Classical and new log log-theorems

Alexander Rashkovskii

Abstract

We present a unified approach to celebrated log log-theorems of Carleman, Wolf, Levinson, Sjöberg, Matsaev on majorants of analytic functions. Moreover, we obtain stronger results by replacing original pointwise bounds with integral ones. The main ingredient is a complete description for radial projections of harmonic measures of strictly star-shaped domains in the plane, which, in particular, explains where the log log-conditions come from.

1 Introduction. Statement of results

Our starting point is classical theorems due to Carleman, Wolf, Levinson, and Sjöberg, on majorants of analytic functions.

Definition 1 A nonnegative measurable function M on a segment $[a, b] \subset \mathbb{R}$ belongs to the class $\mathcal{L}^{++}[a, b]$ if

$$\int_{a}^{b} \log^{+} \log^{+} M(t) \, dt < \infty.$$

(For any real-valued function h, we write $h^+ = \max\{h, 0\}, h^- = h^+ - h$.)

Carleman was the first who remarked a special role of functions of the class \mathcal{L}^{++} in complex analysis, by proving the following variant of the Liouville theorem.

Theorem A (T. Carleman [3]) If an entire function f in the complex plane \mathbb{C} has the bound

$$|f(re^{i\theta})| \le M(\theta) \quad \forall \theta \in [0, 2\pi], \ \forall r \ge r_0, \tag{1}$$

with $M \in \mathcal{L}^{++}[0, 2\pi]$, then $f \equiv const$.

This phenomenon appears also in the Phragmén–Lindelöf setting.

Theorem B (F. Wolf [22]) If a holomorphic function f in the upper half-plane $\mathbb{C}_+ = \{z \in \mathbb{C} : \text{Im } z > 0\}$ satisfies the condition

$$\limsup_{z \to x_0} |f(z)| \le 1 \quad \forall x_0 \in \mathbb{R}$$

and for any $\epsilon > 0$ and all $r > R(\epsilon)$, $\theta \in (0, \pi)$, one has

$$|f(re^{i\theta})| \le [M(\theta)]^{\epsilon i}$$

with $M \in \mathcal{L}^{++}[0,\pi]$, then $|f(z)| \leq 1$ on \mathbb{C}_+ .

The most famous statement of this type is the following local result known as the Levinson–Sjöberg theorem.

Theorem C (N. Levinson [13], N. Sjöberg [21], F. Wolf [23]) If a holomorphic function f in the domain $Q = \{x + iy : |x| < 1, |y| < 1\}$ has the bound

$$|f(x+iy)| \le M(y) \quad \forall x+iy \in Q,$$

with $M \in \mathcal{L}^{++}[-1,1]$, then for any compact subset K of Q there is a constant C_K , independent of the function f, such that $|f(z)| \leq C_K$ in K.

For further developments of Theorem C, including higher dimensional variants, see [4], [5], [7], [8], [9]. Theorems A and B were extended to subharmonic functions in higher dimensions in [24].

A similar feature of majorants from the class \mathcal{L}^{++} was discovered by Beurling in a problem of extension of analytic functions [2]. It also appears in relation to holomorphic functions from the MacLane class in the unit disk [10], [14], and in a description of non-quasi-analytic Carleman classes [6].

The next result, due to Matsaev, does not look like a log log-theorem, however (as will be seen from our considerations) it is also about the class \mathcal{L}^{++} ; further results in this direction can be found in [16].

Theorem D (V.I. Matsaev [15]) If an entire function f satisfies the relation

$$\log |f(re^{i\theta})| \ge -Cr^{\alpha} |\sin \theta|^{-k} \quad \forall \theta \in (0,\pi), \ \forall r > 0,$$

with some C > 0, $\alpha > 1$, and $k \ge 0$, then it has at most normal type with respect to the order α , that is, $\log |f(re^{i\theta})| \le Ar^{\alpha} + B$.

All these theorems can be formulated in terms of subharmonic functions (by taking $u(z) = \log |f(z)|$ as a pattern), however our main goal is to replace the pointwise bounds like (1) with some integral conditions. A model situation is the following form of the Phragmén–Lindelöf theorem.

Theorem E (Ahlfors [1]) If a subharmonic function u in \mathbb{C}_+ with nonpositive boundary values on \mathbb{R} satisfies

$$\lim_{r \to \infty} r^{-1} \int_0^{\pi} u^+(re^{i\theta}) \sin \theta \, d\theta = 0,$$

then $u \leq 0$ in \mathbb{C}_+ .

We will show that all the above theorems are particular cases of results on the class \mathcal{A} defined below and that the log log-conditions appear as conditions for continuity of certain logarithmic potentials.

Definition 2 Let ν be a probability measure on a segment [a, b]; we will identify it occasionally with its distribution function $\nu(t) = \nu([a, t])$. Suppose $\nu(t)$ is strictly increasing and continuous on [a, b], and denote by μ its inverse function extended to the whole real axis as $\mu(t) = a$ for t < 0 and $\mu(t) = b$ for t > 1. We will say that such a measure ν belongs to the class $\mathcal{A}[a, b]$ if

$$\lim_{\delta \to 0} \sup_{x} \int_{0}^{\delta} \frac{\mu(x+t) - \mu(x-t)}{t} dt = 0.$$
 (2)

Note that this class is completely different from MacLane's class \mathcal{A} [14] that consists of holomorphic functions in the unit disk with asymptotic values at a dense subset of the circle. MacLane's class is however described by the condition $|f(re^{i\theta})| \leq M(r), M \in \mathcal{L}^{++}[0, 1].$

Our results extending Theorems A–C and E are as follows.

Theorem 1 Let a subharmonic function u in the complex plane satisfy

$$\int_{0}^{2\pi} u^{+}(te^{i\theta}) \, d\nu(\theta) \le V(t) \quad \forall t \ge t_{0}, \tag{3}$$

with $\nu \in \mathcal{A}[0, 2\pi]$ and a nondecreasing function V on \mathbb{R}_+ . Then there exist constants c > 0 and $A \ge 1$, independent of u, such that

$$u(te^{i\theta}) \le cV(At) \quad \forall t \ge t_0.$$
(4)

Theorem 2 If a subharmonic function u in the upper half-plane \mathbb{C}_+ satisfies the conditions

$$\limsup_{z \to x_0} u(z) \le 0 \quad \forall x_0 \in \mathbb{R}$$

and

$$\lim_{t \to \infty} t^{-1} \int_0^\pi u^+(te^{i\theta}) \, d\nu(\theta) = 0$$

with $\nu \in \mathcal{A}[0,\pi]$, then $u(z) \leq 0 \ \forall z \in \mathbb{C}_+$.

Theorem 3 Let a subharmonic function u in $Q = \{x + iy : |x| < 1, |y| < 1\}$ satisfy

$$\int_{-1}^{1} u^{+}(x+iy) \, d\nu(y) \le 1 \quad \forall x \in (-1,1)$$
(5)

with $\nu \in \mathcal{A}[-1,1]$. Then for each compact set $K \subset Q$ there is a constant C_K , independent of the function u, such that $u(z) \leq C_K$ on K.

Relation of these results to the log log-theorems becomes clear by means of the following statement.

Definition 3 Denote by $\mathcal{L}^{-}[a, b]$ the class of all nonnegative integrable functions g on the segment [a, b], such that

$$\int_{a}^{b} \log^{-} g(s) \, ds < \infty. \tag{6}$$

Proposition 1 If the density ν' of an absolutely continuous increasing function ν belongs to the class $\mathcal{L}^{-}[a,b]$, then $\nu \in \mathcal{A}[a,b]$. Consequently, if a holomorphic function f has a majorant $M \in \mathcal{L}^{++}$, then $\log |f|$ has the corresponding integral bound with the weight $\nu \in \mathcal{A}$ with the density $\nu'(t) = \min\{1, 1/M(t)\}$.

We recall that positive measures ν on the unit circle with $\nu' \in \mathcal{L}^{-}[0, 2\pi]$ are called *Szegö measures*. Proposition 1 states, in particular, that absolutely continuous Szegö measures belong to the class $\mathcal{A}[0, 2\pi]$.

An integral version of Theorem D has the following form.

Theorem 4 Let a function u, subharmonic in \mathbb{C} and harmonic in $\mathbb{C} \setminus \mathbb{R}$, satisfy the inequality

$$\int_{-\pi}^{\pi} u^{-}(re^{i\theta})\Phi(|\sin\theta|) \, d\theta \le V(r) \quad \forall r \ge r_0, \tag{7}$$

where $\Phi \in \mathcal{L}^{-}[0,1]$ is nondecreasing and the function V is such that $r^{-1-\delta}V(r)$ is increasing in r for some $\delta > 0$. Then there are constants c > 0 and $A \ge 1$, independent of u, such that

$$u(re^{i\theta}) \le cV(Ar) \quad \forall r \ge r_1 = r_1(u).$$

Our proofs of Theorems 1–4 rest on a presentation of measures of the class $\mathcal{A}[0, 2\pi]$ as radial projections of harmonic measures of star-shaped domains. Let Ω be a bounded Jordan domain containing the origin. Given a set $E \subset \partial\Omega$, $\omega(z, E, \Omega)$ will denote the harmonic measure of E at $z \in \Omega$, i.e., the solution of the Dirichlet problem in Ω with the boundary data 1 on E and 0 on $\partial\Omega \setminus E$. The measure $\omega(0, E, \Omega)$ generates a measure on the unit circle \mathbb{T} by means of the radial projection $\zeta \mapsto \zeta/|\zeta|$. It is convenient for us to consider it as a measure on the segment $[0, 2\pi]$, so we put

$$\widehat{\omega}_{\Omega}(F) = \omega(0, \{\zeta \in \partial\Omega : \arg \zeta \in F\}, \Omega)$$
(8)

for each Borel set $F \subset [0, 2\pi]$.

The inverse problem is as follows. Given a probability measure on the unit circle \mathbb{T} , is it the radial projection of the harmonic measure of any domain Ω ?

For our purposes we specify Ω to be *strictly star-shaped*, i.e., of the form

$$\Omega = \{ r e^{i\theta} : r < r_{\Omega}(\theta), \ 0 \le \theta \le 2\pi \}$$
(9)

with r_{Ω} a positive continuous function on $[0, 2\pi]$, $r_{\Omega}(0) = r_{\Omega}(2\pi)$.

Theorem 5 A continuous probability measure ν on $[0, 2\pi]$ is the radial projection of the harmonic measure of a strictly star-shaped domain if and only if $\nu \in \mathcal{A}[0, 2\pi]$.

Corollary 4 Every absolutely continuous measure from the Szegö class on the unit circle is the radial projection of the harmonic measure of some strictly star-shaped domain.

Theorem 5 is proved by a method originated by B.Ya. Levin in theory of majorants in classes of subharmonic functions [11].

Theorems 1–3 and 5 (some of them in a slightly weaker form) were announced in [18] and proved in [19] and [20]. The main objective of the present paper, Theorem 4, is new. Since its proof rests heavily on Theorem 5, we present a proof of the latter as well, having in mind that the papers [19] and [20] are not easily accessible. Moreover, we include the proofs of Theorems 1–3, too, motivated by the same accessability reason as well as by the idea of showing the whole picture.

2 Radial projections of harmonic measures (Proofs of Theorem 5 and Proposition 1)

Measures from the class \mathcal{A} have a simple characterization as follows.

Proposition 2 Let μ and ν be as in Definition 2. Then the function

$$N(x) = \int_0^1 \log |x - t| \, d\mu(t)$$

is continuous on [0,1] if and only if $\nu \in \mathcal{A}[a,b]$.

Proof. The function N(x) is continuous on [0, 1] if and only if for any $\epsilon > 0$ one can choose $\delta \in (0, 1)$ such that

$$I_x(\delta) = \int_{|t-x| < \delta} \log |x-t| \, d\mu(t) > -\epsilon$$

for all $x \in [0, 1]$. Integrating I_x by parts, we get

$$|I_x(\delta)| = \int_0^\delta \frac{r_x(t)}{t} dt + r_x(\delta) |\log \delta|,$$

where $r_x(t) = \mu(x+t) - \mu(x-t)$. Therefore, continuity of N(x) implies (2). On the other hand, since $r_x(t)$ increases in t, we have

$$|r_x(\delta)| \log \delta| = 2r_x(\delta) \int_{\delta}^{\sqrt{\delta}} \frac{dt}{t} \le 2 \int_{\delta}^{\sqrt{\delta}} \frac{r_x(t)}{t} dt$$

which gives the reverse implication.

In the proof of Theorem 5, we will use this property in the following form.

Proposition 3 Let μ and ν be as in Definition 2 for the class $\mathcal{A}[0, 2\pi]$. Then the function

$$h(z) = \int_0^{2\pi} \log |e^{i\theta} - z| \, d\mu(\theta/2\pi)$$

is continuous on \mathbb{T} if and only if $\nu \in \mathcal{A}[0, 2\pi]$.

Proof of Theorem 5. 1) First we prove the sufficiency: every $\nu \in \mathcal{A}[0, 2\pi]$ has the form $\nu = \widehat{\omega}_{\Omega}$ (8) for some strictly star-shaped domain Ω . In particular, for any compact set $K \in \Omega$ there is a constant C(K) such that

$$\omega(z, E, \Omega) \le C(K) \,\nu(\arg E) \quad \forall z \in E \tag{10}$$

for every Borel set $E \subset \partial \Omega$, where $\arg E = \{\arg \zeta : \zeta \in E\}$.

Let

$$u(z) = \frac{1}{\pi} \int_0^{2\pi} \log |e^{i\theta} - z| \, d\mu(\theta/2\pi)$$

with μ the inverse function to $\nu \in \mathcal{A}[0, 2\pi]$. The function u is subharmonic in \mathbb{C} and harmonic outside the unit circle \mathbb{T} . By Proposition 3, it is continuous on \mathbb{T} and thus, by Evans' theorem, in the whole plane. Let v be a harmonic conjugate to uin the unit disk \mathbb{D} , which is determined uniquely up to a constant. Since $u \in C(\overline{\mathbb{D}})$, radial limits $v^*(e^{i\psi})$ of v exist a.e. on \mathbb{T} . Let us fix such a point $e^{i\psi_0}$ and choose the constant in the definition of v in such a way that $v^*(e^{i\psi_0}) = \psi_0$.

Consider then the function $w(z) = z \exp\{-u(z) - iv(z)\}, z \in \mathbb{D}$. By the Cauchy-Riemann condition, $\partial v / \partial \phi = r \partial u / \partial r$, which implies

$$\arg w(re^{i\psi}) = \psi - v(re^{i\psi_0}) - \int_{\psi_0}^{\psi} \frac{\partial v(re^{i\phi})}{\partial \phi} d\phi = \psi_0 - v(re^{i\psi_0}) + \frac{1}{2\pi} \int_{\psi_0}^{\psi} \int_0^{2\pi} \left[1 - \frac{2r^2 - 2r\cos(\theta - \phi)}{|r - e^{i(\theta - \phi)}|^2} \right] d\mu(\theta/2\pi) d\phi = \psi_0 - v(re^{i\psi_0}) + \frac{1}{2\pi} \int_{\psi_0}^{\psi} \int_0^{2\pi} \frac{1 - r^2}{|r - e^{i(\theta - \phi)}|^2} d\mu(\theta/2\pi) d\phi.$$

By changing the integration order and passing to the limit as $r \to 1$, we derive that for each $\psi \in [0, 2\pi]$ there exists the limit

$$\lim_{r \to 1} \arg w(re^{i\psi}) = \mu(\psi/2\pi) - \mu(\psi_0/2\pi).$$

Therefore the function $\arg w$ is continuous up to the boundary of the disk; in particular, we can take $\psi_0 = 0$. Since |w| is continuous in $\overline{\mathbb{D}}$ as well, so is w.

By the boundary correspondence principle, w gives a conformal map of $\mathbb D$ onto the domain

$$\Omega = \{ re^{i\theta} : r < \exp\{-u(\exp\{2\pi i\nu(\theta)\})\}, \ 0 \le \theta \le 2\pi \}.$$
(11)

It is easy to see that the domain Ω is what we sought. Let f be the conformal map of Ω to \mathbb{D} , inverse to w. For $z \in \Omega$ and $E \subset \partial \Omega$, we have

$$\begin{split} \omega(z, E, \Omega) &= \omega(f(z), f(E), U) = \frac{1}{2\pi} \int_{\arg f(E)} \frac{1 - |f(z)|^2}{|f(z) - e^{it}|^2} \, dt \\ &= (1 - |f(z)|^2) \int_{\arg E} \frac{d\nu(s)}{|f(z) - e^{2\pi i\nu(s)}|^2}, \end{split}$$

which proves the claim.

2) Now we prove the necessity: if ω is of the form (9), then $\widehat{\omega}_{\Omega} \in \mathcal{A}[0, 2\pi]$.

We use an idea from the proof of [11, Theorem 2.4]. Let w be a conformal map of \mathbb{D} to Ω , w(0) = 0. Since Ω is a Jordan domain, w extends to a continuous map from $\overline{\mathbb{D}}$ to $\overline{\Omega}$, and we can specify it to have $\arg w(1) = 0$. Define

$$f(z) = u(z) + iv(z) = \log \frac{w(z)}{z}$$
 for $|z| \le 1$, $f(z) = f(|z|^{-2}z)$ for $|z| > 1$.

It is analytic in \mathbb{D} and continuous in \mathbb{C} . Define then the function

$$\lambda(z) = u(z) + \frac{1}{\pi} \int_0^{2\pi} \log|e^{i\psi} - z| \, dv(e^{i\psi}), \tag{12}$$

 δ -subharmonic in \mathbb{C} and harmonic in $\mathbb{C} \setminus \mathbb{T}$. Let us show that it as actually harmonic (and, hence, continuous) everywhere. To this end, take any function $\alpha \in C(\mathbb{T})$ and a number r < 1, and apply Green's formula for u(z) and $A(z) = |z|\alpha(z/|z|)$ in the domain $D_r = \{r < |z| < r^{-1}\}$:

$$\int_{D_r} (A\Delta u - u\Delta A) = \left[\frac{\rho}{2\pi} \int_0^{2\pi} \left(\rho \alpha(e^{i\psi}) \frac{\partial u(\rho e^{i\psi})}{\partial \rho} - u(\rho e^{i\psi}) \alpha(e^{i\psi}) \right) d\psi \right]_{\rho=r}^{\rho=R}.$$
 (13)

Using the definition of the function f outside \mathbb{D} and the Cauchy-Riemann equations $\partial v/\partial \phi = \rho \partial u/\partial \rho$ if $\rho < 1$ and $\partial v/\partial \phi = -\rho \partial u/\partial \rho$ if $\rho > 1$ (which follows from the definition of f), we can write the right hand side of (13) as

$$-\frac{r+r^{-1}}{2\pi}\int_0^{2\pi}\alpha(e^{i\psi})\,d_{\psi}v(re^{i\psi})+\frac{r-r^{-1}}{2\pi}\int_0^{2\pi}u(re^{i\psi})\alpha(e^{i\psi})\,d\psi.$$

When $r \to 1$, (13) takes the form

$$\int_{\mathbb{T}} \alpha \Delta u = -\frac{1}{\pi} \int_0^{2\pi} \alpha(e^{i\psi}) \, dv(e^{i\psi}),$$

which implies the harmonicity of the function $\lambda(z)$ (12) in the whole plane.

Now we recall that $v(e^{i\psi}) = \arg w(e^{i\psi}) - \psi$. Since the harmonic measure of the *w*-image of the arc $\{e^{i\theta} : 0 < \theta < \psi\}$ equals $\psi/2\pi$, we have

$$\widehat{\omega}_{\Omega}(\arg w(e^{i\psi})) = \psi/2\pi$$

and thus $\arg w(e^{i\psi}) = \mu(\psi/2\pi)$ with μ the inverse function to $\widehat{\omega}_{\Omega}(\psi)$. Therefore, $v(e^{i\psi}) = \mu(\psi/2\pi) - \psi$.

Consider, finally, the function

$$\gamma(z) = \frac{1}{\pi} \int_0^{2\pi} \log |e^{i\psi} - z| \, d\mu(\psi/2\pi) = \lambda(z) - u(z) + \frac{1}{\pi} \int_0^{2\pi} \log |e^{i\psi} - z| \, d\psi.$$

Since it is continuous on \mathbb{T} , Proposition 3 implies $\widehat{\omega}_{\Omega} \in \mathcal{A}[0, 2\pi]$, and the theorem is proved.

Note that all the dilations $t\Omega$ of Ω (t > 0) represent the same measure from $\mathcal{A}[0, 2\pi]$, and Ω with a given projection $\widehat{\omega}_{\Omega}$ is unique up to the dilations.

Now we prove Proposition 1 that presents a wide subclass of \mathcal{A} with a more explicit description.

Proof of Proposition 1. Let $\nu : [0, 1] \to [0, 1]$ be an absolutely continuous, strictly increasing function, $\nu' \in \mathcal{L}^{-}[0, 1]$. Since mes $\{t : \nu'(t) = 0\} = 0$, its inverse function μ is absolutely continuous ([17], p. 297), so

$$\mu(t) = \int_0^t g(s) \, ds$$

with g a nonnegative function on [0, 1]. We have

$$\infty > \int_0^1 \log^- \nu'(t) \, dt = \int_0^1 \log^- \frac{1}{\mu'(t)} \, d\mu(t) = \int_0^1 g(t) \log^+ g(t) \, dt,$$

so g belongs to the Zygmund class $\mathbf{L} \log \mathbf{L}$.

Let $\Delta(t)$ denote the modulus of continuity of the function μ . Note that it can be expressed in the form

$$\Delta(t) = \int_0^t h(s) \, ds$$

where h is the nonincreasing equimeasurable rearrangement of g. Then

$$\int_0^1 \frac{\Delta(t)}{t} dt = \int_0^1 t^{-1} \int_0^1 h(s) \, ds \, dt = \int_0^1 h(s) \log s^{-1} \, ds$$
$$= \int_{E_1 \cup E_2} h(s) \log s^{-1} \, ds,$$

where $E_1 = \{s \in (0,1) : h(s) > s^{-1/2}\}, E_2 = (0,1) \setminus E_1$. Since $h \in \mathbf{L} \log \mathbf{L} [0,1],$

$$\int_{E_1} h(s) \log s^{-1} \, ds \le 2 \int_{E_1} h(s) \log h(s) \, ds < \infty.$$

Besides,

$$\int_{E_2} h(s) \log s^{-1} \, ds \le \int_{E_2} s^{-1/2} \log s^{-1} \, ds < \infty.$$

Therefore,

$$\int_0^1 \frac{\Delta(t)}{t} \, dt < \infty$$

and thus

 $\lim_{\delta \to 0} \int_0^\delta \frac{\Delta(t)}{t} \, dt = 0,$

which gives (2).

Corollary 4 follows directly from the definition of the Szegö class, Theorem 5 and Proposition 1.

3 Proofs of Theorems 1 and 2

Here we show how the integral variants of Carleman's and Wolf's theorems can be derived from Theorem 5.

We will need an elementary

Lemma 5 Let $r(\theta) \in C[0, 2\pi]$, $1 < r_1 \leq r(\theta) \leq r_2$, let ν be a positive measure on $[0, 2\pi]$ and V(t) be a nonnegative function on $[0, \infty]$. If a nonnegative function $v(te^{i\theta})$ satisfies

$$\int_{0}^{2\pi} v(te^{i\theta}) \, d\nu(\theta) \le V(t) \quad \forall t \ge t_0,$$

then for any $R_2 > R_1 \ge t_0$,

$$\int_{R_1}^{R_2} \int_0^{2\pi} v(t \, r(\theta) e^{i\theta}) \, d\nu(\theta) \, dt \le r_1^{-1} \int_{r_1 R_1}^{r_2 R_2} V(t) \, dt.$$

Proof of Lemma 5 is straightforward:

$$\int_{R_1}^{R_2} \int_0^{2\pi} v(t\,r(\theta)e^{i\theta})\,d\nu(\theta)\,dt = \int_0^{2\pi} \int_{R_1r(\theta)}^{R_2r(\theta)} v(te^{i\theta})\,dt\,\frac{d\nu(\theta)}{r(\theta)}$$
$$\leq r_1^{-1} \int_0^{2\pi} \int_{R_1r_1}^{R_2r_2} v(te^{i\theta})\,dt\,d\nu(\theta) \leq r_1^{-1} \int_{R_1r_1}^{R_2r_2} V(t)\,dt.$$

Proof of Theorem 1. By Theorem 5, there exists a domain Ω of the form (9) that contains $\overline{\mathbb{D}}$ such that

$$\omega(z, E, \Omega) \le c_1 \nu(\arg E), \quad \forall z \in \overline{\mathbb{D}}, \ E \subset \partial\Omega,$$
 (14)

with a constant $c_1 > 0$, see (10). Let $r_1 = \min r(\theta)$. $r_2 = \max r(\theta)$. By the Poisson– Jensen formula applied to the function $v_t(z) = u^+(tz)$ (t > 0) in the domain $s\Omega$ (s > 1) we have, due to (14),

$$\begin{split} v_t(z) &\leq \int_{\partial s\Omega} v_t(\zeta) \, \omega(z, d\zeta, s\Omega) = \int_{\partial \Omega} v_t(s\zeta) \, \omega(s^{-1}z, d\zeta, \Omega) \\ &\leq c_1 \int_0^{2\pi} v_t(s \, r(\theta) e^{i\theta}) \, d\nu(\theta), \quad z \in \overline{\mathbb{D}}. \end{split}$$

The integration of this relation over $s \in [1, R]$ (R > 1) gives, by Lemma 5,

$$(R-1)v_t(z) \le c_1 \int_1^R \int_0^{2\pi} v_t(s\,r(\theta)e^{i\theta})\,d\nu(\theta)\,ds \le c_2 t^{-1} r_1^{-1} \int_{tr_1}^{tr_2 R} V(s)\,ds$$

for each $t \ge t_0$. So,

$$u(te^{i\theta}) \le c(R)V(tr_2R), \quad t \ge t_0,$$

which proves the theorem.

Remarks. 1. It is easy to see that the constant A in (4) can be chosen arbitrarily close to $r_2/r_1 \ge 1$.

2. Note that we have used inequality (3) in the integrated form only, so the following statement is actually true: If a subharmonic function u on \mathbb{C} satisfies

$$\int_{t_0}^t \int_0^{2\pi} u^+(se^{i\theta}) \, d\nu(\theta) \, ds \le W(t) \quad \forall t \ge t_0 \tag{15}$$

with $\nu \in \mathcal{A}[0, 2\pi]$ and a nondecreasing function W, then there are constants c > 0and $A \ge 1$, independent of u, such that $u(te^{i\theta}) \le ct^{-1}W(At)$ for all $t \ge t_0$.

Now we prove Theorem 2 as a consequence of Theorem 1.

Proof of Theorem 2. The function v equal to u^+ in \mathbb{C}_+ and 0 in $\mathbb{C} \setminus \mathbb{C}_+$ is a subharmonic function in \mathbb{C} satisfying the condition

$$\int_0^{2\pi} v^+(te^{i\theta}) \, d\nu(\theta) \le V_1(t)$$

with $\nu \in \mathcal{A}[0, 2\pi]$ and $V_1(t) = o(t), t \to \infty$. Therefore, it satisfies the conditions of Theorem 1 with the majorant $V(t) = \sup\{V_1(s) : s \leq t\}$. So, $\sup_{\theta} u^+(te^{i\theta}) = o(t)$ as $t \to \infty$, and the conclusion holds by the standard Phragmén–Lindelöf theorem. \Box

4 Proof of Theorem 3

The integral version of the Levinson–Sjöberg theorem will be proved along the same lines as Theorem 1, however the local situation needs a more refined adaptation.

We start with two elementary statements close to Lemma 5.

Lemma 6 Let a nonnegative integrable function v in the square $Q = \{|x|, |y| < 1\}$ satisfy (5) with a continuous strictly increasing function ν . Then for any $d \in (0,1)$ there exists a constant $M_1(d)$, independent of u, such that for each $y_0 \in (-1, 1)$ one can find a point $y_1 \in (-1, 1) \cap (y_0 - d, y_0 + d)$ with

$$\int_{-1}^{1} v(x + iy_1) \, dx < M_1(d).$$

Proof. Assume $y_0 \ge 0$, then

$$\int_{y_0-d}^{y_0} \int_{-1}^1 v(x+iy) \, dx \, d\nu(y) = \int_{-1}^1 \int_{y_0-d}^{y_0} v(x+iy) \, d\nu(y) \, dx \le 2.$$

Therefore for some $y_1 \in (y_0 - d, y_0)$,

$$\int_{-1}^{1} v(x+iy_1) \, dx \le 2[\nu(y_0) - \nu(y_0 - d)]^{-1} \le 2[\Delta_*(\nu, d)]^{-1}$$
$$d) = \inf\{\nu(t) - \nu(t-d) : t \in (0,1)\} > 0.$$

with $\Delta_*(\nu, d) = \inf\{\nu(t) - \nu(t - d) : t \in (0, 1)\} > 0.$

Lemma 7 Let a function v satisfy the conditions of Lemma 6, a function r be continuous on a segment $[a, b] \subset [-1, 1], \ 0 < r_1 = \min r(y) \le \max r(y) = r_2 < 1,$ and $\delta \in (0, 1 - r_2)$. Then there exists $t \in (0, \delta)$ such that

$$\int_{a}^{b} v(t+r(y)+iy) \, d\nu(y) < M_2(\delta)$$

with $M_2(\delta)$ independent of v.

Proof. We have

$$\int_{0}^{\delta} \int_{a}^{b} v(t+r(y)+iy) \, d\nu(y) = \int_{a}^{b} \int_{r(y)}^{\delta+r(y)} v(s+iy) \, ds \, d\nu(y)$$

$$\leq \int_{r_{1}}^{\delta+r_{2}} \int_{a}^{b} v(s+iy) \, d\nu(y) \, ds \leq \delta+r_{2}-r_{1}.$$

Thus one can find some $t \in (0, \delta)$ such that

$$\int_{a}^{b} v(t+r(y)+iy) \, d\nu(y) < \delta^{-1}(\delta+r_2-r_1).$$

Proof of Theorem 3. Consider the measure ν_1 on [-i, i] defined as

$$\nu_1(E) = \nu(-iE), \quad E \subset [-i,i].$$

The conformal map $f(z) = \exp\{z\pi/2\}$ of the strip $\{|\operatorname{Im} z| < 1\}$ to the right halfplane \mathbb{C}_r pushes the measure ν_1 forward to the measure $f^*\nu$ on the semicircle $\{e^{i\theta} : -\pi/2 \le \theta \le \pi/2\}$, producing a measure of the class $\mathcal{A}[-\pi/2, \pi/2]$; we extend it to some measure $\nu_2 \in \mathcal{A}[-\pi.\pi]$. By Theorem 5, there is a strictly star-shaped domain $\Omega \supset \overline{\mathbb{D}}$ such that the radial projection of its harmonic measure at 0 is the normalization $\nu_2/\nu_2([-\pi,\pi])$ of ν_2 .

Let $\Omega_1 = \Omega \cap \mathbb{C}_r$, then for every Borel set $E \subset \Gamma = \partial \Omega_1 \cap \mathbb{C}_r$ and any compact set $K \subset \Omega_1$,

$$\omega(w, E, \Omega_1) \le C_1(K) \,\nu_2(\arg E) \quad \forall w \in K$$

The pre-image $\Omega_2 = f^{[-1]}(\Omega_1)$ of Ω_1 has the form

$$\Omega_2 = \{ z = x + iy : x < \varphi(y), y \in (0,1) \}$$

with some function $\varphi \in C[-1, 1]$. Let

$$\Gamma_2 = \{ x + iy : x = \varphi(y), y \in (0, 1) \},\$$

then for every Borel $E \subset \Gamma_2$ and any compact subset K of Ω_2 ,

$$\omega(z, E, \Omega_2) \le C_2(K) \,\nu(\operatorname{Im} E) \quad \forall z \in K.$$
(16)

For the domain

$$\Omega_3 = \{ z = x + iy : x > -\varphi(y), y \in (0,1) \}$$

we have, similarly, the relation

$$\omega(z, E, \Omega_3) \le C_3(K) \,\nu(\operatorname{Im} E) \quad \forall z \in K \tag{17}$$

for each $E \subset \Gamma_3 = \{x + iy : x = -\varphi(y), y \in (0, 1)\}$ and compact set $K \subset \Omega_3$.

Let now K be an arbitrary compact subset of the square Q. We would be almost done if we were able to find some reals $h_2(K)$ and $h_3(K)$ such that

$$K \subset \{\Omega_2 + h_2(K)\} \cap \{\Omega_3 + h_3(K)\} \subset \overline{\{\Omega_2 + h_2(K)\} \cap \{\Omega_3 + h_3(K)\}} \subset Q.$$

However this is not the case for any K unless $\varphi \equiv const$. That is why we need partition.

Given K compactly supported in Q, choose a positive $\lambda < (4 \operatorname{dist} (K, \partial Q))^{-1}$ and then $\tau \in (0, \lambda)$ such that the modulus of continuity of φ at 4τ is less than λ . Take a finite covering of K by disks $B_j = \{z : |z - z_j| < \tau\}, z_j \in K, 1 \leq j \leq n$. To prove the theorem, it suffices to estimate the function u on each B_j .

Let $Q_j = \{z \in Q : |\text{Im}(z - z_j)| < 2\tau\}$, then $B_j \subset Q_j$ and dist $(B_j, \partial Q_j) = \tau$. Take also

$$\Omega_2^{(j)} = \Omega_2 \cap Q_j, \quad \Gamma_2^{(j)} = \Gamma_2 \cap \overline{\Omega}_2^{(j)} = \{x + iy : x = \varphi(y), \ a_j \le y \le b_j\}.$$

Now we can find reals $h_2^{(j)}$ and $h_3^{(j)}$ such that

$$\Gamma_2^{(j)} + h_2^{(j)} = \{x + iy : x = r_2^{(j)}(y)\} \subset Q_j \cap \{x + iy : 1 - 4\lambda < x < 1 < 2\lambda\}$$

and

$$\Gamma_3^{(j)} + h_3^{(j)} = \{x + iy : x = r_3^{(j)}(y)\} \subset Q_j \cap \{x + iy : -1 + 2\lambda < x < -1 + 4\lambda\}.$$

Furthermore, by Lemma 7, there exist $t_2^{(j)} \in (0, \lambda)$ and $t_3^{(j)} \in (-\lambda, 0)$ such that

$$\int_{a_j}^{b_j} u^+(t_k^{(j)} + r_k^{(j)}(y) + iy) \, d\nu(y) < M_2(\lambda), \quad k = 2, 3.$$
(18)

Finally we can find, due to Lemma 6, $y_1^{(j)} \in (a_j, a_j + \tau)$ and $y_2^{(j)} \in (b_j - \tau, b_j)$ such that

$$\int_{-1}^{1} u^{+}(x + iy_{m}) \, dx < M_{1}(\tau), \quad m = 1, 2.$$
(19)

Denote

$$\Omega^{(j)} = \{ x + iy : r_3^{(j)}(y) + t_3^{(j)} < x < r_2^{(j)}(y) + t_2^{(j)}, \ y_1^{(j)} \le y \le y_2^{(j)} \}.$$

Since $\overline{B_j} \subset \Omega^{(j)}$, relations (16) and (17) imply

$$\omega(z, E, \Omega^{(j)}) \le C(B_j)\nu(\operatorname{Im} E) \quad \forall z \in B_j$$
(20)

for all E in the vertical parts of $\partial \Omega^{(j)}$. For E in the horizontal parts of $\partial \Omega^{(j)}$, we have, evidently,

$$\omega(z, E, \Omega^{(j)}) \le C(B_j) \operatorname{mes} E \quad \forall z \in B_j.$$
(21)

Now we can estimate u(z) for $z \in B_j$. By (18)–(21),

$$\begin{aligned} u(z) &\leq \int_{\partial\Omega^{(j)}} u^+(\zeta)\omega(z, d\zeta, \Omega^{(j)}) \\ &\leq C(B_j) \sum_{k=2}^3 \int_{a_j}^{b_j} u^+(t_k^{(j)} + r^{(j)}(y) + iy) \, d\nu(y) \\ &+ C(B_j) \sum_{m=1}^2 \int_{-1}^1 u^+(x + iy_m) \, dx \\ &\leq 2C(B_j)(M_1(\tau) + M_2(\lambda)), \end{aligned}$$

which completes the proof.

5 Proof of Theorem 4

By Theorem 1 and Proposition 1, it suffices to prove

Proposition 4 If a function u satisfies the conditions of Theorem 4, then there exists a function $f \in \mathcal{L}^{-}[-\pi,\pi]$ and a constant $c_1 > 0$, the both independent of u, such that

$$\int_{-\pi}^{\pi} u^+(re^{i\theta}) f(\theta) \, d\theta \le c_1 V(r) \quad \forall r > r_0.$$
(22)

Proof. What we will do is a refinement of the arguments from the proof of the original Matsaev's theorem (see [15], [12]). Let

$$D_{r,R,a} = \{ z \in \mathbb{C} : r < |z| < R, |\arg z - \pi/2| < \pi(1/2 - a) \}, \quad 0 < a < 1/4,$$

 $b = (1 - 2a)^{-1}$, $S(\theta, a) = \sin b(\theta - a\pi)$. Carleman's formula for the function u harmonic in $D_{r,R,a}$ has the form

$$2bR^{-b} \int_{\pi a}^{\pi - \pi a} u(Re^{i\theta})S(\theta, a) \, d\theta - b(r^{-b} + r^b R^{-2b}) \int_{\pi a}^{\pi - \pi a} u(re^{i\theta})S(\theta, a) \, d\theta$$
$$-(r^{-b+1} - r^{b+1}R^{-2b}) \int_{-\pi a}^{\pi a} u'_r(re^{i\theta})S(\theta, a) \, d\theta$$
$$+b \int_r^R \left[u(xe^{i\pi a}) + u(xe^{i\pi(1-a)}) \right] (x^{-b-1} - x^{b-1}R^{-2b}) \, dx = 0.$$

It implies the inequality

$$\int_{\pi a}^{\pi - \pi a} u^{+}(Re^{i\theta}) S(\theta, a) \, d\theta \le c(r, u) R^{b} + \int_{\pi a}^{\pi - \pi a} u^{-}(Re^{i\theta}) S(\theta, a) \, d\theta + R^{b} \int_{r}^{R} \left[u^{-}(xe^{i\pi a}) + u^{-}(xe^{i\pi(1-a)}) \right] \left(x^{-b-1} - x^{b-1}R^{-2b} \right) dx.$$
(23)

Fix some $\tau \in (0, 1/4)$ such that

$$\beta := (1 - 2\tau)^{-1} < 1 + \delta \tag{24}$$

with δ as in the statement of Theorem 4. Inequality (23) gives us the relation

$$I_{0} := \int_{0}^{\tau} \Phi(\sin \pi a) \int_{\pi a}^{\pi - \pi a} u^{+}(Re^{i\theta}) S(\theta, a) \, d\theta \, da$$

$$\leq c(r, u) \int_{0}^{\tau} R^{b} \Phi(\sin \pi a) \, da + \int_{0}^{\tau} \Phi(\sin \pi a) \int_{\pi a}^{\pi - \pi a} u^{-}(Re^{i\theta}) S(\theta, a) \, d\theta \, da$$

$$+ \int_{0}^{\tau} \Phi(\sin \pi a) \int_{r}^{R} \left[u^{-}(xe^{i\pi a}) + u^{-}(xe^{i\pi(1-a)}) \right] R^{b} x^{-b-1} \, dx \, da$$

$$= I_{1} + I_{2} + I_{3}.$$
(25)

We can represent I_0 as

$$I_0 = \int_0^\pi u^+ (Re^{i\theta}) \Psi(\theta) \, d\theta$$

with

$$\Psi(\theta) = \int_0^{\lambda(\theta)} S(\theta, a) \Phi(\sin \pi a) \, da \tag{26}$$

and

$$\lambda(\theta) = \min\{\theta/\pi, 1 - \theta/\pi, \tau\}.$$
(27)

Note that $S(\theta, a) \ge 0$ when $a \le \lambda(\theta)$, and $S'_a(\theta, a) \le 0$ for all a < 1/4. Since $\Phi(t)$ is nondecreasing, this implies the bound

$$\Psi(\theta) \ge \int_{\lambda(\theta)/2}^{\lambda(\theta)} S(\theta, a) \Phi(\sin \pi a) \, da \ge f(\theta) = \lambda^2(\theta) \, \Phi\left(\sin \frac{\pi \lambda(\theta)}{2}\right)$$

and thus,

$$I_0 \ge \int_0^\pi u^+ (Re^{i\theta}) f(\theta) \, d\theta \tag{28}$$

with $f \in \mathcal{L}^{-}[0,\pi]$.

Let us now estimate the right hand side of (25). We have

$$I_{1} \le c(r, u) R^{\beta} \int_{0}^{\tau} \Phi(\sin \pi a) \, da \le c_{1}(r, \tau, u) R^{\beta};$$
(29)

$$I_2 = \int_0^\pi u^-(Re^{i\theta})\Psi(\theta) \, d\theta \le \int_0^\pi u^-(Re^{i\theta})\Phi(\sin\theta) \, d\theta; \tag{30}$$

$$I_{3} \leq \int_{0}^{\tau} \int_{r}^{R} \Phi(\sin \pi a) \left[u^{-} (xe^{i\pi a}) + u^{-} (xe^{i\pi(1-a)}) \right] \left(\frac{R}{x} \right)^{\beta} x^{-1} dx da$$

$$= R^{\beta} \int_{r}^{R} x^{-\beta-1} \left[\int_{0}^{\pi\tau} + \int_{\pi(1-\tau)}^{\pi} \right] u^{-} (xe^{i\theta}) \Phi(\sin \theta) d\theta dx$$

$$\leq R^{\beta} \int_{r}^{R} x^{-\beta-1} \int_{0}^{\pi} u^{-} (xe^{i\theta}) \Phi(\sin \theta) d\theta dx.$$
(31)

We insert (28)-(31) into (25):

$$\int_{0}^{\pi} u^{+}(Re^{i\theta})f(\theta) d\theta \leq c_{1}(r,\tau,u)R^{\beta} + \int_{0}^{\pi} u^{-}(Re^{i\theta})\Phi(\sin\theta) d\theta + R^{\beta} \int_{r}^{R} x^{-\beta-1} \int_{0}^{\pi} u^{-}(xe^{i\theta})\Phi(\sin\theta) d\theta dx = J_{1}(R) + J_{2}(R) + J_{3}(R).$$
(32)

By the choice of β (24), $J_1(R) = o(V(R))$ as $R \to \infty$. Condition (7) implies $J_2(R) \leq V(R), R > r_0$. As to the term J_3 , take any $\epsilon \in (0, 1 + \delta - \beta)$, then

$$J_{3}(R) \leq R^{\beta} \int_{r}^{R} x^{-\beta-1} V(x) \, dx = R^{\beta} \int_{r}^{R} x^{-\beta-\epsilon} V(x) x^{\epsilon-1} \, dx$$
$$\leq R^{\beta} R^{-\beta-\epsilon} V(R) \int_{r}^{R} x^{\epsilon-1} \, dx \leq \epsilon^{-1} V(R).$$

These bounds give us

$$\int_0^\pi u^+(Re^{i\theta})f(\theta)\,d\theta \le c_2 V(R) \quad \forall R > r_1(u).$$

Absolutely the same way, we get a similar inequality in the lower half-plane and, as a result, relation (22). \Box

Remark. We do not know if condition (7) can be replaced by a more general one in terms of the class \mathcal{A} .

Acknowledgement. The author is grateful to Alexandre Eremenko and Misha Sodin for valuable discussions, and to the referee for suggestions that have simplified considerably the proof of Theorem 5.

References

- L. Ahlfors, On Phragmén-Lindelöf's principle, Trans. Amer. Math. Soc. 41 (1937), no. 1, 1–8.
- [2] A. Beurling, Analytic continuation across a linear boundary, Acta Math. 128 (1971), 153–182.
- [3] T. Carleman, Extension d'un théorème de Liouville, Acta Math. 48 (1926), 363–366.
- [4] Y. Domar, On the existence of a largest subharmonic minorant of a given function, Ark. Mat. 3 (1958), no. 5, 429–440.
- Y. Domar, Uniform boundness in families related to subharmonic functions, J. London Math. Soc. (2) 38 (1988), 485–491.
- [6] E.M. Dyn'kin, Growth of an analytic function near its set of singular points, Zap. Nauch. Semin. LOMI 30 (1972), 158–160. (Russian)
- [7] E.M. Dyn'kin, The pseudoanalytic extension, J. Anal. Math. **60** (1993), 45–70.
- [8] E.M. Dyn'kin, An asymptotic Cauchy problem for the Laplace equation, Ark. Mat. 34 (1996), 245–264.

- [9] V.P. Gurarii, On N. Levinson's theorem on normal families of subharmonic functions, Zap. Nauch. Semin. LOMI 19 (1970), 215–220. (Russian)
- [10] R.J.M. Hornblower, A growth condition for the MacLane class, Proc. London Math. Soc. 23 (1971), 371–384.
- [11] B.Ya. Levin, Relation of the majorant to a conformal map. II, Teorija Funktsii, Funktsional. Analiz i ih Prilozh. 52 (1989), 3–21 (Russian); translation in J. Soviet Math. 52 (1990), no. 5, 3351–3364.
- [12] B.Ya. Levin, Lectures on Entire Functions. Transl. Math. Monographs, vol. 150. AMS, Providence, RI, 1996.
- [13] N. Levinson, Gap and Density Theorems. Amer. Math. Colloq. Publ. 26. New York, 1940.
- [14] G.R. MacLane, A growth condition for class A, Michigan Math. J. 25 (1978), 263–287.
- [15] V.I. Matsaev, On the growth of entire functions that admit a certain estimate from below, Dokl. AN SSSR 132 (1960), no. 2, 283–286 (Russian); translation in Sov. Math., Dokl. 1 (1960), 548–552.
- [16] V.I. Matsaev and E.Z. Mogulskii, A division theorem for analytic functions with a given majorant, and some of its applications, Zap. Nauch. Semin. LOMI 56 (1976), 73–89. (Russian)
- [17] I.P. Natanson, Theory of Functions of a Real Variable. GITTL, Moscow, 1957. (Russian)
- [18] A.Yu. Rashkovskii, Theorems on compactness of families of subharmonic functions, and majorants of harmonic measures, Dokl. Akad. Nauk SSSR 312 (1990), no. 3, 536–538; translation in Soviet Math. Dokl. 41(1990), no. 3, 460–462.
- [19] A.Yu. Rashkovskii, Majorants of harmonic measures and uniform boundness of families of subharmonic functions. In: Analytical Methods in Probability Theory and Operator Theory. V.A. Marchenko (ed.). Kiev, Naukova Dumka, 1990, 115–127. (Russian)
- [20] A.Yu. Rashkovskii, On radial projection of harmonic measure. In: Operator theory and Subharmonic Functions. V.A. Marchenko (ed.). Kiev, Naukova Dumka, 1991, 95–102. (Russian)
- [21] N. Sjöberg, Sur les minorantes sousharmoniques d'une fonction donnée, Neuvieme Congr. Math. Scand. 1938. Helsinki, 1939, 309–319.

- [22] F. Wolf, An extension of the Phragmén-Lindelöf theorem, J. London Math. Soc. 14 (1939), 208–216.
- [23] F. Wolf, On majorants of subharmonic and analytic functions, Bull. Amer. Math. Soc. 49 (1942), 952.
- [24] H. Yoshida, A boundedness criterion for subharmonic functions, J. London Math. Soc. (2) 24 (1981), 148–160.

Tek/Nat, University of Stavanger, 4036 Stavanger, Norway E-MAIL: alexander.rashkovskii@uis.no