eZ +

ej}1§i<j<n respectively. So &} = {ek}1§k< In particular ago(2n41) = (-
i+l 5)€e; and 0450(2") = >, ,(n—i)e;. Beside the identity, the only Weyl reflection, o,

Wthh obeys 0@50(2n+1) ) <I> so(2n) is the one associated to the root e,. This yields
0@3 = {ek, —en|k=0,...n— 1}. Therefore, the spinor representation decomposes
into two summands associated to the two highest weights

sler+-en1£en)

as expected.

A generalization of the above construction by Parthasarathy is given by the follow-
ing nice observation, see [6] or [9].
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Proposition 3. Let M = G/K be a symmetric space and g, & semisimple with
rank difference d = rk(g) — rk(€). Let II be the set of highest weights of irreducible
representations of € which appear in the decomposition of the spinor representation

of M. Then
5=l Y v,
BEeIL

Ezample 4. Consider M = G x G/G with dim G = dim M = n, rk(G) = k. In this
case the isotropy representation is the adjoint action so that Vie,) = adg. The
rank difference is exactly the rank of G and the spinor representation is

s =23l |
with oy from (@) — see [14].

2.2. General homogeneous spaces: the explicit construction. The method
cf. Parthasarathy (6) does only work for the decomposition of the spinor bundle of
symmetric spaces. If we want to deal with general homogeneous spaces we have
to calculate the decomposition directly. Even in the situation of section B it is
sometimes easy to do so, because we have to compare the weights of the respective
algebras in a common base anyway.

We consider the homogeneous space M = G/K with faithful isotropy representation
K — SO(p), where g = ¢t @ p is the decomposition of the associated Lie algebras.
We suppose M to be spin such that the isotropy representation (y : € — so(p) gives
rise to the spinor representation p : K — Spin(p) < End(A).

The construction: We decompose ady with respect to £ and get

(8) adg = ade ® P Va,

where @, Vi, is the decomposition of ¢, = adg| e From the construction we see
that this coincides with the vector representation of so(p):

(9) vector representation of so(p) = PV, .

This information encodes the inclusion due to the following observation, see [31
sec. 7.6]

Proposition 5. Let + : h — g be an injective homomorphism of Lie algebras
with b semisimple. Consider the irreducible vector representation of g. Then the
knowledge of its decomposition into irreducible representations with respect to b
yields the knowledge of the decomposition of any irreducible representation of g
with respect to §y.

This proposition is related to the notion of plethyms and may be formulated as
follows. Let Ay be the vector representation of g, then

/\B\Z/\% = ug\.Zué =ZA§,®MQ,
i j i

where ® denotes the plethym. For a review on plethyms see, for example, [I§] or
[4]. This yields that we are theoretically able to calculate the decomposition of the
spinor representation of each homogeneous space. Nevertheless the decomposition
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contains many practical difficulties. We will illustrate the explicit construction at
a well known example of low rank.

2.3. Example: Berger space SO(5)/SO(3). Let M be the seven dimensional
Berger space. This is the homogeneous space SO(5)/S0O(3), where the subgroup
is characterized as follows. We consider the embedding of s0(3) in so0(5) such that
the five dimensional vector representation of so(5) stays irreducible.

We recall the weights of the five and four dimensional irreducible representations
of s0(5) and s0(3) and the spaces associated to these representations.

dim of s0(5) s0(3)

Rep. highest weight space | highest weight | space
5 (1,0) = ey R’ (4) =4x | S2(R3)
4 | (5.3) =31 +e) | Si (3) = 3\ Ss

Here we write A for the highest weight of the vector representation of s0(3) so that
the weights of so(3)-representations are given by k.

The root system of so(5) is given by {+e1, fea, *e1 * ea}.

To give A in terms of {e1,e2} we use that the weight diagram of 5 with respect to
50(5) projects onto the corresponding weight diagram with respect to so(3). The
weight diagram of 5 with respect to so(5) is {te1, *e2,0}. Up to symmetries we
have

(10) projspan{)\} (61) =4\,
projspan{)\} (62) =2\ )
or
A A
N2 = 4 AN = 2A
<617 >|)\|2 A <€2, >|)\|2 3

M =407 A A =20

1
20

A= %(261 +62).

From the last line we get [A|* = 5= and so

(11)
Remark 6. The 4 of so(5) stays irreducible as well. Its weight diagram is given by
{£e1 + ea} and we have projspan{)\}(%(el Teg)) =(2x1)A

To decompose the adjoint of s0(5) with respect to so0(3) we need the projectiorE of
the weight diagram on span{A}:

projspan{/\}(el +e2) =6,
PIOj paniry(€1) = 4A,
PIOj paniry(€2) = 2A,
PIOjspanir} (€1 — €2) = 2A.

3We omit the projection of the origin, because its multiplicity stays the same.
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We see that the image contains two diagrams to the highest weight 6 and 2, re-
spectively, where 2 is the adjoint of s0(3) and 6 the seven dimensional irreducible
representation. Therefore

s50(5) =s50(3) @ 7.

The isotropy representation yields the embedding so0(3) — s0(7) and the calcula-
tions above show that this remains irreducible with respect to so(3).

To get the decomposition of the spinor representation, we need the weight diagram
of s0(3) as subset of the weight lattice of s0(7). Therefore we turn to a three
dimensional picture and write the roots of s0(7) as { tep, tes, tes, teg teg, ey +
es, Tes 63} such that the weight lattice of 7 is given by { + e1, teq, *es, O}. As
before we denote the highest weight of the vector representation of s0(3) as A so
that the seven dimensional representation is given by 6. We get

projspan{)\} (61) = 6)‘5
(12) projspan{k} (62) =4\ )

projspan{k} (63) = 2)\7

or

(13) A =:5(6,4,2).

The spin representation is eight dimensional and the weights are given by {%(iel +
ez + e3)}. The projection on the weight lattice of so(3) is

D10]paniay ({5 (er £ s £ ex)}) = { 26X, £40, 221,00} U {0A}

which yields

Proposition 7. The spinor representation of M = SO(5)/SO(3) split into the (6)
and (0) of 50(3):

(14) 8=7T®1.

In particular the Berger space is a nearly parallel Go-Einstein manifold, in particular
it admits a connection which annihilates one spinor (see [I] and [1]).

3. THE SPINOR BUNDLE OF GRASSMANN MANIFOLDS

We recall the following observation (see[2] or [27]).

Proposition 8. The Grassmannian Gp, ., = SO(n +m)/SO(n) x SO(m) is spin
if and only if m =1 orn =1 or m + n even.

In particular if the Grassmannian is not of type G, 1 all even and odd dimensional
spin Grassmanianns are of the form Gax 2¢ and Gaog41,2¢+1, respectively. Therefore
we divide this section into two parts dedicated to the even and odd dimensional
spin Grassmannians, respectively.
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3.1. The even dimensional case. We consider the even dimensional spin Grass-
mannian Gay 20 = SO(2(k + £))/(SO(2k) x SO(2¢)). Our goal is to decompose the
spinor representation of Gay 20 with respect to s0(2k) @ s0(2¢). We consider £ < k
and restrict ourselves to £ # 1 because this case is treated in detail in [27]. We have

(15) 50(2(k + £)) = 50(2k) D 50(20) D (2k ® 20) .

This yields that the isotropy representation so(2k) @ so(2¢) — so(4kf) is the stan-
dard embedding. This means that the vector representation of so(4k¢) decomposes
as

(16) 4kl =2k ® 2¢.
Moreover we know that the adjoint representation decomposes as follows
(17)  so(4kl) = s0(2k) ®s0(20) ® (s0(2k) ® S5 (R*)) ® (S5 (R**) ®s0(20)) .

We construct a basis of the Cartan algebra of so(4kf) such that we recover the
Cartan basis of s0(2k) and s0(2¢). We denote the Cartan basis of so(2k) and so(2¢)
by {K;}1<i<k and {L;}1<i<e, respectively. The associated decompositions into two
dimensional subspaces are R2k =Vi® - @V and IRQ_Z =W ®---@®W, with
V; = span{v},vi}, W; = span{w],wi}, ie., K;(v]) = 0/v}, K;(v3) = —&v} and
similar for L;.

We write V; @ W; = E;; @ Fy; with E;; = spcm{ei_j, ei_j}, Fy; = span{fj_j, fl_J} and

) e = Ll @u] +vh@ul), = Zieu] —vieu),
V=0 +veu]),  f=J50@u] —v;®w)).

We define { 1]’ i];}lgigk,lsjsl by
) Ng(el) = 46767 ¢
NSy = 607 2.

This is the Cartan basis with associated decomposition

(20) R*™ = P(V; @ W) @EZJ(-B@FW

i.J
We have
Ki(e})) = +6f e Ki(fij) - Tl f2,
Li(f) =567 12, L) = 707 e,
foralli=1,...,kand j=1,...,¢, such that

(21) K; =Y (Nf—N})and L; Zk](ij +N7).

j=1 =1

We write €7; = (NV;5)* such that the roots of so(4kf) are given by

(22) tef; el lmyele fH1<i,7 <k1<j,j <(}.
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The roots which form the subalgebra so(2k) @s0(2¢) are given by {+K* + K3} and
{£LY £ L} } or

14
(23) {Z(i(efj_Ez)i(eflj_E{;J))|1<’L7Zlgk}

j=1

k
Y (e +e) £ (e + i) 11 <4,57 < ¢}
i=1

To get the decomposition of the spinor representation of so(4k¢) with respect to

50(2k) @ s0(2¢) we project the diagran{] 1(£1,...,+1) = %Zm)j(iefj) onto the

subspace spanned by ([23) and expand the result with respect to { K7, L*}. Explic-
itly this is done by writing
K *] [69]
sl =Al7|-
[L;" €ij

If we choose €f; = (€1,...,€7p, .-, €415 - -, €5) the [(k+£) x 2kL]-matrix A is given

by the following rows:

(i—1)¢ ¢ (k—i)t (i—1)¢ ¢ (k—i)e
—tN N N .
A= (0,7..,0,1...1,0,...,0,0,-..,0,Z1...,=1,0,...,0), 1<i<k,
(24> 1 j+(2i—1)z
Agyy = (0,...,0,=1,0,...0,...,0,...,0, =1 ,0,...,0), 1<j<¢.
v z

The projected diagram is read from
(25)
and we get the first observation.

Remark 9. All the images of the set {$(+1,..., il)T} by the map A consist of
weights with integer entries.

To illustrate this procedure we will examine the examples k = ¢ =2, k = { = 3,
and k = 4, ¢ = 2 before we state the general result.

k =/ = 2: The matrix A with (4K1-*, 4L;’-‘)T = A(efj, el-fj)T is explicitly given by

1 1 -1 -1
1 1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1

4The diagram splits into two diagrams which correspond to the positive, respectively negative
spinor representations depending on whether the number of minus signs is even, respectively odd.
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To get the image of a vector 7 € span{e;;} under the projection we need Az. For &
contained in the spinor diagram the images are, for example,

3(—1,F1, -1, F1, -1, F1, -1, F1) — ((0,0), (2, £2)),
(41, +1, %1, +1, -1, -1, F1, F1) —> ((2, £2), (0,0)),
$(—1,+1,F1, 41, -1, -1, +1 F1)— ((1,41),(2,0)),
(41,41, -1, F1, -1, — F1)— ((2,0), (1, £1)),
3(=1,+1, -1, F1,-1,— 1) — ((1,0), (2, £1)),
(41,41, -1,41,-1,-1, -1, +1)H ((2,+1),(1,0))

(2, £2) may be identified with the subset of trace-free 4-tensors on R* with symme-
try of the Young diagram EE (2, £1) is given by the subset of trace-free 3-tensors
with symmetry B:‘ In both cases * indicates the eigenspaces of the symmetry of
the tensors, which is induced by the self duality of two forms in dimension 4.

In table [l we list the representation spaces, associated Young diagrams, and add
the dimension as well as the further decomposition with respect to su(2) @ su(2).
The notation has been taken from [21I] and contains the highest weights of the two
factors, e.g., (3|]1) =4® 2.

TABLE 1. Representations of so(4)

Rep. of s0(4) | Symmetry | Dec. wrt. su(2) @ su(2) | Dimension
(00) : (0]0) 1
(10) O (1]1) 4
(11%) H (2]0) and (0]2) 2-3
(20) (T (212) 9
(22%) EE‘O (4]0) and (0]4) 2-5
(21%) Bjo (3]1) and (1|3) 2.8

So the decomposition of the spinor representation into (reducible) representation
spaces with respect to s0(4) @ so(4) is

ST=(110)® (10®1)® (6Q9) @ (9®6),
ST=(4®16) @ (16 ®4).
and the irreducible decomposition — or equivalently the decomposition with respect
to su(2) @ su(2) @ su(2) @ su(2) -
S™ = (0[0]0]4) @ (0[0]4]0) & (0]4]0]0) & (4/0]0]0)
(27) @ (2[212]0) @ (2[2|02) @ (2/0]2]2) @ (0[2[2]2),
ST =0AR)e (11BN e (13[11)@ (3[1[1[1).

(26)
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k =4, ¢ = 2: The matrix with (4KZ-*, 8L;") A( €5 W)T is explicitly given by
1 1 -1 -1
1 1 -1 -1
1 1 -1 -1
1 1 -1 -1
-1 -1 -1 -1 -1 —1 —1 —1
-1 -1 -1 -1 —1 —1 —1 —1

The representation spaces which are associated to the images of %(il,

., 1) are

listed in table 2l They are divided into two parts such that the first 18 summands
give the decomposition of the positive spinor representation, and the second 12
summands yield the decomposition of the negative spinor representation.

TABLE 2. Representations of s0(8) @ s0(4)

Representation of

Irreducible Dec. w.r.t.

s0(8) ®so(4) 50(8) @ su(2) @su(2) Dimension
(0000[44%) (00008]0) @ (00000[8) 2.(1-9-1)=2-9
(2000(33%) (2000[6]0) @ (2000(0(6) | 2-(35-7-1) = 2-245
(1100[42%) (110016|2) @ (1100]2|6) 2-(28.7-3) =2-588
(2200[22%) (2200]4]0) & (2200]0]4) [2-(300-5-1) = 2-1500
(2110[31%) (2110[4]2) @ (2110[2]4) | 2- (350 -5-3) = 2 - 5250
(1111%|40) (11117 [4]4) @ (11117 [4]4) | 2-(35-5-5) = 2-875
(2220]11%) (2220]2|0) @ (2220(0[2) | 2-(840-3-1) = 2- 2520
(2211%|20) (2211+]212) @ (22117 [2]2) | 2- (5673 - 3) = 25103
(2222%00) (22227(0(0) @ (2222710[0) | 2-(294-1-1) = 2294
(1000[43%) (100017|1) @ (1000|1|7) 2.(8-8:2)=2-128
(2100[32%) (2100[5/1) @ (2100|1]5) | 2-(160-6-2) = 2-1920
(1110[41%) (1110[5[3) @ (1110|3]5) | 2- (56 -6-4) = 2- 1344
(2210]21%) (2210]3|1) @ (2210[1[3) | 2-(840-4-2) = 26720
(2111%|30) (21117 (3(3) @ (21117 [3|3) | 2- (224 -4 -4) = 23584
(2221%|10) (22217 [1]1) @ (2221 [1|1) | 2- (6722 2) = 2- 2688
_ 916
k = ¢ = 3: In this example the matrix which obeys (6K, 6L}) = A(ef;, w) has size

6 x 18. As before, we list the irreducible representation spaces which are associated

to the images of
representations for S—

(%1,

+1).

The result for S* can be found in table The

can be obtained by interchanging the two factors.
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TABLE 3. Representations of s0(6) @ s0(6)

Irreducible Rep. of
50(6) ®s0(6) Dimension
(000[333%) 2-(1-84) =2-84
(110[331%) 2. (15 - 270) = 2 - 4050
(200]322%) 2-(20-140) = 2-2800
(211%320) 2. (45 - 300) = 2- 13500
(220[311%) 2. (84-126) = 2- 10584
(222%]300) 2-(35-50) = 2-1750
(332%]100) 2.(6-189) = 2-1134
(330[111%) 2- (10 - 300) = 2 - 3000
(321%|210) 2. (64-256) = 2- 16384
(310[221%) 2. (70-175) = 2- 12250
= % . 918

Before we state the general result we introduce the following operation.

Definition 10. Let A = (A1,...,\,) be a vector with non- negatwe decreasing
integer entries. For m = max{\;},¢ = n the (¢, m)- conjugatd] A<“™) is defined by
the vector which represents the Young diagram obtained by the following procedure.
Extend the Young diagram associated to A to an rectangle of size (£ x m), erase A,
rotate the remaining part by 180°, and reflect at the main diagonal.

(AEmY s = ¢ — i\ =m—j+ 1} forl<j<m.

For example, (5,3,2,0)°*%) = (4,3,3,2,1,1):

‘ &
extend * |k |k
—>
& |k &
d | k| k| k| k| ok
* | ]
erase EREE ] rotate reflect
— —> —
d ) k| k| ok
‘ & | I S S B R
Remark 11. e We denote by N the transpose of the diagram ), i.e., the reflec-

tion of A at the main diagonal. Then the (¢, m)-conjugate and the transpose

SWe may always assume n = ¢ by extending A by zeros.
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are connected by
A = N, 1< j<m.
e Furthermore we have
(V) = (xeEm)yetmd =
and therefore
AEmN =m = Ny, 1<j<U.
e For A = (\q,...,\r) we have
(28) Aclbm) — (gm=A1 (g )M—Ae QA Ae pAey

Conjecture 12. Let Gax20 = SO(2(k +£))/(SO(2k) x SO(2£)) be the spin Grass-
mannian of even dimension 4k{ and let ST and S~ the positive and negative spinor
bundles respectively. Suppose k = £. The spinor bundle ST @® S~ decomposes into a
sum 0f2-(ky) subbundles associated to irreducible representations of s0(2k)@®so(2¢).
The weights of these representations are given by

(29) (/\17"'7>‘k|:u17---7,u6);
(30) ()‘17'--7|)\k|) = (/Ll,...7|lu|)c(€)k),

or equivalently

m) (:ula""|:ul|):()\15"'7|)\k|)c(k)€)-
In particular Zle Ai + Z§=1 pi = ke.
Theorem 13. Conjecture[1Z is true for £ = 2.

Remark 14. e For \; # 0 (in this case py = 0) the representation with —\j
is present within the decomposition, too. This symmetry is due to self
duality with respect to so(2k). This argument is symmetric with respect to
the two factors s0(2k) and s0(2¢) so that S* splits itself into two subbundles
gt — g+ ) St—.

e If the product k¢ is even, representations with weights such that both sums
Zle A; and Z§=1 w; are even (or odd) belong to St (or S respectively).
In particular, (0¥|k*) and (£¥]0°) belong to S*.

e If the product k¢ is odd, representations with Zle Ai even (or odd) and
Z§=1 w; odd (or even) belong to ST (or S~ respectively). In particular
(0%|k*) belongs to S* and (¢*]0%) belongs to S~.

Towards a proof. Firstly we have to show that all the mentioned weights appear
as an image of A on the set {(+3,...,%3)}. Consider the so(2¢)-representation

A= (A1,...,A¢) with Ay = 0. We associate vectors ﬁ e R? and w € R given by

- —N——
ofi = (C1,....—1.1,...,1), 0<i</
and B B B
W= (fOu'"7f07'"7fi7"'7fi7"'7ff7"'7f€)'
—_— —_ —_—

k—A1 Ai—Xit1 k+Xe
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to the tuple A. Then  is a preimage of
(P (=1 e e A 0NN )
under the action of A with rows given by (24).

The prove of the statement now is done by a dimension check: For A with A\, = 0 we

write A = A0 such that A = \. The dimension of the 50(2k)-irrep with highest
weight A = (A1,...,Ar) and the corresponding dimension of the s0(2¢)-irrep with
highest weight A = (A1,..., A¢) are given by

dim V;o(?k) _ 1_[ ()\z +k— i)2 - ()‘J +k— .7)2

1<i<j<k (k—i)? = (k—j)?
B 1—[ N+ Xj+2k—i—5) (N =X —i+7)
r<ii<k (2k —i—4)(7 —14)

and (), k) substituted by (X,¢). The dimension may also be expressed using the
following determinant

A, Ap) = det 2k+ X —i+j5—1 _ 2k+ X —i—j5—1 7
2k —1 2k —1 1<ij<k

see [8]. To prove the main statement we have to show

(31) > dim Vo) - dim v;"(w = 92kl-1
AC(Lk)

)

where we have to take one half of the dimension of the spinor module because the
construction yields that either A or A has vanishing last component.

3.2. The case ¢ < 2. In this section we prove theorem[I3] We recall that conjecture
for £ =1 is shown in [27] such that we consider the case Ga, 4, which is one of
the compact quaternionic Kéahler symmetric spaces classified in [30].

We label the so(4)-weights by two numbers k > p > ¢ = 0 such that the spaces in
the decomposition ([29) have the weights

(32) (257177907 pg)*

The dimension of the so(4)-representation (p, q) is

dm Vol = (p+g+D)(p—g+1).

We use the classical result of [18] on the characters of the classical groups to evaluate
the dimensions of the representation spaces of s0(2k) which we need here.

Proposition 15. Let A be the highest weight of an s0(2k) representation with
Ak = 0, then the dimension of the representation is connected to the dimension of
representations with respect to gl(2k) via the Littlewood-Richardson-coefficients LR

by
(2k) a .
(33) mVeH =3 N (“1)ZLR) ), dim VIC)
n oar>>as>0

where the sum also contains o = (0).
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Here o(«) is the weight corresponding to the diagram which ith row has «; +1i boxes
and its ith column has a; + 7 — 1 boxes. The weights p for which LRg(a) u 7 0

correspond to traces of A associated to the symmetry of o(«).

In the our case — A\; < 2 — only those coeflicients are nonzero for which the diagram
associated to o(«) fits into the diagram associated to A\. The possible candidates are
a = (0) with o(a) = (0,...,0) and a = (1) with o(a) = (2,0,...,0). The weights
w1 such that LR)‘(l) # 0 are associated to the trace of A\ and if non vanishing the
value of LR is 1. For A\ = (2%1°0°) the trace is given by (22711°0°*1).

If we defindd

f(k,p,q) = H;;}%(%Jrl —2) Hz;?EQkJFQ,; )
(34) [loitk—g+2—a) [l fall o
p—q+1/( 2k+1 2k +1
T okt 1 (k—q+1><k_p>’
and f(k,k+1,q) =0 we have forall k = p = q >0,

f(kapv )_f(kp+1q+1)
(2k)!(2k +2)!(p+q+1)(p—q+1)
T kgt DIk +p+2)lk—g+1)(k—p)

C(pta+D)p—q+1) (2k+2\ [ 2k+2
 (2k+1D)(2k+2) (k—p)(k—q+1>’

so that the dimension of the so(2k)-representation (2¥-P1P~490%)* is given by
dim(2*7P17790%) = f(k,p,q) = f(k,p+1,q+1) if k=p>q>0,

and

dim(2* P17)* = %(f(k,p70)—f(k,p+1,1)) if k=2p=>q=0.

The proof of conjecture [I2] for £ = 2 is done by showing the identity

i s V] ey

0<p<k

(35) + ), (ra+ ) q+1)2<2:jp2><k2—k:fl>

1<q<p<k

= (2k +2)(2k + 1)2%+- 1,

The left hand side of this can be written as

Z p_4< 2k+2><2k+2>
a2 kr—p) ki
% +2 \ [ 2k +2
2 2
+ Y -0+ <k+1—p><k+1—q>'

1<g<p<k+1

6This is the dimension of the gl(2k) representation space with highest weight (28=P1P=404).
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The terms of the second sum are symmetric with respect to p and ¢ and vanish for
p = q so that we may sum over the whole square instead of one triangle. So we
may further write

:% Z+1p4<k2—ll-€1-l_—2p><2kk:12>
(p_q)z(erq)Q( 2k +2 )( 2k +2 )

k+1—p)\k+1—gq

Therefore the following lemma — which we will prove in appendix [A] - yields the
subsequent theorem

Lemma 16.

(36) i) jzne)(lq 7y (7%27—1 Z) (nzf j) - (2:> jzn;)f (nzf j)

= 24"=3n(2n — 1)

This proves theorem [13.

3.3. The odd dimensional case. We consider the odd dimensional spin Grass-
mannian Gag41.2041 = SO(2k +20+2)/SO(2k+1) x SO(2¢ +1). The construction
is almost the same as in the even dimensional case so that we will be more brief
here. For the construction we take over the notation from section [3.1] and add two
more one dimensional spaces V11 := span{vit+1}, Wey1 := span{wes1}. We define
in addition

B0+l 0 0+1 VS
Eip41:=Vi®@Wyy1 = spanfe] ™ e} with el = vzl/z ® wet1,

k+14 pk+1, . k+1, ;
Fiq1,i := Viey1 @ W, = span{f; 2T with f+/, = Vg1 ®w§/1 )

G = span{vi+1 @ Wey1} -

Then P E;; ® P F;; ® G yields the corresponding decomposition of R(2k+1)(26+1)
such that the Cartan basis of so(4kf + 2 + 2k + 1) is given by {N{;}, Nij,cj,} with

/Y

Ni(el7") = +61"80 e for 1 <i<k1<j<l+1,
NI (P77 = <01 80, f for 1 <i'<k+1,1<j <¢.
Then we get

¢
DUNG = NL) + Negq
j=1
Y4

Lj == 2 (NG + NG = N5
i=1

=
I
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The corresponding matrix A which is of size (k + ¢) x (2k€ + k + £) has rows

(i—=1)(¢+1)  ¢4+1  (k—i)(€+1) (i—1)¢ ¢ (k—i)t ¢
— — s N S S N
A= (0...0,1...1,0,...0,6. 0,51 21,6,....0,0,...,0),
J (k=1)(£+1)+j
! 1
Apsg = (0,...,0,-1,0,...0,...,0,...,0,~1,0,...0,
041 e
k(£+i1)+j k(2+1)l.+k£+j
0,...,0,=1,0,...,0,...,0,...,0,=1,0,...,0),
N .

for1<i<kandl<j</ Forexample,

Ak€1=<1 1 -1 O>, Ab=2=L—10 0 1 1 0 -1 0

-0 -1 -l -1 0 -1 0 -1 -1 -1
1 1 1 0 0 0 -1 -1 0 0 0 0
A==z _ o 0 0 1 1 1 0 0 -1 -1 0 0
1 -1 0 0 -1 0 0O -1 0 -1 0 -1 0

o -1 0 0 -1 o 0o -1 0 -1 0 -1
In contrast to the case of even dimensional spin Grassmannians we have the follow-
ing facts on the images.
Remark 17. The image of the set {3(£1,...+1)} by the map A consist of weights
which entries are contained in Z + %

Conjecture 18. The spinor bundle of the odd dimensional spin Grassmannian
k+e

decomposes into a sum of ( . ) summands which are irreducible with respect to
50(2k + 1) @so(2¢ + 1) and which are associated to the weights
(37) ()\1+%,...,)\k+%|u1+%,...Mg+%),
with0 <M <...<S <0< i <...< <k, and

ALy )R = (g, o), or (s )R = (Mg, ).
Theorem 19. Conjecture[18 is true for £ < 2.

That all the mentioned weights appear as image can be seen as in the even dimen-
sional case by constructing an explicit preimage. The dimension argument uses the
following observation (see, e.g., [5]).

Proposition 20. Let € := (1,...,1). Then the dimension of the so(2k + 1)-

representation Vja(lz IiH) associated to the weight \ + %é’ with A\ integer valued s
t3¢€
given by

dim Vj"(f’i“) = 2 dim VPN |
26

where V;p(%) is the sp(2k)-representation associated to the weight \.

So we end up with an equation to verify which is similar to (]

(38) D dim VPEH L dim VP = 92k
AE(CF)
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3.4. The case ¢ < 2. In the odd dimensional case beside our strong belief that the
decomposition is true in general we have the following partial result.

Proof. £ =1: The representations which play a role are () with 1 < A < k and
A¢ = (1¥7*) with dimensions

2%k k+1—m 2k +2

This yields

k
dim V50(2k+1) dimvso(S)l 2k+1 Z dlmvsp(2k)d Vsp(2)
1. 1k A
= (15=2)+3 (N+58 = ) ()
FA+1)2 <2k+2>
Aokl k=)
1
=2kl _— _B(k+1,2
1Pkt L2)
— 23k+1 )

£=2: A formula similar to @3) holds in the symplectic case{l
(2k a0 r A ,
(39) dim VEp ) Z Z (_1)2 j LRg( , dim Vir(%) )

noap>->as>0

a),p

We list the relevant partitions p which enter into the dimension formula in the
symplectic case when we start with (287 1P=4 (9).
e | o) | p | condition
1) [ @ P 120072 p—q=2
9k— (p+1) 1p7q,0q+1) p—qg=1
2k=(p+2) 1p—a+2 (9) none

(
(
(2) HJJ (2F=+1) 1p=a=2 0at3) [y ¢ > 2
(
(

2k (p+2) 1P~ q70q+2) p—q= 1
2k=(p+3) 1p—a+2 (a+1) | none

2,1) | HH | (2%~ <P+3>, 1P=9,09%3) | none
We recall the dimension of the gl(2k)-representation (287, 1P=4 (09)

) = M( 2k +1 ><2k+1>7

2%k+1 \k—q+1)\k—p

see [B4). Therefore the dimension of the sp(2k)-representation associated to the
weight (2577, 1P79,09) is

dim V(;i@:)lpqm) f(k,;p,q) = f(k,p+3,q+3)

3
+ > f(k,p+b,qg+4—b)
b=max{3—(p—q),1}
2
- Z flk,p+b,g+2-0).

b=max{2—(p—q),0}

"We recall that ) is the diagram transpose to A.
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Furthermore we have

: sp(4) _ g al(4) _ 4: gl(4)
dim V(p,q) = dim V(pyq) dim V(p—lyq—l)

= L a D+ + I+ ).

So we have to show

. k . 4
(40) > dimVEE ) dim VP — 9k

(2k—P,1P=4,09 (p,q)
0<q<p<k

This is done by expanding the left hand side which — after a lengthy calculation
performed in appendix [Bl - turns it into a sum of products of at most two of the
terms B(k + 1,m) for m < 5, see (B9) in appendix [Al O

4. ON THE SPECTRUM AND THE EIGENSPACES OF THE DIRAC OPERATOR

4.1. General symmetric spaces. The construction described in section 2] is
used to calculate the spectrum of the eigenvalues of Dirac operators. This has been
performed in [25] in general and we give a short review. The L?-sections of the
spinor bundle on G/K are identified with the K-equivariant maps from G to the
spinor module A. Due to Frobenius reciprocity this can be further identified with
Homg (CG, A) = @errrepic) VA®HOm K (Va, A) (see [8]). The square of the Dirac

operator acts via g2 = Cy + § where the Casimir C) = c\1 acts proportionally to
the identity due to the irreducibility of the representations. The factor is ¢y =
b+ 2a4,\) = | X+ ag|? — |ag|?, where aq4 is the weight [) and b is the metric
induced by the Killing form of g. Using this the spectrum of the square of the Dirac
operator is given by

(41) spec(@®) = {ex + 2| A e V(G/K)},
where the condition on the weight of the used G-representations is

A is highest weight of a G-irrep. s.t. one sum-
(42) V(G/K) := { A | mand in its dec. w.r.t. K is contained in the
spinor dec. (@)).

In general the eigenvalue is degenerated in the sense that there exist {\;};=1,.. ~
such that ¢y, =--- = cay -

The described construction makes use of branching rules for Lie algebras which
usually are very hard to find. Nevertheless the theoretic basics provided so far
can be used to calculate explicit examples as well as to formulate further general
statements on the eigenvalue of the Dirac operator with the smallest absolute value
(see, for example, [10], [26], [22], [24], [3] or [23]).

In the following we will make some comments on the spectrum and the eigenspaces
of the Dirac operator on the Grassmann manifold.

4.2. The even dimensional Grassmannians. Given the decomposition of the
spinor representation of the Grassmannian Gagoe = SO(2k + 2¢))/(SO(2k) x



THE DECOMPOSITION OF THE SPINOR BUNDLE OF GRASSMANN MANIFOLDS 19

SO(2¢)) with respect to € = s0(2k) Dso(20) as in conjecture[[2l Let g = s0(2(k+1))
with £ > ¢ > 2 and consider ay and oy as in [@). We have

k+¢

(43) g = Z(k+€—i)ei,
’L:l ,

(44) ap =Y. (k—i)ei+ > (0 —i)exs; .
1=1 i=1

Let IT be the set of highest weights corresponding to the decomposition of the spinor
representation (3). Furthermore let W := {y € &} | {y, ) < 0}

Due to [23] and [24] we are able to calculate at least the square of the smallest
eigenvalue ¢ of the Dirac operator as

ke

45 2 = 9mi 24 =

(45) € Iﬂnelgllllﬁll +5
) ke
(46) =2]ag — " + 4 Z<%as>+—-
~yeW 2

Here (-,-) is the metric b;; = m&ij induced on the dual space by the Killing
form (see []).

We observe that {e; + ¢;, gy > 0 for all 4, j and {e; —e;,a¢) < 0 only if 1 <14 <k,
k+1<j<k+ ¢ More precisely we have

(o, €5 — €pqj)Buct. =k —i—L+7,

such that
(47) U={e,—ersjl<i<k1<j<li>k—0+j}.
We have ||ag — |3, = ||€Zf=1 eillE . = k02, so that we get
Lt ko i-1—(k—£)
Ak + 0 —1)(3 — 5) = 2k (2 +4i71§+2 ;1 (j—i+(k—1)

2 2 2
S (3R — (2 = 1)0).

m

Ezample 21. Suppose ¢ = 2. Writing k = % we recover the result in [24].

In particular k = 4, = 2 yields €3 — & = 4(13&4_1) where 14 = [(2220[11)|j3,, =
1(2210(21) |20 = (2221]10)]2, = (2211]20)[2,,, is the minimum of the Eu-

clidean norms of the weights from table

With k = £ = 2 we get ¢ — £ = ﬁ. Here 6 is the minimum of the Euclidean

lengths of the weights corresponding to (26]). There are four of them, e.g., 6 =
1(11]20) .-

Ezample 22. k = { = 3 yields €2 — % = ﬁ, where 19 is the minimum of the

Euclidean lengths obtained by eight weights from table[3] e.g., 19 = [(220]311) |3, -
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Proposition 23. Let k > ¢ > 2. The square of the smallest eigenvalue of the Dirac
operator on the Grassmannian SO(2(k + £))/(SO(2k) x SO(2¢)) is given by

k(2 — (2 —1) K¢
48 2 _ = -
(48) OTTekrl—1) 2
The examples above (in particular, example 2I)) can be generalized. Therefore
assume ¢ < k. The square of the Euclidean norm of a weight which appears in
conjecture [12] is

4
2 A2+ 2(k—\) + Z (A — Ajr1)

. ¢ -1
:k£2+2((/\j—£+j)—§)2—1—%.
j=1

This yields the following conjecture and proposition.

Conjecture 24. Suppose { < k. There are 2° weights which appear in the decom-
position (24) of the spinor bundle of SO(2k + 2¢)/SO(2k) x SO(2¢) and which are
associated to the smallest eigenvalue of the square of the Dirac operator. They are
given by

(=2 (=)= AT oM N N) with Aje {0 — 5+ 1,0 —j}.

Proposition 25. The weights which appear in the decomposition of the spinor
bundle of SO(2k + 4)/SO(2k) x SO(4) and which are associated to the smallest

eigenvalue of the square of the Dirac operator are given by
(49) (2F-11]10), (2¥ o), (2 %1%)20), (2F210)21).

Remark 26. Both formulas (@3] and ({6]) — of which the first uses the decomposition
of the spinor bundle of the Gk 2¢ — give the same value. This is once more a
justification of the correctness of conjecture

We recall the following relations between so(2k + 2¢)-representations and so(2k)-
as well as s0(2¢)-representations which are given by the character formulas found
in [I7] and [15]

2k+2¢ (2k+2¢) v 50(2k+2£)
X RO ool =>LR! ,LRY LR} ,x

X;ﬂ<2k+2l Z LRQK XLRX 50(2k) ls/a(%) )

The first formula describes how the tensor product of two representations decom-
pose, in particular only summands appear with > A; < > u; + Y v;. In the second
formula, the branching rule, only summands appear for which p and v are contained

in )\, ie., Z)\l = Zlul +ZV1'.

The eigenspaces of the Dirac operator on the Grassmann manifold admit a decom-
position with respect to the so(2k + 2¢)-representations — see ([@2). The ordering <
of weights (see, for example, [I3]) induce an ordering of the associated subspaces
of the eigenspaces. From formulas (B0) we get the following remark.

(50)

Remark 27. Let A and p be representations of so(2k + 2¢), so(2k), respectively,
which associated Young diagrams we denote by the same symbol. Furthermore p
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shall be contained in (¢¥) such that u¢(*%) is a representation of s0(2¢). Then pu®u°
is contained in the branching of A if and only if there exists a u®-expansion X’ of the
diagram p such that \ is a 2k-expansion of \'. This yields a combinatorial method
to enumerate the eigenvalues of the square of the Dirac operator of Gaj 2¢. 1. Let
N (k, ) be the number of different u°-expansions of y for u = (¢¥). 2. For the
expansions {\};_1, .. n(k,¢) consider the different 2x-expansions for all diagrams .
3. From the resulting diagrams A calculate c). Even in the case Gy 4 this method
seems to be very complex and one may suggest an analog approach as in [22] or
[28] — in particular, because the ranks of the algebras are similar as in the first
citation. But this fails due to the more complicated determinants which enter into
the calculations so that the combinatorial ansatz is more applicable.

Example 28. For k = £ = 2 we have X € {EE‘, B:D,@j} such that the first 2x-

expansions which branching admits a summand from (26) are from the following
list.

2K L]

AEHEHEEQJ@—J'—H@M'U'

el 24 28 32 |32 36 36 42 48 48 52 60

In particular, the weight with minimal ¢y must obey A; < 2 and therefore the
minimal eigenvalue is nondegenerated, i.e., the so(8)-representation A = (2,1, 1,0)
is the unique contribution to the eigenspace associated to the minimal eigenvalue.

We turn back to the smallest eigenvalue and notice that a contribution to the
eigenspace of the Dirac operator to the smallest eigenvalue must obey

A+ Q50 (2k+20) ||2Euc1 - ||0<sa(2k+2é) H%ucl = 3k0* + k*0 — Kl — %é(ﬁ -1)
‘22 9k + 10k — 4.

Conjecture 29. The smallest contribution to the eigenspace of the smallest eigen-
value of the square of the Dirac operator on Gay 20 s given by the weight

(51) A0 = (R 0= 1)% (0 —2)2,...,1%)0).

Proposition 30. Conjecture[29 is true for £ = 2.

Proof. Due to (B0) the smallest contribution to the eigenspace comes from the
biggest contribution in the tensor product. If we take the weights from conjecture24]
the ordering < of the weights then sorts out the smallest one, i.e., the one with A\; <
(. A straightforward calculation shows that 58! = 3k¢? + k20— k( — %6(62 -1). O

Ezxample 31. Consider the case ¢ = 2. The representations which we obtain by
decomposing the tensor products (p|v) from ([@9) are given in the next table where
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we also added c,.

c]}i\)ucl
(4 3,2F11,0%) | 2k% + 16k

(4, g2 ,0%) 2k% + 14k + 4
(4,2F7312,0%) | 2k2% + 14k
(32, 2k 3 03) 2k? + 14k

(3, 2k 2,1,02) 2k% + 12k
(3,
(
(

3,2+=313,0) 2k + 12k — 6
ok ,02) 2k? + 10k
2F=112 0) 2k% + 10k — 4

We see, that in this case A\° is unique, if we restrict to the weights coming from
tensor products.

5. CONCLUDING REMARKS

Remark on the general proof of (31) and (38). In principle, all we need for the
proof of conjectures and [I8 for fixed ¢ > 3 is appendix [A] and the dimension
formulas (B3]) and [B9). This worked very well in the cases ¢ < 2. In (BI)) and
BY) the dimension of Vy for A = (A1,...,\¢) is a polynomial depending on the ¢
entries. If we use (8) to describe A\*“*¥) and insert the dimension formulas (B3)
or (39) as well as (B4) into @BI) or BY) we end up with sums of at most ¢-fold
products of terms of the form B(k + 1,m) with m increasing for ¢ increasing. For
large ¢ — beside the calculation of B(k + 1,m) for large m (which may be done by
computer using the generating function (5al)) — the main difficulties arise when we
try to describe uniformly the p such that LR?ZQ)# do not vanish. In particular,
this problem limits the practical application of our ansatz for the proof.

Remark on the remaining case s0(2k) @ s0(2¢ + 1) < so(4kl + 2k). One thing
which has been left out in section Blis the decomposition of the spin representation
of SO(4k¢ + 2k) with respect to the subgroup SO(2k) x SO(2¢ + 1) where the
embedding is such that the vector representation decomposes as 2k ® (2¢ + 1). We
did not mention this because the symmetric space Gk 2¢+1 is not spin. Nevertheless
on the level of representation the question of branching is interesting as well. We
will only state the result which is obtained by the same method as used in the two
spin cases. In particular, the cases (2k,3), (2k,5), and (4,2¢ + 1) can be proven in
the same way and the remark extends to this case, too.

The spin representation S = St @ S~ of so(4kf + 2k) branches with respect to
50(2k) @ so(2¢ + 1) into the sum of the following representations:

A+ 2% with A = (..., ) < (€F),

where A+ €% = (A1 +3,...,\—1+73, £(Ax+3)) belongs to the subrepresentation
S=.

Acknowledgments: I would like to thank Lorenz Schwachhéfer for useful com-
ments and Doron Zeilberger for suggesting a method to calculate (52) for k even
without generating functions.
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APPENDIX A. USEFUL BINOMIAL IDENTITIES

We define sums
n 2n
52 B(n,k) := ik
(52) (k)= ] (n_j),
such that lemma in these terms reads as
2
@8  2B(n,4)B(n,0) — 2B(n,2)* — ( "

n
We provide the tools to calculate (52) for all values of n and k although for the
proof of (B6) and (@) we only need them for values less than 6.

)B(n,4) =21"3p(2n —1).

We consider polynomials

(5% =3 (e

i=0
which obey
P,(1) = B(n,0),
P,(1) = B(n,1),
P!(1) = B(n,2) — B(n, 1),
(54) P”(1) = B(n,3) —3B(n,2) + 2B(n, 1),
P"(1) = B(n,4) — 6B(n,3) + 11B(n,2) — 6B(n, 1),
P"(1) = B(n,5) —10B(n,4) + 35B(n, 3) — 50B(n, 2) + 24B(n, 1),
and

1)2 —1/2 1 2
=(“’+)Pn(x)+“’ <n>_ (n)
x x n n+l\n
Proposition 32. The generating function Q of the polynomials P, cf. (&3) is given
by

(55) Qa,y) = ylr —1) L WA+ )

(z—yle+DH)VT -4y 2(x —y(z +1)2)°

The function @ obeys
ak+nQ

- x = P

(56)
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such that an explicit description for @ allows us to calculate all B(n, k) which then
proves lemma

Proof. We define

n=0

and use the above recursion formula for P, as well as

11 1 m
(1-4y)7% = ), clCREEC s 1)(4y)m= > (2 )ym,

m!
m=0 m=0

1
and J(l - 4y)*% = —5(1 - 4y)% which yields
Qz,y) =14 ), Pul@)y™ = 14y >, Pora(x)y”
n=1 n=0
y(x +1)? ylx —1) 2n
~ 1+ MEED S (o + M2 v
v ;0 t ;O "
1 2n\ ,,
B yngo n+1 (n )y
y(z +1)2
= u@(x,y)
x
—1 2 Y 2
T (Gt )Z<n>y"—f Z<n>t"dt
r n=0 n 0 n=0 n
y(z +1)2 ylx—1) 1 1
A 1+ 2272 S A —dy— -
———Q(z,y) + toviciy T2 V=5
from which we get (B5). O

The derivatives of ) with respect to x at the point (1,y) are

1 L1

Ql,y) = 5(1 —4y)72 + 5(1 —dy)7h,
0 _3
1y =y -y H,
02 _3 _
a—ﬁ(l,y) = —y(1—4y)~% +y(1 —4dy)~2,
32Q _3 2 _s )
W(Ly) =3y(1 —4y)™2 +6y~(1 —4y)~2 — 3y(1 —4y)™~,
*Q _3 _5 —2 -3
w(l,y) = -3y(1 —4y)™2 —9y(1 —4y)™2 + 9y(1 —4y)™" + 3y(1 —4y)™",
°Q

a5 (Ly) = 120°(1 — 4y)7% — 60y(1 — 4y) =2 + 60y(1 — 4y) ™2 — 120%(1 — 4y)~>.
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All terms are of the form y™ (1 —4y)~¢ with m = 0,1, 2, 3 and the needed derivatives
are given by

— |
" 22"(64_”7,1)', leN
L 1oaye| = (C=nt
dy™ y=0 (2n+2€—1)!(£—§)! JeN il
—_ 1y —_ 1) eN+3
(n+¢ 2).(2[ 1)!
as well as
n dnfk
n kKl— (1 —4 £ k <
d_(yk(l _ 4y)76)‘ _ (k) dy"fk( Y) y=0 n
dy™ y=0
0 else

Therefore the partial derivatives of () with respect to y at (1,0) are

o"Q _o2n—1,y , o—1(2n)!
ayn (LO)_Z nl + 2 Tt
n+1 |
g aQ(l’O) -1k,
yrox n!
n+2 |
yrox n!
n+3 |
synag (1; O) = 2_1%71(” + 2) —-3. 22n—2n!n
o 2n)!
6y"6§1 (1,0) = _3%71(” +1)+3- 22n_3n!n(n +17),
o hQ (2n)!

W(l’ 0) = Tn(n2 +17n +12) — 15 - 22" 2nln(n + 3).

From this we get with (54]) and (&1):

1/2n 1/2n
_ o2n—1 - —
B(n,0) =2 +2<n>’ B(n,1) 2<n>n,
2n—2 L(2nY
(58) B(n,2) =2 n, B(n,3)=§ I L
2n-3 L(2nY
B(n,4) =2 n(3n—1), B(n,5)=§ n°(2n —1),
n

which — last but not least — yields lemma
A variant of (52)) is used in the proof of theorem [[91 We define

~ = 2n —1
59 B(n, k) := ) j* :
(59) = Y40
7=0
Then usual manipulation of the binomials yields the following lemma

Lemma 33. The sums B(n, k) and B(n, k) are connected via

(60) mB(n, k) = nB(n, k) + B(n, k +1).
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APPENDIX B. CALCULATIONS FOR THE PROOF OF (H0]).

For the proof of [{@0) we expand the left hand side and notice that we can extend
the sums for b, because the added summands cancel or vanish. This yields

62k+1) > dimVEE, ., dim VP

(2k=P,1P=9,09) (p,9)
O<q<p<k
p
2k +1 2k +1
= 1 3 2 1
IDNETERIAREE R Pl (i) | G

p=0¢=0
k

2k +1 2k +1

> Y=o+ 0o+ 26+ () ()

-2

0

M”S

0

=
)
Il

kK p 3
+ O p—a+ D)p—q—3+20)(p+q+3)(p+2)(g+1)
p=04¢9=0b=1
2k +1 2k +1
'<k—Q+b—3><k—p—b>
k P 2
3D p—a+ Dp—g—1+20)(p+q+3)(p+2)(g+ 1)
p=0¢=0b=0
2k +1 2k +1
k—q+b—1><k—p—b>
L 2k +1 \ [2k+1
=% Bo-arerernos20 (21 ()
e 2% + 1 2k + 1
- % N0+ oraraor2@en( 2 0) ()
k P 2
+ DD p—a+Dp—g—1+20)(p+q+3)(p+2)(g+1)
p=0¢=0b=0
2k +1 2k +1
k—q+b—2><k—p—b—1>
kK p
—ZZZ(p—q+1)(p—q—1+2b)(p+q+3)(p+2)(q+1)-
p=0¢=0b=0

(o) GE2)
) () -G () === (o )

=Y So-arerardwraeen( 270 ) ()

p=0¢=0 k— p

With
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=X Ne-arerarw () ()

A e (p—g+D)p—g—1+20)(p+q+3)*(p+2)(g+1)
I} 2k + 2 '

p=0 q=0 b=0
2k + 2 2k + 2
k—q+b—1)\k—p—1b

- Y Yw-are+arao+nern( P ) (2

p=0g=0
k+1 p 2k +1 2k +1
—pZO(;)(p—Q)Q(p+q+2)(p+1)((1+1)<k_q_2)(k_p_g)
_’““’””(p—q+2><p—q><p+q>2(p+1><q—1>( ) ()
Pl 2%k + 2 k—q+1/\k—p+1
_kHZp: (p—q)Q(p+q)2pq< 2k +2 )( 2k +2 )
Py 2%k + 2 k—q+1/\k—p+1
NE (P—q+2)(p—Q)(Q+p)2(q—1)(P+1)( 2k +2 )( 2k +2 )
e 2k + 2 k—q+1)\k—p+1

We use the symmetry of the summands with respect to p and ¢ so that we arrive
at

_5%1%1]9 q) (p+q+2)(P+1)(q+1)<k2k+1 )( 2k +1 )

o —q+1/\k—-p+1

k+1 k+1

__ZZ p+q—4)(p—2)(q—2)(k2_k;jl><k2—k;+11>

p=0g=

%”il p—q+2)(p Q)(p+Q)2(p+1)(q—1)<k2k+2)(2k+2>

o 2(k+1) —q+1)\k—-p+1

%1%1 (p +q)p <2k+2)<2k+2)
=5 k+D k—q+1/\k—p+1
’ilp3p+1p+2) 2k +2 \ (2k +2
2(k +1) k—p+1)\k+1
k+1
2k + 1\ [ 2k +1
-2 p’(p—4)(p—2
290 GG
k+1
2k +1\ [ 2k +1
_ —1)2%(p — -2
So-ve-ve-2(" ) (20

46 2k + 1\ /2k + 1
k kE+1
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k+1k+1

—%ZZ 2((p+q+2)p+ D)@ +1) —(p+q-4)p—2)(a—2):
2k +1 2k +1

( —Q+1><k—p+1>

1

J’_

1

k+1k+1

22p+q —9)2p—q+2)p+1D(g—1) + (p — 9)pg)-

qu
2% + 2 2% + 2
k—qg+1/\k—p+1
2% +2\ '& 2k + 2
- 1)(p +2
2<k+1><k+1>p2_0p P+ D+ ><k_p+1)

(N Se-vere-nco-vre-n(, 1)),

= k—p+1

2k +1\°
6
o)
We expand the polynomial coefficients and write the last sum in Terms of B and
B:

—B(k+1,4)B(k +1,0) + 6B(k + 1,3)B(k + 1,1) —9B(k + 1,2)?
—9B(k +1,3)B(k +1,0) + 9B(k + 1,2) B(k + 1,1)

+18B(k +1,2)B(k +1,0) — 18B(k + 1,1)?

. 2
~ 5D (BBU+ LO)B+1,1) = 6B(k + 1, ) B(k +1,0) = 3B(k +1,3)
2k +2

+6B(k+1,2)* + (k+1

) (B(k +1,5) +3B(k + 1,4) + 2B(k + 1, 3)))

%+ 1\ /.~ N N N
—( ]:)(2B(k+1,4)—12B(k+1,3)+16B(k+1,2)+B(k+1,4)

—TB(k+1,3) +17B(k +1,2) = 17TB(k +1,1) + 6B(k + 1, 0)

46 2k + 1\ /2k +1
k k+1)°
Inserting ([60) as well as (G8) from appendix [Al yields ([@0]) which finishes the proof
of theorem
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