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Abstract

We construct large families of initial data sets for the vacuum Einstein equations
with positive cosmological constant which contain exactly Delaunay ends; these are
non-trivial initial data sets which coincide with those for the Kottler—Schwarzschild—
de Sitter metrics in regions of infinite extent. From the purely Riemannian geometric
point of view, this produces complete, constant positive scalar curvature metrics
with exact Delaunay ends which are not globally Delaunay. The ends can be used to
construct new compact initial data sets via gluing constructions. The construction
provided applies to more general situations where the asymptotic geometry may
have non-spherical cross-sections consisting of Einstein metrics with positive scalar
curvature.

1 Introduction

There exists very strong evidence suggesting that we live in a world with strictly
positive cosmological constant A [38,42]. This leads to a need for a better under-
standing of the space of solutions of Einstein equations with A > 0. The most gen-
eral method available for constructing such solutions proceeds by solving a Cauchy
problem [2,10,21]. In view of the general relativistic constraint equations this, sub-
sequently, requires understanding the corresponding collection of initial data sets. In
particular one is led to the question of boundary conditions satisfied by the fields.
When A vanishes a natural set of boundary conditions arises from the obvious model
solution — the Minkowski space-time. A tempting further restriction is then the re-
quirement of a well defined and finite total mass, leading to a well understood set of
asymptotic boundary conditions [1,5,11,34]. When A > 0 the question of asymptotic
conditions seems to be much less clear cut. One wants to consider a class of space-
times which includes all solutions of physical interest. Until there is overwhelming
evidence to the contrary, “physical interest” should carry a notion of “non-singular”.
The simplest possibility, widely adopted, is to assume that the Cauchy surface .# is
a compact manifold without boundary. However, an appealing more general way of
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ensuring regularity of the initial data is to suppose that (., ¢) is a complete Rie-
mannian manifold. One would then like to understand the space of solutions of those
general relativistic constraint equations with (., g) — complete.

An interesting class of asymptotic models for such initial data has already been
explored in the mathematical literature, the time symmetric initial data provided by
the Delaunagﬂ metrics [19,20,41]. These describe the family of complete rotationally
symmetric, conformally flat metrics with constant positive scalar curvature, and are
in fact well known to general relativists as the time-symmetric slices of the Kottler—
Schwarzschild—de Sitter solutions [22,25] (however the connection between these two
subjects has apparently not been previously noted. In the Riemannian geometric
context, the Delaunay metrics form the local asymptotic model for isolated singular-
ities of locally conformally flat constant positive scalar curvature metrics [8,9,24, 36]
(in dimensions n < 5 this also holds in the non-conformally flat setting [26]). The
known results concerning the existence of complete constant positive scalar curva-
ture metrics with asymptotically Delaunay ends [7,24,27,30-32,36,37,40] may thus
be reinterpreted, via their space-time development, as the existence of space-times
satisfying the Einstein field equations with a positive cosmological constant which
have asymptotically Kottler—Schwarzschild—de Sitter ends.

The object of this work is to point out that every constant positive scalar curva-
ture (CPSC) asymptotically Delaunay metric is naturally accompanied by a CPSC
metric with an exactly Delaunay end, and moreover these metrics may be choosen
to coincide away from the end in question. Such metrics are of interest in general
relativity for at least four reasons:

1. They provide, via their maximal development, a large class of space-times sat-
isfying the Einstein field equations with a positive cosmological constant with
exactly controlled geometry in the asymptotic regions; in fact the space-time
development is explicitly known in the domain of dependence of the Delaunay
regions.

2. They demonstrate that the special horizon behavior, with alternating cosmo-
logical and event horizons, which is exhibited by the Kottler—-Schwarzschild—de
Sitter space-time, occurs in large classes of non-stationary solutions.

3. Any two metrics which carry exactly Delaunay ends with identical mass (De-
launay) parameters may be glued together using obvious identifications on the
ends. (A more difficult end-to-end asymptotic gluing theorem of this sort was
established by Ratzkin [37], however with exactly Delaunay ends this construc-
tion is effortless.) Thus Delaunay ends can easily be used as bridges to create
wormholes, or to make connected sums of initial data sets. Wormhole construc-
tions are already known to be possible by completely different techniques [16]
in the setting of a non-positive cosmological constant. Here we provide such a
construction for positive cosmological constants, with the added bonus of an
explicit knowledge of the space-time development in the domain of dependence
of the middle part of the connecting neck, which may be of arbitrary (quantized
by multiples of the period of the exact Delaunay metric) length.

4. The asymptotically Delaunay metrics are uniquely characterised by a simple
geometric criterion [24,26], see Section [Z3] below.

A natural setting for our considerations is provided by the generalised Kottler
metrics and generalised Delaunay metrics, as described in Sections 2.21and 2.4l below.
Our gluing construction applies in this more general setting.

!These are also often called Fowler solutions; see §2.3] for further remarks on the history and choice
of terminology used here.



In an accompanying paper [14], by one of us (PTC) and Erwann Delay, analogous
constructions are carried out with a negative cosmological constant. With hindsight,
within the family of Kottler metrics with A € R, the gluing in the current setting
is the easiest, while that in [14] is the most difficult. This is due to the fact that
for A > 0, as considered here, one deals with one linearised operator with a one-
dimensional kernel; in the case A = 0 the kernel is (n + 1)-dimensional; while for
A < 0 one needs to deal with a one-parameter family of operators with (n + 1)—
dimensional kernels.

ACKNOWLEDGEMENTS: DP would like to thank Mihalis Dafermos for first raising
the question of whether space-times with Kottler—Schwarzschild—de Sitter horizon
behavior exist more generally, and Frank Pacard for a number of illuminating dis-
cussions.

2 Kottler—-Schwarzschild—de Sitter space and met-
rics of constant positive scalar curvature with asymp-
totically Delaunay ends

In this section we review some results concerning the Kottler—Schwarzschild—de Sitter
space and CPSC metrics which are asymptotically Delaunay. In order to fix notations
and conventions we start with some standard facts.

Recall that initial data for the Einstein field equations with a cosmological con-
stant A on an n-dimensional manifold M consist of a pair (g, K) consisting of a
Riemannian metric g on M and a symmetric 2-tensor K satisfying the vacuum con-
straint equations

R(g) — (2A + |K|2 — (trgK)*) =0 (2.1)
Di(K —tr,Kg) =0 (2.2)

where R(g) is the scalar curvature (Ricci scalar) of the metric g. If one considers
time-symmetric initial data, for which K = 0, then these equations reduce to the
requirement that g has constant scalar curvature R(g) = 2A. Here we restrict to the
case where A is positive, and note that the normalization A = @ corresponds to
R(g) = n(n — 1), the scalar curvature of the standard sphere of radius one in R"*1.

2.1 Kottler—-Schwarzschild—de Sitter metrics

The Kottler—Schwarzschild—de Sitter space-time [25] metric in n+ 1 dimensions, with
cosmological constant A > 0 and mass m € R may be written as

2m r?

n—2 g2
r 4

ds? = —Vdt? + V='dr? +r%h, where V =V(r)=1-

(2.3)

where £ > 0 is related to the cosmological constant A by the formula 2A = n(n—1)/¢2,
while A denotes the standard metric on the unit (n — 1)-sphere in R™. To avoid a
singularity lying at finite distance on the level sets of ¢t we will assume m > 0.
Equation (23] provides then a spacetime metric satisfying the Einstein equations
with cosmological constant A > 0 and with well behaved spacelike hypersurfaces
when one restricts the coordinate r to an interval (r4,7.) on which V(r) is positive;
such an interval exists if and only if

(Win_m)n_2 A" PmPn? < 1. (2.4)
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When n = 3 this corresponds to the condition that 9m2A < 1, and the case of equality
is referred to as the extreme Kottler-Schwarzschild—de Sitter space-time (for which
the coordinate expression ([2.3]) is no longer valid). In the limit where A tends to zero
with m held constant, the space-time metric approaches the Schwarzschild metric
with mass m, and in the limit where m goes to zero with A held constant the metric
tends to that of the de Sitter space-time with cosmological constant A.

The breakdown of the coordinate description above at the horizons r = 7, and
r = r. can be handled by taking extensions [4,22]: In fact, the Kottler—Schwarzschild—
de Sitter metric admits an analytic extension (analogous to the Kruskal extension
of the Schwarzschild metric) as an r—periodic metric on (¢,7,0) € R x R x S"~1.
This is most easily seen via the associated conformal Carter-Penrose diagrams [22].
The time-symmetric slice ¢ = 0 of the (extended) Kottler-Schwarzschild-de Sitter
metrics are thus a one-parameter family (parameterized by their mass m) of periodic,
spherically symmetric, metrics on R x S*~! with constant positive scalar curvature
R =2A.

Finally note that, due to the spherical symmetry, each of these metrics is confor-
mally flat.

2.1.1 Extreme limit

It is of some interest to enquire what happens when m — m, where m denotes the
values at which equality is achieved in (Z4]). In this limit r, and 7. coalesce to a single
value which we will denote by 7. From the space-time point of view the situation is the
following: recall that the Carter-Penrose diagram for the maximally extended KSdS
space-times with 0 < m < m is built out of diamond shaped regions corresponding
to rp < 1 < 1¢, where the Killing vector d; is time-like, and of triangle shaped (either
upright, or upside-down) regions where 0; is spacelike [22]. After passing to the limit
m — m the diamond-shaped regions disappear, and the resulting diagram consists
of a string of triangles. The Killing vector d; is then spacelike everywhere, except on
the degenerate horizons 7 = r, = r..

On the level sets of ¢ a rather different analysis applies, this is discussed in Sec-

tion 2311

2.2 Generalised Kottler metrics

All the results discussed in Section 2] remain valid if m # 0 and if the metric h
in [23)) is an Einstein metric on an (n — 1)-dimensional manifold N"~* with scalar
curvature equal to (n — 1)(n — 2) [6]. We will refer to such metrics as generalised
Kottler metrics. Note that m = 0 requires (N"1, h) to be the unit round metric if
one does not want = 0 to be a singularity at finite distance along the level sets of
t.

2.3 Delaunay metrics

The Delaunay metrics, in dimension n > 3, may be defined as the (two parameter)

family of metrics )
g =" (dy* 1+ n) (2.5)

where £ is the unit round metric on S”~! which are spherically symmetric and have
constant scalar curvature R(g) = n(n — 1). Thus the functions v = u(y) > 0 must
satisfy the ODE

o (n - 2)2 n(n - 2) n+2

-t e =0, (2.6)




The two parameters correspond respectively to a minimum value ¢ for u, with

n—2 n-2

)T (2.7)

(¢ is called the Delaunay parameter or neck size) and a translation parameter along
the cylinder. A straightforward ODE analysis (see [32]) shows that all the positive
solutions are periodic. The degenerate solution with € = 0 corresponds to the round
metric on a sphere from which two antipodal points have been removed. The solution
with e = & corresponds to the rescaling of the cylindrical metric so that the scalar
curvature has the desired value.

Note that the Delaunay ODE was first studied by Fowler [19,20], however the
name used here and elsewhere in the literature is inspired from the analogy with the
Delaunay surfaces: the complete, periodic CMC surfaces of revolution in R3 [18]. As
is well known, the analogy between the “conformally flat metrics of constant positive
scalar curvature” and “complete embedded CMC surfaces of in R3” goes far beyond
this correspondence (see, e.g., [30]).

Regarding the Delaunay metrics as singular solutions of the Yamabe equation
on (S™, go) one has a number of uniqueness results. Among these are the facts that
no solution with a single singular point exists, and that any solution with exactly
two isolated singular points must be conformally equivalent to a Delaunay metric.
These results can be proved by a generalization of the classical Alexandrov reflection
argument (the method of moving planes), see [23]. The first general existence result
for complete conformally flat metrics of constant scalar curvature with asymptotically
Delaunay ends is due to Schoen [40].

Of immediate interest to us is the fact that conformally flat metrics, with constant
positive scalar curvature, and with an isolated singularity of the conformal factor are
necessarily asymptotic to a Delaunay metric [24]; in fact, in dimensions n = 3, 4,5 the
conformal flatness condition is not needed [26]. Specifically, with respect to spherical
coordinates about an isolated singularity of the conformal factor, there is a half-
Delaunay metric which ¢ converges to, exponentially fast in r, along with all of
its derivatives. This fact is used in [27,31,32,36,37] where complete, constant scalar
curvature metrics, conformal to the round metric on S\ {p1, ..., px} were studied and
constructed. (This is one instance of the more general “singular Yamabe problem”.)

By the uniqueness of solutions to ODEs, or otherwise, we have:

0<e<e=(

n

PROPOSITION 2.1 The time symmetric initial data sets for Kottler—Schwarzschild-

de Sitter space in spatial dimension n with A = n(";l), are precisely the Delaunay

metrics with constant positive scalar curvature R = n(n —1).

This correspondence continues to hold for any choice of positive cosmological
constant A provided that one homothetically rescales the Delaunay metrics so that
R =2A.

Comparing (23) and Z3X) we find

_2 dy _1/2
r=ur2, r—=V , 2.8
dr (28)
which allows us to determine y as a function of r on any interval of r’s on which V'
has no zeros.

2.3.1 Extreme limit

Let m and 7 be as in Section 2.I1.1] and suppose that 0 < m < 71, denote by r, €
(rp,r.) the value at which the maximum value Vi of V is attained, shifting y by a



constant we can assume that the corresponding value y. = y(r,) of the y coordinate
in (2.0) is zero. We have . — 7 and Vi, — 0 as m — m, and it clearly follows from
([238) that the correspondence y <+ r breaks down in the limit. This singular behavior
with respect to the r coordinate is of course resolved by the coordinate y of ([Z.3]).
A somewhat more explicit way of seeing this is to replace r by a new coordinate w

through the formula
r=ry +Viw

which scales up the interval r € (ry,7c) to w € ((ro —ri)/V/Va, (re — 1) /V/V5).
Equations (Z.8)) become

.y W

r 4 Vow = unss | LA E— 2.9
dw  (ry + VViw)VV (29)

which are regular in the limit m — m. In the new coordinates we have
Lo 27 Vi o o 27 2 27 o
Vdr +r h:vdw + (re + v/ Viw)*h — dw” +rih as m—m,

with the limit being uniform over compact sets of the w coordinate. This shows in
which sense the space sections of the KSdS metrics approach a cylindrical geometry
in the extreme limit. It should, however, be borne in mind that the space-time picture
of Section B-TT]is rather different.

2.4 Generalised Delaunay metrics

Similarly to Section[Z2] the analysis presented at the beginning of Section 2-3remains
valid when the parameter € is positive and if the metric A in (Z5) is an Einstein metric
on an (n—1)-dimensional manifold N~ with scalar curvature equal to (n—1)(n—2).
We refer to the resulting metrics as generalised Delaunay metrics. As before, e = 0
requires (N"~1 h) to be the unit round sphere if one wants to avoid a singularity at
the set u(y) = 0.

2.5 Complete metrics with constant positive scalar curvature
and asymptotically Delaunay ends

Conformal gluing constructions for constant scalar curvature metrics § = u®/("=2g

with R(g) = R(g9) = n(n — 1) have given rise to a wide variety of such metrics
with asymptotically Delaunay ends. The linearisation of this equation about a so-
lution leads to the operator L, = A, + n. The key nondegeneracy assumption of
any conformal gluing construction is that L, is surjective when acting on appro-
priately defined function spaces. The Delaunay metrics themselves are nondegen-
erate in this sense [32], moreover the solutions constructed by Mazzeo-Pacard on
S\ {p1,...,pr} [27] are non-degenerate. On the other hand, the standard metric on
the n-sphere, (S, go), is degenerate due to the fact that the restrictions of the lin-
ear functions in R"*! span an (n + 1)-dimensional co-kernel of Lg,. In addition to
the original construction of Schoen [40], the constructions of [31] and [37] use non-
degenerate solutions as building blocks to produce new non-degenerate solutions.

All of the constructions alluded to above are in the setting where the metrics are
locally conformally flat everywhere. This is clearly not necessary. A general conformal
gluing theorem was established by Byde [7]:

THEOREM 2.2 (Byde [7]) Let (M,g) be a compact Riemannian manifold, possibly
with boundary, of constant scalar curvature n(n — 1), which is non-degenerate in the



sense described above, and let xo € int(M) be a point in a neighborhood of which
g is conformally flat. Then there is a constant py and a one parameter family of
complete metrics g, on M\{zo} defined for p € (0, po), conformal to g, with constant
scalar curvature n(n —1). Moreover, each g, is asymptotically Delaunay and g, — g
uniformly on compact sets in M \ {z¢} as p — 0.

This result is exactly analogous to results for constant mean curvature surfaces
established in [28,29]. Byde goes further and shows how one can also glue asymptot-
ically Delaunay ends onto non-compact, non-degenerate solutions (though without
the uniform convergence to the original metric away from the gluing locus).

Note that, in light of Proposition 2.1l all of these results, and others, on the
existence of CPSC metrics with asymptotically Delaunay ends have an immediate
reinterpretation, after considering the maximal development of the initial data set,
as statements regarding the existence of space-times with asymptotically Kottler—
Schwarzschild—de Sitter ends.

3 Perturbation to exactly Delaunay, or generalised
Delaunay ends

The gluing construction of Corvino-Schoen [17,39] (compare [13]) generalises to the
positive cosmological constant setting as follows:

THEOREM 3.1 Let N~ be compact, let (M, g) satisfy R(g) = n(n—1), and suppose
that M contains an end E ~ [0,00) x N"~! on which g is asymptotic to a generalised
Delaunay metric § = g, with 0 < € < (an)%; together with derivatives up to
order four. Then for every § > 0 there is an &' satisfying |e — €'| < 6 and a metric
g with R(g") = n(n — 1), which differs from g only far away on E, and which is a
generalised Delaunay metric with Delaunay parameter € on the complement E' of a
compact subset of E.

REMARK 3.2 By taking the maximal, globally hyperbolic, space-time development
of the time-symmetric initial data set (M, g’), we obtain a solution of the vacuum
Einstein equations with cosmological constant A = n(n — 1)/2 such that the metric
on the domain of dependence of the end E’ is isometric to a subset of the Kottler—
Schwarzschild—de Sitter space-time.

PROOF: Let ¢g asymptote to a generalised Delaunay metric . on R x N"~1. We can
write g. as
Ge = da® + 2@ (3.1)

where % is an Einstein metric on N n—1 normalised as described above.

Consider a connected component of the set on which V' > 0, where V is the
function appearing in 3] for the metric g.. It follows from (23] that vV is the
normal component of the Killing vector 0; on the level sets of ¢. From the general
results in [33] it follows that any such function, for a static space-time, solves equation
B2) below. It further follows from the analysis in [12] that v/V can be smoothly
continued to a real-analytic function on M, which we call N , by changing signs across
the zero level sets of V. Furthermore, both N and V = £N? are functions of z only
in the representation ([B1]) of g.

Let T = T(¢) be the period of f, and let Q; = [iT+ 0,iT +T + o] x N*~!, where
o will be chosen below.



Let (R x N*~1 G./) be a generalised Delaunay metric with parameter &’ near ¢,
le —¢'] < 6.

Let g» be a metric on §2; obtained by interpolating between g and g., using any
i—independent cut-off function smoothly varying from zero to one. The cut-off should
be supported away from the end-points of the interval [i, i+ T1.

To achieve constant scalar curvature we will, first, correct the metric g, to a
new metric g., using the operator L of [13], as restricted to time-symmetric data, so
that Y = 0 there. The correction will be of the order of the perturbation introduced,
namely O(|e — &’|). This will, however, not quite solve the problem because the
operator L at g = g. has a cokernel, which consists of functions solving the “static
KIDs equation”:

We thus have to understand the space of solutions of (8:2):

LEMMA 3.3 Let g = g be a generalised Delaunay metric as in (31).

1. If (N”fl,fob) is the round sphere and if m = 0, then the space of solutions of
[32) is (n+ 1)-dimensional, spanned by N together with functions of the form
efal, where f is as in (31) and o' is the restriction of the Euclidean coordinate
z' to S*~! under the standard embedding S*~! — R™.

2. Otherwise all solutions of [33) are proportional to N.

PRrOOF: Let v be coordinates on the level sets of z; we have I = —f’hoAB,
s, =0, F;‘B = f’5§, and I"gc = I"gc, where the I"gc’s are the Christoffel symbols

of h. Since N depends only upon z, and satisfies (8:2]), we immediately find
Ry.a=0

away from the zero-set of V; by continuity this holds everywhere (this conclusion
could also have been reached directly from the warped product structure of g). But

then [B.2)) gives ' '
0=D,DsN =eld,(e7OAN) ,

hence ) )
N(z,v?) =@ PwA) + M(z) , (3.3)
for some functions P = P(v4), M = M(z).
Set )
a:=N/N,

then « is smooth away from the zero-level sets of N. Since both N and N satisfy
[B2) one finds that « is a solution of the equation

ND;Dja + DijaD;N + DjaD;N =0 . (3.4)
From DA]\D] = 0 we obtain
DsDpa=0. (3.5)
Let Aap = -1 = f’hoAB be the second fundamental form of the level sets of =z,
(B3) can be rewritten as
.@DA.@OB(I—I—OZI/\AB E.@OA.@DBCM—FOAmfIfZAB =0, (3.6)
~——
=



where 2 is the covariant derivative operator of the metric fz, and a, = J,«. Applying
2B to [B.6) and commuting derivatives one obtains (recall that the Ricci tensor of
h equals (n — 2)h)

Da (@DB@DBa +(n—2)a-— cp) =0.

Contracting A with B in 8) we find ¢ = Zp%Ba/(n — 1), which allows us to
conclude that there exists a constant C such that

D89 (a+C)=—-(n—1)(a+C). (3.7)

Suppose, first, that (N1, k) is the unit round sphere. Equation (Z) shows that
solutions of (B.6)) are linear combinations of the constant function o = 1 and of the
functions o’ = x%|g.—1, where z° is a canonical coordinate in R", with S*~! being
embedded in R™ in the obvious way. Hence, there exist functions A, (x), u=0,...,n,
such that

a(z,v?) = A\ (z)a (v?) . (3.8)

But then 33) implies \;(z) = ¢/ N ~1); for some constants \;, without however
imposing any constraints on Ag(x) which remains undetermined so far.

On the other-hand, if (N"~1, h) is not the unit round sphere, then by a theorem
of Obata [35] the function o does not depend upon v4, so that ([3.8) again holds with
a'=0and a® = 1.

Inserting [B.8)) into B4) with ij = xz one finds

81{]\072(:10)(% {)\O(x) + ]\Offl(x)ef(z)j\iai(vA)} } =0. (3.9)

In order to analyse this equation, it is useful to compare (Z3)) with BI]) to conclude
that

1 1
ﬂ::ﬁ:—(,:i— . (3.10)
dx N 1_2m _r2
,,‘n72 é2

We then have N29, = + N30, and
11\7281 [)\0 + N_le-f)o\iai (UA)] = 1\73@ [)\0 + %)ﬂiai (UA)]
-5 -
= N3N +1— —ZNal(v?) .
e
So ([339) will hold if and only if this is a function which depends at most upon v4.
Hence )\ is a constant and A\; = 0 unless m = 0, in which case the \;’s are arbitrary,
as desired. ]

Returning to the proof of Theorem 3.1l the metric g./ is obtained by solving the
equation

(R(gsl) _n(n— 1)) € (mD)*

using the implicit function theorem, compare [13, Theorem 5.9]; this can be done
on §; for all 7 large enough. As already mentioned, the perturbation introduced is
O(le —€’]). In view of Lemma [33] the obstruction to solving the problem is thus the

vanishing of

/ N (RGe) = R ). (3.11)
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where N is the static KID associated with the generalised Delaunay metric g.. We
need the following identity, from [15]:

Vetg N(Ry — Ry) = 0 (U/(N)) + Vet g (p+ Q) (3.12)

where
Ui(N) := 2y/det g (]cfgi[kgj]l.@()jgkl + D[iﬁgj]kejk) : (3.13)
p = (—]\ofRiC(b)ij + @Di@r)j]\of - Ab]\ofbij)gikgﬂekg 5 (3.14)
Q = N(g" — b7 + g™ gilee)Ric(b)ij + Q' . (3.15)

Brackets over a symbol denote anti-symmetrisation, with an appropriate numerical
factor (1/2 in the case of two indices). Here @’ denotes an expression which is bilinear
in
e = ey dr'dr’ = (gij — bij)dz'da? |

and in _@ke”, where Z denotes now the covariant derivative operator of the metric b,
linear in N, dN and HessN, with coefficients which are constants in an ON frame for
b. The idea behind this calculation is to collect all terms in R, that contain second
derivatives of the metric in 9;U?; in what remains one collects in p the terms which
are linear in e;;, while the remaining terms are collected in (); one should note that
the first term at the right-hand-side of (BIH) does indeed not contain any terms
linear in e;; when Taylor expanded at g;; = b;;. Note that p vanishes when b = g.
by choice of N. So the integrand is quadratic in e;;, up to terms O(|e — &’|)e;;, and
up to the divergence which produces a boundary term

/ U'ds; .
o€

For our next lemma it is convenient to write two generalised Delaunay metrics g
and b as

=22, b:—+r2h 3.16
g 2 (3.16)
We claim:

LEMMA 3.4 Let g and b be two generalised Delaunay metrics with mass parameters
m and mg. Let r be such that N(r) # 0 and N(r) # 0. If {r} x N"~! is positively
oriented, then

/{ } 1 U%dS; = 2wp_1(n — 1)NN ' (m —myg) . (3.17)
r}XNT

where wyp_1 is the volume of N™ 1.

PROOF: Let us denote by I' S the Chrlstoffel symbols of the metric b. We have
I7, = —8,N/N, Iy 5 = —rN2hap, [ = I'd. (where, as before, the I'4’s are
the Christoffel symbols of the metric h), I'4, = r=164, while the remaining I'’s
vanish. It holds that e = (N2 — N~2)dr2, from which one easily finds

U =2(n—1)NN~ (m — mo)Vdeth (3.18)

and the result follows by integration. ]
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We are ready to show that one can choose ¢’ — equivalently m’ — so that the
obstruction vanishes. So we consider the integral [BI1]). We wish to use B.12]) with
g = Je. Note that the integration in ([B.I1]) is taken with respect to the measure dyg,
while (312) involves dugy. The difference between the two volume integrals comes
thus with a prefactor O(|e — £’[), and produces an error term which is O((e — £’)?):

| %(B@o) - R dug
Q;
= /Q N(R@a") - R@E’))dﬂg + O((E - 5/)2)
:/ U'ds; — UidSi +O((e —¢')?) . (3.19)
{i+T}x Nn=1 {i}x Nn—1

We now choose ¢ in the definition of 2; so that the number

Ai=4dw,—1(n — 1)N|z=0
does not vanish; note that A equals, up to O(|e —&’|), the number in front of (m—my)
in (BI7). Since g approaches ¢ together with its first derivatives as ¢ goes to infinity,
the first integral in the last line of BI9) is o(1), where o(1) tends to zero as i
tends to infinity. By Lemma [B4] the second integral in the last line of (B19) equals
A(m' —m) = O(|le —£’|), where m/ is the mass parameter of ., while 1 is that of g.
We infer that

[ N (RGGe) = (@) g = A’ =)+ 0(1) + O((e = /1)

Clearly this can be made positive or negative when 4 is large enough by choosing &’
appropriately; by continuity there exists an &’ which makes the integral vanish, and
the result is proved. O

4 Concluding remarks

Our work leads naturally to the following questions:

1. Inlight of the results in [26] one should expect that, at least for n = 3,4, 5, a con-
struction similar to Byde’s [7] could be carried out without any assumption of
conformal flatness in a neighborhood of the omitted point (which forms the end
of the resulting complete metric). Moreover, with or without the conformally
flat condition, it should be straightforward to iterate Byde’s construction to
produce any number of asymptotically Delaunay ends. If one could add asymp-
totically Delaunay ends at any chosen set of points in any positive constant
scalar curvature manifold, then our analysis here could then be used to replace
them with exactly Delaunay ends. (Furthermore, all of this should be doable
via a local deformation of the metric near points without static KIDs, using the
techniques of [3,13,16].) Alternatively, can one generically deform a constant
positive scalar curvature metric, keeping the scalar curvature fixed, to a metric
which is conformally flat near a set of prescribed points? Proposition 4.1 of [41]
could perhaps be used as an intermediate step here.

2. In Byde’s construction, or in a variation thereof as just suggested, can one
ensure that the range of masses of the resulting Delaunay ends covers an interval
of the form (0, ¢€), for some ¢ > 07 This is a natural condition which has appeared
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elsewhere as a necessary hypothesis (see e.g. [37]). Now, it is clear that the
masses of our exactly Delaunay ends are continuous functions of the initial
mass. Given any two points with the associated families of exactly Delaunay
ends, one could then always adjust the masses to be the same, ensuring that
the ends can be glued together.

We did not carry out the gluing in situations when the metric g approaches a
cylindrical metric dy?+ h along the asymptotic end; such metrics arise in black-
hole space-times with degenerate horizons. This deserves further attention.

It would be of interest to extend the current gluings to general relativistic initial
data with non-vanishing extrinsic curvture.
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