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The Conjugate Linearized Ricci

Flow on Closed 3–Manifolds

MAURO CARFORA

Abstract

We characterize the conjugate linearized Ricci flow and the associated
backward heat kernel on closed three–manifolds of bounded geometry. We
discuss their properties, and introduce the notion of Ricci flow conjugated
constraint sets which characterizes a way of Ricci flow averaging metric
dependent geometrical data. We also provide an integral representation
of the Ricci flow metric itself and of its Ricci tensor in terms of the heat
kernel of the conjugate linearized Ricci flow. These results, which readily
extend to closed n–dimensional manifolds, yield for various conservation
laws, monotonicity and asymptotic formulas for the Ricci flow and its
linearization.
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2 THE CONJUGATE LINEARIZED RICCI FLOW...

1 INTRODUCTION

Hamilton’s Ricci flow [37] is the weakly–parabolic geometric evolution equa-
tion obtained by deforming a Riemannian metric gab, on a smooth n–manifold
Σ, in the direction of its Ricci tensor Rab [3, 18, 37, 39, 40]. The geomet-
rical and analytical properties featuring in this natural geometric flow have
eventually lead to a remarkable proof, due to G. Perelman [49, 50, 51],
of Thurston’s geometrization program for three-manifolds [56, 57]. This
is a result of vast potential use also in theoretical physics, where the Ricci
flow often appears in disguise as a natural real-space renormalization group
flow. Non-linear σ-model theory, describing quantum strings propagating in
a background spacetime, affords the standard case study [5, 6, 26, 45, 48].
Paradigmatical applications occur also in relativistic cosmology [14, 15],
(for a series of recent results see also [8, 9, 12] and the references cited
therein). An important role both in Ricci flow theory, as well as in its phys-
ical applications, is played by its formal linearization around a given Ricci
evolving metric β → gab(β), 0 ≤ β < T0 ≤ ∞. By suitably fixing the action
of the diffeomorphism group Diff(Σ), this linearized flow takes the form of
the parabolic initial value problem

(1.1)

∂
∂β h̃ab(β) = ∆L h̃ab(β) ,

h̃ab(β = 0) = h̃ab , 0 ≤ β < T0 .

where ∆L denotes the Lichnerowicz–DeRham laplacian [44], (with respect

to gab(β)), and the symmetric bilinear form β 7→ h̃ab(β) can be thought of

as representing an infinitesimal deformation, g
(t)
ab (β) = gab(β) + t h̃ab(β),

t ∈ (−ε, ε), of the given flow β → gab(β). Stability questions around fixed
points of the Ricci flow [11, 33, 35, 41, 52, 54, 59], pinching estimates [2],
and characterization of linear Harnack inequalities [20, 21, 46], are typical
issues related to the structure of the linearized Ricci flow (1.1). Related
problems, with an impact also in the physical applications of the theory,

concerns the control of β 7→ h̃ab(β) not just around fixed points but along
a generic Ricci flow metric β 7→ gab(β). In particular, if one needs to go
beyond a fixed point stability analysis, the characterization of monotonicity
formulas for the parabolic equation (1.1) is a key problem in many applica-
tions. Difficulties in dealing with such questions are strictly related to the
Diff(Σ)–equivariance of the Ricci flow. This remark takes shape in the fact

that the flow β 7→ h̃ab(β), solution of (1.1), may describe reparametrization
of β 7→ gab(β) as well as the evolution of non–trivial deformations. The
former correspond to the Diff(Σ)–solitonic solutions of (1.1). They are

provided by h̃ab(β) = Lv(β)gab(β), where Lv(β) is the Lie derivative along
some suitably chosen β–dependent vector field v(β). The latter are instead
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parametrized by β 7→ h̃ab(β) with ∇a h̃ab(β) = 0, where the divergence ∇· is
with respect to the β–varying Ricci flow metric gab(β). As is well known, the
subspace generated by the Lie derivative of the metric along vector fields,

and the subspace of divergence–free h̃ab ’s, provide an L2(Σ, g)–orthogonal
splitting of the whole space of symmetric bilinear forms. It is a matter of
fact, naturally related to the geometry of the Ricci flow, that (1.1) does not
preserve such a splitting unless the Ricci flow β 7→ gab(β) is restricted to
particular class of geometries [4, 10, 33, 35, 59]. What happens is that (1.1)

may evolve a divergence–free h̃ab(β = 0) into a flow β 7→ h̃ab(β) possessing
also a Lie–derivative part. For instance, if one considers, for the volume–
normalized Ricci flow, the evolution of the coupled β 7→ (gab(β), hab(β))
with Ric(g)|β=0 > 0, Σ ≃ S

3, then by Hamilton’s rounding theorem [37],
gab(β) converges, as β ր ∞, to the standard metric ḡ on the 3–sphere S

3,
with V ol [S3, ḡ] = V ol [S3, g(β = 0)]. Since (S3, ḡ) is isolated (i.e., it does
not admit any non–trivial Riemannian deformation), it follows that any

divergence–free h̃ab(β = 0)) must necessarily evolve under (the normalized
version of) (1.1) into a Lie derivative term LX ḡab, for some β–dependent
vector field X. This dynamical generation of Diff(Σ)–reparametrization
out of non–trivial deformations is at the root of the difficulties in the gen-
eral analysis of (1.1). A possible way out is to adopt a strategy akin to the
one used by Perelman [49] in handling Ricci flow Diff(Σ)–solitons. These
are put under control by means of a (backward) diffusion process which is
conjugated to the Ricci diffusion of the Riemannian measure. A related and
very subtle use of the backward–forward conjugation, in connection with
the Kähler-Ricci flow, has been recently pointed out also by Lei Ni [47]. By
extending these points of view to the Lv(β)gab(β) solitonic solutions of (1.1),
we introduce in this paper the backward conjugated flow associated with
(1.1), generated by the operator

(1.2) ©∗
L
.
= − ∂

∂β
−△L +R ,

where R denotes the scalar curvature of (Σ, gab(β)). The flow described by
©∗

L enjoys many significant properties:

(i) The space of divergence–free bilinear forms is an invariant subspace of
the flow.

(ii) If β 7→ h̃ab(β) is the a solution of the linearized Ricci flow (1.1), and
η 7→ Hab

(T )(η), η
.
= β∗−β, for some β∗ ∈ (0, T0), is a divergence–free solution

of the conjugate flow, ©∗
LH

ab
(T )(η) = 0, then

(1.3)

∫

Σ
h̃
(T )
ab (η) Hab

(T )(η) dµg(η) ,
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where h̃
(T )
ab (η) is the divergence–free part of h̃ab(η), is a conserved quantity

along the (backward) Ricci flow. This result provides a useful control on the

dynamics of β 7→ h̃
(T )
ab (β).

(iii) If β 7→ Rab(β) is the Ricci tensor associated with the Ricci flow metric
β 7→ gab(β), and ©∗

LH
ab(η) = 0, then

(1.4)

∫

Σ
Rab(η)H

ab(η)dµg(η) ,

and

(1.5)

∫

Σ
(gab(η)− 2η Rab(η))H

ab(η)dµg(η) ,

are also conserved along the (backward) Ricci flow. Thus, quite surprisingly,
the conjugate linearized Ricci flow has strong averaging properties on the
full Ricci flow itself. These averaging properties become manifest when we
identify the flow η 7→ Hab(η), with the (backward) heat kernel of ©∗

L. In
such a setting we prove the main results of this paper, viz.,

Proposition 1.1. Let η 7→ gab(η) be a backward Ricci flow with bounded
geometry on Ση×[0, β∗] and letKab

i′k′(y, x; η) be the (backward) heat kernel of

the corresponding conjugate linearized Ricci operator ©∗
LK

ab
i′k′(y, x; η) = 0,

for η ∈ (0, β∗], with Kab
i′k′(y, x; η ց 0+) = δabi′k′(y, x), (the bi–tensorial Dirac

measure). Then

(1.6) Ri′k′(y, η = 0) =

∫

Σ
Kab

i′k′(y, x; η)Rab(x, η) dµg(x,η) ,

for all 0 ≤ η ≤ β∗. Moreover, as η ց 0+, we have the uniform asymptotic
expansion

Ri′k′(y, η = 0) =(1.7)

1

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)

4η

)
τabi′k′(y, x; η)Rab(x, η) dµg(x,η)

+

N∑

h=1

ηh

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)

4η

)
Φ[h]abi′k′(y, x; η)Rab(x, η) dµg(x,η)

+O
(
ηN− 1

2

)
,

where τabi′k′(y, x; η) ∈ TΣη ⊠ T ∗Ση is the parallel transport operator associ-
ated with (Σ, g(η)), d0(y, x) is the distance function in (Σ, g(η = 0)), and
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Φ[h]abi′k′(y, x; η) are the smooth section ∈ C∞(Σ×Σ′,⊗2TΣ⊠⊗2T ∗Σ), (de-
pending on the geometry of (Σ, g(η))), characterizing the asymptotics of the
heat kernel Kab

i′k′(y, x; η).

Under the same hypotheses of proposition 1.1, we also have the following
integral representation of the Ricci flow on Σβ × (0, β∗].

Proposition 1.2. Let β 7→ gab(β) be a Ricci flow with bounded geometry
on Σβ × [0, β∗], and let Kab

i′k′(y, x; η) be the (backward) heat kernel of the
corresponding conjugate linearized Ricci operator ©∗

L, for η = β∗−β. Then,
along the backward flow η 7→ gab(η),

(1.8) gi′k′ (y, η = 0) =

∫

Σ
Kab

i′k′(y, x; η) [gab(x, η)− 2η Rab(x, η)] dµg(x,η) ,

for all 0 ≤ η ≤ β∗, and

gi′k′(y, η = 0) =(1.9)

1

(4π η)
3
2

∫

Σ
e−

d20(y,x)

4η τabi′k′(y, x; η) [gab(x, η)− 2ηRab(x, η)] dµg(x,η)

+

N∑

h=1

ηh

(4π η)
3
2

∫

Σ
e
−

d20(y,x)

4η Φ[h]abi′k′(y, x; η) [gab(x, η)− 2ηRab(x, η)] dµg(x,η)

+O
(
ηN− 1

2

)
.

holds uniformly, as η ց 0+.

In particular, the above result proves the following

Theorem 1.3. The heat kernel flow

(1.10) η 7−→ Kab
i′k′(y, x; η)

is conjugated and thus fully equivalent to the Ricci flow β 7−→ gab(β).

This is a quite non–trivial consequence of the conjugacy relation and opens
the possibility of a weak formulation of the Ricci flow by exploiting the linear
evolution of η 7−→ Kab

i′k′(y, x; η).

The properties of the conjugate heat flow [25],[46],[49] and those of the
conjugate linearized Ricci flow established in this paper suggest to shift em-
phasis from the flows themselves to their dependence from the corresponding
initial data. Thus, along a Ricci flow of bounded geometry β 7→ (Σ, g(β)),
β ∈ [0, β∗], we consider the associated heat flow (β, ̺0) 7→ ̺(β), ( ∂

∂β −∆) ̺ =
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0, and linearized Ricci flow (β, hab) 7→ h̃ab(β), as functionals of the respective

initial data ̺(β = 0)
.
= ̺0, and h̃ab(β = 0)

.
= hab. Similarly, we can consider,

along the backward Ricci flow η 7→ (Σ, g(η)), η ∈ [0, β∗], η
.
= β∗−β, the con-

jugate flows (η,̟∗) 7→ ̟(η), ( ∂
∂η −∆+R)̟ = 0, and (η,Hab

∗ ) 7→ Hab(η), as

functionals of the respective initial data ̟(η = 0)
.
= ̟∗, and H

ab(η = 0)
.
=

Hab
∗ . In general, if the initial data (̺0, hab) satisfy a geometrical condition

in the form of a constraint C(gik(β = 0), ̺0, hab) = 0, then this constraint
will not be preserved along the evolution of the given data. However, if
we are able to find, along the given Ricci flow, initial data (̟∗,H

ab
∗ ) for

the conjugated flows such that C(gik(η = 0),̟∗,H
ab
∗ ) = 0, then the conju-

gate flows interpolate between (̺0, hab) and (̟∗,H
ab
∗ ) by averaging the data

with the kernels (̟(η),Hab(η)). We say, in such a case, that the constraints
C(gik(β = 0), ̺0, hab) = 0 and C(gik(η = 0),̟∗,H

ab
∗ ) = 0 are Ricci flow con-

jugated. This is basically a way for averaging geometrical constraints along
the Ricci flow, and may find applications in various geometrical and physi-
cal setting. The stability of Type–II singularities (see Section 7), and the
problem of Ricci flow deforming the initial data set for Einstein equations
(see Section 4) may provide important examples.

Coming to the structure of the paper, we have tried to keep the presen-
tation as self–contained as possible. We start by recalling some well–known
facts about the Ricci flow and its linearization in Section 2. The conjugate
linearized Ricci flow is introduced in Section 3, where we also establish its
properties. In Section 4 we discuss the heat kernel associated with the con-
jugate linearized Ricci flow. In an appendix, kindly provided by Stefano
Romano, we carry out the explicit construction of the the heat kernel of a
generalized Laplacian when the operator in question smoothly depend on
a one–parameter family of metrics. The results discussed in Section 5 are
elementary consequences of the properties of the heat kernel of the conju-
gate linearized Ricci flow. In Section 6 we formalize the notion of Ricci flow
conjugated constraint sets, and briefly discuss a few natural examples.
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2 Remarks on the Ricci flow and its linearization

We start by collecting a number of technical results on Ricci flow theory
that we shall need in the sequel. Excellent sources of information are
provided by [3], [18], [19], [21], and [58]. For simplicity Σ will always
denote a C∞ compact three-dimensional manifold without boundary, and
C∞(Σ,R) and C∞(Σ,⊗p T ∗Σ ⊗q TΣ) are the space of smooth functions
and of smooth (p, q)–tensor fields over Σ, respectively. We shall denote
by Diff(Σ) the group of smooth diffeomorphisms of Σ, and by Met(Σ)
the space of all smooth Riemannian metrics over Σ. The tangent space ,
T(Σ,g)Met(Σ), to Met(Σ) at (Σ, g) can be naturally identified with the

space of symmetric bilinear forms C∞(Σ,⊗2
S T

∗Σ) over Σ, endowed with

the pre–Hilbertian L2 inner product (U, V )L2(Σ)
.
=

∫
Σ g

il gkm Uik Vlmdµg for

U, V ∈ C∞(Σ,⊗2
S T

∗Σ). Let L2(Σ,⊗2 T ∗Σ) be the corresponding L2 com-
pletions of C∞(Σ,⊗2

S T
∗Σ). A geometric property of Met(Σ) that we shall

often exploit is that the tangent space T(Σ,g)Og to the Diff(Σ)–orbit of a
given metric g ∈ Met(Σ) is the image of the injective operator

δ∗g : C∞(Σ, T ∗Σ) −→ C∞(Σ,⊗2T ∗Σ)(2.1)

wa dx
a 7−→ δ∗g (wa dx

a)
.
=

1

2
Lw# g ,

where we have set (w#)i
.
= gikwk, and denoted by Lw# the corresponding

Lie derivative. Standard elliptic theory then implies that the L2–orthogonal
subspace to Im δ∗g in T(Σ,g)Met(Σ) is spanned by the (∞–dim) kernel of the

L2 adjoint δg of δ∗g,

δg : C∞(Σ,⊗2T ∗Σ) −→ C∞(Σ, T ∗ Σ)(2.2)

hab dx
a ⊗ dxb 7−→ δg (hab dx

a ⊗ dxb)
.
= − gij ∇ihjk dx

k .

It follows that with respect to the inner product (◦, ◦)L2(Σ), the tangent
space T(Σ,g)Met(Σ) splits as [24]

(2.3) T(Σ,g)Met(Σ) ∼= Ker δg ⊕ Im δ∗g .

UnlessRic(g) ≡ C g+Lw# g, for some constant C, the Ricci tensor Ric(g) of
a metric g ∈ Met(Σ) can be thought of as a non–trivial Diff(Σ)–equivariant
section of the tangent bundle T Met(Σ), i.e., {Ric(g)} ∩ Ker δg 6= ∅.
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Thus, according to (2.3), the Ricci flow associated with a Riemannian three-
manifold (Σ, g) can be thought of as the dynamical system on Met(Σ) gen-
erated by the weakly-parabolic diffusion–reaction PDE [37]

(2.4)

∂
∂β gab(β) = −2Rab(β),

gab(β = 0) = gab , 0 ≤ β < T0 ,

where Rab(β) is the Ricci tensor of the metric gik(β). The flow (Σ, g) 7→
(Σ, g(β)), defined by (2.4), always exists in a maximal interval 0 ≤ β ≤ T0,
for some T0 ≤ ∞. If such a T0 is finite then limβրT0 [supx∈Σ |Rm(x, β)|] =
∞, [37, 39] where Rm(β) is the Riemann tensor of (Σ, g(β)). Note that,
by exploiting a result by N. Sesum and M. Simon[53, 55], (see also the
comments in [42]) the curvature singularity regime for the 3–d Ricci flow is
equivalent to lim supβրT0

[maxx∈Σ |Ric(x, β)|] = ∞, (quite surprisingly, this
result of Sesum and Simon holds on any compact n–dimensional manifold).
The structure of singularities of the Ricci flow, as well as that of generalized
fixed points attained if T0 = ∞, is associated with self–similar solutions
generated by the action of Diff(Σ)×R+, where R+ acts by scalings. These
solutions are described by the Ricci solitons −2Rab(β) = L~v(β) gab + ε gab,
where L~v(β) denotes the Lie derivative along the β–dependent (complete)
vector field ~v(β) generating β 7→ ϕ(β)∈ Diff(Σ)× R+, and where, up to
rescaling, we may assume that ε = −1, 0, 1, (respectively yielding for the
shrinking, steady, and expanding solitons). This non–trivial action of the
diffeomorphisms group Diff(Σ) on the evolution of (Σ, g(β)) can be better
seen if we describe the kinematics of the flow (2.4) in the parabolic spacetime
M4

Par
.
= Σ× I, I

.
= [0, T0) ⊂ R. We assume that the diffeomorphism

(2.5) Fβ : I × Σ −→M4
Par; (β, x) 7→ iβ(x) ,

of I ×Σ onto M4
Par, is the identity map, and that M4

Par carries the product

metric (4)gpar, so that in the coordinates induced by Fβ we can write

(2.6) (F ∗
β

(4)gpar) = gab(β)dx
a ⊗ dxb + dβ ⊗ dβ .

In such a framework, ∂
∂β : Σ → TM4

Par, can be interpreted as a vector

field, transversal (actually, (4)gpar–normal) to the leaves {Σβ}, describing
the Ricci flow evolution as seen by observers at rest on Σβ. The evolution of
the metric g(β) can be equivalently described by observers in motion on Σβ.
To this end, consider a curve of diffeomorphisms I ∋ β 7→ ϕ(β) ∈ Diff(Σ),
(with the initial condition ϕi(xa, β = 0) = idΣ), and define the vector field
Xϕ : Σβ → TΣβ, Xϕ = ∂

∂βϕ(β), generating β 7→ ϕ(β). Such a β–dependent

Xϕ provides the velocity field of these non–static observers. Thus,

(2.7)
d

dβ
Fβ,ϕ =

∂

∂β
+Xϕ : Σβ −→ T M4

Par,
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is the space–time vector field covering the diffeomorphism Fβ,ϕ of I×Σ onto

(M4
Par,

(4)gpar), defining space–time coordinates (β, yi = ϕi(β, x)) which de-
scribe the curve of embeddings (β, x) →֒ (β, ϕ(β, x)) of Σβ in M4

Par. In
terms of the coordinates (β, yi) we can write

(2.8) (F ∗
β,ϕ

(4)gpar) = ğab(β)(dy
a +Xa

ϕdβ)⊗ (dyb +Xb
ϕdβ) + dβ ⊗ dβ ,

where the metric ğab(y
i, β) is β–propagated according to the Hamilton–

DeTurck flow

(2.9)

∂
∂β ğab(β) = −2R̆ab(β)− LXϕ ğab(β),

ğab(β = 0) = gab , 0 ≤ β < T0 .

The connection between (2.9) and (2.4) is most easily established if we pro-
ceed as in the mechanics of continuous media, when shifting from the body
(Lagrangian) to the space (Eulerian) point of view. To this end, let us
introduce the substantial derivative D

Dβ
.
= ∂

∂β + LXϕ associated with the

convective action defined by Xϕ. Since D
Dβ ğab(β) = (ϕ∗)−1 ∂

∂β [ϕ∗ ğ]ab and

ϕ∗ Ric(ğ) = Ric(ϕ∗ ğ), R(ğ) = R(ϕ∗ ğ), it follows from (2.9) that the pull–
back β 7→ (ϕ∗ ğ) of the flow β 7→ ğikdy

i ⊗ dyk, under the action of the
β– dependent diffeomorphism xa 7→ yi = ϕi(xa, β), solves (2.4). The non–
trivial action of the diffeomorphism group described above is the rationale
underlying DeTurck’s technique for fixing a gauge Fη,ϕ making the evolution
β 7→ (TΣ, gab(β)) of the metric in the tangent bundle manifestly parabolic
[22]. In this connection, one easy but useful information is that, along the
evolution β 7→ (TΣ, gab(β)), we can also consider a β–dependent isomor-
phism ι(β) between a fixed vector bundle V over Σ and the tangent bundle
(TΣ, g(β)), in such a way that (V, ι∗(β) g(β)) is isometric to (TΣ, g(β = 0)).
This is the Uhlenbeck trick [38, 43]. We briefly describe it to set nota-
tion for later use, (what follows holds for any dimension n). Consider a
bundle isometry between a fixed vector bundle V over Σ and the tangent
bundle TΣ, ι(0) :

(
V, ι(0)

∗ g
)
−→ (TΣ, g), where g is a given metric on

TΣ. Locally, in any open set U ⊂ Σ, given a basis of sections
{
e(µ)

}
µ=1,2,3

of V |U , and a basis of sections {θ(ν)}ν=1,2,3 of the dual bundle V ∗|U , we
can write ι(0)

∗ g|U = ι(0)
h
µ
ι(0)

k
ν
ghk θ

(µ) θ(ν), where the components ι(0)
h
µ
of

the the bundle isomorphism ι(0) are defined by ι(0)(e(µ)) = ι(0)
h
µ
∂h. Let us

evolve the isometry ι(0), along with the Ricci flow β 7→ gab(β), 0 ≤ β < T0,
according to ι(β) : (V, ι(0)

∗ g) → (TΣ, g(β)), where β 7→ ι(β) is the solution
of

(2.10)

∂
∂β ι

k
µ(β) = ιhµ(β) Rk

h(β),

ιhµ(β = 0) = ι(0)
h
µ

, 0 ≤ β < T0 .
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It is easily checked that along such an evolution we have (ι(β)∗ g(β))µν =(
ι(0)

∗ g
)
µν
, 0 ≤ β < T0, as required. One can also pull back to (V, ι(β)∗ g(β))

the Levi–Civita connection ∇(β) on (TΣ, g(β)) according to

D(β) : C∞(Σ, TΣ)× C∞(Σ, V ) → C∞(Σ, V )(2.11)

(X, ξ) 7−→ D(β)X ξ := ι(β)∗ ∇(β)X ξ .

From the defining relation relation ι [D(β)h ξ] = ∇(β)h(ι(ξ)) it follows that
∇k∇h(ι(ξ)) = ∇k {ι [D(β)h ξ]} = {ι [D(β)kD(β)h ξ]}. Thus, △(β)(ι(ξ))
:= gkh(β)∇k∇h(ι(ξ)) = gkh(β) {ι [D(β)kD(β)h ξ]} = ι [∆D(β) ξ], where the
(rough) Laplacian ∆D on (V, ι(β)∗ g(β)) is defined by

(2.12) ∆D(β) ξ := gkh(β)D(β)kD(β)h ξ .

These remarks imply a well–known result (see e.g.,[18],[58]) that can be
phrased in the following form, more adapted to our purposes,

Lemma 2.1. If a bilinear form vik ∈ C∞(Σ,⊗2
S T

∗Σ) evolves, along a given
Ricci flow β 7→ gab(β), 0 ≤ β < T0, according to the solution β 7→ vik(β) of
the parabolic initial value problem

(2.13)

∂
∂β vik(β) = ∆vik(β),

vik(β = 0) = vik , 0 ≤ β < T0 ,

.

then its pull–back ι∗ v, under the map ι(β) : (V, ι(0)
∗ g) → (TΣ, g(β)),

evolves according to

(2.14)

∂
∂β

(
ιiµ(β) ι

k
ν(β) vik(β)

)
= ∆D

(
ιiµ(β) ι

k
ν(β) vik(β)

)

+ιhµ(β) ι
k
ν(β)Ri

h(β) vik(β) + ιiµ(β) ι
h
ν(β)Rk

h(β) vik(β) ,

(
ιiµ(β) ι

k
ν(β) vik(β)

)
(β=0)

= ι(0)
i
µ
ι(0)

k
ν
vik , 0 ≤ β < T0 .

There is a rather obvious similarity between the above spacetime kinematics
for the Ricci flow, the role of the lapse and shift vector field, and the use
of Dreibeins in the formulation of the initial value problem in general rela-
tivity. However, this similarity cannot be pushed too far on the dynamical
side. As a matter of fact, the natural spacetime metric on M4

Par associated
with the dynamics of the Ricci flow is not the product metric described by
the diffeomorphism Fη : I × Σ →M4

Par. Formal metrics, often strongly de-
generate in the time–like direction, seem to better capture the most relevant
aspects of the spacetime geometry of the Ricci flow [16, 17], [49].
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2.1 Factorization of the linearized Ricci flow

As already stressed, an important role in Ricci flow theory is played by the
formal linearization of (2.4) in the direction of a symmetric bilinear form
hab(β), i.e.

(2.15)

∂
∂βhab(β) = − d

dt

(
2Rab(g

(t))
)∣∣

t=0
,

hab(β = 0) = hab , 0 ≤ β < T0 ,

where hab(β) can be thought of as representing an infinitesimal deformation

g
(t)
ab (β) = gab(β) + t hab(β), t ∈ (−ε, ε), of the flow β → gab(β) defined by
(2.4), i.e., h(β) ∈ T(Σ,g(β)) Met(Σ). According to a lenghty but standard
computation, (see e.g., [18], [19], [13]), the linearization (2.15) character-
izes the flow β 7→ hab(β) as a solution of the weakly-parabolic initial value
problem

(2.16)

∂
∂βhab = ∆Lhab + 2

[
δ∗g δg G(h)

]
ab
,

hab(β = 0) = hab , 0 ≤ β < T0 .

For notational ease, in (2.16) we have dropped the explicit β-dependence
and we have introduced the Einstein–conjugate G(g, h)

.
= h − 1

2 (trg h) g

of h ∈ C∞(Σ,⊗2T ∗ Σ), (G(h) for short, if it is clear, from the context,
with respect to which metric g we are conjugating). The operator ∆L :
C∞(Σ,⊗2T ∗ Σ) → C∞(Σ,⊗2T ∗ Σ) is the Lichnerowicz-DeRham Laplacian
on symmetric bilinear forms defined by

(2.17) ∆Lhab
.
= △hab −Rash

s
b −Rbsh

s
a + 2Rasbth

st,

where △ .
= gab(β)∇a∇b is the rough (or Bochner) Laplacian, and where for

n = 3 we can set

(2.18) Rasbt = Rabgst +Rstgab −Rsbgat −Ratgsb +
1

2
R (gatgsb − gabgst) .

For each given β ∈ [0, T0), ∆L is an operator of Laplace type [29], i.e.,
∆L = ∆ + E , for E the local section of End

(
⊗2T ∗Σ

)
, hik 7→ E ik

ab hik,
provided by

(2.19) E ik
ab

.
= −3Ri

aδ
k
b − 3Rk

b δ
i
a+2Rikgab +2

(
Rab −

1

2
Rgab

)
gik +Rδiaδkb .
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∆L is L2 self–adjoint, (∆L h, k)L2(Σ),= (h, ∆L k)L2(Σ), but it is not negative

semi–definite since
∫

Σ
hab ∆L hab dµg =(2.20)

−
∫

Σ

[
∇i hab ∇i hab + 6habRash

s
b − 4hhabRab +R

(
h2 − habh

ab
)]

dµg ,

where h
.
= gab hab. Along the Ricci flow the curvature can grow unboundedly

large, thus, in order to have some control on the spectral properties of ∆L,
we need to restrict attention to a particular subclass of Ricci flow metrics.
In particular, we shall say that a Ricci flow β 7→ gab(β) on Σ × [0, T0) is of
bounded geometry on the subinterval [0, β∗] ⊂ [0, T0) if, in such an inter-
val, the associated β–dependent curvature and its covariant derivatives of
each order have uniform bounds, i.e., if there exists constants Ck > 0 such
that

∣∣∇k Rm(β)
∣∣ ≤ Ck, k = 0, 1, . . ., for 0 ≤ β ≤ β∗. The hypothesis of

bounded geometry considerably simplifies the characterization of the conju-
gate linearized Ricci flow (in particular the analysis of the associated heat
kernel and of its asymptotics), without sacrificing generality. By exploiting
the technique of parabolic rescalings, one can extend the analysis to Ricci
flow singularities, at least in the case when one has a noncollapsed limit,
(e.g., for finite time singularities on closed manifolds).

If we assume that β 7→ gab(β) on Σ × [0, T0) is of bounded geometry on
the subinterval [0, β∗] ⊂ [0, T0), then from the spectral theory of Laplace
type operators on closed Riemannian manifolds (see [29], and [30] (Th.
2.3.1)), it follows that, on (Σ, gab(β)), for each given β ∈ [0, β∗] ⊂ [0, T0),
the operator PL

.
= −∆L = − (∆ + E) has a discrete spectral resolution{

h
(n)
ik (β), λ(n)(β)

}
, where the ordered eigenvalues λ(1)(β) ≤ λ(2)(β) ≤ . . .∞

have finite multiplicities, and are contained in [−C(β), ∞) for some constant
C(β) depending from the (bounded) geometry of (Σ, g(β)). Moreover, for

any ε > 0, there exists an integer n(ε;β) so that n
2
3
−ε ≤ λ(n) ≤ n

2
3
+ε, for

n ≥ n(ε;β). The corresponding set of eigentensor
{
h
(n)
ik (β)

}
, h

(n)
ik (β) ∈

C∞(Σ,⊗2T ∗ Σ), with PL h
(n)
ik (β) = λ(n)(β)h

(n)
ik (β), provide a complete or-

thonormal basis for L2(Σ,⊗2T ∗Σ). If for a tensor field φ ∈ L2(Σ,⊗2T ∗Σ)
we denote by cn(β)

.
=

(
φ, h(n)(β)

)
L2(Σ)

the corresponding Fourier coef-

ficients, then φik ∈ C∞(Σ,⊗2T ∗ Σ) iff limn→∞ nk cn(β) = 0, ∀k ∈ N,
(i.e, the {cn(β)} are rapidly decreasing). Also, if |φ|k denotes the sup–
norm of kth covariant derivative of φ, then there exists j(k;β) so that

|φ|k ≤ nj(k;β) if n is large enough. This result implies in particular that

the series φab =
∑

n cn(β)h
(n)
ab (β) converges absolutely to φab in the C∞

topology.
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In order to exploit the properties of PL for defining the conjugate linearized
Ricci flow we need to factorize (2.16) into a strictly parabolic flow and a
Diff(Σ) generating term. There are various distinct ways of implementing
such a decomposition, all eventually related to the DeTurck trick [22]. For
the convenience of the reader, here we describe a well–known factorization [2]
in a form particularly suited to our purposes, (to the best of my knowledge,
such a factorization appeared first explicitly in [45]), and which holds for
any n–dimensional manifold. Further details can be found in (Chap.2 of)
[21].

Let us consider a given symmetric bilinear form h̃
(0)
ab ∈ TgMet(Σ). Along

the Ricci flow of metrics β 7−→ gab(β), gab(β = 0) = gab, 0 ≤ β < T0, look
for solutions β 7→ hab(β) of the associated linearized flow in the form

(2.21) hab(β) = h̃ab(β) +∇awb(β) +∇bwa(β),

with h̃ab(β = 0) = h̃
(0)
ab , and where the β-dependent vector field wa(β)

is associated with β-dependent infinitesimal Diff(Σ) reparametrizations of
the Riemannian structure associated with gab(β).

Since h̃ab(β) + L~wgab must satisfy the linearized Ricci flow, we get

(2.22)

∂
∂β h̃ab +

∂
∂βL~wgab = ∆Lh̃ab −∆LL~wgab

+2
[
δ∗gδg G(h̃)

]

ab
+ 2

[
δ∗gδg G(L~wg)

]
ab

,

where h̃(β)
.
= gab(β) h̃ab(β). From the relations

(2.23)
∂

∂β
L~w(β)gab(β) = L~w(β)

∂

∂β
gab(β) + L ∂

∂β
~w(β)gab(β),

(2.24) L~w(β)
∂

∂β
gab(β) = −2L~w(β)Rab

(in the latter we have exploited the fact that β 7−→ gab(β) evolves along the
Ricci flow), and

(2.25) L~wRab = −1

2
∆LL~wgab −

[
δ∗gδg G(L~wg)

]
ab
,

(consequence of the the Diff(Σ)-equivariance of the Ricci tensor) we obtain

(2.26)
∂

∂β
L~wgab = L ∂

∂β
~wgab +∆LL~wgab + 2

[
δ∗gδg G(L~wg)

]
ab
.
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Inserting this latter in (2.22) we have

(2.27)
∂

∂β
h̃ab + L

( ∂
∂β

wk+∇i(ehik−
1
2

eh gik))
gab = ∆Lh̃ab .

As an immediate consequence of the structure of this relation it follows that,
under the stated hypotheses, we can naturally factorize the linearized Ricci
flow according to the (see e.g., [21])

Lemma 2.2. (The Reduced Linearized Ricci Flow). Let β 7−→ h̃ab(β),
β ∈ [0, T0), denote the flow solution of the parabolic initial value problem

(2.28)

∂
∂β h̃ab = ∆Lh̃ab

h̃ab(β = 0) = hab,

and let β 7−→ wa(β), β ∈ [0, T0), be the β-dependent (co)vector field solution
of the initial value problem

(2.29)

∂
∂β wa(β) = −∇b

(
h̃ab − 1

2 h̃ gab

)
,

wa(β = 0) = 0,

then the flow β 7−→ hab(β), β ∈ (0, β0), defined by

(2.30) hab(β)
.
= h̃ab(β) + L~w(β)gab(β),

solves the linearized Ricci flow (2.16) with initial datum hab(β = 0) = hab.

Proof. The proof of the lemma amounts to backtracking the steps leading
to the identity (2.27). Explicitly, from (2.28) and (2.26), we get

(2.31)

∂
∂β h̃ab +

∂
∂β L~w gab = ∆Lh̃ab

+L ∂
∂β

w gab +∆L L~w gab + 2
[
δ∗gδg G(L~wg)

]
ab
.

Moreover, from (2.29), we have

(2.32) L ∂
∂β

w gab + 2
[
δ∗gδg G(L~wg)

]
ab

= 2
[
δ∗gδg G(h̃ + L~wg)

]

ab
.

By inserting (2.32) in (2.31), and gathering terms, we get that hab(β)
.
=

h̃ab(β)+L~w(β)gab(β), solves the linearized Ricci flow (2.16) with initial datum
hab(β = 0) = hab.

The net effect of curvature on the factorization of the linearized Ricci flow is
most easily seen in an orthonormal frame. Since every 3–manifold is paral-
lelizable, we can choose orthonormal sections {e(µ)}µ=1,2,3 for (TΣ, g(β = 0),
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(locally e(µ)|U = ιkµ∂i), such that the induced basis in Λ2(TpΣ), {e2∧e3, e3∧
e1, e1 ∧ e2} diagonalizes the curvature tensor Rm(g), i.e., Rm2323 := r1,
Rm3131 := r2, and Rm1212 := r3. Let us evolve the sections {e(µ)}µ=1,2,3

along the given Ricci flow according to the Uhlenbeck trick (2.10) and cor-

respondingly set hµν(β) := h̃jk(β) ι
j
µ(β) ιkν(β), where β 7→ h̃jk(β) is the solu-

tion of the reduced linearized Ricci flow (2.28). Then, according to lemma
2.1, we get, (suppressing the β–dependence for notational ease),

(2.33)

∂
∂β hµν = ∆D hµν + ιaµι

b
ν Ejk

ab h̃jk

+ιaµι
b
ν Rc

a h̃cb + ιaµι
b
ν Rc

b h̃ac .

Since Ejk
ab = −Rj

a δ
k
b −Rk

b δ
j
a + 2Rj k

a b, the above expression reduces to

(2.34)
∂

∂β
hµν = ∆D hµν + 2Rµσντ h

στ ,

where we have set Rµσντ
.
= ιaµ ι

b
ν ι

s
σ ι

t
τ Rasbt and hστ

.
= ισs ι

τ
t h̃

st, with ιαa
the components of the orthonormal (co)–basis {θ(α)} dual to {e(µ)}. Thus,
from Hamilton’s maximum principle [38], it follows that if β 7→ gab(β),
0 ≤ β < β∗ ⊂ [0, T0) is a Ricci flow with non–negative curvature operator

and with bounded geometry and if β 7→ h̃ij(β) is a solution of the reduced

linearized Ricci flow (2.28) with h̃ij(β = 0) > 0, then h̃ij(β) > 0 for every
β ∈ [0, β∗].

If, in the initial value problems (2.28) and (2.29), we consider the initial

conditions h̃ab(β = 0) = 0, and wa(β = 0) = ξa, then one recovers the well–

known fact that, for a β–independent vector ~ξ ∈ C∞(Σ, TΣ), the tensor field
hab(β) = Lξ gab(β), is a solution of the linearized Ricci flow, and that any
Killing vector is preserved along the Ricci flow. More generally, the existence
of the Diff (Σ)–solitonic solutions of the Ricci flow, and the structure of
the factorization described by lemma 2.2, suggest that there should exist

solutions of the reduced linearized Ricci flow (2.28) of the form h̃ab(β) =
Lv(β) gab(β) for some judiciously chosen β 7→ va(β). This is expressed by
the following

Lemma 2.3. For a given Ricci flow β 7→ gab(β), 0 ≤ β < T0, let β 7→ va(β)
denote the flow solution of the parabolic initial value problem

(2.35)

∂
∂β va(β) = △va(β) +Rb

avb(β),

va(β = 0) = va,

where v(β = 0) ∈ C∞(Σ, T ∗Σ) is a given covector field, and where △vb(β)+
Ra

bva(β), with △vb(β) .
= ∇a∇avb(β), is the (1–form) Hodge laplacian on
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(Σ, g(β)). Then the flow β 7→ h̃ab(β) = Lv(β) gab(β) provides a Diff(Σ)–
solitonic solution to the reduced linearized Ricci flow (2.28).

Again, in a form or another, this is a well–known property of the linearized
Ricci flow, see e.g. [21], (note that in [21] the sign convention on Ricci
tensor is opposite to ours). Here we are emphasizing, for later use, the
Diff(Σ)–solitonic nature of such solutions.

Proof. A direct computation using the Ricci commutation relations provides

− δg G(L~vg) =(2.36)

= ∇a [∇avb(β) +∇bva(β)− gab(β)∇cvc(β)] dx
b =

= [△vb(β) +Rabv
a(β)] dxb ,

thus, according to (2.35)

(2.37)
∂

∂β
va(β) = − [δg G(L~vg)]a ,

which implies, (see (2.1)),

(2.38) L ∂
∂β

~vgab = −2
[
δ∗gδg G(L~vg)

]
ab
.

By introducing this latter relation in

(2.39)
∂

∂β
L~vgab = L ∂

∂β
~vgab +∆LL~vgab + 2

[
δ∗gδg G(L~vg)

]
ab
,

(see (2.26)), we get

(2.40)
∂

∂β
L~v gab = ∆LL~v gab ,

which implies that h̃ab(β) = Lv(β) gab(β) solves (2.28) with the initial datum

L~v(β) gab(β)
∣∣
β=0

= L~v gab.

Lemma 2.3 and of eqn. (2.40), may suggest that, along the Ricci flow, we

can decompose the given solution β 7→ h̃ab(β) of (2.28) according to

(2.41) h̃(β) = h̃(T )(β) + 2δ∗gv(β), δg h̃
(T )(β) = 0 .

This would also imply that the divergence–free part h̃(T )(β) evolves accord-

ing to ∂
∂β h̃

(T )(β) = ∆Lh̃
(T )(β). However, from δgh̃

(T )(β) = 0 it follows that

the (co)vector field defined by Lemma 2.3 must also comply with the con-

straint 2δgδ
∗
gv = δgh̃(β), for all 0 ≤ β < T0, (in components this reduces

to the elliptic PDE △va +Rabv
b +∇a∇bvb = ∇bh̃ab, where h̃ab(β) is the

given source). Such a requirement clearly overdetermines β 7→ va(β), and
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we cannot assume that (2.41) holds in the general case. This also follows
explicitly from the following

Lemma 2.4. (A commutation formula) For any symmetric bilinear form
Skl on any n-dimensional Riemannian manifold, we have

∇k △L Skl = △∇k Skl + Sab ∇k Rkalb −Rla∇k Sa
k − Sa

k ∇k Rla(2.42)

= △∇k Skl + Ska∇lRka −Rla∇k Sa
k − 2Sa

k ∇k Rla .

Proof. The proof is a somewhat lengthy but otherwise standard computation
exploiting Ricci commutation formulas and the second Bianchi identity. In
detail

−∇k△LSik = ∇k(−∇j∇jSik +Rl
iSlk +Rl

kSil − 2Rlj
ikSlj)

= −(∇j∇k(∇jSik)−Rk
j∇jSik −Rkl

ij∇jSkl +Rk
j∇jSik)

+(∇kRl
i)Slk +Rl

i∇kSlk + (∇kRl
k)Sil +Rl

k∇kSil−
2(∇kRlj

ik)Slj − 2Rlj
ik∇kSlj

= −∇j(∇j∇kSik −Rkl
jiSkl +Rk

jSik) +Rkl
ij∇jSkl

+(∇kRl
i)Slk +Rl

i∇kSlk + (∇kRl
k)Sil +Rl

k∇kSil−
2(∇kRlj

ik)Slj − 2Rlj
ik∇kSlj

= −△∇kSik − (∇jRkl
ij )Skl + (∇kRj

i )Sjk +Rj
i∇kSjk .

From the second Bianchi identity we get ∇jRkl
ij = −∇kRl

i + ∇iR
kl, which

inserted into the above expression eventually provides (2.42).

From (2.42) and the Ricci flow rule

(2.43)
∂

∂β
∇k Skl = gik ∇i

(
∂

∂β
Skl

)
+ 2Rik∇i Skl + Smi ∇lRmi ,

(which follows directly from the evolution of the Christoffel symbols under
the Ricci flow), we immediately compute that if β 7→ Skl(β) evolves, along
the Ricci flow, according to ∂

∂β Skl(β) = ∆L Skl(β), then

∂

∂β
∇k Skl = △∇k Skl −Ra

l ∇k Ska + Sab ∇lRab +(2.44)

+2Rik ∇i Skl − 2Sik ∇iRkl .

The presence, in the above expression, of the terms Sab ∇lRab+2Rik ∇i Skl−
2Sik ∇iRkl, implies that, unless we are on a (3–dimensional) Einstein man-
ifold, Rab = 1

3Rgab, the parabolic initial value problem (2.44) with ini-
tial the condition ∇a Sab(β)|β=0 = 0, does not admit, in general, the so-

lution ∇a Sab(β) = 0, 0 ≤ β < T0. If we apply this latter result to
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S(β) =
(
2δ∗gv(β)− h̃(β)

)
it follows that the L2(Σβ, g(β))–orthogonal de-

composition

(2.45) C∞(Σβ , ⊗2T ∗Σβ) ∼= Ker δg(β) ⊕ Im δ∗g(β)

cannot be naturally imposed to the coupled evolution β 7→ (gab(β), h̃ab(β))
along a generic Ricci flow metric on Σ× [0, T0).

The difficulties one experiences in controlling the L2–decomposition of the
solutions of (2.28) are related to the dynamical Diff(Σ)–equivariance of
(2.16) and are a counterpart of the existence of the solitonic solutions of
the Ricci flow. It is then natural to bypass such difficulties by adopting
a strategy akin to the one used by G. Perelman in handling Ricci flow
Diff(Σ)–solitons. In particular, in order to have an a priori control on the
L2(Σβ, g(β)) decomposition (2.45), we shall characterize the (backward)
flow which is conjugated to the Diff(Σ)–soliton solutions of (2.28), de-
scribed by lemma 2.3.

3 The conjugate linearized Ricci flow

Let β 7→ (Σ, gab(β)), 0 ≤ β ≤ β∗, β∗ ∈ [0, T0) be a given Ricci flow metric

of bounded geometry, and let (M4
Par ≃ Σ× [0, β∗], (4)gpar) denote the corre-

sponding parabolic spacetime. Through the diffeomorphism F−1
β : M4

par →
I ×Σ, (see (2.5)), any (β, x) 7→ Bab(β, x), with Bab(β, x) ∈ C∞(Σ, ⊗2T ∗Σ),
can be seen as an element of the space of symmetric bilinear forms onM4

Par,
C∞(M4

Par, ⊗2T ∗M4
Par). Since the volume form on M4

Par is given by the
product measure dµg(β) dβ, we can consider, on C∞(M4

Par, ⊗2T ∗M4
Par), the

L2(M4
Par,

(4)gpar) inner product

(3.1)

∫ β∗

0

∫

Σ
gia(β)gkb(β)Hik(β)Bab(β) dµg(β) dβ ,

between Hik(β) and Bab(β) ∈ C∞(Σ, ⊗2T ∗Σ). Similarly, we can also define
the natural pairing

(3.2)

∫ β∗

0

∫

Σ
Hab(β)Bab(β) dµg(β) dβ ,

between Hab(β) ∈ C∞(Σ, ⊗2TΣ) and Bab(β) ∈ C∞(Σ, ⊗2T ∗Σ). Let us
consider the operator

(3.3) ©L
.
=

∂

∂β
−△L ,
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acting on the space of β–dependent symmetric bilinear forms C∞(Σ, ⊗2T ∗Σ)
⊂ C∞(M4

Par, ⊗2T ∗M4
Par). According to lemma 2.3, Ker ©L∩ Im δ∗g char-

acterizes the solitonic solutions of the (reduced) linearized Ricci flow (2.28).

Let us compute its L2(M4
Par,

(4)gpar) conjugate ©∗
L, thought of as acting

on the space of symmetric two–tensors with compact support. From the
relation

∫ β∗

0

∫

Σ
Hab(β)

∂

∂β
Bab(β) dµg(β) dβ =

∫ β∗

0

d

dβ

∫

Σ
HabBab dµg dβ(3.4)

+

∫ β∗

0

∫

Σ
Bab

(
− ∂

∂β
Hab +RHab

)
dµg dβ

=

∫ β∗

0

∫

Σ
Bab

(
− ∂

∂β
Hab +RHab

)
dµg dβ ,

(where we have exploited the Ricci flow evolution for dµg and the time–

boundary condition Hab ∈ C∞
0 (M4

Par, ⊗2TM4
Par)), and

∫ β∗

0

∫

Σ
Hab(β) (−△L) Bab(β) dµg(β) dβ(3.5)

=

∫ β∗

0

∫

Σ
Bab(β) (−△L) H

ab(β) dµg(β) dβ ,

(where we have exploited the fact that △L is formally self–adjoint on each
(Σ, g(β))), we compute

∫ β∗

0

∫

Σ
Hab(β) ©L Bab(β) dµg(β) dβ(3.6)

=

∫ β∗

0

∫

Σ
Hab

(
∂

∂β
−△L

)
Bab dµg dβ

=

∫ β∗

0

∫

Σ
Bab

(
− ∂

∂β
−△L +R

)
Hab dµg dβ

=

∫ β∗

0

∫

Σ
Bab(β) ©∗

L Hab(β) dµg(β) dβ .

Thus,

(3.7) ©∗
L
.
= − ∂

∂β
−△L +R .

The following results provide the geometrical meaning of ©∗
L.
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Lemma 3.1. Let β 7→ (Σ, g(β)), 0 ≤ β ≤ β∗, be a Ricci flow of bounded
geometry, and let Ker δg denote the corresponding β–dependent subspace of

divergence–free 2–tensor fields Hab(β) ∈ C∞(Σ, ⊗2TΣ), then Ker δg is an
invariant subspace for ©∗

L, i.e.

(3.8) ©∗
L (Ker δg) ⊂ Ker δg ,

for all β ∈ [0, β∗].

Proof. The commutation formula (2.42) provides

(3.9) ∇a△LH
ab = △∇aH

ab +Haj∇bRaj −Rb
a∇jH

aj − 2Haj∇jRb
a ,

whereas along the Ricci flow we have

−∇a
∂

∂β
Hab = − ∂

∂β

(
∇aH

ab
)

(3.10)

−Hrb∇rR−Har∇aRb
r −Har∇rRb

a +Hra∇bRar .

Inserting these relations into the expression for ∇a

(
©∗

LH
ab
)
, and cancelling

terms, we easily get

∇a

(
©∗

LH
ab
)
= −∇a

[(
∂

∂β
+△L −R

)
Hab

]
(3.11)

= −
(
∂

∂β
+△−R

)
∇aH

ab +Rb
a∇jH

aj ,

(note that the Laplacian in the last line is the rough Laplacian). Thus, if
∇aH

ab(β) = 0 then ∇a

(
©∗

LH
ab(β)

)
= 0.

As expected under L2–duality, the action of©∗
L on Im δ∗g parallels the rather

complicate action of©L onKer δg. In particular, for the Lie derivative along

a gradient vector field Xa(η)
.
= gak ∇k f , with f ∈ C∞(Σ, R), we have

Lemma 3.2. Let (Hess f(β))ab
.
= gia(β)gkb(β)∇i∇k f(x, β), be the (con-

travariant) Hessian of a β–dependent function f ∈ C∞(Σ, R), then along
the Ricci flow β 7→ gab(β) on Σ× [0, β∗] we have

©∗
L (Hess f(β))ab = ∇a∇b

(
∂

∂β
+∆−R

)
f +(3.12)

+2∇i

(
Ria∇bf

)
+ 2∇k

(
Rkb∇af

)
+

+2
(
∇aRb

l +∇bRa
l −∇lRab

)
∇lf .
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Note in particular that the component of ©∗
L (Hess f(β)) on Im δ∗g is gen-

erated by the L2(M4
Par)–adjoint

(3.13) �
∗ .
= −

(
∂

∂β
+∆−R

)
,

of the scalar heat operator

(3.14) �
.
=

(
∂

∂β
−∆

)
.

Proof. The proof of (3.12) is a long but routine computation exploiting the
Ricci flow identity

∇i ∇k

(
∂

∂β
+∆

)
f =

(
∂

∂β
+∆L

)
∇i∇kf(3.15)

−2 (∇iRkl +∇kRil −∇lRik) ∇lf ,

(for this latter see [21], Chap. 2, §5).

Consider the set of covector fields ~v(β) ∈ C∞(M4
Par, T

∗M4
Par) obtained as

solutions of

(3.16)

∂
∂β va(β) = △va(β) +Rb

avb(β),

va(β = 0) = v
(0)
a ,

where the initial ~v(0) varies in C
∞(Σ, T ∗Σ). According to lemma 2.3, these

flows describe all possible solitonic solutions L~v(β)gab(β) of the linearized

Ricci flow (2.28). Let Hab(β), β ∈ [0, β∗], be a β–dependent 2–tensor field,
and let us consider the pairing

(3.17)

∫

Σ
Hab(β)L~v(β) gab(β) dµg(β) ,

for every 0 ≤ β ≤ β∗. By differentiating (3.17), and exploiting (2.40 ), we
get

d

dβ

∫

Σ
Hab(β)L~v(β) gab(β) dµg(β)(3.18)

=

∫

Σ

[
L~v gab

∂

∂β
Hab +Hab (△L −R) L~v gab

]
dµg

= −
∫

Σ
L~v gab ©∗

L Hab dµg ,
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which implies
∫

Σ
Hab(β)L~v(β) gab(β) dµg(β)

∣∣∣∣
β∗

−
∫

Σ
Hab(β)L~v(β) gab(β) dµg(β)

∣∣∣∣
β=0

(3.19)

= −
∫ β∗

0

∫

Σ
L~v gab ©∗

L Hab dµg dβ .

Thus, if we evolve Hab(β) according to the flow

(3.20) ©∗
LH

ab(β) = 0 ,

the inner product (3.17) will be preserved along the evolution, i.e.

(3.21)

∫

Σ
Hab L~v gab dµg

∣∣∣∣
β∗

=

∫

Σ
Hab L~v gab dµg

∣∣∣∣
β=0

.

Since any solution β 7→ gab(β) of the Ricci flow on Σβ × [0, β∗] can be
converted into a solution η 7→ gab(η) of the backward Ricci flow on Ση×[0, β∗]
by the time reversal β 7→ η

.
= β∗ − β, the above remarks motivate the

following

Definition 3.3. Let η 7→ gab(η), η
.
= β∗ − β, a backward Ricci flow on

Ση × [0, β∗], then the conjugated evolution ©∗
LH

ab = 0, of a symmetric

bilinear form Hab(η = 0), along η 7→ gab(η) takes the form of the parabolic
initial value problem

(3.22)

∂
∂ηH

ab = ∆LH
ab − RHab ,

Hab(η = 0) = Hab
∗ .

Note that, according to the backward β–parabolic character of the operator
©∗

L(β), the initial data Hab(η = 0) = Hab
∗ in (3.22) correspond to β = β∗.

Lemma 3.1 trivially extends to the evolution (3.22) and we have the

Corollary 3.4. If η 7−→ Hab(η), 0 ≤ η ≤ β∗, is the solution of the par-
abolic initial value problem (3.22) with ∇aH

ab
∗ = 0, then ∇aH

ab(η) = 0,
∀η ∈ [0, β∗].

Moreover, we have the following result that explicitly shows that (3.22) is
conjugated to (2.28).

Proposition 3.5. Let η 7→ Hab(η), η ∈ [0, β∗], Hab(η = 0) = Hab
∗ , be a

solution of the parabolic initial value problem (3.22). Also, let β 7→ h̃ab(β),

β ∈ [0, β∗], h̃ab(β = 0) = hab(β = 0) be a solution of reduced linearized Ricci
flow (2.28). Then, along the backward Ricci flow η 7→ gab(η), η

.
= β∗ − β,
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on Ση × [0, β∗], the flows η 7→ Hab(η) and η 7→ h̃ab(η) := h̃ab(β
∗ − β) are

L2(M4
Par) conjugated, in the sense that

(3.23)
d

dη

∫

Σ
Hab(η) h̃ab(η) dµg(η) = 0 .

In particular,

(3.24)

∫

Σ
Hab(η) h̃ab(η) dµg(η)

∣∣∣∣
η=0

=

∫

Σ
Hab(η) h̃ab(η) dµg(η)

∣∣∣∣
η=β∗

.

Proof. A direct computation provides

d

dη

∫

Σ
Hab(η) h̃ab(η) dµg(η)(3.25)

=

∫

Σ

(
∆LH

ab − RHab
)
h̃ab dµg +

∫

Σ
Hab

(
−∆Lh̃ab + h̃ab R

)
dµg = 0 .

This result and corollary 3.4 directly imply the

Proposition 3.6. let η 7→ (Σ, g(η)), 0 ≤ η ≤ β∗, be a backward Ricci
flow of bounded geometry. Assume that C∞(Ση, ⊗2T ∗Ση) ⊃ Ker δg 6= ∅,
0 ≤ η ≤ β∗. Let η 7→ Hab

(T )(η), ∇aH
ab
(T )(η) = 0, η ∈ [0, β∗], Hab

(T )(η = 0)

= Hab
∗ , with δgH

ab
∗ = 0, be a divergence–free solution of the parabolic initial

value problem (3.22). If β 7→ h̃ab(β), β ∈ [0, β∗], h̃ab(β = 0) = hab(β = 0)

denotes a solution of reduced linearized Ricci flow (2.28), and η 7→ h̃
(T )
ab (η) :=

h̃
(T )
ab (β∗ − β) is its divergence–free part along η 7→ (Σ, g(η)), then

(3.26)

∫

Σ
Hab

(T )(η) h̃
(T )
ab (η) dµg(η) ,

is constant along the coupled backward evolution η 7→
(
gab(η), h̃ab(η)

)
.

Proof. By writing h̃ab(η) = h̃
(T )
ab (η) + LX(η) gab(η), for some η–dependent

vector field X(η), and exploiting the L2–orthogonality between Hab
(T )(η) and

LX(η) gab(η), we get
∫
ΣH

ab
(T )(η) h̃ab(η) dµg(η)=

∫
ΣH

ab
(T )(η) h̃

(T )
ab (η) dµg(η).

Thus, the conjugated flow (3.22) provides the directions in C∞(Σβ, ⊗2T ∗Σβ)

along which the non-trivial solutions β 7→ h̃
(T )
ab (β) of the linearized Ricci flow
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(2.28) propagate without dissipation in the L2 sense. In this connection no-
tice also that along the the conjugated flow (3.22) we have the following
monotonicity result

Proposition 3.7. Let η 7→ gab(η), η
.
= β∗ − β, a backward Ricci flow of

bounded geometry on Ση × [0, β∗] with R(η) ≥ 0, η
.
= β∗ − β, where R(η)

denotes the scalar curvature of (Σ, g(η)). If η 7→ Hab(η), η ∈ [0, β∗], Hab(η =
0) = Hab

∗ , denotes a solution of the parabolic initial value problem (3.22)
with δg(η)H(η) 6= 0, then

(3.27)
d

dη

∫

Σ

∣∣δg(η)H(η)
∣∣2 dµg(η) ≤ 0 ,

where
∣∣δg(η)H(η)

∣∣2 .
= ∇aH

ab(η)∇cH
cd(η) gbd(η).

Proof. From (3.11) we get

(3.28)
∂

∂η
∇aH

ab = ∆∇aH
ab −R∇aH

ab −Rb
a∇jH

aj ,

from which we compute

∂

∂η

∣∣δg(η)H(η)
∣∣2 = 2gbd ∇cH

cd∆
(
∇aH

ab
)
− 2R

∣∣δg(η)H(η)
∣∣2(3.29)

= ∆
∣∣δg(η)H(η)

∣∣2 − 2
∣∣∇ δg(η)H(η)

∣∣2 − 2R
∣∣δg(η)H(η)

∣∣2 ,

where
∣∣∇ δg(η)H(η)

∣∣2 .
= ∇i

(
∇aH

ab
)
∇i

(
∇cH

cd
)
gbd. By integrating, and

taking into account that along the backward Ricci flow ∂
∂η dµg(η) = R dµg(η),

we get

d

dη

∫

Σ

∣∣δg(η)H(η)
∣∣2 dµg(η) = −

∫

Σ
R

∣∣δg(η)H(η)
∣∣2 dµg(η)(3.30)

−2

∫

Σ

∣∣∇ δg(η)H(η)
∣∣2 dµg ≤ 0 .

Since non–negative scalar curvature is preserved along the Ricci flow, the
requirement R(η) ≥ 0, η

.
= β∗ − β, in the above result is not particu-

larly restrictive. In particular, it can be easily removed by weighting the
riemannian measure dµg with a positive solution of the forward conjugate
scalar heat equation, (I wish to thank Lei Ni for this latter remark). Ac-
cording to proposition 3.5, it also follows that (3.28) is the backward flow
L2(M4

Par)–conjugated to the forward evolution for covector fields defined by
lemma 2.3.
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These elementary aspects of the L2(M4
Par) conjugacy relation have an impor-

tant and rather unexpected consequence, which implies that the conjugate
linearized Ricci flow averages out the full Ricci flow:

Proposition 3.8. Let β 7→ (Σ, g(β)), β ∈ [0, β∗] be a Ricci flow of bounded
geometry, and let β 7→ Rab(β) be the corresponding β–evolution of the
Ricci tensor. Denote by η 7→ Hab(η), η ∈ [0, β∗], Hab(η = 0) = Hab

∗ the
solution of the parabolic initial value problem (3.22) associated with the
given β 7→ (Σ, g(β)). Then,

(3.31)
d

dη

∫

Σ
Hab(η)Rab(η) dµg(η) = 0 ,

and

(3.32)
d

dη

∫

Σ
(gab(η)− 2ηRab(η))H

ab(η) dµg(η) = 0 ,

along the backward Ricci flow. In particular, this implies

(3.33)

∫

Σ
Hab Rab dµg

∣∣∣∣
η=0

=

∫

Σ
Hab(η)Rab(η) dµg(η) ,

and

(3.34)

∫

Σ
Hab gab dµg

∣∣∣∣
η=0

=

∫

Σ
(gab(η)− 2ηRab(η))H

ab(η) dµg(η) ,

for every 0 ≤ η ≤ β∗.

Proof. It is easily checked that in any dimension n the forward evolution for
the Ricci curvature

(3.35)
∂

∂β
Rij = ∆Rij − 6gklRilRkj + 3RRij + 2gijRklRkl − gij R2 ,

can be expressed directly in terms of the Lichnerowicz–DeRham Laplacian
as

(3.36)
∂

∂β
Rij = ∆LRij .
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Thus, from (3.22) we get

d

dη

∫

Σ
Hab(η)Rab(η) dµg(η)(3.37)

=

∫

Σ

{
Rab

∂

∂η
Hab +Hab ∂

∂η
Rab +Hab Rab R

}

=

∫

Σ

{
Rab

[
△LH

ab −RHab
]

− Hab △LRab +Hab Rab R
}
dµg

=

∫

Σ

{
−Hab △LRab +Rab △LH

ab
}
dµg = 0 ,

from which (3.31) follows. Relation (3.32) follows similarly by observing
that, since η 7→ gab(η) is covariantly constant, we can write

(3.38)
∂

∂η
(gab(η)− 2ηRab(η)) = −∆L (gab(η)− 2ηRab(η)) .

This result has an interesting converse

Remark 3.9. Let η 7→ gab(η) ∈ Met(Σ) be a one–parameter family of evolv-
ing metrics on Σ× [0, β∗], not identified a priori with a backward Ricci flow.
Let η 7→

(
gab(η) ,H

ab(η)
)
be the corresponding solution of the heat equation

(3.39)

η 7→ gab(η) , 0 ≤ η ≤ β∗ ,

∂
∂ηH

ab = ∆LH
ab − RHab ,

Hab(η = 0) = Hab
∗ , Hab

∗ ∈ C∞(Σ,⊗2 TΣ) .

Then among all possible such flows η 7→
(
gab(η) ,H

ab(η)
)
, the backward

Ricci flow η 7→ gab(η),
∂
∂η gab(η) = 2Rab is characterized by the condition

(3.40)
d

dη

∫

Σ
gabH

ab dµg(η) = 2

∫

Σ
RabH

ab dµg(η) .

Proof. A direct computation provides

d

dη

∫

Σ
gabH

ab dµg(η)(3.41)

=

∫

Σ
Hab

(
∂

∂η
gab −Rgab +

1

2
gabg

ik ∂

∂η
gik

)
dµg(η) ,
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which yields 2
∫
Σ RabH

ab dµg(η), for every possible solution η 7→ Hab(η) of

(3.39), iff

(3.42)
∂

∂η
gab(η) = 2Rab .

It is important to stress that actually the above results (as most results in
this paper) hold in any dimension n ≥ 3, this true in particular for Propo-
sitions 3.5, 3.6, 3.7, and 3.8.

Now we turn to the analysis of the conjugate flow η 7→ (gab(η),H
ab(η)) in

its role as the Ricci flow integral kernel.

4 The conjugate backward heat kernel

The averaging properties of the conjugate linearized Ricci flow become man-
ifest when we identify the flow η 7→ Hab(η) with the heat kernel of ©∗

L along
the backward Ricci flow η 7→ gab(η). To fix notation, let (⊗2TΣ) ⊠ (⊗2T ∗Σ)
denote the bundle over Σ × Σ whose fiber over (y, x) ∈ Σ × Σ is given
by

(
⊗2TΣ ⊠ ⊗2T ∗Σ

)
(y,x)

= (⊗2TΣ)y ⊗ (⊗2T ∗Σ)x. Wheras for notational

simplicity we keep on assuming n = 3, it is perhaps appropriate to stress
here once more that the results which follow actually hold in any dimension
n ≥ 3, with the obvious changes in the range of tensorial indices involved.
Let Uβ ⊂ (Σβ, g(β)) be a geodesically convex neighborhood containing the
generic point x ∈ Σβ. For a chosen base point y ∈ Uβ , let lβ(y, x) denote the
unique g(β)–geodesic segment x = expy u, with u ∈ TyΣ, connecting y to
x. Parallel transport along lβ(y, x) allows to define a canonical isomorphism
between the tangent space TyΣβ and TxΣβ which maps any given vector
~v(y) ∈ TyΣβ into a corresponding vector ~vPlβ(y,x)

∈ TxΣβ. If {e(h)(x)}h=1,2,3

and {e(k′)(y)}k′=1,2,3 respectively denote basis vectors in TxΣβ and TyΣβ,
(henceforth, primed indexes will always refer to components of elements of
the tensorial algebra over TyΣβ), then the components of ~vPlβ(y,x)

can be

expressed as

(4.1)
(
vPlβ(y,x)

)k
(x) = τkh′(y, x;β) vh

′

(y) ,

where τkh′ ∈ TΣβ ⊠ T ∗Σβ denotes the bitensor associated with the parallel
transport along lβ(y, x). The Dirac p–tensorial measure in Uβ ⊂ (Σβ, g(β))
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is defined according to

(4.2) δ
k1...kp
h′

1...h
′

p
(y, x;β) := ⊗p

(α=1) τ
kα
h′

α
(y, x;β) δβ(y, x) ,

where δβ(y, x) is the standard Dirac measure over the Riemannian manifold
(Σβ, g(β)) (see [44]). If (Σ, gab(η)) is a smooth solution to the backward
Ricci flow on Ση × [0, β∗] with bounded curvature, then we can consider the

g(η)–dependent fundamental solution Kab
i′k′(y, x; η) to the conjugate heat

equation (3.22), i.e.,

(4.3)

(
∂
∂η − ∆

(x)
L + R

)
Kab

i′k′(y, x; η) = 0 ,

lim ηց0+ Kab
i′k′(y, x; η) = δabi′k′(y, x; ) ,

where (y, x; η) ∈ (Σ × Σ\Diag(Σ × Σ)) × [0, β∗], η
.
= β∗ − β, ∆

(x)
L denotes

the Lichnerowicz–DeRham laplacian with respect to the variable x, and
Kab

i′k′(y, x; η) is a smooth section of (⊗2TΣ) ⊠ (⊗2T ∗Σ). The Dirac initial
condition is understood in the distributional sense, i.e., for any smooth
symmetric bilinear form with compact support wi′k′ ∈ C∞

0 (Σ,⊗2TΣ),

(4.4)

∫

Ση

Kab
i′k′(y, x; η) w

i′k′(y) dµ
(y)
g(η) → wab(x) as η ց 0+ ,

where the limit is meant in the uniform norm on C∞
0 (Σ,⊗2TΣ). Note that

the elliptic generator, associated with ∂
∂η − ∆

(x)
L + R, is the operator of

Laplace type on (Σ, g(η)) defined by ∆η + F(η)= ∆L − R where ∆η is
the rough Laplacian on (Σ, g(η)). The η–dependent endomorphism F(η) :
C∞(Ση,⊗2T ∗ Ση) → C∞(Ση,⊗2T ∗Ση) is related to the endomorphism E ,
characterizing ∆L, by F ik

ab = E ik
ab −R δikab, i.e., (see (2.19)),

(4.5) F ik
ab(η)

.
= −3Ri

aδ
k
b − 3Rk

b δ
i
a + 2Rikgab + 2

(
Rab −

1

2
Rgab

)
gik ,

where all geometric quantities refer to (Σ, g(η)). In analogy with the spec-
tral properties of the Lichnerowicz–DeRham Laplacian recalled in §2.1, the
spectral theorem [29] implies that the operator

(4.6) Pη
.
= − (∆η + F(η)) = −∆L +R ,

has, for each given η ∈ [0, β∗], a discrete, finite multiplicity, spectral res-

olution
{
φik(n)(η), λ(n)(η)

}
, with λ(1)(η) ≤ λ(2)(η) ≤ . . .∞ contained in

[−C(η), ∞), where the constant C(η) depends from the geometry of (Σ, g(η)),

and where
{
φik(n)(η)

}
, φik(n)(η) ∈ C∞(Ση,⊗2T ∗Ση), with

(4.7) − (∆η + F(η)) φik(n)(η) = λ(n)(η)φ
ik
(n)(η) ,
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denotes the corresponding set of eigentensors providing a complete orthonor-

mal basis for L2(Ση,⊗2T ∗ Ση). The η–dependence of
{
φik(n)(η), λ(n)(η)

}

makes the characterization of Kab
i′k′(y, x; η) via the spectral theorem (see

e.g., [29] and [1]) very delicate, and to prove the existence of Kab
i′k′(y, x; η)

is preferable to exploit parametrix–deformation methods. These are readily
available since, along a backward Ricci flow on Ση × [0, β∗] with bounded
geometry, the metrics gab(η) are uniformly bounded above and below for
0 ≤ η ≤ β∗, and it does not really matter which metric we use in topologiz-
ing the spaces C∞(Ση,⊗2T ∗Ση). In particular, heat kernels for generalized
Laplacians, such as ∆η + F(η), (smoothly) depending on a one–parameter
family of metrics ε 7→ gab(ε), ε ≥ 0, are briefly dealt with in [7]. The delicate
setting where the parameter dependence is, as in our case, identified with
the parabolic time driving the diffusion of the kernel, is discussed in [34],
[21], (see Appendix A, §7 for a characterization of the parametrix of the
heat kernel in such a case), and in a remarkable paper by N. Garofalo and
E. Lanconelli [28]. Strictly speaking, in all these works, the analysis is con-
fined to the scalar laplacian, possibly with a potential term, but the theory
readily extends to generalized laplacians, always under the assumption that
the metric gab(β) is smooth as ր β∗. In particular, the case of generalized
Laplacian on vector bundles with time–varying geometry has been studied
in considerable detail by P. Gilkey and collaborators [31], [32]. By adapt-
ing to our more general setting the methods used in [34] and in [21], when
treating the scalar time-dependent Laplacian, we get the following

Theorem 4.1. Along a backward Ricci flow on Ση × [0, β∗] with bounded

geometry, there exists a unique fundamental solution η 7−→ Kab
i′k′(y, x; η) of

the tensorial heat operator
(

∂
∂η − ∆

(x)
L + R

)
.

Proof. The proof, (kindly provided by Stefano Romano), is a quite lengthy
construction of the the heat kernel of a time-dependent generalized Lapla-
cian. It is presented in the appendix.

The kernel Kab
i′k′(y, x; η) is singular as η0 → 0, and the general strategy

for discussing its η ց 0+ asymptotics is, again, to model the correspond-

ing parametrix around the Euclidean heat kernel (4π η)−
3
2 exp

(
−d20(y,x)

4η

)

defined in TyΣ by means of the exponential mapping associated with the
initial manifold (Σ, gab(η = 0)). To this end, denote by dη(y, x) the (locally
Lipschitz) distance function on (Σ, gab(η)) and by inj (Σ, g(η)) the associ-
ated injectivity radius. Adopt, with respect to the metric gab(η), geodesic

polar cordinates about y ∈ Σ, i.e., xj
′

= dη(y, x)u
j′ , with uj

′

coordinates
on the unit sphere S

2 ⊂ TyΣ. By adapting the analysis in [21], [28], and
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[31], [32] to (4.3) we have that, as η ց 0+, and for all (y, x) ∈ Σ such
that d0(y, x) < inj (Σ, g(0)), there exists a sequence of smooth sections

Φ[h] abi′k′ (y, x; η) ∈ C∞(Σ × Σ′,⊗2TΣ ⊠ ⊗2T ∗Σ), with Φ[0] abi′k′ (y, x; η) =

τabi′k′ (y, x; η), such that

(4.8)
exp

(
−d20(y,x)

4η

)

(4π η)
3
2

N∑

h=0

ηhΦ[h] abi′k′ (y, x; η) ,

is uniformly asymptotic to Kab
i′k′(y, x; η), i.e.,

∣∣∣∣∣∣
Kab

i′k′(y, x; η)−
exp

(
−d20(y,x)

4η

)

(4π η)
3
2

N∑

h=0

ηhΦ[h] abi′k′ (y, x; η)

∣∣∣∣∣∣
ηց0+

(4.9)

= O
(
ηN− 1

2

)
,

in the uniform norm on C∞(Σ×Σ′,⊗2TΣ×⊗2T ∗Σ). A detailed presentation
of the η ց 0+ asymptotics of generalized Laplacians on vector bundles with
time–varying geometries is discussed in [31], [32]. It is worthwhile recalling
that the asymptotics for the Laplace Beltrami operator plays a key role in
discussing Li–Yau–Hamilton type inequalities for the scalar conjugate heat
equation in Ricci flow theory (see e.g. [25], [46], [49]).

The heat kernel Kab
i′k′(y, x; η) can be naturally normalized along the η–

expanding soliton on S
3 according to

Lemma 4.2. Let ḡab the round metric on the unit 3–sphere S3, and, for
η ∈ [0, β∗], let η 7→ 4 (T0−β∗+η) ḡab be the expanding Ricci soliton on S

3 with

initial radius r(η = 0) = 2
√
T0 − β∗ and final radius r(η = β∗) = 2

√
T0.

Then, along such a backward Ricci flow the heat kernel Kab
i′k′(y, x; η) scales

according to

(4.10)
r(η)3

3

∫

Σ
ḡi

′k′(y)Kab
i′k′(y, x; η) ḡab(x) dµ̄g(x) = 1 ,

where dµ̄g(x,η) is the volume element on (S3, ḡab).

Proof. From proposition 3.8 we get that along the backward Ricci flow η 7→
4 (T0 − β∗ + η) ḡab we can write, for all 0 ≤ η ≤ β∗,

Ri′k′(y, η = 0) = lim
ηր0+

∫

Σ
Kab

i′k′(y, x; η)Rab(x, η) dµg(η)(4.11)

=

∫

Σ
Kab

i′k′(y, x; η)Rab(x, η) dµg(η) .
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Since the Ricci tensor is scale invariant we haveRi′k′(y, η = 0) = 2 ḡi′k′(y, η =
0) and Rab(x, η) = 2 ḡab(x, η), moreover dµg(x,η) = r3(η) dµ̄g(x). By insert-

ing these expressions in (4.11), and tracing both members with respect to

ḡi
′k′(y, η = 0), we get the stated result.

Under natural assumptions on the curvature of the supporting backward
Ricci flow, the kernel Kab

i′k′(y, x; η) also exhibits point–wise positivity prop-
erties according to

Lemma 4.3. If (Σ, gab(η)) is a smooth solution to a backward Ricci flow
of bounded geometry on Ση × [0, β∗] with non–negative curvature opera-

tor, then Kab
i′k′(y, x; η), 0 ≤ η ≤ β∗, is a positive integral kernel, i.e.,

Kab
i′k′(y, x; η)v

i′(y)vk
′

(y), ∀v ∈ TyΣ, is a positive–definite quadratic form
at T ∗

(x,η)Σ, for any (x, η) ∈ Σ× [0, β∗].

Proof. We exploit the Uhlenbeck trick in order to rewrite the evolution for
Kab

i′k′(y, x; η) in a form making the proof of the positivity of Kab
i′k′(y, x; η)

manifest under the stated assumptions. To this end, choose orthonormal
sections {e(µ)}µ=1,2,3 for (TΣ, g(η = 0), (locally e(µ)|U = ιkµ∂i), and let us

denote by ιαa the components of the orthonormal (co)–basis {θ(α)} dual to
{e(µ)}. It is easily seen that the evolution along the backward time η of ιkµ
and ιαa , consistent with the forward β evolution (2.10) of an orthonormal
basis, is provided by

(4.12)
∂

∂η
ιkµ = −Rk

h ι
h
µ ,

∂

∂η
ιαa = Rk

a ι
α
k .

With these preliminary remarks along the way, let us define
(4.13)

K
αβ
γ′δ′

(y, x; η)
.
= ιαa (x, η) ι

β
b (x, η)K

ab
c′d′(y, x; η) ι

c′

γ′(y, η = 0) ιd
′

δ′ (y, η = 0) ,

and consider the η–evolution of Kαβ
γ′δ′

(y, x; η), (note that the primed indices

do not carry η–dependence since the orthonormal basis vectors {ιc′γ′ ∂c′} refer

to the fixed spacetime point (y, η = 0)). From the defining equation (4.3)
and lemma 2.1, (applied to the η–evolution), we get, (suppressing the η–
dependence for notational ease),

(4.14)

∂
∂η K

αβ
γ′δ′

= ∆D K
αβ
γ′δ′

−RK
αβ
γ′δ′

+ Eαβ
γδ K

γδ
γ′δ′

+ ιaµRk
a ι

α
k K

µβ
γ′δ′

+ ιaµRk
a ι

β
k K

αµ
γ′δ′

,
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with Eαβ
γδ (x, η)

.
= ιαa (x, η) ι

β
b (x, η) Eab

cd (x, η) ι
c
γ(x, η) ι

d
δ(x, η). Since E

jk
ab = −Rj

a δ
k
b−

Rk
b δ

j
a + 2Rj k

a b, the above expression reduces to

(4.15)
∂

∂η
K

αβ
γ′δ′

= ∆D K
αβ
γ′δ′

+ 2Rαβ
γδ K

γδ
γ′δ′

−RK
αβ
γ′δ′

,

where we have set Rαβ
γδ (x, η)

.
= ιαa (x, η) ι

β
b (x, η)Rab

cd(x, η) ι
c
γ(x, η) ι

d
δ(x, η). For

η ց 0+, Kαβ
γ′δ′

approaches, in the distributional sense, the positive integral

kernel δαβ
γ′δ′

(x, y; η = 0), thus, Hamilton’s maximum principle [38] implies

that if η 7→ gab(η), 0 ≤ η < β∗ ⊂ [0, T0), is a backward Ricci flow with

non–negative curvature operator, then K
αβ
γ′δ′

, and consequently Kab
i′k′(y, x; η),

remains a positive integral kernel for every η ∈ (0, β∗].

5 An Integral representation of the Ricci flow

We are now in position to apply proposition 3.8 to the heat kernel solution
of (4.3). We have

Proposition 5.1. Let η 7→ gab(η) be a backward Ricci flow with bounded
geometry on Ση× [0, β∗], and let Kab

i′k′(y, x; η) be the (backward) heat kernel

of the corresponding conjugate linearized Ricci operator ©∗
LK

ab
i′k′(y, x; η) =

0, for η ∈ (0, β∗], with Kab
i′k′(y, x; η ց 0+) = δabi′k′(y, x). Then

(5.1) Ri′k′(y, η = 0) =

∫

Σ
Kab

i′k′(y, x; η)Rab(x, η) dµg(x,η) ,

for all 0 ≤ η ≤ β∗. Moreover, as η ց 0+, we have the uniform asymptotic
expansion

Ri′k′(y, η = 0) =(5.2)

1

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)

4η

)
τabi′k′(y, x; η)Rab(x, η) dµg(x,η)

+

N∑

h=1

ηh

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)

4η

)
Φ[h]abi′k′(y, x; η)Rab(x, η) dµg(x,η)

+O
(
ηN− 1

2

)
,

where τabi′k′(y, x; η) ∈ TΣη ⊠ T ∗Ση is the parallel transport operator associ-
ated with (Σ, g(η)).
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Proof. From proposition 3.8 we get that along the backward Ricci flow on
Σ× [0, β∗], we can write, for all 0 ≤ η ≤ β∗,

Ri′k′(y, η = 0) = lim
ηր0+

∫

Σ
Kab

i′k′(y, x; η)Rab(x, η) dµg(η)(5.3)

=

∫

Σ
Kab

i′k′(y, x; η)Rab(x, η) dµg(η) .

Since the asymptotics (4.8) is uniform, we can integrate term by term, and
by isolating the lower order term, we immediately get (5.2).

This results illustrates the averaging properties of the backward conjugated
heat kernel η 7→ Kab

i′k′(y, x; η) for the Ricci curvature of the forward flow
β 7→ gab(β). More explicitly, since Rab(x, η) = Rab(x, β

∗ − η) and dµg(η) =

dµg(β∗− η), we can equivalently rewrite (5.1) along the forward Ricci flow as

(5.4) Ri′k′(y, β
∗) =

∫

Σ
Kab

i′k′(y, x; (β
∗ − β))Rab(x, β) dµg(β)

∣∣∣∣
β=0

,

which expresses the Ricci tensor at the point y and at time β = β∗ as a
backward heat kernel average of the initial Ricci tensor.

Note that a representation structurally similar to (5.2) holds also for the

solution h̃i′k′(y, η = 0) of the linearized Ricci flow (2.28), i.e.,

h̃i′k′(y, η = 0) =(5.5)

1

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)

4η

)
τabi′k′(y, x; η) h̃ab(x, η) dµg(x,η)

+
N∑

h=1

ηh

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)

4η

)
Φ[h]abi′k′(y, x; η) h̃ab(x, η) dµg(x,η)

+O
(
ηN− 1

2

)
.

By exploiting again proposition 3.8 it is also straightforward to provide an
integral representation of the full Ricci flow in terms of the heat kernel
Kab

i′k′(y, x; η). Since lim ηց0+
∫
ΣK

ab
i′k′(y, x; η) gab(x, η) dµg(η)= gi′k′(y, η =

0), the identity (3.34), applied to Kab
i′k′(y, x; η)), directly provides the

Proposition 5.2. Under the same hypotheses of proposition 5.1 we have the
following integral representation of the backward Ricci flow on Ση × (0, β∗]
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(5.6) gi′k′ (y, η = 0) =

∫

Σ
Kab

i′k′(y, x; η) [gab(x, η)− 2η Rab(x, η)] dµg(x,η) ,

for all 0 ≤ η ≤ β∗.

Moreover, as η ց 0+, we have the asymptotics

gi′k′(y, η = 0) =(5.7)

=
1

(4π η)
3
2

∫

Σ
e−

d20(y,x)

4η τabi′k′(y, x; η) [gab(x, η)− 2ηRab(x, η)] dµg(x,η)

+

N∑

h=1

(η)h

(4π η)
3
2

∫

Σ
e−

d20(y,x)

4η Φ[h]abi′k′(y, x; η) [gab(x, η)− 2ηRab(x, η)] dµg(x,η)

+O
(
(η)N− 1

2

)
,

where d20(y, x), τ
ab
i′k′(y, x; η), and Φ[h]abi′k′(y, x; η) are evaluated on (Σ, g(η =

0)).

Proof. From proposition 3.8, taking the limit η ց 0+, we get
(5.8)

gi′k′ (y, η = 0) =

∫

Σ
Kab

i′k′(y, x; η) [gab(x, η)− 2η Rab(x, η)] dµg(x,η)

∣∣∣∣
∀ η>0

,

which provides (5.6). The asymptotics follows again from (4.8) under inte-
gration term by term and time reversal.

Note that explicit expressions for the asymptotic coefficients Φ[h]abi′k′(y, x;β
∗)

can be worked out, at least for the first few terms, by adapting the relevant
formulae in the quoted Gilkey’s papers. An interesting application that we
will not address here but which seems appropriate to mention at this point is
the possibility of (re)-deriving Harnack type estimates, under non-negative
curvature assumptions, by directly using the heat kernel of the conjugate
Linearized Ricci flow. This application is immediately suggested by the
relation (5.1) and its asymptotics (5.2) in Proposition 5.1.

The integral representation (5.6) of the Ricci flow metric β 7→ gab(β) can be
also interpreted as the proof of the following

Theorem 5.3. The heat kernel flow

(5.9) η 7−→ Kab
i′k′(y, x; η)

is conjugated and thus fully equivalent to the Ricci flow β 7−→ gab(β).
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This can be considered as the most important consequence of the conjugacy
relation for the linearized Ricci flow. Clearly its utility is somewhat limited
by the fact that the flow η 7−→ Kab

i′k′(y, x; η) is constructed on top of the
Ricci flow β 7→ gab(β) itself, and thus it does not come as a fully unexpected
result. However, it opens to the possibility of a weak formulation of the
Ricci flow by exploiting the linear evolution of η 7−→ Kab

i′k′(y, x; η).

6 Ricci flow conjugated constraint sets

To complete the geometrical picture associated with the properties of the
conjugate linearized Ricci flow, let us consider, along a Ricci flow of bounded
geometry β 7→ gab(β), 0 ≤ β ≤ β∗, the heat flow β 7−→ ̺(β), associated with
a smooth function ̺(β = 0) = ρ0 ∈ C∞(Σ,R), i.e.,

(6.1)
∂ ̺

∂β
= ∆̺ , ̺(β = 0) = ̺0 .

Recall , (see (3.13)), that its L2(M4
Par)–conjugate, along the backward Ricci

flow η 7→ gab(η), 0 ≤ η ≤ β∗, η
.
= β∗ − β, is characterized by the flow

η 7→ ̟(η) defined by

(6.2)
∂ ̟

∂η
= ∆̟ −R̟ , ̟(η = 0) = ̟∗ ,

where ̟∗ ∈ C∞(Σ,R+), with
∫
Σ ̟∗ dµg(η=0) = 1. Since the Riemann-

ian measure is covariantly constant, (6.2) can be equivalently rewritten as
∂
∂η d̟ = ∆d̟, where d̟(η)

.
= ̟(η) dµg(η) and

∫
Σ d̟(η) = 1, 0 ≤ η ≤ β∗.

The conjugacy between ̺(β) and ̟(η) is associated with the conservation
of the ̺(β)–content of (Σ, gab(β)) under the flow of probability measures
β 7→ d̟(η = β∗ − β), i.e.

(6.3)
d

dβ

∫

Σ
̺(β) d̟(β) = 0 .

The properties of the conjugate heat flow [25],[46],[49] and those of the con-
jugate linearized Ricci flow established in the previous sections suggest to
shift emphasis from the flows themselves to their dependence from the cor-
responding initial data. Thus, along a Ricci flow of bounded geometry β 7→
(Σ, g(β)), β ∈ [0, β∗] let us consider the associated heat flow (β, ̺0) 7→ ̺(β)

and linearized Ricci flow (β, hab) 7→ h̃ab(β), as functionals of the respective

initial data ̺(β = 0)
.
= ̺0, and h̃ab(β = 0)

.
= hab appearing in the defining

PDEs (6.1) and (2.28), respectively. In a similar vein let us consider also,
along the backward Ricci flow η 7→ (Σ, g(η)), η ∈ [0, β∗], η

.
= β∗ − β, the

conjugate flows (η,̟∗) 7→ ̟(η) and (η,Hab
∗ ) 7→ Hab(η), as functionals of
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the respective initial data ̟(η = 0)
.
= ̟∗, and H

ab(η = 0)
.
= Hab

∗ appearing
in (6.2) and (3.22).

For a generic metric g ∈ Met(Σ), a generic symmetric bilinear form sik ∈
Tg Met(Σ), and a function f ∈ C∞(Σ,R+), let

T Met(Σ)× C∞(Σ,R) −→ R(6.4)

(gab, sik, f) 7−→ C(gab, sik, f) = 0 ,

denote a (surjective) mapping defining a constraint set C−1(0) in T Met(Σ)×
C∞(Σ,R), associated with a geometrical condition on the triple (gab, sik; f).

The following definition is geometrically natural in the light of the properties
of the conjugated flows associated with the Ricci flow

Definition 6.1. Let β 7→ (Σ, g(β)), β ∈ [0, β∗] be a given Ricci flow of
bounded geometry, and let (β, ρ0) 7−→ ̺(β) denote the corresponding heat
flow associated with the initial condition ̺(β = 0) = ρ0 ∈ C∞(Σ,R+). If

the initial datum h̃ab(β = 0)
.
= hab for the linearized Ricci flow satisfies the

geometrical constraint

(6.5) C (gab(β = 0), hik , ̺0) = 0 ,

and the initial datum ̟(η = 0)
.
= ̟∗, H

ab(η = 0)
.
= Hab

∗ , for the conjugate
heat and the conjugate linearized Ricci flow, can be choosen such that

(6.6) C
(
gab(η = 0),H ik

∗ ,̟∗

)
= 0 ,

then the constraints (6.5) and (6.6) are said to be conjugated along the given
Ricci flow.

In order to understand the rationale of such a definition observe that we
cannot expect that a geometrical condition C (gab(β = 0), hik , ̺0) = 0 on
the initial data will be preserved along their Ricci flow evolution β 7→
(gab(β), h̃ab(β), ̺(β)). However if, along the associated backward Ricci flow
η 7→ gab(η), we can select initial data ̟(η = 0)

.
= ̟∗, H

ab(η = 0)
.
= Hab

∗ , for
the conjugate flows (6.2) and (3.22), such that C

(
gab(η = 0),H ik

∗ ,̟∗

)
= 0,

then the conjugate flow η 7→ (gab(η),H
ab(η),̟(η)) interpolates between

C (gab(β = 0), hik , ̺0) = 0 and C
(
gab(η = 0),H ik

∗ ,̟∗

)
= 0 by averaging the

forward flow β 7→ (gab(β), h̃ab(β), ̺(β)) according to the results obtained in
section 3, i.e.,

(6.7)
d

dβ

∫

Σ
Hab(β) h̃ab(β) dµg(β) = 0 ,

(6.8)
d

dβ

∫

Σ
Hab(β)Rab(β) dµg(β) = 0 ,
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(6.9)
d

dβ

∫

Σ
Hab(β) gab(β) dµg(β) = −2

∫

Σ
Hab(β)Rab(β) dµg(β) ,

and

(6.10)
d

dβ

∫

Σ
̺(β) d̟(β) = 0 .

A typical constraint C (gab(β = 0), hik, ̺0) = 0 one may wish to consider on
the triple (gab, hik, ̺0) is the of the form

(6.11) R− |h|2 + (trg(h))
2 − C ̺0 = 0 ,

where we have set |h|2 .
= habh

ab, trg(h)
.
= gabhab, and where C is a constant.

A constraint of this type occurs in general relativity (the Hamiltonian con-
straint) where it relates the matter density ̺0 ≥ 0, with the metric g, the
scalar curvature R and the second fundamental form hab of the Riemannian
3–manifold (Σ, g) carrier of the inital data set for Einstein equations. The
above characterization of a Ricci flow conjugated constraint set implies, in
this particular setting, that the Hamiltonian constraint is conjugated along
a given Ricci flow β 7→ (Σ, g(β)), β ∈ [0, β∗], if we can find triples of initial
data (gab(β = 0), hik, ̺0) and

(
gab(β = β∗),Hab

∗ ,̟∗

)
such that

(6.12) R(β = 0)− |h|2β=0 + (trg(β=0)
(h))2 − C ̺0 = 0 ,

and

(6.13) R(β = β∗)− |H∗|2β=β∗ + (trg(β=β∗)(H))2 − C ̟∗ = 0 .

In such a case, the resulting conjugate flows η 7→ (gab(η),H
ab(η),̟(η))

interpolates between (gab(β = 0), hik , ̺0) and
(
gab(η = 0),H ik

∗ ,̟∗

)
by for-

mally averaging the Hamiltonian data (gab(β = 0), hik, ̺0) with the kernels(
Hab(η),̟(η)

)
, i.e.,

(6.14)

∫

Σ
Hab(β∗ − β) h̃ab(β) dµg(β) =

∫

Σ
Hab(β = 0) h̃ab(β = 0) dµg(β=0) ,

(6.15)

∫

Σ
Hab(β∗−β)Rab(β) dµg(β) =

∫

Σ
Hab(β = 0)Rab(β = 0) dµg(β=0) ,

and

(6.16)

∫

Σ
̺(β) d̟(β − β∗) =

∫

Σ
̺(β = 0) d̟(β = 0) .

Thus, we can interpret the existence of a Ricci flow conjugate Hamiltonian
constraints as a statement of the possibility of averaging the initial data set
(gab(β = 0), hik, ̺0) over the support of the kernels

(
Hab(η),̟(η)

)
. This

particular application of the conjugate flows is of potential interest in ad-
dressing the possibility of a Ricci flow deformation of initial data sets in
General Relativity, and will be discussed in detail elsewhere.
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7 Conclusions

The aspects of the conjugated linearized Ricci flow discussed here are the
most elementary consequences of the conjugacy relation in parabolic space-
time M4

Par. However, already at this level, they suggests a number of useful
and promising applications to Ricci flow theory. Among these, the study of
the stability of singularity formation is perhaps the most interesting. Let us
recall that if a solution β 7→ gab(β), 0 ≤ β < T0, to the Ricci flow develops
a singularity at the maximal time T0, then such a singularity is said to be a
Type–I singularity if supβ∈[0,T0)(T0 − β)Kmax(β) < +∞, whereas it is said

to be a Type–II singularity if supβ∈[0,T0)(T0 − β)Kmax(β) = +∞, where

Kmax(β)
.
= supx∈Σ{|Rm (x, β)|}. The analysis of Type–II singularities is

particularly difficult and only recently their existence has been rigorously
established for compact manifolds [36], (for a nice discussion on Type–II
singularities see [18], [27], [23] and [58]). In particular, since their develop-
ments requires a fine tuning between curvature blow–up and neck–pinching,
it is not yet clear if they are stable. In known examples, heuristic anal-
ysis, and rigorous proofs, Type–II singularities occur when the Ricci flow
uses a ”critical geometry” for its initial data [27]. Thus, one would expect
that a suitable perturbation of such a critical data would remove the de-
generate neck–pinching leading to the singularity. However, it is difficult to
control what a kind of perturbation would generically remove the criticality.
For instance, if {xi, βi} is a sequence of points and of times corresponding
to which the curvature, along β 7→ gab(β), attains its maximum, one may
think of performing a conformal transformation ϕ(xi, βi) gab(βi) on the met-
rics gab(βi), and then deform ϕ(xi, βi) gab(βi) with a corresponding sequence

of non–trivial perturbations
{
h̃ab(βi)| δ h̃(βi) = 0

}
, in such a way that the

fine–tuning, between neck–pinching and rounding, leading to the singular-
ity formation, is removed. However, as we have seen, the linearized Ricci

flow β 7→ hab(β) does not preserve the non–triviality condition δ h̃(βi) =
0, and consequently we do not know a priori which set of perturbations,
(ϕ(β = 0), hab(β = 0)), of the critical initial data gab(β = 0), will produce

the required sequence of deformations
{
(ϕ(xi, βi) gab(βi), h̃ab(βi))

}
. Thus,

the above strategy is difficult, if not impossible, to implement. However,
the conjugate linearized Ricci η 7→ Hab(η) flow preserves the δ H = 0 con-
ditions, and one may think to modify the above strategy accordingly: along
the sequence {xi, βi} choose conformal factors {φ(i)}, and div–free {Hab(i)}
which perturb the sequence of metrics gab(βi) by blocking the singularity for-
mation. One can then use the sequence of pairs {(φ(i),Hab(i))} as initial
data for the conjugate heat flow and for the conjugate linearized Ricci flow.
The resulting backward flows ηi 7−→ {(φ(ηi),Hab(ηi))}, with ηi

.
= βi − β,
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then generate a sequence of perturbations {(φ(ηi = βi),H
ab(ηi = βi))} at

β = 0 that can be used to generate, by a limiting procedure, perturbation
data (φ,Hab) on the initial metric gab(β = 0) that will avoid the singular-
ity formation. This is an example where the characterization of Ricci flow
conjugated constraint sets appears to be a promising direction for future
research.



40 THE CONJUGATE LINEARIZED RICCI FLOW...

The heat kernel of a time-dependent generalized Laplacian: An

appendix by Stefano Romano

In this appendix we carry out the explicit construction of the the heat ker-
nel of a time-dependent generalized Laplacian, it has been kindly provided
by Stefano Romano who adapted to our more general setting the methods
used in [34] and in [21] when treating the scalar time-dependent Laplacian.
Although the vector bundle case does not really add anything new from a
conceptual point of view, its special importance in the study of the conju-
gate linearized Ricci flow motivated us to carry out the full computation.
Note that here, for technical reasons, we adopt the analyst sign convention
on Laplacians, e.g., ∆ :=here − gab∇a∇b. Also, the result is discussed in
the very general setting of vector bundles over a closed manifold carrying a
time–dependent metric g(t).

Let E →Mn be a vector bundle over a closed manifoldMn and, for t ∈ [0, T ],
let g(t) be a time-dependent uniformly bounded family of metrics onMn and
Ht a time-dependent family of generalized Laplacians acting on Γ(Mn, E).
Consider the heat equation

(7.1)





(
∂

∂t
+Ht

)
st = 0

st=0 = s0

where st is a smooth time-dependent section of E . As usual, Ht deter-
mines a unique connection ∇E

t on E and a unique endomorphism Ft ∈
Γ(Mn, End(E)) such that Ht = △E

t +Ft. We look for a fundamental solution
of (3.21), that is a smooth time-dependent section Kt ∈ Γ(Mn×Mn, E⊠E∗)
defined for t > 0 such with the following properties:

(a) (∂t +Ht)Kt(x, y) = 0, where Ht acts on the x variable, for all t > 0.
(b) limt→0

∫
Mn Kt(x, y)s(y)dµg(t)(y) = s(x) for all s ∈ Γ(Mn, E).

We refer to condition (b) as the delta property.
We remark that the notation we have used is imprecise: in fact, since the
process we are considering is non-autonomous, i.e. it is not invariant under
time-translation, the kernel K should carry explicit dependence on both the
inital and final time. By writing Kt we really mean K(t,0) and we will always
use the shorter notation when the initial time is intended to be t = 0. We
will write K(t,τ ) whenever we need to consider a different initial time τ 6= 0.

Our main result is the following:
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Theorem 7.1. Under the above hypothesis, there exists a unique fundamen-
tal solution Kt(x, y) of the heat equation for the time-dependent generalized
Laplacian Ht.

Proof. We only prove existence, since uniqueness follows easily from prop-
erties (a) and (b) by standard methods.
We will adopt the technique of first constructing a parametrix for the heat
kernel Kt modeled on the euclidean heat kernel and then recovering the full
heat kernel form the parametrix. This method only gives a rather generic
description of the kernels behavior for small times, but has the advantage
of being straightforward. Define

(7.2) et(x, y)
.
=

1

(4πt)n/2
exp

(
−
dg(0)(x, y)

4t

)

where dg(0) is the distance function associated to g(0). Choose now a neigh-
borhood U of the diagonal in Mn×Mn such that dg(0)(x, y) is less than the
injectivity radius of Mn for all (x, y) ∈ U . On U , define

(7.3) h
(K)
t (x, y)

.
= et(x, y)

K∑

α=0

φα(x, y; t)t
α

where both h
(K)
t and the φα’s are smooth sections of E ⊠ E∗ over U , and,

although h
(K)
t is formally defined only for t > 0, we require the φα to

be smooth as t → 0. Notice that, differently from the case of a time-
independent Laplacian, the inhomogeneity in time of the problem force us
to let the φα’s depend on time1 . Our goal is to define the φα’s in such a
way that

(7.4) (∂t +Ht)h
(K)
t = tKet(∂t +Ht)φK

and that h
(K)
t has the delta property.

We start by fixing y and choosing coordinates (x1, · · · , xn) near y; we also
choose normal polar coordinates (r, θ, · · · , θn−1) centered at y with respect
to g(0). Denoting by △0 the scalar Laplacian at t = 0 and by J the function√

det g(0)/rn−1, a standard computation gives

(7.5) (∂t +△0)et =
r

2t

∂ log(J)

∂r
et

1This is perhaps clearer if we rewrite (7.3) with respect to an arbitrary initial time τ

instead of t = 0:

h
(K)
(t,τ)(x, y) = et(x, y)

K
X

α=0

φα(x, y; τ)(t− τ)α

where it is manifest that the kernel h(K) is not invariant under time-translation.
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From now on we drop the subscripts 0’s and adopt the convention that all
quantities that do not exhibit explicit dependence on time refer to t = 0.
We now expand all the relevant quantities in powers of t:

(7.6) gij(t) = gij +
K∑

α=1

(hα)ijt
α +O(tK+1)

(7.7) ∇E
t = d+ ω(t) = ∇E +

K∑

α=1

ωαt
α +O(tK+1)

Ht = △E
t + Ft = −gij(t)

(
(∇E

t )i(∇E
t )j − Γk

ij(t)(∇E
t )k

)
+ Ft =

= H +
K∑

α=1

(
hijα∇E

i ∇E
j +Bi

α∇E
i + Cα

)
tα +O(tK+1)(7.8)

where the ωα’s are End(E)-valued 1-forms and the Bi
α, Cα’s are sections of

End(E). Similarly, for the scalar Laplacian we have the expansion

(7.9) △t = △+

K∑

α=1

(
hijα ∂i∂j + biα∂i

)
+O(tK+1)

and using (7.5) we get

(∂t +△t)et =
r

2t

∂ log(J)

∂r
et +

K∑

α=1

(hijα ∂i∂j + biα∂i)t
αet +O(ett

K) =

(7.10)

=
r

2t

( K−1∑

α=−1

zαt
α
)
et+O(ett

K) =
r

2
etz−1t

−1+
r

2
etz0+

r

2
et

K−1∑

α=1

zαt
α+O(ett

K)

for some smooth functions zα’s. Notice that, since every spatial derivative of
et brings a factor t−1, there is a correction to the lowest order term ∂r log(J)

coming from the term thij1 ∂i∂jet.
The construction of the parametrix now amounts to expanding everything in

(∂t+Ht)h
(K)
t in powers of t, gathering terms of the same order and imposing

cancellations up to order K. Abbreviating Φ
(K)
t

.
=

∑K
α=0 φαt

α, we have the
formula

(∂t +Ht)h
(K)
t = (∂t +Ht)etΦ

(K)
t = ((∂t +△)et)Φ

(K)
t + et(∂t +Ht)Φ

(K)
t −

− 2gij(t)∂iet(∇E
t )jΦ

(K)
t(7.11)
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Using formulas (7.6), (7.7) and (7.8) we find the following expansions:

(∂t +Ht)Φ
(K)
t = (∂t +H)φ0 + φ1+

+

K∑

α=1

(
(hijα∇E

i ∇E
j +Bi

α∇E
i + Cα)φ0 + (∂t +H)φα + (α+ 1)φα+1

)
tα+

+
K∑

α=2

( ∑

γ,δ≥1
γ+δ+α

(hijγ ∇E
i ∇E

j +Bi
γ∇E

i + Cγ)φδ

)
tα +O(tK+1)

(7.12)

−2gij(t)∂iet(∇E
t )jΦ

(K)
t = etr(∇E

rφ0)t
−1 + etr(∇E

rφ1 + (ω1)rφ0 − hij1 ∂ir∇E
j φ0)+

+ etr

K∑

α=1

[
∇E

rφα+1 + (ωα+1)rφ0 − hijα+1∂ir∇E
j φ0+

+
∑

γ,δ≥1
γ+δ=α+1

(
(ωγ)rφδ − hijγ ∂ir∇E

j φδ − hijγ ∂ir(ωδ)jφ0

)]
tα+

+ etr

K∑

α=2

[ ∑

β,γ,δ≥1
β+γ+δ=α+1

− hijβ ∂ir(ωγ)jφδ

]
tα +O(ett

K+1)(7.13)

In the last expression we have exploited the fact that et is a radial function
in the g-normal polar coordinates we have chosen and that ∂iet = ∂ir∂ret =
(−r/2t)et∂ir. We have also written (ωα)r for the radial component of the
1-forms ωα’s.
To finish the computation, we need to substitute the expressions (7.10),
(7.11) and (7.12) into (7.13) and impose that all terms of order less than
tK cancel to obtain a chain of differential equations for the φα’s. To limit
the amount of ugly-looking expressions, we only write down the three lowest
order equations:

(7.14) ∇E
rφ0 +

1

2
z−1φ0 = 0

∇E
rφ1 + (

1

r
+

1

2
z−1)φ1 =

(
−1

2
z0 −

1

r
(∂t +H)− (ω1)r + hij1 ∂ir∇E

j

)
φ0 =

= F1(r, φ0, z0;ω1, h1)(7.15)
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∇E
rφ2 + (

2

r
+

1

2
z−1)φ2 =

(
− 1

2
z1 −

1

r
(hij1 ∇E

i ∇E
j +Bi

1∇E
i + C1)−

− (ω2)r + hij2 ∂ir∇E
j + hij1 ∂ir(ω1)j

)
φ0+

+

(
− 1

2
z0 − (∂t +H)− (ω1)r + hij1 ∂ir∇E

j

)
φ1 =

= F2(r, φ0, φ1, z0, z1, ω1, ω2, h1, h2)(7.16)

and one could continue to arbitrary order to eventually satisfy (7.4). We still

need to verify that h
(K)
t has the delta property, but this is easily achieved

imposing to equation (7.14) the boundary condition φ0(y, y; 0) = IEy (in fact,
only the 0th order term counts in the small time asymptotic and et(x, y) →
δ(x, y) as t→ 0).
Despite their complicated appearance, equations (7.14), (7.15) and (7.16)
are just ODE’s to be solved along rays emanating from y.

Strictly speaking, h
(K)
t is not yet the parametrix, since it is only defined in

a neighborhood of the diagonal. To extend it to all Mn ×Mn, we choose a
smooth cutoff function η : [0,∞) → [0, 1] such that η(x) = 1 if x ≤ inj(g)/2
and η(x) = 0 if x ≥ inj(g) and define

(7.17) p
(K)
t (x, y)

.
= η(dg(x, y))h

(K)
t (x, y)

for all (x, y) ∈Mn×Mn. The last step of the proof consists in constructing

the full heat kernel Kt from the parametrix p
(K)
t . This is achieved by the

following

Lemma 7.2. Let p
(K)
t be a parametrix for the heat equation of a time-

dependent Laplacian with K > n/2. Then there exists a smooth time-
dependent section Ψt ∈ Γ(Mn ×Mn, E ⊠ E∗) such that

(7.18) Kt(x, y)
.
= p

(K)
t (x, y) +

∫ t

0
dτ

∫

Mn

p
(K)
(t,τ)(x, z)Ψτ (z, y)dµg(τ)(z)

is the heat kernel.

To prove this lemma, we look for Ψt as a sum
∑∞

α=1(ψα)t with the sections
(ψα)t ∈ Γ(Mn ×M ,, E ⊠ E∗) defined recursively by

(7.19) (ψ1)t(x, y) = (∂t +Ht)p
(K)
t (x, y)

and

(7.20) (ψα+1)t(x, y) =

∫ t

0
dτ

∫

Mn

[
(∂t+Ht)p

(K)
(t,τ )(x, z)

]
(ψα)τ (z, y)dµg(τ)(z)

Assuming that the series of the ψα converges, one checks that the above
conditions together with equation (7.18) imply (∂t +Ht)Kt(x, y) = 0. Thus
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we only need to prove that
∑∞

α=A(ψα)t converges and that the Kt we have
constructed has the delta property.
Let V (t) be the volume of Mn at time t and V

.
= maxt∈[0,T ] V (t). Fix a

fibre metric on E and define

C = max
U×[0,T ]

∣∣∣(∂t +Ht)φK(x, y; t)
∣∣∣

with respect to this metric. Then

|(ψ1)t| ≤ CtK−n/2

and inductively

|(ψα)t| ≤ CαV α−1T (α−1)(K−n/2) tK−n/2+α

(K − n/2 + α− 1) · · · (K − n/2 + 1)

and recalling that K > n/2 we conclude that Ψt =
∑∞

α=1(ψα)t converges
uniformly for all t.

To see that Kt has the delta property, recall that p
(K)
t has it; therefore if

we show that the double integral in the right hand side of equation (3.38)
vanishes as t → 0, we are done. For this condition to be verified, it suffices

that |
∫
Mn p

(K)
(t,τ)(x, z)Ψτ (z, y)dµg(τ)(z)| is bounded, or, since |Ψ| is bounded,

that |
∫
Mn p

(K)
(t,τ )(x, z)dµg(τ)(z)| is bounded. But this last integral is bounded

in the limit τ → t because it becomes |IEx |, as we can easily check using

the asymptotics of p
(K)
t (recall that we imposed the boundary condition

φ0(x, x; 0) = IEx). Moreover, since the metric and the terms φα in the

expansion of p
(K)
t have uniform bounds over time, we conclude that the

integral must be bounded for all τ ∈ [0, T ]. This completes the proofs of the
lemma and of Theorem 7.1.
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