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THE DECOMPOSITION OF THE SPINOR BUNDLE OF

GRASSMANN MANIFOLDS

FRANK KLINKER

Abstract. The decomposition of the spinor bundle of the spin Grassmann
manifolds Gm,n � SOpm�nq{SOpmq�SOpnq into irreducible representations
of sopmq ` sopnq is presented. A universal construction is developed and the
general statement is proven for G2k�1,3, G2k,4, and G2k�1,5 for all k. The
decomposition is used to discuss properties of the spectrum and the eigenspaces
of the Dirac operator.

1. Introduction

The discussion of the spectrum of differential operators on spin symmetric and spin
homogeneous spaces has been part of the literature for many years (see for example,
[3],[25],[26],[27] or [22]). This topic brings together different aspects of geometry
and representation theory, such as existence of spin structures on homogeneous
spaces (e.g., [2] or [19]) and branching rules for representations (e.g., [29], [20], [14],
[24], [12], [16], [15], [17], [4]). In particular the work of Parthasarathy [25] yields
an important theoretical tool to describe the spectrum and the eigenspaces of the
Dirac operator of a spin symmetric space G{K. It may roughly be summarized
as follows. In the first step, decompose the spinor bundle of M in irreps of K.
In the second step, list all G-representation which decomposition with respect to
K admits a summand from the list obtained in the first step. In [22] and [23]
these tools have been noticed to be very powerful for the discussion of the first
eigenvalue of the Dirac operator. Nevertheless the practical application of the
theoretical tools contains many difficulties which are of course the reason why most
authors, including ourselves, restrict to examples. If we consider symmetric spaces,
in particular where both parts are of the same rank, the second step has mainly
been solved for the classical groups in the literature cited above. For the first
step we need branching rules for the isotropy group of M with respect to the
subgroupK. Therefore this step is more sophisticated in so far as the rank difference
between K and the isotropy group is big, in general. For example, this difference
is rkpsop4kℓqq � rkpsop2kq ` sop2ℓqq � 2kℓ� k � ℓ for the Grassmannian G2k,2ℓ.

In this text we prove a formula for the decomposition of the spinor bundle of
the spin Grassmannians Gm,n � SOpm � nq{SOpmq � SOpnq for n ¤ 5. The
construction also yields the decomposition of the spinor bundle of Gm,n in the
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general case. See theorem 13 and theorem 19 as well as conjecture 12 and conjecture
18. This decomposition can be rephrased as branching of the spin representation
of sopmnq with respect to the subalgebra sopmq ` sopnq for which there are no
general statement proven so far but only partial results for n � 1, 2 (see, e.g.,
[27]). Our proof needs the explicit construction of the weights cf. (24) and (25) but
also a dimension analysis. For the case pm,nq � p2k, 4q this dimension analysis is
reformulated in lemma 16. Here as well as in the odd dimensional cases with n ¤ 5
we need closed expressions for sums over binomial terms which we prove in appendix
A. Why and how the techniques provided in the proofs for n ¤ 5 can be used for
the general case and what the practical difficulties are, is explained in section 5.
Nevertheless for fixed pm,nq one can let any computer algebra system – for example,
maple – do the dimension calculation to tell one that the decomposition results
are right in all these cases. But this is not the only evidence of the correctness of
our general result. In section 4 we discuss some aspects of the spectrum and the
eigenspaces of the Dirac operator on Grassmann manifolds. We compare our results
of section 3 with the results of [22] and [23]. The perfect match also substantiates
the statement on the decompositions (29) and (37) in the general case. As a further
result we identify the smallest summand of the eigenspace to the first eigenvalue of
the Dirac operator, see propositions 25 and 30 and conjectures 24 and 29. Small in
this situation means with respect to the ordering which is induced by the ordering
of weights. We show that this eigenspace is nondegenerate in the case G4,4 (see
example 28).

The text is organized as follows. In section 2 we recall the theoretical basis and
explain the projection method at a well known simple example before we use this
method to decompose the spinor bundle of the Grassmannians in section 3. In
section 4 we turn to the discussion of the Dirac operator and its spectrum and end
up with some concluding remarks in section 5.

2. Decomposing the spinor representation of G{K

2.1. Symmetric spaces: The Parthasarathy formula. Consider a homoge-
neous spacesM � G{K, K � G, g � k`p together with its G-invariant Riemannian
metric induced by the Killing form b.1 Then

p �
 

v P g| bpv, hq � 0 �h P K
(

,
�

k, k
�

� k ,
�

k, p
�

� p ,
�

p, p
�

� k` p .

Suppose M is a symmetric space. Then, in particular, the bracket of p with itself
closes into k. Suppose k and g are of the same rank.2

Let ζ : K Ñ SOppq be the isotropy representation of M . ζ induces a representation
ζ
�

on Lie algebra level given by

(1) ζ
�

: kÑ soppq, ζ
�

phqpvq � pad
g
hq

�

�

p
pvq � projprh, vs .

Remark 1. M � G{K admits a G-invariant spin structure if and only if ζ lifts to

ζ̃ : K Ñ Spinppq.

1For M isotropy irreducible we get an Einstein space with scalar curvature s � dimM
2

.
2This is true in almost all cases of symmetric spaces up to two series, see, for example, [11].
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Let teiu be an orthonormal basis of p. Then ζ
�

and ζ̃
�

: k Ñ soppq are connected
via

(2) ζ̃
�

phq �
1

4

¸

ei � ζ�phqpeiq ,

where � denotes the Clifford multiplication in Cℓppq. We denote by γ : Spinppq Ñ

Endp∆q the spinor representation and write ρ :� γ � ζ̃. The following construction
is due to [25] and has been used to calculate the eigenvalues of Dirac operators, see
section 4.

Let S � G�ρ∆ be the spinor bundle of M � G{K, where G is viewed as a principle
bundle over M . S splits under the action of k into certain subbundles which are
labeled by an index set W0

(3) S �

à

σPW0

Sσ .

Let Φ�

g and Φ�

k be the the sets of g-positive roots and k-positive roots, respectively.

We define Φ�

p :� Φ�

g zΦ
�

k and

(4) αg :�
1

2

¸

αPΦ�

g

α, αk :�
1

2

¸

αPΦ�

k

α .

Let W be the Weyl group of g. Then W0 is given by

(5) W0 �

 

σ PW|Φ�

k � σΦ�

g

(

.

The spinor representation ρ decomposes as ρ �
°

σPW0
ρσ, where

(6) βσ � σαg � αk �
1

2

¸

αPσΦ
�

p

α

is the highest weight of the irreducible representation ρσ of K. The latter appears
with multiplicity one in the sum. The corresponding representation space Sσ is of
dimension

(7) dimSσ �

¸

αPΦ�

k

xβσ � αk, αy

xα, αy
�

¸

αPΦ�

k

xσαg, αy

xα, αy
.

Example 2. We consider g � sop2n � 1q � sop2nq � k. The embedding is due to
the usual p2n�1q � 2n ` 1 splitting. The roots of sop2n � 1q are

 

� ek,�ei �

ej
(

1¤k¤n,1¤i j¤n
and those of sop2nq are given by the subset

 

� ei � ej
(

1¤i j¤n
.

The positive roots are Φ�

sop2n�1q
�

 

ek, ei � ej
(

1¤k¤n,1¤i j¤n
and Φ�

sop2nq
�

 

ei �

ej
(

1¤i j¤n
respectively. So Φ�

p �

 

ek
(

1¤k¤n
. In particular αsop2n�1q �

°n
i�1

pn�

i� 1

2
qei and αsop2nq �

°n
i�1

pn�iqei. Beside the identity, the only Weyl reflection, σ,

which obeys σΦ�

sop2n�1q
� Φ�

sop2nq
is the one associated to the root en. This yields

σΦ�

p �

 

ek,�en | k � 0, . . . n�1
(

. Therefore, the spinor representation decomposes
into two summands associated to the two highest weights

1

2

�

e1 � � � � en�1 � en
�

as expected.

A generalization of the above construction by Parthasarathy is given by the follow-
ing nice observation, see [6] or [9].
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Proposition 3. Let M � G{K be a symmetric space and g, k semisimple with
rank difference d � rkpgq � rkpkq. Let Π be the set of highest weights of irreducible
representations of k which appear in the decomposition of the spinor representation
of M . Then

S � 2r
d
2
s

¸

βPΠ

Vβ .

Example 4. Consider M � G�G{G with dimG � dimM � n, rkpGq � k. In this
case the isotropy representation is the adjoint action so that Vsopnq � adg. The
rank difference is exactly the rank of G and the spinor representation is

S � 2r
k
2
sVαg

,

with αg from (4) – see [14].

2.2. General homogeneous spaces: the explicit construction. The method
cf. Parthasarathy (6) does only work for the decomposition of the spinor bundle of
symmetric spaces. If we want to deal with general homogeneous spaces we have
to calculate the decomposition directly. Even in the situation of section 2.1 it is
sometimes easy to do so, because we have to compare the weights of the respective
algebras in a common base anyway.

We consider the homogeneous spaceM � G{K with faithful isotropy representation
K Ñ SOppq, where g � k ` p is the decomposition of the associated Lie algebras.
We suppose M to be spin such that the isotropy representation ζ

�

: kÑ soppq gives
rise to the spinor representation ρ : K Ñ Spinppq � Endp∆q.

The construction: We decompose adg with respect to k and get

(8) adg � adk `
à

α

Vα ,

where
À

α Vα is the decomposition of ζ
�

� adg
�

�

k,p
. From the construction we see

that this coincides with the vector representation of soppq:

(9) vector representation of soppq �
à

α

Vα .

This information encodes the inclusion due to the following observation, see [31,
sec. 7.6]

Proposition 5. Let ι : h Ñ g be an injective homomorphism of Lie algebras
with h semisimple. Consider the irreducible vector representation of g. Then the
knowledge of its decomposition into irreducible representations with respect to h

yields the knowledge of the decomposition of any irreducible representation of g

with respect to h.

This proposition is related to the notion of plethyms and may be formulated as
follows. Let λg be the vector representation of g, then

λg ×

¸

i

λi
h ñ µg ×

¸

j

µ
j
h �

¸

i

λi
hb̄µg ,

where b̄ denotes the plethym. For a review on plethyms see, for example, [18] or
[4]. This yields that we are theoretically able to calculate the decomposition of the
spinor representation of each homogeneous space. Nevertheless the decomposition



THE DECOMPOSITION OF THE SPINOR BUNDLE OF GRASSMANN MANIFOLDS 5

contains many practical difficulties. We will illustrate the explicit construction at
a well known example of low rank.

2.3. Example: Berger space SOp5q{SOp3q. Let M be the seven dimensional
Berger space. This is the homogeneous space SOp5q{SOp3q, where the subgroup
is characterized as follows. We consider the embedding of sop3q in sop5q such that
the five dimensional vector representation of sop5q stays irreducible.

We recall the weights of the five and four dimensional irreducible representations
of sop5q and sop3q and the spaces associated to these representations.

dim of sop5q sop3q

Rep. highest weight space highest weight space

5 p1, 0q � e1 R

5
p4q � 4λ S2

0pR
3
q

4 p

1

2
, 1

2
q �

1

2
pe1 � e2q S 1

2

p3q � 3λ S 3

2

Here we write λ for the highest weight of the vector representation of sop3q so that
the weights of sop3q-representations are given by kλ.

The root system of sop5q is given by t�e1,�e2,�e1 � e2u.

To give λ in terms of te1, e2u we use that the weight diagram of 5 with respect to
sop5q projects onto the corresponding weight diagram with respect to sop3q. The
weight diagram of 5 with respect to sop5q is t�e1,�e2, 0u. Up to symmetries we
have

projspantλu
�

e1
�

� 4λ ,

projspantλu
�

e2
�

� 2λ ,
(10)

or

xe1, λy
λ

|λ|2
� 4λ ^ xe2, λy

λ

|λ|2
� 2λ ,

λ1 � 4|λ|2 ^ λ2 � 2|λ|2 .

From the last line we get |λ|2 � 1

20
and so

(11) λ � 1

10

�

2e1 � e2
�

.

Remark 6. The 4 of sop5q stays irreducible as well. Its weight diagram is given by
t�e1 � e2u and we have projspantλu

�

1

2
pe1 � e2q

�

� p2� 1qλ.

To decompose the adjoint of sop5q with respect to sop3q we need the projection3 of
the weight diagram on spantλu:

projspantλupe1 � e2q � 6λ ,

projspantλupe1q � 4λ ,

projspantλupe2q � 2λ ,

projspantλupe1 � e2q � 2λ .

3We omit the projection of the origin, because its multiplicity stays the same.
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We see that the image contains two diagrams to the highest weight 6λ and 2λ, re-
spectively, where 2λ is the adjoint of sop3q and 6λ the seven dimensional irreducible
representation. Therefore

sop5q � sop3q ` 7 .

The isotropy representation yields the embedding sop3q ãÑ sop7q and the calcula-
tions above show that this remains irreducible with respect to sop3q.

To get the decomposition of the spinor representation, we need the weight diagram
of sop3q as subset of the weight lattice of sop7q. Therefore we turn to a three
dimensional picture and write the roots of sop7q as

 

�e1,�e2,�e3,�e1�e2,�e1�

e3,�e2 � e3
(

such that the weight lattice of 7 is given by
 

� e1,�e2,�e3, 0
(

. As
before we denote the highest weight of the vector representation of sop3q as λ so
that the seven dimensional representation is given by 6λ. We get

projspantλupe1q � 6λ ,

projspantλupe2q � 4λ ,

projspantλupe3q � 2λ ,

(12)

or

(13) λ � 1

56
p6, 4, 2q .

The spin representation is eight dimensional and the weights are given by
 

1

2
p�e1�

e2 � e3q
(

. The projection on the weight lattice of sop3q is

projspantλu
� 1

2
p�e1 � e2 � e3q

(�

�

 

� 6λ,�4λ,�2λ, 0λ
(

Y

 

0λ
(

,

which yields

Proposition 7. The spinor representation of M � SOp5q{SOp3q split into the p6q
and p0q of sop3q:

(14) 8 � 7` 1 .

In particular the Berger space is a nearly parallelG2-Einstein manifold, in particular
it admits a connection which annihilates one spinor (see [1] and [7]).

3. The spinor bundle of Grassmann manifolds

We recall the following observation (see[2] or [27]).

Proposition 8. The Grassmannian Gm,n � SOpn �mq{SOpnq � SOpmq is spin
if and only if m � 1 or n � 1 or m� n even.

In particular if the Grassmannian is not of typeGn,n�1 all even and odd dimensional
spin Grassmanianns are of the form G2k,2ℓ and G2k�1,2ℓ�1, respectively. Therefore
we divide this section into two parts dedicated to the even and odd dimensional
spin Grassmannians, respectively.
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3.1. The even dimensional case. We consider the even dimensional spin Grass-
mannian G2k,2ℓ � SOp2pk� ℓqq{pSOp2kq � SOp2ℓqq. Our goal is to decompose the
spinor representation of G2k,2ℓ with respect to sop2kq ` sop2ℓq. We consider ℓ ¤ k

and restrict ourselves to ℓ � 1 because this case is treated in detail in [27]. We have

(15) sop2pk � ℓqq � sop2kq ` sop2ℓq ` p2kb 2ℓq .

This yields that the isotropy representation sop2kq ` sop2ℓq ãÑ sop4kℓq is the stan-
dard embedding. This means that the vector representation of sop4kℓq decomposes
as

(16) 4kℓ � 2kb 2ℓ .

Moreover we know that the adjoint representation decomposes as follows

(17) sop4kℓq � sop2kq ` sop2ℓq `
�

sop2kq b S2

0pR
2ℓ
q

�

`

�

S2

0pR
2k
q b sop2ℓq

�

.

We construct a basis of the Cartan algebra of sop4kℓq such that we recover the
Cartan basis of sop2kq and sop2ℓq. We denote the Cartan basis of sop2kq and sop2ℓq
by tKiu1¤i¤k and tLiu1¤i¤ℓ, respectively. The associated decompositions into two
dimensional subspaces are R2k

� V1 ` � � � ` Vk and R2ℓ
� W1 ` � � � `Wℓ with

Vi � spantvi1, v
i
2u, Wj � spantw

j
1
, w

j
2
u, i.e., Kipv

j
1
q � δ

j
i v

i
2, Kipv

j
2
q � �δ

j
i v

i
1 and

similar for Li.

We write Vi bWj � Eij ` Fij with Eij � spante
ij
�

, e
ij
�

u, Fij � spantf
ij
�

, f
ij
�

u and

e
ij
�

�

1
?

2
pvi1 b w

j
1
� vi2 b w

j
2
q , e

ij
�

�

1
?

2
pvi2 b w

j
1
� vi1 b w

j
2
q ,

f
ij
�

�

1
?

2
pvi1 b w

j
2
� vi2 b w

j
1
q , f

ij
�

�

1
?

2
pvi1 b w

j
1
� vi2 b w

j
2
q .

(18)

We define tNe
ij , N

f
iju1¤i¤k,1¤j¤ℓ by

Ne
ijpe

i1j1

�

q � �δi
1

i δ
j1

j e
ij
	

,

N
f
ijpf

i1j1

�

q � �δi
1

i δ
j1

j f
ij
	

.
(19)

This is the Cartan basis with associated decomposition

(20) R

4kℓ
�

à

i,j

pVi bWjq �

à

i,j

Eij `

à

i,j

Fij .

We have

Kipe
i1j
�

q � �δi
1

i e
ij
	

, Kipf
i1j
�

q � 	δi
1

i f
ij
	

,

Ljpf
ij1

�

q � 	δ
j1

j f
ij
	

, Ljpe
ij1

�

q � 	δ
j1

j e
ij
	

,

for all i � 1, . . . , k and j � 1, . . . , ℓ , such that

(21) Ki �

ℓ̧

j�1

pNe
ij �N

f
ijq and Lj � �

ķ

i�1

pNe
ij �N

f
ijq .

We write ǫxij � pNx
ijq

� such that the roots of sop4kℓq are given by

(22)
 

� ǫxij � ǫ
y
i1j1 |x, y P te, fu; 1 ¤ i, i1 ¤ k; 1 ¤ j, j1 ¤ ℓ

(

.
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The roots which form the subalgebra sop2kq`sop2ℓq are given by t�K�

i �K�

i1u and
t�L�j � L�j1u or

(23)
!

ℓ̧

j�1

�

� pǫeij � ǫ
f
ijq � pǫei1j � ǫ

f
i1jq

�

| 1 ¤ i, i1 ¤ k
)

Y

!

ķ

i�1

�

� pǫ
f
ij � ǫeijq � pǫ

f
ij1 � ǫeij1 q

�

| 1 ¤ j, j1 ¤ ℓ
)

.

To get the decomposition of the spinor representation of sop4kℓq with respect to
sop2kq ` sop2ℓq we project the diagram4 1

2
p�1, . . . ,�1q � 1

2

°

x,i,jp�ǫ
x
ijq onto the

subspace spanned by (23) and expand the result with respect to tK�

i , L
�

j u. Explic-
itly this is done by writing

�

K�

i

L�j

�

� A

�

ǫeij
ǫ
f
ij

�

.

If we choose ǫxij � pǫx11, . . . , ǫ
x
1ℓ, . . . , ǫ

x
k1, . . . , ǫ

x
kℓq the rpk�ℓq�2kℓs-matrix A is given

by the following rows:

(24)

Ai �

�

pi�1qℓ
hkkikkj

0, . . . , 0,

ℓ
hkkikkj

1 . . . , 1,

pk�iqℓ
hkkikkj

0, . . . , 0,

pi�1qℓ
hkkikkj

0, . . . , 0,

ℓ
hkkkkkikkkkkj

�1 . . . ,�1,

pk�iqℓ
hkkikkj

0, . . . , 0
�

, 1 ¤ i ¤ k ,

Ak�j �

�

0, . . . , 0,

j

Ó

�1, 0, . . . 0
looooooooooomooooooooooon

ℓ

, . . . , 0, . . . , 0,

j�p2k�1qℓ

Ó

�1 , 0, . . . , 0
looooooooooooooomooooooooooooooon

ℓ

�

, 1 ¤ j ¤ ℓ .

The projected diagram is read from

(25) 1

2
A
�

� 1, . . . ,�1
�T

and we get the first observation.

Remark 9. All the images of the set t 1
2
p�1, . . . ,�1

�T
u by the map A consist of

weights with integer entries.

To illustrate this procedure we will examine the examples k � ℓ � 2, k � ℓ � 3,
and k � 4, ℓ � 2 before we state the general result.

k � ℓ � 2: The matrix A with
�

4K�

i , 4L
�

j

�T
� A

�

ǫeij , ǫ
f
ij

�T
is explicitly given by

A �

�

�

�

�

1 1 �1 �1
1 1 �1 �1

�1 �1 �1 �1
�1 �1 �1 �1

�

�

�

�

.

4The diagram splits into two diagrams which correspond to the positive, respectively negative
spinor representations depending on whether the number of minus signs is even, respectively odd.



THE DECOMPOSITION OF THE SPINOR BUNDLE OF GRASSMANN MANIFOLDS 9

To get the image of a vector ~x P spantǫxiju under the projection we need A~x. For ~x
contained in the spinor diagram the images are, for example,

1

2
p�1,	1,�1,	1,�1,	1,�1,	1q ÞÝÑ pp0, 0q, p2,�2qq ,

1

2
p�1,�1,�1,�1,�1,�1,	1,	1q ÞÝÑ pp2,�2q, p0, 0qq ,

1

2
p�1,�1,	1,�1,�1,�1,	1,	1q ÞÝÑ pp1,�1q, p2, 0qq ,

1

2
p�1,�1,�1,	1,�1,�1,�1,	1q ÞÝÑ pp2, 0q, p1,�1qq ,

1

2
p�1,�1,�1,	1,�1,�1,�1,	1q ÞÝÑ pp1, 0q, p2,�1qq ,

1

2
p�1,�1,�1,�1,�1,�1,�1,	1q ÞÝÑ pp2,�1q, p1, 0qq .

p2,�2q may be identified with the subset of trace-free 4-tensors on R4 with symme-

try of the Young diagram . p2,�1q is given by the subset of trace-free 3-tensors

with symmetry . In both cases � indicates the eigenspaces of the symmetry of
the tensors, which is induced by the self duality of two forms in dimension 4.

In table 1 we list the representation spaces, associated Young diagrams, and add
the dimension as well as the further decomposition with respect to sup2q ` sup2q.
The notation has been taken from [21] and contains the highest weights of the two
factors, e.g., p3|1q � 4b 2.

Table 1. Representations of sop4q

Rep. of sop4q Symmetry Dec. wrt. sup2q ` sup2q Dimension

p00q � p0|0q 1

p10q p1|1q 4

p11�q p2|0q and p0|2q 2 � 3

p20q 0 p2|2q 9

p22�q 0 p4|0q and p0|4q 2 � 5

p21�q 0 p3|1q and p1|3q 2 � 8

So the decomposition of the spinor representation into (reducible) representation
spaces with respect to sop4q ` sop4q is

S� �

�

1b 10
�

`

�

10b 1
�

`

�

6b 9
�

`

�

9b 6
�

,

S� �

�

4b 16
�

`

�

16b 4
�

.
(26)

and the irreducible decomposition – or equivalently the decomposition with respect
to sup2q ` sup2q ` sup2q ` sup2q – is

S� � p0|0|0|4q` p0|0|4|0q ` p0|4|0|0q` p4|0|0|0q

` p2|2|2|0q` p2|2|0|2q` p2|0|2|2q ` p0|2|2|2q ,

S� � p1|1|1|3q` p1|1|3|1q ` p1|3|1|1q` p3|1|1|1q .

(27)
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k � 4, ℓ � 2: The matrix with
�

4K�

i , 8L
�

i

�T
� A

�

ǫeij , ǫ
f
ij

�T
is explicitly given by

�

�

�

�

�

�

�

�

1 1 �1 �1
1 1 �1 �1

1 1 �1 �1
1 1 �1 �1

�1 �1 �1 �1 �1 �1 �1 �1
�1 �1 �1 �1 �1 �1 �1 �1

�

�

�

�

�

�

�

�

.

The representation spaces which are associated to the images of 1

2
p�1, . . . ,�1q are

listed in table 2. They are divided into two parts such that the first 18 summands
give the decomposition of the positive spinor representation, and the second 12
summands yield the decomposition of the negative spinor representation.

Table 2. Representations of sop8q ` sop4q

Representation of Irreducible Dec. w.r.t.

sop8q ` sop4q sop8q ` sup2q ` sup2q Dimension

p0000|44�q p0000|8|0q` p0000|0|8q 2 � p1 � 9 � 1q � 2 � 9

p2000|33�q p2000|6|0q` p2000|0|6q 2 � p35 � 7 � 1q � 2 � 245

p1100|42�q p1100|6|2q` p1100|2|6q 2 � p28 � 7 � 3q � 2 � 588

p2200|22�q p2200|4|0q` p2200|0|4q 2 � p300 � 5 � 1q � 2 � 1500

p2110|31�q p2110|4|2q` p2110|2|4q 2 � p350 � 5 � 3q � 2 � 5250

p1111�|40q p1111�|4|4q ` p1111�|4|4q 2 � p35 � 5 � 5q � 2 � 875

p2220|11�q p2220|2|0q` p2220|0|2q 2 � p840 � 3 � 1q � 2 � 2520

p2211�|20q p2211�|2|2q ` p2211�|2|2q 2 � p567 � 3 � 3q � 2 � 5103

p2222�|00q p2222�|0|0q ` p2222�|0|0q 2 � p294 � 1 � 1q � 2 � 294

p1000|43�q p1000|7|1q` p1000|1|7q 2 � p8 � 8 � 2q � 2 � 128

p2100|32�q p2100|5|1q` p2100|1|5q 2 � p160 � 6 � 2q � 2 � 1920

p1110|41�q p1110|5|3q` p1110|3|5q 2 � p56 � 6 � 4q � 2 � 1344

p2210|21�q p2210|3|1q` p2210|1|3q 2 � p840 � 4 � 2q � 2 � 6720

p2111�|30q p2111�|3|3q ` p2111�|3|3q 2 � p224 � 4 � 4q � 2 � 3584

p2221�|10q p2221�|1|1q ` p2221�|1|1q 2 � p672 � 2 � 2q � 2 � 2688

� 216

k � ℓ � 3: In this example the matrix which obeys p6K�

i , 6L
�

j q � Apǫeij , ǫ
f
ijq has size

6�18. As before, we list the irreducible representation spaces which are associated
to the images of 1

2
p�1, . . . ,�1q. The result for S� can be found in table 3. The

representations for S� can be obtained by interchanging the two factors.
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Table 3. Representations of sop6q ` sop6q

Irreducible Rep. of

sop6q ` sop6q Dimension

p000|333�q 2 � p1 � 84q � 2 � 84

p110|331�q 2 � p15 � 270q � 2 � 4050

p200|322�q 2 � p20 � 140q � 2 � 2800

p211�|320q 2 � p45 � 300q � 2 � 13500

p220|311�q 2 � p84 � 126q � 2 � 10584

p222�|300q 2 � p35 � 50q � 2 � 1750

p332�|100q 2 � p6 � 189q � 2 � 1134

p330|111�q 2 � p10 � 300q � 2 � 3000

p321�|210q 2 � p64 � 256q � 2 � 16384

p310|221�q 2 � p70 � 175q � 2 � 12250

�

1

2
� 218

Before we state the general result we introduce the following operation.

Definition 10. Let λ � pλ1, . . . , λnq be a vector with non-negative decreasing
integer entries. For m ¥ maxtλju, ℓ ¥ n the pℓ,mq-conjugate5 λcpℓ,mq is defined by
the vector which represents the Young diagram obtained by the following procedure.
Extend the Young diagram associated to λ to an rectangle of size pℓ�mq, erase λ,
rotate the remaining part by 180�, and reflect at the main diagonal.

pλcpℓ,mq

qj � ℓ�#ti|λi ¥ m� j � 1u for 1 ¤ j ¤ m.

For example, p5, 3, 2, 0qcp4,6q � p4, 3, 3, 2, 1, 1q:

extend
ÞÝÑ

�

� � �

� � � �

� � � � � �

erase
ÞÝÑ

�

� � �

� � � �

� � � � � �

rotate
ÞÝÑ

reflect
ÞÝÑ

Remark 11.  We denote by λ1 the transpose of the diagram λ, i.e., the reflec-
tion of λ at the main diagonal. Then the pℓ,mq-conjugate and the transpose

5We may always assume n � ℓ by extending λ by zeros.



12 FRANK KLINKER

are connected by

λ
cpℓ,mq

j � ℓ� λ1m�j�1, 1 ¤ j ¤ m.

 Furthermore we have

pλ1q1 � pλcpℓ,mq

q

cpm,ℓq
� λ

and therefore

pλcpℓ,mq

q

1

j � m� λℓ�j�1, 1 ¤ j ¤ ℓ .

 For λ � pλ1, . . . , λℓq we have

(28) λcpℓ,mq

� pℓm�λ1 , pℓ� 1qλ1�λ2 , . . . , 1λℓ�1�λℓ , 0λℓ
q .

Conjecture 12. Let G2k,2ℓ � SOp2pk� ℓqq{pSOp2kq�SOp2ℓqq be the spin Grass-
mannian of even dimension 4kℓ and let S� and S� the positive and negative spinor
bundles respectively. Suppose k ¥ ℓ. The spinor bundle S�`S� decomposes into a
sum of 2�

�

k�ℓ
ℓ

�

subbundles associated to irreducible representations of sop2kq`sop2ℓq.
The weights of these representations are given by

(29) pλ1, . . . , λk|µ1, . . . , µℓq ,

with ℓ ¥ λ1 ¥ � � � ¥ λk�1 ¥ |λk| ¥ 0, k ¥ µ1 ¥ � � � ¥ µℓ�1 ¥ |µℓ| ¥ 0 and

pλ1, . . . , |λk|q � pµ1, . . . , |µℓ|q
cpℓ,kq ,(30)

or equivalently

pµ1, . . . , |µℓ|q � pλ1, . . . , |λk|q
cpk,ℓq .(30’)

In particular
°k

i�1
λi �

°ℓ
j�1

µj � kℓ.

Theorem 13. Conjecture 12 is true for ℓ � 2.

Remark 14.  For λk � 0 (in this case µℓ � 0) the representation with �λk

is present within the decomposition, too. This symmetry is due to self
duality with respect to sop2kq. This argument is symmetric with respect to
the two factors sop2kq and sop2ℓq so that S� splits itself into two subbundles
S� � S�� ` S��.

 If the product kℓ is even, representations with weights such that both sums
°k

i�1
λi and

°ℓ
j�1

µj are even (or odd) belong to S� (or S� respectively).

In particular,
�

0k|kℓ
�

and
�

ℓk|0ℓ
�

belong to S�.

 If the product kℓ is odd, representations with
°k

i�1
λi even (or odd) and

°ℓ
j�1

µj odd (or even) belong to S� (or S� respectively). In particular
�

0k|kℓ
�

belongs to S� and
�

ℓk|0ℓ
�

belongs to S�.

Towards a proof. Firstly we have to show that all the mentioned weights appear
as an image of A on the set

 

p�

1

2
, . . . ,� 1

2
q

(

. Consider the sop2ℓq-representation

λ � pλ1, . . . , λℓq with λℓ ¥ 0. We associate vectors ~fµ P R
ℓ and ~w P R

2kl given by

2~fi � p

i
hkkkkkikkkkkj

�1, . . . ,�1, 1, . . . , 1q, 0 ¤ i ¤ ℓ

and
~w �

�

~f0, . . . , ~f0
loooomoooon

k�λ1

, . . . , ~fi, . . . , ~fi
loooomoooon

λi�λi�1

, . . . , ~fℓ, . . . , ~fℓ
loooomoooon

k�λℓ

�

.
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to the tuple λ. Then ~w is a preimage of
�

ℓk�λ1 , pℓ� 1qλ1�λ2 , . . . , 1λℓ�1�λℓ , 0λℓ
|λ1, . . . , λℓ

�

under the action of A with rows given by (24).

The prove of the statement now is done by a dimension check: For λ with λk ¥ 0 we

write λ̃ � λcpk,ℓq such that
˜̃
λ � λ. The dimension of the sop2kq-irrep with highest

weight λ � pλ1, . . . , λkq and the corresponding dimension of the sop2ℓq-irrep with

highest weight λ̃ � pλ̃1, . . . , λ̃ℓq are given by

dimV
sop2kq

λ �

¹

1¤i j¤k

pλi � k � iq2 � pλj � k � jq2

pk � iq2 � pk � jq2

�

¹

1¤i j¤k

pλi � λj � 2k � i� jqpλi � λj � i� jq

p2k � i� jqpj � iq

and pλ, kq substituted by pλ̃, ℓq. The dimension may also be expressed using the
following determinant

dpλ1, . . . , λkq � det

��

2k � λi � i� j � 1

2k � 1




�

�

2k � λi � i� j � 1

2k � 1


�

1¤i,j¤k

,

see [8]. To prove the main statement we have to show

(31)
¸

λ�pℓkq

dimV
sop2kq

λ � dimV
sop2ℓq

λ̃
� 22kℓ�1 ,

where we have to take one half of the dimension of the spinor module because the
construction yields that either λ or λ̃ has vanishing last component.

3.2. The case ℓ ¤ 2. In this section we prove theorem 13. We recall that conjecture
12 for ℓ � 1 is shown in [27] such that we consider the case G2k,4, which is one of
the compact quaternionic Kähler symmetric spaces classified in [30].

We label the sop4q-weights by two numbers k ¥ p ¥ q ¥ 0 such that the spaces in
the decomposition (29) have the weights

(32) p2k�p1p�q0q|pqq� .

The dimension of the sop4q-representation pp, qq is

dimV
sop4q

ppq�q
� pp� q � 1qpp� q � 1q .

We use the classical result of [18] on the characters of the classical groups to evaluate
the dimensions of the representation spaces of sop2kq which we need here.

Proposition 15. Let λ be the highest weight of an sop2kq representation with
λk ¥ 0, then the dimension of the representation is connected to the dimension of
representations with respect to glp2kq via the Littlewood-Richardson-coefficients LR
by

(33) dim V
sop2kq

λ �

¸

µ

¸

α1¡���¡αs¡0

p�1q
°

αjLRλ
σpαq,µ dimV glp2kq

µ .

where the sum also contains α � p0q.
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Here σpαq is the weight corresponding to the diagram which ith row has αi�i boxes
and its ith column has αi � i � 1 boxes. The weights µ for which LRλ

σpαq,µ � 0

correspond to traces of λ associated to the symmetry of σpαq.

In the our case – λi ¤ 2 – only those coefficients are nonzero for which the diagram
associated to σpαq fits into the diagram associated to λ. The possible candidates are
α � p0q with σpαq � p0, . . . , 0q and α � p1q with σpαq � p2, 0, . . . , 0q. The weights
µ such that LRλ

σp1q,µ � 0 are associated to the trace of λ and if non vanishing the

value of LR is 1. For λ � p2a1b0cq the trace is given by p2a�11b0c�1
q.

If we define6

fpk, p, qq :�

±k�q
α�1

p2k � 1� αq
±k�p

α�1
p2k � 2� αq

±k�p
α�1

pk � q � 2� αq
±p�q

α�1
α
±k�p

α�1
α

�

p� q � 1

2k � 1

�

2k � 1

k � q � 1


�

2k � 1

k � p




,

(34)

and fpk, k � 1, qq � 0 we have for all k ¥ p ¥ q ¥ 0,

fpk, p, qq � fpk, p� 1, q � 1q

�

p2kq!p2k � 2q!pp� q � 1qpp� q � 1q

pk � q � 1q!pk � p� 2q!pk � q � 1q!pk � pq!

�

pp� q � 1qpp� q � 1q

p2k � 1qp2k � 2q

�

2k � 2

k � p


�

2k � 2

k � q � 1




,

so that the dimension of the sop2kq-representation p2k�p1p�q0qq� is given by

dimp2k�p1p�q0qq � fpk, p, qq � fpk, p� 1, q � 1q if k ¥ p ¥ q ¡ 0 ,

and

dimp2k�p1pq� �

1

2

�

fpk, p, 0q � fpk, p� 1, 1q
�

if k ¥ p ¥ q � 0 .

The proof of conjecture 12 for ℓ � 2 is done by showing the identity

¸

0¤p¤k

pp� 1q4

2

�

2k � 2

k � p


�

2k � 2

k � 1




�

¸

1¤q¤p¤k

pp� q � 1q2pp� q � 1q2
�

2k � 2

k � p


�

2k � 2

k � q � 1




� p2k � 2qp2k � 1q24k�1 .

(35)

The left hand side of this can be written as

¸

1¤p¤k�1

p4

2

�

2k � 2

k � 1� p


�

2k � 2

k � 1




�

¸

1¤q p¤k�1

pp� qq2pp� qq2
�

2k � 2

k � 1� p


�

2k � 2

k � 1� q




.

6This is the dimension of the glp2kq representation space with highest weight p2k�p1p�q0qq.
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The terms of the second sum are symmetric with respect to p and q and vanish for
p � q so that we may sum over the whole square instead of one triangle. So we
may further write

�

1

2

¸

1¤p¤k�1

p4
�

2k � 2

k � 1� p


�

2k � 2

k � 1




�

1

2

¸

1¤q,p¤k�1

pp� qq2pp� qq2
�

2k � 2

k � 1� p


�

2k � 2

k � 1� q




.

Therefore the following lemma – which we will prove in appendix A – yields the
subsequent theorem 13.

Lemma 16.

ņ

i�0

ņ

j�0

pi2 � j2q2
�

2n

n� i


�

2n

n� j




�

�

2n

n


 ņ

j�0

j4
�

2n

n� j




� 24n�3np2n� 1q

(36)

This proves theorem 13 .

3.3. The odd dimensional case. We consider the odd dimensional spin Grass-
mannian G2k�1,2ℓ�1 � SOp2k�2ℓ�2q{SOp2k�1q�SOp2ℓ�1q. The construction
is almost the same as in the even dimensional case so that we will be more brief
here. For the construction we take over the notation from section 3.1 and add two
more one dimensional spaces Vk�1 :� spantvk�1u,Wℓ�1 :� spantwℓ�1u. We define
in addition

Ei,ℓ�1 :� Vi bWℓ�1 � spante
i,ℓ�1

�

, e
i,ℓ�1

�

u with e
i,ℓ�1

�{�

:� vi
1{2

b wℓ�1 ,

Fk�1,i :� Vk�1 bWi � spantf
k�1,i
�

, f
k�1,i
�

u with f
k�1,i

�{�

:� vk�1 b wi
2{1

,

G :� spantvk�1 b wℓ�1u .

Then
À

Eij `
À

Fij `G yields the corresponding decomposition of Rp2k�1qp2ℓ�1q

such that the Cartan basis of sop4kℓ� 2ℓ� 2k � 1q is given by tNe
iju, N

f
i1j1u with

Ne
ijpe

i2j2

�

q � �δi
2

i δ
j2

j e
ij
	

for 1 ¤ i ¤ k, 1 ¤ j ¤ ℓ� 1 ,

N
f
i1j1pf

i2j2

�

q � �δi
2

i1 δ
j2

j1 f
i1j1

	

for 1 ¤ i1 ¤ k � 1, 1 ¤ j1 ¤ ℓ .

Then we get

Ki �

ℓ̧

j�1

pNe
ij �N

f
ijq �Ne

i,ℓ�1 ,

Lj � �

ℓ̧

i�1

pNe
ij �N

f
ijq �N

f
k�1,j .
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The corresponding matrix A which is of size pk � ℓq � p2kℓ� k � ℓq has rows

Ai �

�

pi�1qpℓ�1q
hkkikkj

0, . . . , 0 ,

ℓ�1
hkkikkj

1 . . . , 1,

pk�iqpℓ�1q
hkkikkj

0, . . . , 0 ,

pi�1qℓ
hkkikkj

0, . . . , 0,

ℓ
hkkkkkikkkkkj

�1 . . . ,�1,

pk�iqℓ
hkkikkj

0, . . . , 0,

ℓ
hkkikkj

0, . . . , 0
�

,

Ak�j �

�

0, . . . , 0,

j

Ó

�1, 0, . . . 0
looooooooooomooooooooooon

ℓ�1

, . . . , 0, . . . , 0,

pk�1qpℓ�1q�j

Ó

�1, 0, . . . 0
looooooooooomooooooooooon

ℓ�1

,

0, . . . , 0,

kpℓ�1q�j

Ó

�1, 0, . . . , 0
looooooooooomooooooooooon

ℓ

, . . . , 0, . . . , 0,

kpℓ�1q�kℓ�j

Ó

�1, 0, . . . , 0
looooooooooomooooooooooon

ℓ

�

,

for 1 ¤ i ¤ k and 1 ¤ j ¤ ℓ. For example,

Ak�ℓ�1
�

�

1 1 �1 0
�1 0 �1 �1




, Ak�2,ℓ�1
�

�

�

1 1 0 0 �1 0 0
0 0 1 1 0 �1 0
�1 0 �1 0 �1 �1 �1

�

 ,

Ak�ℓ�2
�

�

�

�

�

1 1 1 0 0 0 �1 �1 0 0 0 0
0 0 0 1 1 1 0 0 �1 �1 0 0
�1 0 0 �1 0 0 �1 0 �1 0 �1 0
0 �1 0 0 �1 0 0 �1 0 �1 0 �1

�

Æ

Æ



.

In contrast to the case of even dimensional spin Grassmannians we have the follow-
ing facts on the images.

Remark 17. The image of the set t 1
2
p�1, . . .�1qT u by the map A consist of weights

which entries are contained in Z� 1

2
.

Conjecture 18. The spinor bundle of the odd dimensional spin Grassmannian
decomposes into a sum of

�

k�ℓ
ℓ

�

summands which are irreducible with respect to
sop2k � 1q ` sop2ℓ� 1q and which are associated to the weights

(37) pλ1 �
1

2
, . . . , λk �

1

2
|µ1 �

1

2
, . . . µℓ �

1

2
q ,

with 0 ¤ λ1 ¤ . . . ¤ λk ¤ ℓ, 0 ¤ µ1 ¤ . . . ¤ µℓ ¤ k , and

pλ1, . . . , λkq
cpk,ℓq

� pµ1, . . . , µℓq, or pµ1, . . . , µℓq
cpℓ,kq

� pλ1, . . . , λkq .

Theorem 19. Conjecture 18 is true for ℓ ¤ 2.

That all the mentioned weights appear as image can be seen as in the even dimen-
sional case by constructing an explicit preimage. The dimension argument uses the
following observation (see, e.g., [5]).

Proposition 20. Let ~e :� p1, . . . , 1q. Then the dimension of the sop2k � 1q-

representation V
sop2k�1q

λ�
1

2
~e

associated to the weight λ � 1

2
~e with λ integer valued is

given by

dim V
sop2k�1q

λ�
1

2
~e

� 2k dimV
spp2kq

λ ,

where V
spp2kq

λ is the spp2kq-representation associated to the weight λ.

So we end up with an equation to verify which is similar to (31)

(38)
¸

λPpℓkq

dimV
spp2kq

λ � dimV
spp2ℓq

λc � 22kℓ .
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3.4. The case ℓ ¤ 2. In the odd dimensional case beside our strong belief that the
decomposition is true in general we have the following partial result.

Proof. ℓ � 1: The representations which play a role are pλq with 1 ¤ λ ¤ k and
λc
� p1k�λ

q with dimensions

dimV
spp2q

λ � λ� 1, dimV
spp2kq

p1mq

�

k � 1�m

k � 1

�

2k � 2

m




.

This yields

ķ

λ�0

dimV
sop2k�1q

p1k�λ
q�

1

2
~e
dimV

sop3q

pλq�
1

2
~e
� 2k�1

ķ

λ�0

dim V
spp2kq

p1k�λ
q

dimV
spp2q

pλq

� 2k�1

ķ

λ�0

pλ � 1q2

k � 1

�

2k � 2

k � λ




� 2k�1
1

k � 1
Bpk � 1, 2q

� 23k�1 .

ℓ � 2: A formula similar to (33) holds in the symplectic case:7

(39) dimV
spp2kq

λ �

¸

µ

¸

α1¡���¡αs¡0

p�1q
°

αjLRλ1

σpαq,µ1 dimV glp2kq
µ .

We list the relevant partitions µ which enter into the dimension formula in the
symplectic case when we start with p2k�p, 1p�q, 0qq.

α σpαq µ condition

p1q p2k�p, 1p�q�2, 0q�2
q p� q ¥ 2

p2k�pp�1q, 1p�q, 0q�1
q p� q ¥ 1

p2k�pp�2q, 1p�q�2, 0qq none

p2q p2k�pp�1q, 1p�q�2, 0q�3
q p� q ¥ 2

p2k�pp�2q, 1p�q, 0q�2
q p� q ¥ 1

p2k�pp�3q, 1p�q�2, 0q�1
q none

p2, 1q p2k�pp�3q, 1p�q, 0q�3
q none

We recall the dimension of the glp2kq-representation p2k�p, 1p�q, 0qq

fpk, p, qq �
p� q � 1

2k � 1

�

2k � 1

k � q � 1


�

2k � 1

k � p




,

see (34). Therefore the dimension of the spp2kq-representation associated to the
weight p2k�p, 1p�q, 0qq is

dimV
spp2kq

p2k�p,1p�q,0qq
� fpk, p, qq � fpk, p� 3, q � 3q

�

3̧

b�maxt3�pp�qq,1u

fpk, p� b, q � 4� bq

�

2̧

b�maxt2�pp�qq,0u

fpk, p� b, q � 2� bq .

7We recall that λ1 is the diagram transpose to λ.
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Furthermore we have

dimV
spp4q

pp,qq
� dimV

glp4q

pp,qq
� dimV

glp4q

pp�1,q�1q

�

1

6
pp� q � 1qpp� q � 3qpp� 2qpq � 1q .

So we have to show

(40)
¸

0¤q¤p¤k

dimV
spp2kq

p2k�p,1p�q,0qq
dimV

spp4q

pp,qq
� 24k .

This is done by expanding the left hand side which – after a lengthy calculation
performed in appendix B – turns it into a sum of products of at most two of the
terms Bpk � 1,mq for m ¤ 5, see (59) in appendix A. �

4. On the spectrum and the eigenspaces of the Dirac operator

4.1. General symmetric spaces. The construction described in section 2.1 is
used to calculate the spectrum of the eigenvalues of Dirac operators. This has been
performed in [25] in general and we give a short review. The L2-sections of the
spinor bundle on G{K are identified with the K-equivariant maps from G to the
spinor module ∆. Due to Frobenius reciprocity this can be further identified with
HomKpCG,∆q �

À

λPIrreppGq VλbHomKpVλ,∆q (see [8]). The square of the Dirac

operator acts via ✁B2 � Cλ �
s
8
where the Casimir Cλ � cλ1 acts proportionally to

the identity due to the irreducibility of the representations. The factor is cλ �

bpλ � 2αg, λq � }λ � αg}
2
� }αg}

2, where αg is the weight (4) and b is the metric
induced by the Killing form of g. Using this the spectrum of the square of the Dirac
operator is given by

(41) specp✁B
2
q �

 

cλ �
s
8

�

�λ P VpG{Kq

(

,

where the condition on the weight of the used G-representations is

(42) VpG{Kq :�

$

&

%

λ

�

�

�

�

�

�

λ is highest weight of a G-irrep. s.t. one sum-
mand in its dec. w.r.t. K is contained in the
spinor dec. (3).

,

.

-

.

In general the eigenvalue is degenerated in the sense that there exist tλjuj�1,...,N

such that cλ1
� � � � � cλN

.

The described construction makes use of branching rules for Lie algebras which
usually are very hard to find. Nevertheless the theoretic basics provided so far
can be used to calculate explicit examples as well as to formulate further general
statements on the eigenvalue of the Dirac operator with the smallest absolute value
(see, for example, [10], [26], [22], [24], [3] or [23]).

In the following we will make some comments on the spectrum and the eigenspaces
of the Dirac operator on the Grassmann manifold.

4.2. The even dimensional Grassmannians. Given the decomposition of the
spinor representation of the Grassmannian G2k,2ℓ � SOp2k � 2ℓqq{pSOp2kq �
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SOp2ℓqq with respect to k � sop2kq`sop2ℓq as in conjecture 12. Let g � sop2pk�ℓqq

with k ¥ ℓ ¥ 2 and consider αk and αg as in (4). We have

αg �

k�ℓ̧

i�1

pk � ℓ� iqei ,(43)

αk �

ķ

i�1

pk � iqei �

ℓ̧

i�1

pℓ� iqek�i .(44)

Let Π be the set of highest weights corresponding to the decomposition of the spinor
representation (3). Furthermore let Ψ :�

 

γ P Φ�

g | xγ, αky   0
(

Due to [23] and [24] we are able to calculate at least the square of the smallest
eigenvalue ǫ0 of the Dirac operator as

ǫ20 � 2min
βPΠ

}β}2 �
kℓ

2
(45)

� 2}αg � αk}
2
� 4

¸

γPΨ

xγ, αky �
kℓ

2
.(46)

Here x�, �y is the metric bij �
1

4pk�ℓ�1q
δij induced on the dual space by the Killing

form (see [8]).

We observe that xei � ej , αky ¡ 0 for all i, j and xei � ej , αky   0 only if 1 ¤ i ¤ k,
k � 1 ¤ j ¤ k � ℓ. More precisely we have

xαk, ei � ek�jyEucl. � k � i� ℓ� j ,

such that

(47) Ψ �

 

ei � ek�j

�

�1 ¤ i ¤ k, 1 ¤ j ¤ ℓ, i ¡ k � ℓ� j
(

.

We have ||αg � αk||
2

Eucl.
� ||ℓ

°k
i�1

ei||
2

Eucl.
� kℓ2, so that we get

4pk � ℓ� 1qpǫ20 �
kℓ

2
q � 2kℓ2 � 4

ķ

i�k�ℓ�2

i�1�pk�ℓq
¸

j�1

pj � i� pk � ℓqq

�

2

3

�

3kℓ2 � pℓ2 � 1qℓ
�

.

Example 21. Suppose ℓ � 2. Writing k � m
2

we recover the result in [24].

In particular k � 4, ℓ � 2 yields ǫ20 �
kℓ
2
�

2�14

4pk�ℓ�1q
where 14 � }p2220|11q}2

Eucl.
�

}p2210|21q||2
Eucl.

� }p2221|10q}2
Eucl.

� }p2211|20q}2
Eucl.

is the minimum of the Eu-
clidean norms of the weights from table 2.

With k � ℓ � 2 we get ǫ20�
kℓ
2
�

2�6

4pk�ℓ�1q
. Here 6 is the minimum of the Euclidean

lengths of the weights corresponding to (26). There are four of them, e.g., 6 �

}p11|20q}2
Eucl.

.

Example 22. k � ℓ � 3 yields ǫ20 �
kℓ
2
�

2�19

4pk�ℓ�1q
, where 19 is the minimum of the

Euclidean lengths obtained by eight weights from table 3, e.g., 19 � }p220|311q}2
Eucl.

.



20 FRANK KLINKER

Proposition 23. Let k ¥ ℓ ¥ 2. The square of the smallest eigenvalue of the Dirac
operator on the Grassmannian SOp2pk � ℓqq{pSOp2kq � SOp2ℓqq is given by

(48) ǫ20 �
3kℓ2 � pℓ2 � 1qℓ

6pk � ℓ� 1q
�

kℓ

2

The examples above (in particular, example 21) can be generalized. Therefore
assume ℓ ¤ k. The square of the Euclidean norm of a weight which appears in
conjecture 12 is

ℓ̧

j�1

λ2

j � ℓ2pk � λ1q �

ℓ�1̧

j�1

pℓ� jq2pλj � λj�1q

� kℓ2 �

ℓ̧

j�1

ppλj � ℓ� jq � 1

2
q

2
�

ℓ

4
�

ℓpℓ2 � 1q

3
.

This yields the following conjecture and proposition.

Conjecture 24. Suppose ℓ ¤ k. There are 2ℓ weights which appear in the decom-
position (29) of the spinor bundle of SOp2k� 2ℓq{SOp2kq � SOp2ℓq and which are
associated to the smallest eigenvalue of the square of the Dirac operator. They are
given by

pℓk�λ1 , pℓ� 1qλ1�λ2 , . . . , 1λℓ�1�λℓ , 0λℓ
|λ1, . . . , λℓq with λj P tℓ� j � 1, ℓ� ju .

Proposition 25. The weights which appear in the decomposition of the spinor
bundle of SOp2k � 4q{SOp2kq � SOp4q and which are associated to the smallest
eigenvalue of the square of the Dirac operator are given by

(49) p2k�11|10q, p2k�10|11q, p2k�212|20q, p2k�210|21q .

Remark 26. Both formulas (45) and (46) – of which the first uses the decomposition
of the spinor bundle of the G2k,2ℓ – give the same value. This is once more a
justification of the correctness of conjecture 12.

We recall the following relations between sop2k � 2ℓq-representations and sop2kq-
as well as sop2ℓq-representations which are given by the character formulas found
in [17] and [15]

χsop2k�2ℓq
µ χsop2k�2ℓq

ν �

¸

LR
µ
τ,µ1LR

ν
τ,ν1LR

λ
µ1,ν1χ

sop2k�2ℓq

λ ,

χ
sop2k�2ℓq

λ �

¸

LRλ
2κ,λ1LR

λ1

µ,νχ
sop2kq
µ χsop2ℓq

ν .
(50)

The first formula describes how the tensor product of two representations decom-
pose, in particular only summands appear with

°

λi ¤
°

µi �
°

νi. In the second
formula, the branching rule, only summands appear for which µ and ν are contained
in λ, i.e.,

°

λi ¥
°

µi �
°

νi.

The eigenspaces of the Dirac operator on the Grassmann manifold admit a decom-
position with respect to the sop2k� 2ℓq-representations – see (42). The ordering  

of weights (see, for example, [13]) induce an ordering of the associated subspaces
of the eigenspaces. From formulas (50) we get the following remark.

Remark 27. Let λ and µ be representations of sop2k � 2ℓq, sop2kq, respectively,
which associated Young diagrams we denote by the same symbol. Furthermore µ
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shall be contained in pℓkq such that µcpk,ℓq is a representation of sop2ℓq. Then µbµc

is contained in the branching of λ if and only if there exists a µc-expansion λ1 of the
diagram µ such that λ is a 2κ-expansion of λ1. This yields a combinatorial method
to enumerate the eigenvalues of the square of the Dirac operator of G2k,2ℓ. 1. Let
Npk, ℓq be the number of different µc-expansions of µ for µ � pℓkq. 2. For the
expansions tλ1iui�1,...,Npk,ℓq consider the different 2κ-expansions for all diagrams κ.
3. From the resulting diagrams λ calculate cλ. Even in the case G2k,4 this method
seems to be very complex and one may suggest an analog approach as in [22] or
[28] – in particular, because the ranks of the algebras are similar as in the first
citation. But this fails due to the more complicated determinants which enter into
the calculations so that the combinatorial ansatz is more applicable.

Example 28. For k � ℓ � 2 we have λ1 P
!

, ,
)

such that the first 2κ-

expansions which branching admits a summand from (26) are from the following
list.

2κ �

λ

cλ 24 28 32 32 36 36 42 48 48 52 60

In particular, the weight with minimal cλ must obey λ1 ¤ 2 and therefore the
minimal eigenvalue is nondegenerated, i.e., the sop8q-representation λ � p2, 1, 1, 0q
is the unique contribution to the eigenspace associated to the minimal eigenvalue.

We turn back to the smallest eigenvalue and notice that a contribution to the
eigenspace of the Dirac operator to the smallest eigenvalue must obey

}λ� αsop2k�2ℓq}
2

Eucl � }αsop2k�2ℓq}
2

Eucl � 3kℓ2 � k2ℓ� kℓ� 2

3
ℓpℓ2 � 1q

ℓ�2
� 2k2 � 10k � 4 .

Conjecture 29. The smallest contribution to the eigenspace of the smallest eigen-
value of the square of the Dirac operator on G2k,2ℓ is given by the weight

(51) λ0
� pℓk�ℓ�1, pℓ� 1q2, pℓ� 2q2, . . . , 12, 0q .

Proposition 30. Conjecture 29 is true for ℓ � 2.

Proof. Due to (50) the smallest contribution to the eigenspace comes from the
biggest contribution in the tensor product. If we take the weights from conjecture 24
the ordering   of the weights then sorts out the smallest one, i.e., the one with λ1 ¤

ℓ. A straightforward calculation shows that cEucl

λ0 � 3kℓ2�k2ℓ�kℓ� 2

3
ℓpℓ2�1q. �

Example 31. Consider the case ℓ � 2. The representations which we obtain by
decomposing the tensor products pµ|νq from (49) are given in the next table where
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we also added cλ.

λ cEucl
λ

p4, 3, 2k�4, 1, 03q 2k2 � 16k
p4, 2k�2, 03q 2k2 � 14k � 4
p4, 2k�3, 12, 02q 2k2 � 14k
p32, 2k�3, 03q 2k2 � 14k
p3, 2k�2, 1, 02q 2k2 � 12k
p3, 2k�313, 0q 2k2 � 12k � 6
p2k, 02q 2k2 � 10k
p2k�112, 0q 2k2 � 10k � 4

We see, that in this case λ0 is unique, if we restrict to the weights coming from
tensor products.

5. Concluding remarks

Remark on the general proof of (31) and (38). In principle, all we need for the
proof of conjectures 12 and 18 for fixed ℓ ¥ 3 is appendix A and the dimension
formulas (33) and (39). This worked very well in the cases ℓ ¤ 2. In (31) and
(38) the dimension of Vλ for λ � pλ1, . . . , λℓq is a polynomial depending on the ℓ

entries. If we use (28) to describe λcpℓ,kq and insert the dimension formulas (33)
or (39) as well as (34) into (31) or (38) we end up with sums of at most ℓ-fold
products of terms of the form Bpk � 1,mq with m increasing for ℓ increasing. For
large ℓ – beside the calculation of Bpk � 1,mq for large m (which may be done by
computer using the generating function (55)) – the main difficulties arise when we
try to describe uniformly the µ such that LRλc

σpαq,µ
do not vanish. In particular,

this problem limits the practical application of our ansatz for the proof.

Remark on the remaining case sop2kq ` sop2ℓ � 1q � sop4kℓ � 2kq. One thing
which has been left out in section 3 is the decomposition of the spin representation
of SOp4kℓ � 2kq with respect to the subgroup SOp2kq � SOp2ℓ � 1q where the
embedding is such that the vector representation decomposes as 2kbp2ℓ� 1q. We
did not mention this because the symmetric space G2k,2ℓ�1 is not spin. Nevertheless
on the level of representation the question of branching is interesting as well. We
will only state the result which is obtained by the same method as used in the two
spin cases. In particular, the cases p2k, 3q, p2k, 5q, and p4, 2ℓ� 1q can be proven in
the same way and the remark extends to this case, too.

The spin representation S � S� ` S� of sop4kℓ � 2kq branches with respect to
sop2kq ` sop2ℓ� 1q into the sum of the following representations:

pλ� 1

2
~e�|λc

q with λ � pλ1 . . . , λkq � pℓkq ,

where λ� 1

2
~e� � pλ1�

1

2
, . . . , λk�1�

1

2
,�pλk�

1

2
qq belongs to the subrepresentation

S�.

Acknowledgments: I would like to thank Lorenz Schwachhöfer for useful com-
ments and Doron Zeilberger for suggesting a method to calculate (52) for k even
without generating functions.
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Appendix A. Useful binomial identities

We define sums

(52) Bpn, kq :�
ņ

j�0

jk
�

2n

n� j




,

such that lemma 16 in these terms reads as

(36) 2Bpn, 4qBpn, 0q � 2Bpn, 2q2 �

�

2n

n




Bpn, 4q � 24n�3np2n� 1q .

We provide the tools to calculate (52) for all values of n and k although for the
proof of (36) and (40) we only need them for values less than 6.

We consider polynomials

(53) Pnpxq :�
ņ

i�0

�

2n

n� i




xi ,

which obey

Pnp1q � Bpn, 0q ,

P 1

np1q � Bpn, 1q ,

P 2

np1q � Bpn, 2q �Bpn, 1q ,

P3

n p1q � Bpn, 3q � 3Bpn, 2q � 2Bpn, 1q ,

P4

n p1q � Bpn, 4q � 6Bpn, 3q � 11Bpn, 2q � 6Bpn, 1q ,

P41

n p1q � Bpn, 5q � 10Bpn, 4q � 35Bpn, 3q � 50Bpn, 2q � 24Bpn, 1q ,

(54)

and

Pn�1pxq �

n�1̧

j�0

�

2n� 2

n� 1� j




xj

�

n�1̧

j�0

�

�

2n

n� j � 1




� 2

�

2n

n� j




�

�

2n

n� j � 1




�

xj

� x

ņ

j�0

�

2n

n� j




xj
� 2

ņ

j�0

�

2n

n� j




xj
�

1

x

ņ

j�0

�

2n

n� j




xj

�

�

2n

n� 1




�

1

x

�

2n

n




�

px� 1q2

x
Pnpxq �

x� 1

x

�

2n

n




�

1

n� 1

�

2n

n




.

Proposition 32. The generating function Q of the polynomials Pn cf. (53) is given
by

(55) Qpx, yq �
ypx� 1q

px� ypx� 1q2q
?

1� 4y
�

xp
?

1� 4y � 1q

2px� ypx� 1q2q
.

The function Q obeys

(56)
B

k�nQ

Bxk
Byn

p1, 0q � n!P pkq
n p1q ,
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such that an explicit description for Q allows us to calculate all Bpn, kq which then
proves lemma 16.

Proof. We define

(57) Qpx, yq :�
¸

n¥0

Pnpxqy
n

and use the above recursion formula for Pn as well as

p1� 4yq�
1

2
�

¸

m¥0

1

2
p

1

2
� 1q . . . p 1

2
�m� 1q

m!
p4yqm �

¸

m¥0

�

2m

m




ym ,

and

»

p1� 4yq�
1

2
� �

1

2
p1� 4yq

1

2 which yields

Qpx, yq � 1�
¸

n¥1

Pnpxqy
n
� 1� y

¸

n¥0

Pn�1pxqy
n

� 1�
ypx� 1q2

x

¸

n¥0

Pnpxqy
n
�

ypx� 1q

x

¸

n¥0

�

2n

n




yn

� y
¸

n¥0

1

n� 1

�

2n

n




yn

�

ypx� 1q2

x
Qpx, yq

� 1�
ypx� 1q

x

¸

n¥0

�

2n

n




yn �

» y

0

¸

n¥0

�

2n

n




tndt

�

ypx� 1q2

x
Qpx, yq � 1�

ypx� 1q

x
?

1� 4y
�

1

2

a

1� 4y �
1

2
,

from which we get (55). �

The derivatives of Q with respect to x at the point p1, yq are

Qp1, yq �
1

2
p1� 4yq�

1

2
�

1

2
p1� 4yq�1 ,

BQ

Bx
p1, yq � yp1� 4yq�

3

2 ,

B

2Q

Bx2
p1, yq � �yp1� 4yq�

3

2
� yp1� 4yq�2 ,

B

3Q

Bx3
p1, yq � 3yp1� 4yq�

3

2
� 6y2p1� 4yq�

5

2
� 3yp1� 4yq�2 ,

B

4Q

Bx4
p1, yq � �3yp1� 4yq�

3

2
� 9yp1� 4yq�

5

2
� 9yp1� 4yq�2

� 3yp1� 4yq�3 ,

B

5Q

Bx5
p1, yq � 120y3p1� 4yq�

7

2
� 60yp1� 4yq�2

� 60yp1� 4yq�
5

2
� 120y2p1� 4yq�3.



THE DECOMPOSITION OF THE SPINOR BUNDLE OF GRASSMANN MANIFOLDS 25

All terms are of the form ymp1�4yq�ℓ with m � 0, 1, 2, 3 and the needed derivatives
are given by

dn

dyn
p1� 4yq�ℓ

�

�

�

y�0

�

$

'

'

&

'

'

%

22n
pℓ� n� 1q!

pℓ� 1q!
, ℓ P N

p2n� 2ℓ� 1q!pℓ� 1

2
q!

pn� ℓ� 1

2
q!p2ℓ� 1q!

, ℓ P N�

1

2

as well as

dn

dyn
pykp1� 4yq�ℓ

q

�

�

�

y�0

�

$

'

&

'

%

�

n

k




k!
dn�k

dyn�k
p1� 4yq�ℓ

�

�

�

y�0

k ¤ n

0 else

Therefore the partial derivatives of Q with respect to y at p1, 0q are

B

nQ

Byn
p1, 0q � 22n�1n!� 2�1

p2nq!

n!
,

B

n�1Q

BynBx
p1, 0q � 2�1 p2nq!

n!
n ,

B

n�2Q

BynBx2
p1, 0q � �2�1 p2nq!

n!
n� 22n�2n!n ,

B

n�3Q

BynBx3
p1, 0q � 2�1

p2nq!

n!
npn� 2q � 3 � 22n�2n!n ,

B

n�4Q

BynBx4
p1, 0q � �3

p2nq!

n!
npn� 1q � 3 � 22n�3n!npn� 7q ,

B

n�5Q

BynBx5
p1, 0q �

p2nq!

n!
npn2

� 17n� 12q � 15 � 22n�2n!npn� 3q .

From this we get with (54) and (57):

(58)

Bpn, 0q � 22n�1
�

1

2

�

2n

n




, Bpn, 1q �
1

2

�

2n

n




n ,

Bpn, 2q � 22n�2n , Bpn, 3q �
1

2

�

2n

n




n2 ,

Bpn, 4q � 22n�3np3n� 1q , Bpn, 5q �
1

2

�

2n

n




n2
p2n� 1q ,

which – last but not least – yields lemma 16.

A variant of (52) is used in the proof of theorem 19. We define

(59) rBpn, kq :�
ņ

j�0

jk
�

2n� 1

n� j




.

Then usual manipulation of the binomials yields the following lemma

Lemma 33. The sums Bpn, kq and rBpn, kq are connected via

(60) 2n rBpn, kq � nBpn, kq �Bpn, k � 1q .
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Appendix B. Calculations for the proof of (40).

For the proof of (40) we expand the left hand side and notice that we can extend
the sums for b, because the added summands cancel or vanish. This yields

6p2k � 1q
¸

0¤q¤p¤k

dim V
spp2kq

p2k�p,1p�q,0qq
dimV

spp4q

pp,qq

�

ķ

p�0

p̧

q�0

pp� q � 1q2pp� q � 3qpp� 2qpq � 1q

�

2k � 1

k � q � 1


�

2k � 1

k � p




�

ķ

p�0

p̧

q�0

pp� q � 1q2pp� q � 3qpp� 2qpq � 1q

�

2k � 1

k � q � 2


�

2k � 1

k � p� 3




�

ķ

p�0

p̧

q�0

3̧

b�1

pp� q � 1qpp� q � 3� 2bqpp� q � 3qpp� 2qpq � 1q�

�

�

2k � 1

k � q � b� 3


�

2k � 1

k � p� b




�

ķ

p�0

p̧

q�0

2̧

b�0

pp� q � 1qpp� q � 1� 2bqpp� q � 3qpp� 2qpq � 1q�

�

�

2k � 1

k � q � b� 1


�

2k � 1

k � p� b




�

ķ

p�0

p̧

q�0

pp� q � 1q2pp� q � 3qpp� 2qpq � 1q

�

2k � 1

k � q � 1


�

2k � 1

k � p




�

ķ

p�0

p̧

q�0

pp� q � 1q2pp� q � 3qpp� 2qpq � 1q

�

2k � 1

k � q � 2


�

2k � 1

k � p� 3




�

ķ

p�0

p̧

q�0

2̧

b�0

pp� q � 1qpp� q � 1� 2bqpp� q � 3qpp� 2qpq � 1q�

�

�

2k � 1

k � q � b� 2


�

2k � 1

k � p� b� 1




�

ķ

p�0

p̧

q�0

2̧

b�0

pp� q � 1qpp� q � 1� 2bqpp� q � 3qpp� 2qpq � 1q�

�

�

2k � 1

k � q � b� 1


�

2k � 1

k � p� b




.

With
�

n

m


�

n

ℓ




�

�

n

m� 1


�

n

ℓ� 1




�

n�m� ℓ� 1

n� 1

�

n� 1

m


�

n� 1

ℓ




we get

�

ķ

p�0

p̧

q�0

pp� q � 1q2pp� q � 3qpp� 2qpq � 1q

�

2k � 1

k � q � 1


�

2k � 1

k � p
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�

ķ

p�0

p̧

q�0

pp� q � 1q2pp� q � 3qpp� 2qpq � 1q

�

2k � 1

k � q � 2


�

2k � 1

k � p� 3




�

ķ

p�0

p̧

q�0

2̧

b�0

pp� q � 1qpp� q � 1� 2bqpp� q � 3q2pp� 2qpq � 1q

2k � 2
�

�

�

2k � 2

k � q � b� 1


�

2k � 2

k � p� b




�

k�1̧

p�0

p̧

q�0

pp� qq2pp� q � 2qpp� 1qpq � 1q

�

2k � 1

k � q � 1


�

2k � 1

k � p� 1




�

k�1̧

p�0

p̧

q�0

pp� qq2pp� q � 2qpp� 1qpq � 1q

�

2k � 1

k � q � 2


�

2k � 1

k � p� 2




�

k�1̧

p�1

p�2
¸

q�1

pp� q � 2qpp� qqpp� qq2pp� 1qpq � 1q

2k � 2

�

2k � 2

k � q � 1


�

2k � 2

k � p� 1




�

k�1̧

p�2

p̧

q�0

pp� qq2pp� qq2pq

2k � 2

�

2k � 2

k � q � 1


�

2k � 2

k � p� 1




�

k�1̧

q�3

q�2
¸

p�0

pp� q � 2qpp� qqpq � pq2pq � 1qpp� 1q

2k � 2

�

2k � 2

k � q � 1


�

2k � 2

k � p� 1




.

We use the symmetry of the summands with respect to p and q so that we arrive
at

�

1

2

k�1̧

p�0

k�1̧

q�0

pp� qq2pp� q � 2qpp� 1qpq � 1q

�

2k � 1

k � q � 1


�

2k � 1

k � p� 1




�

1

2

k�1̧

p�0

k�1̧

q�0

pp� qq2pp� q � 4qpp� 2qpq � 2q

�

2k � 1

k � q � 1


�

2k � 1

k � p� 1




�

k�1̧

p�0

k�1̧

q�0

pp� q � 2qpp� qqpp� qq2pp� 1qpq � 1q

2pk � 1q

�

2k � 2

k � q � 1


�

2k � 2

k � p� 1




�

k�1̧

p�0

k�1̧

q�0

pp� qq2pp� qq2pq

4pk � 1q

�

2k � 2

k � q � 1


�

2k � 2

k � p� 1




�

k�1̧

p�0

p3pp� 1qpp� 2q

2pk � 1q

�

2k � 2

k � p� 1


�

2k � 2

k � 1




� 2
k�1̧

p�0

p2pp� 4qpp� 2q

�

2k � 1

k � 1


�

2k � 1

k � p� 1




�

k�1̧

p�0

pp� 1q2pp� 3qpp� 2q

�

2k � 1

k


�

2k � 1

k � p� 1




� 6

�

2k � 1

k


�

2k � 1

k � 1
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�

1

2

k�1̧

p�0

k�1̧

q�0

pp� qq2
�

pp� q � 2qpp� 1qpq � 1q � pp� q � 4qpp� 2qpq � 2q
�

�

�

�

2k � 1

k � q � 1


�

2k � 1

k � p� 1




�

1

4pk � 1q

k�1̧

p�0

k�1̧

q�0

pp� qq2pp� qq
�

2pp� q � 2qpp� 1qpq � 1q � pp� qqpq
�

�

�

�

2k � 2

k � q � 1


�

2k � 2

k � p� 1




�

1

2pk � 1q

�

2k � 2

k � 1


 k�1̧

p�0

p3pp� 1qpp� 2q

�

2k � 2

k � p� 1




�

�

2k � 1

k


 k�1̧

p�0

pp� 2qp2p2pp� 4q � pp� 1q2pp� 3q

�

2k � 1

k � p� 1




.

� 6

�

2k � 1

k


2

We expand the polynomial coefficients and write the last sum in Terms of rB and
B:

�

rBpk � 1, 4q rBpk � 1, 0q � 6 rBpk � 1, 3q rBpk � 1, 1q � 9 rBpk � 1, 2q2

� 9 rBpk � 1, 3q rBpk � 1, 0q � 9 rBpk � 1, 2q rBpk � 1, 1q

� 18 rBpk � 1, 2q rBpk � 1, 0q � 18 rBpk � 1, 1q2

�

1

2pk � 1q

�

3Bpk � 1, 5qBpk � 1, 1q � 6Bpk � 1, 4qBpk � 1, 0q � 3Bpk � 1, 3q2

� 6Bpk � 1, 2q2 �

�

2k � 2

k � 1




�

Bpk � 1, 5q � 3Bpk � 1, 4q � 2Bpk � 1, 3q
�

	

�

�

2k � 1

k




�

2 rBpk � 1, 4q � 12 rBpk � 1, 3q � 16 rBpk � 1, 2q � rBpk � 1, 4q

� 7 rBpk � 1, 3q � 17 rBpk � 1, 2q � 17 rBpk � 1, 1q � 6 rBpk � 1, 0q
	

� 6

�

2k � 1

k


�

2k � 1

k � 1




.

Inserting (60) as well as (58) from appendix A yields (40) which finishes the proof
of theorem 19.
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