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Classical and new log log-theorems

Alexander Rashkovskii

Abstract

We present a unified approach to celebrated log log-theorems of Carleman,

Wolf, Levinson, Sjöberg, Matsaev on majorants of analytic functions. More-

over, we obtain stronger results by replacing original pointwise bounds with

integral ones. The main ingredient is a complete description for radial pro-

jections of harmonic measures of strictly star-shaped domains in the plane,

which, in particular, explains where the log log-conditions come from.

1 Introduction. Statement of results

Our starting point is classical theorems due to Carleman, Wolf, Levinson, and
Sjöberg, on majorants of analytic functions.

Definition 1 A nonnegative measurable functionM on a segment [a, b] ⊂ R belongs
to the class L++[a, b] if ∫ b

a

log+ log+M(t) dt <∞.

(For any real-valued function h, we write h+ = max{h, 0}, h− = h+ − h.)
Carleman was the first who remarked a special role of functions of the class L++

in complex analysis, by proving the following variant of the Liouville theorem.

Theorem A (T. Carleman [3]) If an entire function f in the complex plane C has
the bound

|f(reiθ)| ≤M(θ) ∀θ ∈ [0, 2π], ∀r ≥ r0, (1)

with M ∈ L++[0, 2π], then f ≡ const.

This phenomenon appears also in the Phragmén–Lindelöf setting.

Theorem B (F. Wolf [22]) If a holomorphic function f in the upper half-plane
C+ = {z ∈ C : Im z > 0} satisfies the condition

lim sup
z→x0

|f(z)| ≤ 1 ∀x0 ∈ R
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and for any ǫ > 0 and all r > R(ǫ), θ ∈ (0, π), one has

|f(reiθ)| ≤ [M(θ)]ǫr

with M ∈ L++[0, π], then |f(z)| ≤ 1 on C+.

The most famous statement of this type is the following local result known as
the Levinson–Sjöberg theorem.

Theorem C (N. Levinson [13], N. Sjöberg [21], F. Wolf [23]) If a holomorphic
function f in the domain Q = {x+ iy : |x| < 1, |y| < 1} has the bound

|f(x+ iy)| ≤M(y) ∀x+ iy ∈ Q,

with M ∈ L++[−1, 1], then for any compact subset K of Q there is a constant CK,
independent of the function f , such that |f(z)| ≤ CK in K.

For further developments of Theorem C, including higher dimensional variants,
see [4], [5], [7], [8], [9]. Theorems A and B were extended to subharmonic functions
in higher dimensions in [24].

A similar feature of majorants from the class L++ was discovered by Beurling
in a problem of extension of analytic functions [2]. It also appears in relation to
holomorphic functions from the MacLane class in the unit disk [10], [14], and in a
description of non-quasi-analytic Carleman classes [6].

The next result, due to Matsaev, does not look like a log log-theorem, however
(as will be seen from our considerations) it is also about the class L++; further
results in this direction can be found in [16].

Theorem D (V.I. Matsaev [15]) If an entire function f satisfies the relation

log |f(reiθ)| ≥ −Crα| sin θ|−k ∀θ ∈ (0, π), ∀r > 0,

with some C > 0, α > 1, and k ≥ 0, then it has at most normal type with respect to
the order α, that is, log |f(reiθ)| ≤ Arα +B.

All these theorems can be formulated in terms of subharmonic functions (by
taking u(z) = log |f(z)| as a pattern), however our main goal is to replace the
pointwise bounds like (1) with some integral conditions. A model situation is the
following form of the Phragmén–Lindelöf theorem.

Theorem E (Ahlfors [1]) If a subharmonic function u in C+ with nonpositive bound-
ary values on R satisfies

lim
r→∞

r−1

∫ π

0

u+(reiθ) sin θ dθ = 0,

then u ≤ 0 in C+.
We will show that all the above theorems are particular cases of results on the

class A defined below and that the log log-conditions appear as conditions for con-
tinuity of certain logarithmic potentials.
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Definition 2 Let ν be a probability measure on a segment [a, b]; we will identify it
occasionally with its distribution function ν(t) = ν([a, t]). Suppose ν(t) is strictly
increasing and continuous on [a, b], and denote by µ its inverse function extended to
the whole real axis as µ(t) = a for t < 0 and µ(t) = b for t > 1. We will say that
such a measure ν belongs to the class A[a, b] if

lim
δ→0

sup
x

∫ δ

0

µ(x+ t)− µ(x− t)

t
dt = 0. (2)

Note that this class is completely different from MacLane’s class A [14] that
consists of holomorphic functions in the unit disk with asymptotic values at a
dense subset of the circle. MacLane’s class is however described by the condition
|f(reiθ)| ≤M(r), M ∈ L++[0, 1].

Our results extending Theorems A–C and E are as follows.

Theorem 1 Let a subharmonic function u in the complex plane satisfy

∫ 2π

0

u+(teiθ) dν(θ) ≤ V (t) ∀t ≥ t0, (3)

with ν ∈ A[0, 2π] and a nondecreasing function V on R+. Then there exist constants
c > 0 and A ≥ 1, independent of u, such that

u(teiθ) ≤ cV (At) ∀t ≥ t0. (4)

Theorem 2 If a subharmonic function u in the upper half-plane C+ satisfies the
conditions

lim sup
z→x0

u(z) ≤ 0 ∀x0 ∈ R

and

lim
t→∞

t−1

∫ π

0

u+(teiθ) dν(θ) = 0

with ν ∈ A[0, π], then u(z) ≤ 0 ∀z ∈ C+.

Theorem 3 Let a subharmonic function u in Q = {x+iy : |x| < 1, |y| < 1} satisfy

∫ 1

−1

u+(x+ iy) dν(y) ≤ 1 ∀x ∈ (−1, 1) (5)

with ν ∈ A[−1, 1]. Then for each compact set K ⊂ Q there is a constant CK,
independent of the function u, such that u(z) ≤ CK on K.

Relation of these results to the log log-theorems becomes clear by means of the
following statement.
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Definition 3 Denote by L−[a, b] the class of all nonnegative integrable functions g
on the segment [a, b], such that

∫ b

a

log− g(s) ds <∞. (6)

Proposition 1 If the density ν ′ of an absolutely continuous increasing function
ν belongs to the class L−[a, b], then ν ∈ A[a, b]. Consequently, if a holomorphic
function f has a majorant M ∈ L++, then log |f | has the corresponding integral
bound with the weight ν ∈ A with the density ν ′(t) = min{1, 1/M(t)}.

We recall that positive measures ν on the unit circle with ν ′ ∈ L−[0, 2π] are called
Szegö measures. Proposition 1 states, in particular, that absolutely continuous Szegö
measures belong to the class A[0, 2π].

An integral version of Theorem D has the following form.

Theorem 4 Let a function u, subharmonic in C and harmonic in C\R, satisfy the
inequality ∫ π

−π
u−(reiθ)Φ(| sin θ|) dθ ≤ V (r) ∀r ≥ r0, (7)

where Φ ∈ L−[0, 1] is nondecreasing and the function V is such that r−1−δV (r)
is increasing in r for some δ > 0. Then there are constants c > 0 and A ≥ 1,
independent of u, such that

u(reiθ) ≤ cV (Ar) ∀r ≥ r1 = r1(u).

Our proofs of Theorems 1–4 rest on a presentation of measures of the class
A[0, 2π] as radial projections of harmonic measures of star-shaped domains. Let Ω
be a bounded Jordan domain containing the origin. Given a set E ⊂ ∂Ω, ω(z, E,Ω)
will denote the harmonic measure of E at z ∈ Ω, i.e., the solution of the Dirichlet
problem in Ω with the boundary data 1 on E and 0 on ∂Ω \ E. The measure
ω(0, E,Ω) generates a measure on the unit circle T by means of the radial projection
ζ 7→ ζ/|ζ |. It is convenient for us to consider it as a measure on the segment [0, 2π],
so we put

ω̂Ω(F ) = ω(0, {ζ ∈ ∂Ω : arg ζ ∈ F},Ω) (8)

for each Borel set F ⊂ [0, 2π].
The inverse problem is as follows. Given a probability measure on the unit circle

T, is it the radial projection of the harmonic measure of any domain Ω?
For our purposes we specify Ω to be strictly star-shaped, i.e., of the form

Ω = {reiθ : r < rΩ(θ), 0 ≤ θ ≤ 2π} (9)

with rΩ a positive continuous function on [0, 2π], rΩ(0) = rΩ(2π).
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Theorem 5 A continuous probability measure ν on [0, 2π] is the radial projection
of the harmonic measure of a strictly star-shaped domain if and only if ν ∈ A[0, 2π].

Corollary 4 Every absolutely continuous measure from the Szegö class on the unit
circle is the radial projection of the harmonic measure of some strictly star-shaped
domain.

Theorem 5 is proved by a method originated by B.Ya. Levin in theory of majo-
rants in classes of subharmonic functions [11].

Theorems 1–3 and 5 (some of them in a slightly weaker form) were announced in
[18] and proved in [19] and [20]. The main objective of the present paper, Theorem 4,
is new. Since its proof rests heavily on Theorem 5, we present a proof of the latter as
well, having in mind that the papers [19] and [20] are not easily accessible. Moreover,
we include the proofs of Theorems 1–3, too, motivated by the same accessability
reason as well as by the idea of showing the whole picture.

2 Radial projections of harmonic measures (Proofs

of Theorem 5 and Proposition 1)

Measures from the class A have a simple characterization as follows.

Proposition 2 Let µ and ν be as in Definition 2. Then the function

N(x) =

∫ 1

0

log |x− t| dµ(t)

is continuous on [0, 1] if and only if ν ∈ A[a, b].

Proof. The function N(x) is continuous on [0, 1] if and only if for any ǫ > 0 one
can choose δ ∈ (0, 1) such that

Ix(δ) =

∫

|t−x|<δ
log |x− t| dµ(t) > −ǫ

for all x ∈ [0, 1]. Integrating Ix by parts, we get

|Ix(δ)| =

∫ δ

0

rx(t)

t
dt+ rx(δ)| log δ|,

where rx(t) = µ(x+ t)−µ(x− t). Therefore, continuity of N(x) implies (2). On the
other hand, since rx(t) increases in t, we have

rx(δ)| log δ| = 2rx(δ)

∫ √
δ

δ

dt

t
≤ 2

∫ √
δ

δ

rx(t)

t
dt,

which gives the reverse implication. �

In the proof of Theorem 5, we will use this property in the following form.
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Proposition 3 Let µ and ν be as in Definition 2 for the class A[0, 2π]. Then the
function

h(z) =

∫ 2π

0

log |eiθ − z| dµ(θ/2π)

is continuous on T if and only if ν ∈ A[0, 2π].

Proof of Theorem 5. 1) First we prove the sufficiency: every ν ∈ A[0, 2π] has
the form ν = ω̂Ω (8) for some strictly star-shaped domain Ω. In particular, for any
compact set K ∈ Ω there is a constant C(K) such that

ω(z, E,Ω) ≤ C(K) ν(argE) ∀z ∈ E (10)

for every Borel set E ⊂ ∂Ω, where argE = {arg ζ : ζ ∈ E}.
Let

u(z) =
1

π

∫ 2π

0

log |eiθ − z| dµ(θ/2π)

with µ the inverse function to ν ∈ A[0, 2π]. The function u is subharmonic in C

and harmonic outside the unit circle T. By Proposition 3, it is continuous on T and
thus, by Evans’ theorem, in the whole plane. Let v be a harmonic conjugate to u
in the unit disk D, which is determined uniquely up to a constant. Since u ∈ C(D),
radial limits v∗(eiψ) of v exist a.e. on T. Let us fix such a point eiψ0 and choose the
constant in the definition of v in such a way that v∗(eiψ0) = ψ0.

Consider then the function w(z) = z exp{−u(z)− iv(z)}, z ∈ D. By the Cauchy-
Riemann condition, ∂v/∂φ = r∂u/∂r, which implies

argw(reiψ) = ψ − v(reiψ0)−

∫ ψ

ψ0

∂v(reiφ)

∂φ
dφ = ψ0 − v(reiψ0)

+
1

2π

∫ ψ

ψ0

∫ 2π

0

[
1−

2r2 − 2r cos(θ − φ)

|r − ei(θ−φ)|2

]
dµ(θ/2π) dφ

= ψ0 − v(reiψ0) +
1

2π

∫ ψ

ψ0

∫ 2π

0

1− r2

|r − ei(θ−φ)|2
dµ(θ/2π) dφ.

By changing the integration order and passing to the limit as r → 1, we derive that
for each ψ ∈ [0, 2π] there exists the limit

lim
r→1

argw(reiψ) = µ(ψ/2π)− µ(ψ0/2π).

Therefore the function argw is continuous up to the boundary of the disk; in par-
ticular, we can take ψ0 = 0. Since |w| is continuous in D as well, so is w.

By the boundary correspondence principle, w gives a conformal map of D onto
the domain

Ω = {reiθ : r < exp{−u(exp{2πiν(θ)})}, 0 ≤ θ ≤ 2π}. (11)
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It is easy to see that the domain Ω is what we sought. Let f be the conformal map
of Ω to D, inverse to w. For z ∈ Ω and E ⊂ ∂Ω, we have

ω(z, E,Ω) = ω(f(z), f(E), U) =
1

2π

∫

arg f(E)

1− |f(z)|2

|f(z)− eit|2
dt

= (1− |f(z)|2)

∫

argE

dν(s)

|f(z)− e2πiν(s)|2
,

which proves the claim.

2) Now we prove the necessity: if ω is of the form (9), then ω̂Ω ∈ A[0, 2π].
We use an idea from the proof of [11, Theorem 2.4]. Let w be a conformal map

of D to Ω, w(0) = 0. Since Ω is a Jordan domain, w extends to a continuous map
from D to Ω, and we can specify it to have argw(1) = 0. Define

f(z) = u(z) + iv(z) = log
w(z)

z
for |z| ≤ 1, f(z) = f(|z|−2z) for |z| > 1.

It is analytic in D and continuous in C. Define then the function

λ(z) = u(z) +
1

π

∫ 2π

0

log |eiψ − z| dv(eiψ), (12)

δ-subharmonic in C and harmonic in C\T. Let us show that it as actually harmonic
(and, hence, continuous) everywhere. To this end, take any function α ∈ C(T) and
a number r < 1, and apply Green’s formula for u(z) and A(z) = |z|α(z/|z|) in the
domain Dr = {r < |z| < r−1}:

∫

Dr

(A∆u− u∆A) =

[
ρ

2π

∫ 2π

0

(
ρα(eiψ)

∂u(ρeiψ)

∂ρ
− u(ρeiψ)α(eiψ)

)
dψ

]ρ=R

ρ=r

. (13)

Using the definition of the function f outside D and the Cauchy-Riemann equations
∂v/∂φ = ρ∂u/∂ρ if ρ < 1 and ∂v/∂φ = −ρ∂u/∂ρ if ρ > 1 (which follows from the
definition of f), we can write the right hand side of (13) as

−
r + r−1

2π

∫ 2π

0

α(eiψ) dψv(re
iψ) +

r − r−1

2π

∫ 2π

0

u(reiψ)α(eiψ) dψ.

When r → 1, (13) takes the form

∫

T

α∆u = −
1

π

∫ 2π

0

α(eiψ) dv(eiψ),

which implies the harmonicity of the function λ(z) (12) in the whole plane.
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Now we recall that v(eiψ) = argw(eiψ)− ψ. Since the harmonic measure of the
w-image of the arc {eiθ : 0 < θ < ψ} equals ψ/2π, we have

ω̂Ω(argw(e
iψ)) = ψ/2π

and thus argw(eiψ) = µ(ψ/2π) with µ the inverse function to ω̂Ω(ψ). Therefore,
v(eiψ) = µ(ψ/2π)− ψ.

Consider, finally, the function

γ(z) =
1

π

∫ 2π

0

log |eiψ − z| dµ(ψ/2π) = λ(z)− u(z) +
1

π

∫ 2π

0

log |eiψ − z| dψ.

Since it is continuous on T, Proposition 3 implies ω̂Ω ∈ A[0, 2π], and the theorem is
proved. �

Note that all the dilations tΩ of Ω (t > 0) represent the same measure from
A[0, 2π], and Ω with a given projection ω̂Ω is unique up to the dilations.

Now we prove Proposition 1 that presents a wide subclass of A with a more
explicit description.

Proof of Proposition 1. Let ν : [0, 1] → [0, 1] be an absolutely continuous, strictly
increasing function, ν ′ ∈ L−[0, 1]. Since mes {t : ν ′(t) = 0} = 0, its inverse function
µ is absolutely continuous ([17], p. 297), so

µ(t) =

∫ t

0

g(s) ds

with g a nonnegative function on [0, 1]. We have

∞ >

∫ 1

0

log− ν ′(t) dt =

∫ 1

0

log−
1

µ′(t)
dµ(t) =

∫ 1

0

g(t) log+ g(t) dt,

so g belongs to the Zygmund class L logL.
Let ∆(t) denote the modulus of continuity of the function µ. Note that it can

be expressed in the form

∆(t) =

∫ t

0

h(s) ds

where h is the nonincreasing equimeasurable rearrangement of g. Then
∫ 1

0

∆(t)

t
dt =

∫ 1

0

t−1

∫ 1

0

h(s) ds dt =

∫ 1

0

h(s) log s−1 ds

=

∫

E1∪E2

h(s) log s−1 ds,

where E1 = {s ∈ (0, 1) : h(s) > s−1/2}, E2 = (0, 1) \ E1. Since h ∈ L logL [0, 1],
∫

E1

h(s) log s−1 ds ≤ 2

∫

E1

h(s) log h(s) ds <∞.
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Besides, ∫

E2

h(s) log s−1 ds ≤

∫

E2

s−1/2 log s−1 ds <∞.

Therefore, ∫ 1

0

∆(t)

t
dt <∞

and thus

lim
δ→0

∫ δ

0

∆(t)

t
dt = 0,

which gives (2). �

Corollary 4 follows directly from the definition of the Szegö class, Theorem 5
and Proposition 1.

3 Proofs of Theorems 1 and 2

Here we show how the integral variants of Carleman’s and Wolf’s theorems can be
derived from Theorem 5.

We will need an elementary

Lemma 5 Let r(θ) ∈ C[0, 2π], 1 < r1 ≤ r(θ) ≤ r2, let ν be a positive measure
on [0, 2π] and V (t) be a nonnegative function on [0,∞]. If a nonnegative function
v(teiθ) satisfies ∫ 2π

0

v(teiθ) dν(θ) ≤ V (t) ∀t ≥ t0,

then for any R2 > R1 ≥ t0,

∫ R2

R1

∫ 2π

0

v(t r(θ)eiθ) dν(θ) dt ≤ r−1
1

∫ r2R2

r1R1

V (t) dt.

Proof of Lemma 5 is straightforward:

∫ R2

R1

∫ 2π

0

v(t r(θ)eiθ) dν(θ) dt =

∫ 2π

0

∫ R2r(θ)

R1r(θ)

v(teiθ) dt
dν(θ)

r(θ)

≤ r−1
1

∫ 2π

0

∫ R2r2

R1r1

v(teiθ) dt dν(θ) ≤ r−1
1

∫ R2r2

R1r1

V (t) dt.

�

Proof of Theorem 1. By Theorem 5, there exists a domain Ω of the form (9) that
contains D such that

ω(z, E,Ω) ≤ c1ν(argE), ∀z ∈ D, E ⊂ ∂Ω, (14)
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with a constant c1 > 0, see (10). Let r1 = min r(θ). r2 = max r(θ). By the Poisson–
Jensen formula applied to the function vt(z) = u+(tz) (t > 0) in the domain sΩ
(s > 1) we have, due to (14),

vt(z) ≤

∫

∂sΩ

vt(ζ)ω(z, dζ, sΩ) =

∫

∂Ω

vt(sζ)ω(s
−1z, dζ,Ω)

≤ c1

∫ 2π

0

vt(s r(θ)e
iθ) dν(θ), z ∈ D.

The integration of this relation over s ∈ [1, R] (R > 1) gives, by Lemma 5,

(R− 1)vt(z) ≤ c1

∫ R

1

∫ 2π

0

vt(s r(θ)e
iθ) dν(θ) ds ≤ c2t

−1r−1
1

∫ tr2R

tr1

V (s) ds

for each t ≥ t0. So,
u(teiθ) ≤ c(R)V (t r2R), t ≥ t0,

which proves the theorem. �

Remarks. 1. It is easy to see that the constant A in (4) can be chosen arbitrarily
close to r2/r1 ≥ 1.

2. Note that we have used inequality (3) in the integrated form only, so the
following statement is actually true: If a subharmonic function u on C satisfies

∫ t

t0

∫ 2π

0

u+(seiθ) dν(θ) ds ≤W (t) ∀t ≥ t0 (15)

with ν ∈ A[0, 2π] and a nondecreasing function W , then there are constants c > 0
and A ≥ 1, independent of u, such that u(teiθ) ≤ ct−1W (At) for all t ≥ t0.

Now we prove Theorem 2 as a consequence of Theorem 1.

Proof of Theorem 2. The function v equal to u+ in C+ and 0 in C \ C+ is a
subharmonic function in C satisfying the condition

∫ 2π

0

v+(teiθ) dν(θ) ≤ V1(t)

with ν ∈ A[0, 2π] and V1(t) = o(t), t → ∞. Therefore, it satisfies the conditions of
Theorem 1 with the majorant V (t) = sup{V1(s) : s ≤ t}. So, supθ u

+(teiθ) = o(t) as
t→ ∞, and the conclusion holds by the standard Phragmén–Lindelöf theorem. �

4 Proof of Theorem 3

The integral version of the Levinson–Sjöberg theorem will be proved along the same
lines as Theorem 1, however the local situation needs a more refined adaptation.

We start with two elementary statements close to Lemma 5.
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Lemma 6 Let a nonnegative integrable function v in the square Q = {|x|, |y| < 1}
satisfy (5) with a continuous strictly increasing function ν. Then for any d ∈ (0, 1)
there exists a constant M1(d), independent of u, such that for each y0 ∈ (−1, 1) one
can find a point y1 ∈ (−1, 1) ∩ (y0 − d, y0 + d) with

∫ 1

−1

v(x+ iy1) dx < M1(d).

Proof. Assume y0 ≥ 0, then

∫ y0

y0−d

∫ 1

−1

v(x+ iy) dx dν(y) =

∫ 1

−1

∫ y0

y0−d
v(x+ iy) dν(y) dx ≤ 2.

Therefore for some y1 ∈ (y0 − d, y0),

∫ 1

−1

v(x+ iy1) dx ≤ 2[ν(y0)− ν(y0 − d)]−1 ≤ 2[∆∗(ν, d)]
−1

with ∆∗(ν, d) = inf{ν(t)− ν(t− d) : t ∈ (0, 1)} > 0. �

Lemma 7 Let a function v satisfy the conditions of Lemma 6, a function r be
continuous on a segment [a, b] ⊂ [−1, 1], 0 < r1 = min r(y) ≤ max r(y) = r2 < 1,
and δ ∈ (0, 1− r2). Then there exists t ∈ (0, δ) such that

∫ b

a

v(t+ r(y) + iy) dν(y) < M2(δ)

with M2(δ) independent of v.

Proof. We have

∫ δ

0

∫ b

a

v(t+ r(y) + iy) dν(y) =

∫ b

a

∫ δ+r(y)

r(y)

v(s+ iy) ds dν(y)

≤

∫ δ+r2

r1

∫ b

a

v(s+ iy) dν(y) ds ≤ δ + r2 − r1.

Thus one can find some t ∈ (0, δ) such that

∫ b

a

v(t+ r(y) + iy) dν(y) < δ−1(δ + r2 − r1).

�

Proof of Theorem 3. Consider the measure ν1 on [−i, i] defined as

ν1(E) = ν(−iE), E ⊂ [−i, i].
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The conformal map f(z) = exp{zπ/2} of the strip {|Im z| < 1} to the right half-
plane Cr pushes the measure ν1 forward to the measure f ∗ν on the semicircle {eiθ :
−π/2 ≤ θ ≤ π/2}, producing a measure of the class A[−π/2, π/2]; we extend it
to some measure ν2 ∈ A[−π.π]. By Theorem 5, there is a strictly star-shaped
domain Ω ⊃ D such that the radial projection of its harmonic measure at 0 is the
normalization ν2/ν2([−π, π]) of ν2.

Let Ω1 = Ω ∩ Cr, then for every Borel set E ⊂ Γ = ∂Ω1 ∩ Cr and any compact
set K ⊂ Ω1,

ω(w,E,Ω1) ≤ C1(K) ν2(argE) ∀w ∈ K.

The pre-image Ω2 = f [−1](Ω1) of Ω1 has the form

Ω2 = {z = x+ iy : x < ϕ(y), y ∈ (0, 1)}

with some function ϕ ∈ C[−1, 1]. Let

Γ2 = {x+ iy : x = ϕ(y), y ∈ (0, 1)},

then for every Borel E ⊂ Γ2 and any compact subset K of Ω2,

ω(z, E,Ω2) ≤ C2(K) ν(ImE) ∀z ∈ K. (16)

For the domain
Ω3 = {z = x+ iy : x > −ϕ(y), y ∈ (0, 1)}

we have, similarly, the relation

ω(z, E,Ω3) ≤ C3(K) ν(ImE) ∀z ∈ K (17)

for each E ⊂ Γ3 = {x+ iy : x = −ϕ(y), y ∈ (0, 1)} and compact set K ⊂ Ω3.
Let now K be an arbitrary compact subset of the square Q. We would be almost

done if we were able to find some reals h2(K) and h3(K) such that

K ⊂ {Ω2 + h2(K)} ∩ {Ω3 + h3(K)} ⊂ {Ω2 + h2(K)} ∩ {Ω3 + h3(K)} ⊂ Q.

However this is not the case for any K unless ϕ ≡ const. That is why we need
partition.

Given K compactly supported in Q, choose a positive λ < (4 dist (K, ∂Q))−1 and
then τ ∈ (0, λ) such that the modulus of continuity of ϕ at 4τ is less than λ. Take
a finite covering of K by disks Bj = {z : |z− zj | < τ}, zj ∈ K, 1 ≤ j ≤ n. To prove
the theorem, it suffices to estimate the function u on each Bj .

Let Qj = {z ∈ Q : |Im (z − zj)| < 2τ}, then Bj ⊂ Qj and dist (Bj, ∂Qj) = τ .
Take also

Ω
(j)
2 = Ω2 ∩Qj , Γ

(j)
2 = Γ2 ∩ Ω

(j)

2 = {x+ iy : x = ϕ(y), aj ≤ y ≤ bj}.

12



Now we can find reals h
(j)
2 and h

(j)
3 such that

Γ
(j)
2 + h

(j)
2 = {x+ iy : x = r

(j)
2 (y)} ⊂ Qj ∩ {x+ iy : 1− 4λ < x < 1 < 2λ}

and

Γ
(j)
3 + h

(j)
3 = {x+ iy : x = r

(j)
3 (y)} ⊂ Qj ∩ {x+ iy : −1 + 2λ < x < −1 + 4λ}.

Furthermore, by Lemma 7, there exist t
(j)
2 ∈ (0, λ) and t

(j)
3 ∈ (−λ, 0) such that

∫ bj

aj

u+(t
(j)
k + r

(j)
k (y) + iy) dν(y) < M2(λ), k = 2, 3. (18)

Finally we can find, due to Lemma 6, y
(j)
1 ∈ (aj , aj + τ) and y

(j)
2 ∈ (bj − τ, bj) such

that ∫ 1

−1

u+(x+ iym) dx < M1(τ), m = 1, 2. (19)

Denote

Ω(j) = {x+ iy : r
(j)
3 (y) + t

(j)
3 < x < r

(j)
2 (y) + t

(j)
2 , y

(j)
1 ≤ y ≤ y

(j)
2 }.

Since Bj ⊂ Ω(j), relations (16) and (17) imply

ω(z, E,Ω(j)) ≤ C(Bj)ν(ImE) ∀z ∈ Bj (20)

for all E in the vertical parts of ∂Ω(j). For E in the horizontal parts of ∂Ω(j), we
have, evidently,

ω(z, E,Ω(j)) ≤ C(Bj)mesE ∀z ∈ Bj. (21)

Now we can estimate u(z) for z ∈ Bj. By (18)–(21),

u(z) ≤

∫

∂Ω(j)

u+(ζ)ω(z, dζ,Ω(j))

≤ C(Bj)
3∑

k=2

∫ bj

aj

u+(t
(j)
k + r(j)(y) + iy) dν(y)

+ C(Bj)
2∑

m=1

∫ 1

−1

u+(x+ iym) dx

≤ 2C(Bj)(M1(τ) +M2(λ)),

which completes the proof. �
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5 Proof of Theorem 4

By Theorem 1 and Proposition 1, it suffices to prove

Proposition 4 If a function u satisfies the conditions of Theorem 4, then there
exists a function f ∈ L−[−π, π] and a constant c1 > 0, the both independent of u,
such that ∫ π

−π
u+(reiθ)f(θ) dθ ≤ c1V (r) ∀r > r0. (22)

Proof. What we will do is a refinement of the arguments from the proof of the
original Matsaev’s theorem (see [15], [12]). Let

Dr,R,a = {z ∈ C : r < |z| < R, | arg z − π/2| < π(1/2− a)}, 0 < a < 1/4,

b = (1 − 2a)−1, S(θ, a) = sin b(θ − aπ). Carleman’s formula for the function u
harmonic in Dr,R,a has the form

2bR−b
∫ π−πa

πa

u(Reiθ)S(θ, a) dθ − b(r−b + rbR−2b)

∫ π−πa

πa

u(reiθ)S(θ, a) dθ

−(r−b+1 − rb+1R−2b)

∫ πa

−πa
u′r(re

iθ)S(θ, a) dθ

+b

∫ R

r

[
u(xeiπa) + u(xeiπ(1−a))

]
(x−b−1 − xb−1R−2b) dx = 0.

It implies the inequality
∫ π−πa

πa

u+(Reiθ)S(θ, a) dθ ≤ c(r, u)Rb +

∫ π−πa

πa

u−(Reiθ)S(θ, a) dθ

+Rb

∫ R

r

[
u−(xeiπa) + u−(xeiπ(1−a))

]
(x−b−1 − xb−1R−2b) dx. (23)

Fix some τ ∈ (0, 1/4) such that

β := (1− 2τ)−1 < 1 + δ (24)

with δ as in the statement of Theorem 4. Inequality (23) gives us the relation

I0 :=

∫ τ

0

Φ(sin πa)

∫ π−πa

πa

u+(Reiθ)S(θ, a) dθ da

≤ c(r, u)

∫ τ

0

RbΦ(sin πa) da+

∫ τ

0

Φ(sin πa)

∫ π−πa

πa

u−(Reiθ)S(θ, a) dθ da

+

∫ τ

0

Φ(sin πa)

∫ R

r

[
u−(xeiπa) + u−(xeiπ(1−a))

]
Rbx−b−1 dx da

= I1 + I2 + I3. (25)
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We can represent I0 as

I0 =

∫ π

0

u+(Reiθ)Ψ(θ) dθ

with

Ψ(θ) =

∫ λ(θ)

0

S(θ, a)Φ(sin πa) da (26)

and
λ(θ) = min{θ/π, 1− θ/π, τ}. (27)

Note that S(θ, a) ≥ 0 when a ≤ λ(θ), and S ′
a(θ, a) ≤ 0 for all a < 1/4. Since

Φ(t) is nondecreasing, this implies the bound

Ψ(θ) ≥

∫ λ(θ)

λ(θ)/2

S(θ, a)Φ(sin πa) da ≥ f(θ) = λ2(θ) Φ

(
sin

πλ(θ)

2

)

and thus,

I0 ≥

∫ π

0

u+(Reiθ)f(θ) dθ (28)

with f ∈ L−[0, π].
Let us now estimate the right hand side of (25). We have

I1 ≤ c(r, u)Rβ

∫ τ

0

Φ(sin πa) da ≤ c1(r, τ, u)R
β; (29)

I2 =

∫ π

0

u−(Reiθ)Ψ(θ) dθ ≤

∫ π

0

u−(Reiθ)Φ(sin θ) dθ; (30)

I3 ≤

∫ τ

0

∫ R

r

Φ(sin πa)
[
u−(xeiπa) + u−(xeiπ(1−a))

] (R
x

)β

x−1 dx da

= Rβ

∫ R

r

x−β−1

[∫ πτ

0

+

∫ π

π(1−τ)

]
u−(xeiθ)Φ(sin θ) dθ dx

≤ Rβ

∫ R

r

x−β−1

∫ π

0

u−(xeiθ)Φ(sin θ) dθ dx. (31)

We insert (28)–(31) into (25):

∫ π

0

u+(Reiθ)f(θ) dθ ≤ c1(r, τ, u)R
β +

∫ π

0

u−(Reiθ)Φ(sin θ) dθ

+ Rβ

∫ R

r

x−β−1

∫ π

0

u−(xeiθ)Φ(sin θ) dθ dx

= J1(R) + J2(R) + J3(R). (32)
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By the choice of β (24), J1(R) = o(V (R)) as R → ∞. Condition (7) implies
J2(R) ≤ V (R), R > r0. As to the term J3, take any ǫ ∈ (0, 1 + δ − β), then

J3(R) ≤ Rβ

∫ R

r

x−β−1V (x) dx = Rβ

∫ R

r

x−β−ǫV (x)xǫ−1 dx

≤ RβR−β−ǫV (R)

∫ R

r

xǫ−1 dx ≤ ǫ−1V (R).

These bounds give us
∫ π

0

u+(Reiθ)f(θ) dθ ≤ c2V (R) ∀R > r1(u).

Absolutely the same way, we get a similar inequality in the lower half-plane and,
as a result, relation (22). �

Remark. We do not know if condition (7) can be replaced by a more general one
in terms of the class A.
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