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REMARKS CONCERNING LUBOTZKY’S FILTRATION

F. R. COHEN∗, MARSTON CONDER, J. LOPEZ, AND STRATOS PRASSIDIS∗∗

Abstract. A discrete group which admits a faithful, finite dimensional, linear represen-

tation over a field F of characteristic zero is called linear. This note combines the natural

structure of semi-direct products with work of A. Lubotzky [21] on the existence of linear

representations to develop a technique to give sufficient conditions to show that a semi-direct

product is linear.

Let G denote a discrete group which is a semi-direct product given by a split extension

1 → π → G → Γ → 1.

This note defines an additional type of structure for this semi-direct product called a stable

extension below. The main results are as follows:

(1) If π and Γ are linear, and the extension is stable, then G is also linear. Restrictions

concerning this extension are necessary to guarantee that G is linear as seen from

properties of the Formanek-Procesi “poison group” [10].

(2) If the action of Γ on π has a “Galois-like” property that it factors through the auto-

morphisms of certain natural “towers of groups over π” ( to be defined below ), then

the associated extension is stable and thus G is linear.

(3) The condition of a stable extension also implies thatG admits filtration quotients which

themselves give a natural structure of Lie algebra and which also imply earlier results of

Kohno, and Falk-Randell [17, 8] on the Lie algebra attached to the descending central

series associated to the fundamental groups of complex hyperplane complements.

The methods here suggest that a possible technique for obtaining new linearity results

may be to analyze automorphisms of towers of groups.

1. Introduction

A. Lubotzky [21] or [7], pages 172-175, gave a purely group theoretic criterion which

is equivalent to the existence a faithful finite dimensional representation over a field F of

characteristic zero for a discrete group G (where the image is not necessarily discrete). A

group G with this property is called linear.

∗Partially supported by the NSF.
∗∗Partially supported by Canisius College Summer Grant.
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The purpose of this paper is to give an extension of Lubotzky’s criterion which can some-

times be applied to show that a semi-direct product of linear groups is again linear. The

main subject of this article is a split extension of groups given by

1 −−−→ π
i

−−−→ G
p

−−−→ Γ −−−→ 1

for which it is assumed that both π and Γ are linear. The main purpose of this article is

to define the notion of a stable extension as given in Definition 2.5 which implies that G is

linear.

The approach weaves together semi-direct products regarded as pull-backs of a universal

semi-direct product known as the holomorph together with certain choices of filtrations of

both π and Γ. Roughly speaking, one of the main results here is that representations of Γ in

the automorphism group of π which factor through the automorphism group of the filtration

of π as given in Definition 3.1 suffices to show that G is linear via Lubotzky’s criteria [21].

Notice that it may be the case that both π and Γ admit faithful finite dimensional rep-

resentations, but that G does not. A basic example due to Formanek and Procesi [10] is a

split extension

1 −−−→ F3
i

−−−→ H
p

−−−→ F2 −−−→ 1

where H = G, Fn is a free group on n letters, and the group H admits the following

presentation:

(1) H = 〈a1, a2, a3, φ1, φ2 | φiajφ
−1
i = aj , φia3φ

−1
i = a3ai, i, j = 1, 2〉.

This example, the Formanek-Procesi “poison group”, is a subgroup of Aut(F3), the automor-

phism group of F3 and has the property that the action of F2 on the first homology group

of F3 is non-trivial.

Contrasting examples with π given by Fn which do in fact admit faithful finite dimensional

representations from the methods given here are explained next. A subgroup of Aut(Fn)

known as McCool’s group M(n) is generated by automorphisms given by conjugating a

fixed basis element by another fixed basis element [24]. Furthermore, the kernel of the

natural map Aut(Fn) → GL(n,Z), IAn, contains M(n).

Consider a split extension

1 −−−→ Fn
i

−−−→ G
p

−−−→ Γ −−−→ 1

where Γ admits a faithful finite dimensional representation and the action of Γ on Fn factors

through M(n). It is shown below that G is sometimes linear. Thus it is natural to ask the

following question which is also raised in [3] with some additional evidence here.
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Conjecture 1.1. Consider a split exact sequence of groups

1 −−−→ Fn −−−→ G −−−→ Γ −−−→ 1

with Fn a free group on n letters and Γ a group that admits a finite dimensional faithful

linear representation. If the conjugation action of Γ on Fn is trivial on homology, H1(Fn;Z),

and thus factors through IAn, then G is linear.

A weaker conjecture is to replace IAn by McCool’s groupM(n): that is, if the conjugation

action of Γ on Fn factors through M(n), then G is linear

Remark 1.2. Observe thatM(2) = IA2. Thus in case n = 2, this conjecture follows directly

from the observations in Corollary 8.3 below. In case Γ is a subgroup of GL(n,F), it follows

from the computations below that G is a subgroup of GL(n + 4,F) with details left as an

exercise.

The authors would like to congratulate Tom Farrell and Lowell Jones on this happy oc-

casion of their 60-th birthday. The authors would also like to thank the organizers for this

stimulating and interesting opportunity to participate in an excellent conference.

2. Definitions and Statement of Results

Recall the following definition from [7] (page 171) and [21].

Definition 2.1. A filtration of the group π is a descending chain of normal subgroups

· · · ⊆ Lj(π) ⊆ · · · ⊆ L1(π) ⊆ L0(π) = π

for j ≥ 0 such that
⋂

j≥1Lj(π) = {1}.

Definition 2.2. A p-congruence system for the group π is a filtration of π

· · · ⊆ Lj(π) ⊆ · · · ⊆ L1(π) ⊆ L0(π) = π

for j ≥ 0 such that

(1) π/L1(π) is finite, and

(2) L1(π)/L1+j(π) is a finite p-group for all j ≥ 0.

Definition 2.3. A bounded p-congruence system for the group π is a p-congruence system

for the group π given by

· · · ⊆ Lj(π) ⊆ · · · ⊆ L1(π) ⊆ L0(π) = π
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such that d(Li(π)/Lj(π)) ≤ e for all 0 ≤ i < j (where the number d(G) denotes the minimal

number of generators of the group G ([7], page xvii)). A bounded p-congruence system is

also called a Lubotzky filtration below.

The following is a restatement here of a result due to A. Lubotzky [21].

Theorem 2.4. A group G admits a bounded p-congruence system for some prime p if and

only if G admits a faithful finite dimensional representation for some field of characteristic

zero.

Let Aut(π) denote the automorphism group of π. Consider a discrete group π together

with the universal semi-direct product Hol(π) “the natural” split extension of Aut(π) by π,

1 → π → Hol(π) → Aut(π) → 1

The group Hol(π), as a set, is the product Aut(π) × π with the product structure defined

by the formula

(f, x) · (g, y) = (f · g, g−1(x) · y)

for f, g in Aut(π), and x, y in π.

The next four formulas follow from the definition but are listed here for convenience of

the reader in the proofs below.

(1) (f, x)−1 = (f−1, f(x−1)),

(2) (f, 1)−1 · (1, y) · (f, 1) = (1, f−1(y)),

(3) (f, x) · (g, y) · (f, x)−1 = (f · g · f−1, f(g−1(x) · y) · f(x−1)), and

(4) [(f, x), (g, y)] = (f · g · f−1 · g−1, g{f(g−1(x) · y) · f(x−1)} · g(y−1)).

Consider a homomorphism

φ : Γ → Aut(π)

called the classifying map for the extension. Pull back the extension determined by

Hol(π) to obtain the extension G together with a morphism of extensions (as developed in

more detail in [28]):

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1




y
1





y





y

φ

1 −−−→ π
i

−−−→ Hol(π)
p

−−−→ Aut(π) −−−→ 1
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Furthermore, every split extension of Γ with kernel π is given by such a pull-back for some

choice of homomorphism

φ : Γ → Aut(π).

Thus if (f, x), (g, y) ∈ Γ×π then (f, x) ·(g, y) = (f ·g, φ(g−1)(x) ·y). A notational convention

used throughout this article is that g−1(x) denotes φ(g−1)(x).

The results here intertwine filtrations for the groups π and Γ in the extension

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1

by focusing on the classifying map for the extension given by φ : Γ → Aut(π) rather than

considering the extension itself. Thus, the main focus here are conditions concerning the

homomorphism φ : Γ → Aut(π) which imply that G is linear.

Definition 2.5. Assume that

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1

is a split extension classified by the map

φ : Γ → Aut(π)

together with filtrations

(1) for the group π

· · · ⊆ Lj(π) ⊆ · · · ⊆ L1(π) ⊆ L0(π) = π

for j ≥ 0 and

(2) for Γ

· · · ⊆ Fj(Γ) ⊆ · · · ⊆ F1(Γ) ⊆ F0(Γ) = Γ

for j ≥ 0.

The extension ( together with the two filtrations ) is said to be stable if and only if for every

(g, y) in Fr+s(Γ)×Lr+s(π) and for every (f, x) in Fr(Γ)×Lr(π) the following properties are

satisfied for r, s ≥ 0:

(1) f(y) ∈ Lr+s(π) and

(2) g(x) = δx · x for δx ∈ Lr+s(π).

Remark 2.6. These two conditions both of which must be satisfied in what is given be-

low fit naturally with extensions. They arise by considering the natural “twisting” for the

holomorph as well as for certain fibre bundles.
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The definition of a stable extension is basically recording the feature that certain extensions

“look like products” modulo certain higher filtrations. One result is as follows.

Theorem 2.7. Assume that the split extension

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1

is classified by the map φ : Γ → Aut(π) which satisfies the conditions that

(1) Γ and π admit bounded p-congruence systems for some prime p as given in Definition

2.3, and

(2) the p-congruence systems for the groups π and Γ in part (1) are stable in the sense

of Definition 2.5.

Then G is linear.

Examples of Theorem 2.7 are given in sections 7 and 8. These examples arise by forming

the split extension

1 → Fn → G→ Γ → 1

where

(1) Γ is a subgroup of GL(2,Z) ( and thus Γ has a normal finite index subgroup which

is free ),

(2) Fn is isomorphic to a principal congruence subgroup of level pr in PSL(2,Z), and

(3) Γ acts by conjugation on Fn.

That these examples are linear follows from standard elementary methods as well as the

methods here. One related special case is as follows.

Example 2.8. Consider the extension

1 −−−→ F [a1, a2, · · · , an, b] −−−→ Gn −−−→ F [x, y] −−−→ 1

for which the action of F [x, y] is given as follows.

(1) (a) x(aq) = aq+1 if 1 ≤ q < n with x(an) = b · a1 · b
−1 and

(b) x(b) = b.

(2) The action of y is given by

(a) y(aq) = a1 · aq · a
−1
1 and

(b) y(b) = a1 · b · a
−1
1 .

Then Gn is linear. As shown in section 8, these examples can be done easily by using

elementary, “bare-hands” methods.
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In the case of a split extension

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1

which is stable ( Definition 2.5 ), the group G inherits a natural filtration which is defined

next with properties developed in section 4.

Definition 2.9. A filtration of the group G is given by

Fj(G) = Fj(Γ)× Lj(π)

as a set with multiplication obtained from restriction of the formula

(f, x) · (g, y) = (f · g, φ(g)−1(x) · y)

for f, g in Γ, and x, y in π.

Remark 2.10. To be precise, it must be checked that the stated multiplication in Definition

2.9 restricts to give Fj(G) as a subgroup of G. This verification is carried out in section 4.

Let H denote a discrete group. Recall that the commutator function

[−,−] : H ×H → H

induces the structure of Lie algebra on the associated graded for the descending central

series filtration of H . Kohno [17], and Falk-Randell [8] obtained a structure theorem for

these Lie algebras restricted to certain semi-direct products of groups. A similar theorem

holds for the mod-p descending central series filtration [5]. However, there are other natural

filtrations for which a similar extension theorem holds which are addressed by using the

following definition.

Definition 2.11. A filtration of the groupH given by {Fj(H)} is said to be Lie-like provided

the commutator function

[−,−] : H ×H → H

restricts to

[−,−] : Fp(H)× Fq(H) → Fp+q(H)

for all p, q ≥ 0.

An analogue of this last property for split group extensions is defined next.
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Definition 2.12. Consider the split extension

1 −−−→ π
i

−−−→ G −−−→ Γ −−−→ 1

Two filtrations L∗(π) and F∗(Γ) are said to be stably Lie-like if

(1) F∗(Γ) is Lie-like

(2) For (f, x) ∈ Fr(Γ)× Lr(π) and (g, y) ∈ Fs(Γ)× Ls(π), f(x · g(y)) ∈ Lr+s(π)

Remark 2.13. If L∗(π) is a filtration as part of a stably Lie-like extension, then it is Lie-like.

For this, notice that (1, x) ∈ Fr(Γ) × Lr(π) and (1, y) ∈ Fs(Γ) × Ls(π) implies that xy ∈

Lr+s(π). Similary, x−1y−1 ∈ Lr+s(π). Thus, the commutator [x, y] = xyx−1y−1 ∈ Lr+s(π).

Theorem 2.14. Assume that the split extension

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1

is classified by the map φ : Γ → Aut(π) which satisfies the following conditions:

(1) The groups Γ and π admit filtrations (not necessarily bounded p-congruence systems)

F∗(Γ) and L∗(π) as given in Definition 2.1.

(2) The filtrations for the groups π and Γ in part (1) are stable in the sense of Definition

2.5.

(3) The filtrations F∗(Γ) and L∗(π) are both stably Lie-like with associated graded Lie

algebras denoted grF∗ (Γ) and gr
L
∗ (π).

Then the filtration of G given in Definition 2.9 is Lie-like. Furthermore, there is a split,

short exact sequence of Lie algebras

0 → grL∗ (π) → gr∗(G) → grF∗ (Γ) → 0

where gr∗(G) is the associated graded Lie algebra with Lie bracket induced by the commutator

pairing

[−,−] : G×G→ G

A systematic setting for stable extensions arises by considering automorphisms of a tower

of groups given by a bounded p-congruence system for the group π. That method is recorded

in the next section.
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3. Automorphisms of Towers of Groups

The purpose of this section is (i) to define the automorphism group of a tower of groups

over a discrete group π and (ii) to show how the structure of the automorphism group of

certain towers over π gives rise to linear groups. The automorphism group of a tower of

groups is defined next and is analogous to that of [26].

Definition 3.1. A tower of groups over π is

(1) a family of groups Ln(π) for n in a pointed, totally ordered index set I = S ∪ {•}

with unique least element • and L•(π) = π,

(2) for every i ≥ j ∈ I, there is a ( possibly empty ) family of homomorphisms F(i, j)

given by α(i, j) : Li(π) → Lj(π) with unique homomorphisms α(i, •) : Li(π) → π

such that

α(i, •) = α(j, •) ◦ α(i, j)

for all α(i, j) ∈ F(i, j) .

The automorphism group of this tower over π denoted

Aut(L∗(π))

is the subgroup of elements (φn) ∈
∏

n∈I Aut(Ln(π)) such that

φj ◦ α(i, j) = α(i, j) ◦ φi, for all α(i, j) ∈ F(i, j).

A special case is given next.

Definition 3.2. An inductive tower of groups over π is a tower of groups {Ln(π) |n ∈

I ∪ {•}} over π such that

(1) the index set I is given by the natural numbers N = I with • = 0,

(2) each group Ln(π) is a subgroup of π, and

(3) for every i ≥ j, there is exactly one α(i, j) : Li(π) → Lj(π) given by the natural

inclusion.

Three remarks are given next.

Remark 3.3. (1) A filtration of π given by

· · · ⊆ Lj(π) ⊆ · · · ⊆ L1(π) ⊆ L0(π) = π

is an inductive tower over π. Thus, a bounded p-congruence system is an inductive

tower over π.
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(2) The automorphism group of an inductive tower of groups over π is the subgroup of

elements in Aut(π) which leave every Ln(π) invariant.

(3) Restrict to the case where Ln(π) is the (n + 1)-st stage of the descending central

series of π, Γn+1(π). The natural inclusions

· · · ⊆ Γn+1(π) ⊆ · · · ⊆ Γ2(π) ⊆ Γ1(π) = π

specify an inductive tower over π for which each Γn+1(π) is invariant. Thus, the

automorphism group of the inductive tower given by the descending central series is

equal to Aut(π). Similar remarks apply to the mod-p descending central series of π.

The next Lemma is a remark which follows from the above definitions.

Lemma 3.4. Assume that {Ln(π) |n ∈ I} is an inductive tower of groups over π so that

the automorphism group of this tower, Aut(L∗(π)), is a subgroup of Aut(π). Given an

automorphism ρ ∈ Aut(L∗(π)), there is the natural induced split extension

1 −−−→ π
i

−−−→ G
pρ

−−−→ Γ −−−→ 1

classified by regarding ρ ∈ Aut(π).

Automorphisms of certain towers then have implications for whether extensions are linear.

Theorem 3.5. Consider the split extension

1 −−−→ π −−−→ G −−−→ Γ −−−→ 1

and suppose that the following conditions are satisfied:

(1) The filtration L∗(π) is a Lubotzky filtration for the group π.

(2) The extension is classfied by a map ρ : Γ −→ Aut(L∗(π)) where Aut(L∗(π)) ⊆ Aut(π)

is the automorphism group of the tower L∗(π).

(3) There exists a Lubotzky filtration F∗(Γ) for the group Γ such that the filtrations F∗(Γ)

and L∗(π) satisfy condition (2) in Definition 2.5.

Then G is linear.

Proof. It suffices to show that the extension is stable in the sense of Definition 2.5, since the

result will then follow from Theorem 2.7
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Suppose (f, x) ∈ Fr(Γ) × Lr(π) and (g, y) ∈ Fr+s(Γ) × Lr+s(π) where r, s ≥ 0. Since

the action of Γ is tower-preserving and y ∈ Lr+s(π), it follows that f(y) ∈ Lr+s(π) and the

extension is stable. �

Remark 3.6. The constructions in this section give a method to extend the techniques here

to arbitrary group extensions without the assumption that the extension is required to be

split. This remark will be addressed elsewhere.

4. Two Filtrations

The purpose of this section is to investigate split extensions equipped with two filtrations

as given in Definition 2.5. Suppose

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1

is a split extension classified by the map φ : Γ → Aut(π) together with filtrations

(1) L∗(π) given by

· · · ⊆ Lj(π) ⊆ · · · ⊆ L1(π) ⊆ L0(π) = π

for j ≥ 0 for the group π and

(2) F∗(Γ) given by

· · · ⊆ Fj(Γ) ⊆ · · · ⊆ F1(Γ) ⊆ F0(Γ) = Γ

for j ≥ 0 for the group Γ.

Assume that the extension (together with the two filtrations) is stable as in Definition 2.5.

An equivalent technical formulation for the definition of a stable extension is stated next.

Although elementary, direct, and technical, the next lemma is checked here as the second

condition listed is the one actually used in the proofs of the theorems below.

Lemma 4.1. Assume that every (g, y) in Fr+s(Γ)×Lr+s(π) and every (f, x) in Fr(Γ)×Lr(π).

The formulas given in Definition 2.5 by

(1) f(y) ∈ Lr+s(π) and

(2) g(x) = δx · x for δx ∈ Lr+s(π).

are equivalent to

(1) f(y) ∈ Lr+s(π) and

(2) g−1(x) · x−1 ∈ Lr+s(π).

Proof. Assume that every (g, y) in Fr+s(Γ) × Lr+s(π) and every (f, x) in Fr(Γ)× Lr(π). It

suffices to check that g(x) = δx · x for δx ∈ Lr+s(π) if and only if g−1(x) · x−1 ∈ Lr+s(π).
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(1) Assume that g−1(x) · x−1 ∈ Lr+s(π), and so g−1(x) · x−1 = ǫx ∈ Lr+s(π). Thus

g(ǫx) = δx
−1 ∈ Lr+s(π) by setting f = g and y = ǫx. Thus x · g(x

−1) = δx
−1.

(2) Assume that g−1(x) ·x−1 = ǫx
−1 ∈ Lr+s(π). Apply g to obtain x · g(x−1) = g(g−1(x) ·

x−1) = g(ǫ−1) ∈ Lr+s(π).

�

A filtration of G, F∗(G), was defined in Definition 2.9 without verifying that it is a filtra-

tion, namely Fj(G) is naturally a subgroup of G. This fact is recorded next.

Lemma 4.2. Assume that

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1

is a split extension classified by the map φ : Γ → Aut(π) and which is stable with respect to

filtrations L∗(π) and F∗(Γ). Then Fj(G) is a group which is naturally a subgroup of G and

there is a morphism of extensions

Lj(π)
i

−−−→ Fj(G)
pφ

−−−→ Fj(Γ)

inclusion





y





y





y
inclusion

π
i

−−−→ G
pφ

−−−→ Γ.

Proof. It suffices to check that Fj(G) is closed with respect to the product in G given by

(f, x) · (g, y) = (f · g, φ(g)−1(x) · y) for f, g in Γ, and x, y in π where, by convention,

g(x) = φ(g)(x).

Assume that f, g are in Fj(Γ), and that x, y are in Lj(π). By the “stability” condition in

Definition 2.5, φ(g)−1(x) is in Lj(π). Thus φ(g)−1(x) · y is in Lj(π). The lemma follows by

inspection. �

Properties of the groups Fj(G) are recorded in the next lemma.

Lemma 4.3. Let

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1

denote a split extension classified by a map φ : Γ → Aut(π) and which is stable with respect

to filtrations L∗(π) and F∗(Γ). Let Fj(G) denote the groups defined earlier.
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Then there are morphisms of split extensions

1 −−−→ Lr+s(π)
i

−−−→ Fr+s(G)
pφ

−−−→ Fr+s(Γ) −−−→ 1




y





y





y
1

1 −−−→ Lr(π)
i

−−−→ Fr(G)
pφ

−−−→ Fr(Γ) −−−→ 1




y





y





y

φ

1 −−−→ π
i

−−−→ Hol(π)
p

−−−→ Aut(π) −−−→ 1

for every s ≥ 0. Furthermore, Fr+s(G) is a normal subgroup of Fr(G) and there is an

extension

1 −−−→ Lr(π)/Lr+s(π)
i

−−−→ Fr(G)/Fr+s(G)
pφ

−−−→ Fr(Γ)/Fr+s(Γ) −−−→ 1.

Thus if Fr(Γ)/Fr+s(Γ) is generated by c elements and Lr(π)/Lr+s(π) is generated by d ele-

ments, then Fr(G)/Fr+s(G) is generated by c+ d elements.

Proof. In the proof below, recall the convention that f(x) = φ(f)(x) for x ∈ π, f ∈ Γ and

φ : Γ → Aut(π). Since the split extension

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1

is classified by a map φ : Γ → Aut(π) which is stable with respect to filtrations L∗(π) and

F∗(Γ), there is a morphism of split extensions

1 −−−→ Lr+s(π)
i

−−−→ Fr+s(G)
pφ

−−−→ Fr+s(Γ) −−−→ 1




y





y





y
1

1 −−−→ Lr(π)
i

−−−→ Fr(G)
pφ

−−−→ Fr(Γ) −−−→ 1




y





y





y

φ

1 −−−→ π
i

−−−→ Hol(π)
p

−−−→ Aut(π) −−−→ 1

by Lemma 4.3.

To check that Fr+s(G) is a normal subgroup of Fr(G) for any s ≥ 0, let (f, x) denote an

element in Fr(Γ)× Lr(π) and (g, y) an element in Fr+s(Γ)× Lr+s(π). Then

(f, x) · (g, y) · (f, x)−1 = (f · g · f−1, f(g−1(x) · y) · f(x−1)).

Notice that

(1) f · g · f−1 is in Fr+s(Γ) since it’s a normal subgroup of Fr(Γ),

(2) f(g−1(x) · y) · f(x−1) = f(g−1(x)) · f(y) · f(x−1),
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(3) f(g−1(x)) · f(x−1) is in Lr+s(π) by stability,

(4) y is in Lr+s(π) by assumption, thus f(y) is in Lr+s(π) by stability,

(5) f(x) · f(y) · f(x−1) is in Lr+s(π) by stability and

(6) f(g−1(x)) · f(y) · f(x−1) = f(g−1(x)) · f(x−1) · f(x) · f(y) · f(x−1) is in Lr+s(π).

(7) Thus Fr+s(G) is a normal subgroup of Fr(G).

Since Fr+s(G) is a normal subgroup of Fr(G), there is a morphism of extensions

1 −−−→ Lr+s(π)
i

−−−→ Fr+s(G)
pφ

−−−→ Fr+s(Γ) −−−→ 1




y





y





y
1

1 −−−→ Lr(π)
i

−−−→ Fr(G)
pφ

−−−→ Fr(Γ) −−−→ 1




y





y





y

φ

1 −−−→ Lr(π)/Lr+s(π)
i

−−−→ Fr(G)/Fr+s(G) −−−→ Fr(Γ)/Fr+s(Γ) −−−→ 1.

Since Fr(Γ)/Fr+s(Γ) is generated by d elements, the subgroup of Fr(G)/Fr+s(G) generated

by lifts of these elements together with c elements which generate the kernel then generate

the entire group. The lemma follows. �

5. Two Filtrations Continued: Proof of Theorem 2.7

The purpose of this section is to describe properties of filtrations arising in Section 4

inspired by work of A. Lubotzky who gave a sufficient condition for the existence of a finite

dimensional faithful representation of a discrete group [21]. Lubotzky’s filtration condition

is changed below to fit questions for an extension theorem.

Given filtrations for Γ and π which are stable for the group extension

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1,

there are naturally associated semi-direct products Fj(G) defined in section 4.

Properties of the groups Fj(G) are recorded in the next lemma.

Lemma 5.1. Let

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1

denote a split extension classified by a map φ : Γ → Aut(π) and which is stable with respect

to filtrations L∗(π) and F∗(Γ) which are also assumed to be p-congruence systems. Then

F∗(G) is a p-congruence system for G.
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Proof. To check that F∗(G) is p-congruence system for G, recall that it suffices to check (by

Definition 2.2) that
⋂

j≥1

Fj(G) = {1}

and F∗(G) is a descending chain of normal subgroups

· · · ⊆ Fj(G) ⊆ · · · ⊆ F1(G) ⊆ F0(G) = G

for j ≥ 0 such that

(1) G/F1(G) is finite and

(2) F1(G)/F1+j(G) is a finite p-group for all j ≥ 0.

That Fr+s(G) is a normal subgroup of Fr(G) is checked in Lemma 4.3. Notice that by the

proof of Lemma 4.3,
⋂

j≥1

Fj(G) =
⋂

j≥1

(Fj(Γ)× Lj(π)) = {1}.

Furthermore by 4.3, F∗(G) is a decreasing filtration of G with the property that there is an

extension

1 −−−→ Lr(π)/Lr+s(π)
i

−−−→ Fr(G)/Fr+s(G)
pφ

−−−→ Fr(Γ)/Fr+s(Γ) −−−→ 1.

Thus

(1) if Γ/Fj(Γ) as well as π/Lj(π) are finite, then so is G/Fj(G) and

(2) if Fr(Γ)/Fr+s(Γ) as well as Lr(π)/Lr+s(π) are finite p-groups, then so is Fr(G)/Fr+s(G).

Thus F∗(G) is p-congruence system for G and the lemma follows.

�

Lemma 5.2. Let

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1

denote a split extension classified by a map φ : Γ → Aut(π) and which is stable with respect

to filtrations L∗(π) and F∗(Γ) which are also assumed to be bounded p-congruence systems.

Then F∗(G) is a Lubotzky filtration, a bounded p-congruence system.

Proof. By Lemma 5.1, F∗(G) is p-congruence system for G. Furthermore by 4.3, F∗(G) is a

decreasing filtration of G with the property that there is an extension

1 −−−→ Lr(π)/Lr+s(π)
i

−−−→ Fr(G)/Fr+s(G)
pφ

−−−→ Fr(Γ)/Fr+s(Γ) −−−→ 1.
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Thus if Fr(Γ)/Fr+s(Γ) is generated by c elements and Lr(π)/Lr+s(π) is generated by d

elements, then Fr(G)/Fr+s(G) is generated by c+ d elements. By Definition 2.3, F∗(G) is a

a Lubotzky filtration, a bounded p-congruence system for G.

�

One consequence of Theorem 2.4 as well as Lemma 5.1 is Theorem 2.7.

6. Proof of Theorem 2.14

Consider the two filtrations L∗(π) and F∗(Γ) associated to the stable extension

1 −−−→ π
i

−−−→ G
pφ

−−−→ Γ −−−→ 1

as stated in Definition 2.5 and developed in Section 4.

A filtration of G regarded as a set was defined by

Fj(G) = Fj(Γ)× Lj(π)

in Definition 2.9. Some properties of Fj(G) were proven in Lemmas 4.2 and 4.3 as follows.

(1) The subset Fj(G) is naturally a subgroup of G.

(2) There is a morphism of split group extensions

1 −−−→ Lr+s(π)
i

−−−→ Fr+s(G)
pφ

−−−→ Fr+s(Γ) −−−→ 1




y





y





y
1

1 −−−→ Lr(π)
i

−−−→ Fr(G)
pφ

−−−→ Fr(Γ) −−−→ 1.

(3) There is a split extension

1 −−−→ Lr(π)/Lr+s(π)
i

−−−→ Fr(G)/Fr+s(G)
pφ

−−−→ Fr(Γ)/Fr+s(Γ) −−−→ 1.

Consider the filtration quotients

grFr (Γ) = Fr(Γ)/Fr+1(Γ), grLr (π) = Lr(π)/Lr+1(π), and grr(G) = Fr(G)/Fr+1(G).

Then there is a split short exact sequence of groups

{0} −−−→ grLr (π) −−−→ grr(G) −−−→ grFr (Γ) −−−→ {0}

by Lemmas 4.2 and 4.3.

That F∗(G) is Lie-like is checked next. Suppose (f, x) ∈ Fs(G) and (g, y) ∈ Fr(G). It will

be checked that g[f(g−1(x) · y) · f(x−1)] · g(y−1) ∈ Lr+s(π) whenever the following conditions

are satisfied:
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(1) The extenstion is stable.

(2) The filtration on Γ is Lie-like.

(3) f(x · g(y)) ∈ Lr+s(π).

Since the filtration F∗(Γ) is Lie-like, there exists h ∈ Fr+s(Γ) with gfg−1 = fh. Since

the extension is stable, there exists δx ∈ Lr+s(π) such that h(x) = δx · x. This implies the

following:

g[f(g−1(x) · y) · f(x−1)] · g(y−1) = gfg−1(x) · gf(y) · gf(x−1) · g(y−1)

= fh(x) · gf(y) · gf(x−1) · g(y−1)

= f(δx) · f(x) · gf(y) · gf(x
−1) · g(y−1)

Notice that f(δx) ∈ Lr+s(π) by stability. So it suffices to show f(x) ·gf(y) ·gf(x−1) ·g(y−1) ∈

Lr+s(π). Since F∗(Γ) is Lie-like, there exists k ∈ Fr+s(Γ) with gf = fgk. Since the extension

is stable and the filtration of π is given by normal subgroups, there is δy ∈ Lr+s(π) such that

k(y) = y · δy. This implies the following:

f(x) · gf(y) · gf(x−1) · g(y−1) = f(x) · fgk(y) · gf(x−1) · g(y−1)

= f(x) · fg(y · δy) · g(f(x
−1) · y−1)

= f(x) · fg(y) · fg(δy) · g(f(x
−1) · y−1)

= f(x · g(y)) · fg(δy) · g(f(x
−1) · y−1)

Now fg(δy) ∈ Lr+s(π) by the stability condition. The additional condition (3) above gives

that f(x · g(y)) ∈ Lr+s(π) and g(f(x
−1) · y−1) ∈ Lr+s(π).

To finish the proof, notice that Theorem 2.14 follows at once from the property that these

maps induce morphisms of Lie algebras, a property which is checked next.

First observe that if x ∈ Lr(π) and y ∈ Ls(π), then [x, y] ∈ Lr+s(π) by the assumption

that the filtration L∗(π) is Lie-like. Secondly, since the filtration of G is Lie-like, there is a

commutative diagram
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Lr(π)× Ls(π)
[−,−]
−−−→ Lr+s(π)

i×i





y





y
i

Fr(G)× Fs(G)
[−,−]
−−−→ Fr+s(G).

Thus the map i : π → G passes to quotients on the level of associated graded modules

and preserves the structure of the underlying Lie algebras. Thus the map

pφ : G→ Γ

preserves the structure of Lie algebras. The Theorem follows.

7. An Example

The purpose of this section is to give examples of Theorem 2.7 and Theorem 3.5. This

example has the serious drawback that the extension can be shown to be linear by a “bare-

hands”, more general, classical argument which is reviewed in Section 8.

These examples arise by forming the split extension

1 → Fn → G→ Γ → 1

where

(1) Γ is a subgroup of GL(2,Z) ( and thus Γ has a normal finite index subgroup which

is free ),

(2) Fn is isomorphic to a principal congruence subgroup of level pr in PSL(2,Z), and

(3) Γ acts by conjugation on Fn.

Let PΓ(2, pr) denote the kernel of the “mod-pr reduction map”

ρpr : PSL(2,Z) −→ PSL(2,Z/prZ).

Natural automorphisms of PΓ(2, pr) as well as the tower

· · · ⊆ PΓ(2, pr+1) ⊆ PΓ(2, pr) ⊆ · · · ⊆ PΓ(2, p) = π

are given by conjugation by an element in GL(2,Z).
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Furthermore if p is a prime, the groups PΓ(2, p) are free on 1 + p(p2 − 1)/12 generators if

p is an odd prime [11] or 2 letters if p = 2 [9]. Let Γ(2, pr) denote the kernel of the natural

reduction map GL(2,Z) → GL(2,Z/prZ). Below it is shown that

· · ·PΓ(2, pr+1) ⊆ PΓ(2, pr) ⊆ · · · ⊆ PΓ(2, p2) ⊆ PΓ(2, p)

gives a Lubotzky filtration for PΓ(2, p). The reader can check that similar arguments show

that

· · · ⊆ Γ(2, pr+1) ⊆ Γ(2, pr) ⊆ · · · ⊆ Γ(2, p2) ⊆ Γ(2, p)

gives a Lubotzky filtration for Γ(2, p). This information is recorded next while a more

standard development is given in Section 8.

Lemma 7.1. The filtration

· · · ⊆ Γ(2, pr+1) ⊆ Γ(2, pr) ⊆ · · · ⊆ Γ(2, p2) ⊆ Γ(2, p)

of Γ(2, p) is a Lubotzky filtration.

Proposition 7.2. The extension

1 −−−→ PΓ(2, pr) −−−→ G −−−→ Γ(2, ps) −−−→ 1

is linear where Γ(2, ps) acts on PΓ(2, pr) by conjugation and r, s ≥ 1.

Proof. Let f ∈ Γ(2, ps) and x ∈ PΓ(2, pr+q) where q ≥ 0, so that x projects to the identity

in PSL(2,Z/pr+q
Z). Since fxf−1 ∈ PΓ(2, pr+q), the conjugation action is tower-preserving.

Thus this filtration, along with the filtration of PΓ(2, pr) is stable in the sense of Definition

2.5. Theorem 2.7 then implies that G is linear.

�

Additional properties, some classical, some possibly not, are recorded next. Notice that

an automorphism of the tower of groups

· · · ⊆ PΓ(2, pr+1) ⊆ PΓ(2, pr) ⊆ · · · ⊆ PΓ(2, p) = π

induces an automorphism of the Lie algebra

gr∗(PΓ(2, p)) = ⊕s≥1PΓ(2, p
s)/PΓ(2, ps+1).

Thus it is natural to identify the structure of this Lie algebra.
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That structure is given next where related, and standard properties of these principal

congruence subgroups are recorded for convenience. Recall that PΓ(2, ps+1) is a normal

subgroup of PΓ(2, ps). Define

grs(PΓ(2, p)) = PΓ(2, ps)/PΓ(2, ps+1)

the associated graded.

The commutator map

[−,−] : PSL(2,Z)× PSL(2,Z) → PSL(2,Z)

restricts to

[−,−] : PΓ(2, pr)× PΓ(2, ps) → PΓ(2, pr+s),

and induces the structure of Lie algebra on the associated graded

gr∗(PΓ(2, p))) = ⊕s≥1grs(PΓ(2, p))

with

[−,−] : grs(PΓ(2, p))⊗ grt(PΓ(2, p)) → grs+t(PΓ(2, p)).

Furthermore, the p-th power map

ψp : PΓ(2, ps) → PΓ(2, ps+1)

induces a ( possibly non-linear ) map

ψp : grs(PΓ(2, p)) → grs+1(PΓ(2, p)).

Together with the previous structure of Lie algebra for gr∗(PΓ(2, p)), this gives the structure

of a restricted Lie algebra over the field with p elements Fp. Classical, well-known properties

of the fitration quotients PΓ(2, pr)/PΓ(2, pr+1) are recorded in the next theorem.

Theorem 7.3. If p is an odd prime, there are isomorphisms

θq : ⊕3Z/pZ → grq(PΓ(2, p))

with a choice of basis given by

Aq =

(

1 pq

0 1

)

, Bq =

(

1 0

pq 1

)

, Cq =

(

1 + pq pq

−pq 1− pq

)

.

Furthermore,
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Bq · Cq · A
−1
q = Dq

( where the next matrix is not the reduction of a matrix in PSL(2,Z) but represents a

nontrivial coset in grq(PΓ(2, p)) )

Dq =

(

1 + pq 0

0 1− pq

)

.

If p = 2, there are isomorphisms

θq : ⊕2Z/2Z → grq(PΓ(2, 2))

with a choice of basis given by

Aq =

(

1 2q

0 1

)

, Bq =

(

1 0

2q 1

)

.

Furthermore

[Aq, Bq] = 1.

The additive structure given above is given in a global way in terns of restricted Lie

algebras. That structure is listed next.

Theorem 7.4. If p = 2, then the restricted Lie algebra gr∗(PΓ(2, 2)) is generated by A1 and

B1 (as a restricted Lie algebra). Furthermore, gr∗(PΓ(2, 2)) is the abelian, free restricted

Lie algebra (over F2) generated by A1 and B1 where, redundantly, the following relations are

satisfied:

(1) [Aq, Bs] = 1 for all q and s,

(2) ψ2(Aq) = Aq+1 and

(3) ψ2(Bq) = Bq+1.

If p is an odd prime, then the restricted Lie algebra gr∗(PΓ(2, p)) is generated by A1, B1

and D1. Furthermore, gr∗(PΓ(2, p)) is the free restricted Lie algebra (over Fp) generated by

A1, B1 and D1 subject to the following relations.

(1) [Aq, Bs] = Dq+s for all q and s,

(2) [Aq, Ds] = A−2
q+s for all q and s,

(3) [Bq, Ds] = B2
q+s for all q and s,

(4) ψp(Aq) = Aq+1,

(5) ψp(Bq) = Bq+1, and

(6) ψp(Dq) = Dq+1.
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Theorem 7.3 is classical and can be found in [11]. The proof of Theorem 7.4 is a compu-

tation based on the next classical lemma.

Proposition 7.5. The quotient PΓ(2, pr)/PΓ(2, pr+1) is isomorphic to the kernel of the

natural reduction map

γpr : PSL(2,Z/p
r+1

Z) −→ PSL(2,Z/prZ)

and so there are isomorphisms

PΓ(2, pr)/PΓ(2, pr+1) ∼=

{

⊕2Z/2Z if p = 2, and

⊕3Z/pZ if p is an odd prime.

Proof. The proof follows directly from the commutative diagram where the rows and columns

are all group extensions:

PΓ(2, pr+1)
1

−−−→ PΓ(2, pr+1) −−−→ 1




y





y





y
1

PΓ(2, pr) −−−→ PSL(2,Z)
ρpr

−−−→ PSL(2,Z/prZ)




y





y

ρ
pr+1





y
1

Ker(2, pr) −−−→ PSL(2,Z/pr+1
Z)

γpr
−−−→ PSL(2,Z/prZ)

�

More applications to other groups SL(n,A) and to their cohomology will appear in the

thesis of J. Lopez [20].

8. A Second Example

The purpose of this section is to review classical properties of the natural extension of

PSL(n,A) by SL(n,A) with conjugation action where A is a commutative ring. First, Let

Z(G) denote the center of the group G and consider the conjugation action of G on itself

thus inducing an action of G/Z(G) on G given by

Inn(G) = G/Z(G) → Aut(G).

Let ∆(G) denote the associated extension

1 −−−→ G
i

−−−→ ∆(G)
p

−−−→ G/Z(G) −−−→ 1
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obtained from the conjugation action of G/Z(G) on G.

Notice that SL(n,A) acts on the full matrix ringM(n,A) in two ways recorded next where

M ∈ M(n,A) and γ, y ∈ SL(n,A).

(1) (1, y)(M) = yM and

(2) (γ, 1)(M) = γ · (M) · γ−1.

Then define

(γ, y)(M) = γ · (y ·M) · γ−1.

Lemma 8.1. The formula

(γ, y)(M) = γ · (y ·M) · γ−1

for M ∈M(n,A) and γ, y ∈ SL(n,A) specifies a left action of ∆(SL(n,A)) on M(n,A).

Assume Lemma 8.1 for the moment.

Theorem 8.2. The formula

ρ((γ, y))(M) = γ · (y ·M) · γ−1

for M ∈M(n,A) and γ, y ∈ SL(n,A) induces a faithful representation

ρ : ∆(SL(n,A)) → GL(n2, A).

The theorem has an elementary, immediate consequence.

Corollary 8.3. If G is a group with trivial center and is a subgroup of SL(n,A), then the

split extension

1 −−−→ G
i

−−−→ ∆(G)
p

−−−→ G/Z(G) = G −−−→ 1

where G acts on itself by conjugation is a subgroup of GL(n2, A).

The proof of Theorem 8.2 is given next.

Proof. First notice that by Lemma 8.1 the function ρ is a homomorphism.

If (γ, y) is in the kernel of ρ then

ρ((γ, y))(M) =M
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for all M ∈M(n,A). Let M = 1n the multiplicative identity element in M(n,A). Then

γ · (y · 1n) · γ
−1 = 1n

implies that y = 1n.

Thus assume that (γ, 1n) is in the kernel of ρ. Hence

γ(M)γ−1 =M

for all M ∈M(n,A), and γ is in the center of PSL(n,A) which, by definition is trivial. The

Theorem follows.

�

The proof of Lemma 8.1 is given next.

Proof. Let (α, x) and (β, y) denote elements in the semi-direct product ∆(SL(n,A)).

Then the following hold for M ∈ M(n,A).

(1) (α, x)(β, y) = (αβ, β−1xβy)

(2) (αβ, β−1xβy)(M) = αβ(β−1xβyM)β−1α−1 = α(xβyM)β−1α−1

(3) (α, x)((β, y)(M)) = (α, x)(βyMβ−1) = α(xβ(yM)β−1)α−1

Since the two formulas agree, the Lemma follows.

�
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