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ABSTRACT. A conformal change of TM ⊕ T ∗M is a morphism of the form

(X,α) 7→ (X, eτα) (X ∈ TM,α ∈ T ∗M, τ ∈ C∞(M)). We characterize the

generalized almost complex and almost Hermitian structures that are locally

conformal to integrable and to generalized Kähler structures, respectively, and

give examples of such structures.

1 Introduction

In the last few years, the generalized complex and Kähler structures became
an important subject of theoretical quantum field theory, where they provide
new sigma models (e.g., [17]) and allow to express certain supersymmetries
(e.g., [9]). This also led to an extensive, purely mathematical research of the
subject (e.g., [7]). In this note we discuss a mathematical question, that of
characterizing generalized almost complex and almost Hermitian structures
which become integrable, respectively, Kähler after local conformal changes.
The corresponding classical cases of locally conformal symplectic and locally
conformal Kähler structures were studied intensively (e,g., [4]). Like in the
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ture, generalized Kähler structure.
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classical case, the characterization includes a closed 1-form ̟ called the
Lee form, which defines the local conformal changes. We construct locally
conformal generalized complex structures and locally conformal generalized
Kähler structures, which are not globally conformal, on the Hopf manifolds
and on a product M × S1 where M is a generalized Sasakian manifold [15].
Finally, we discuss the induced structure on hypersurfaces where the pullback
of ̟ vanishes.

2 Preliminaries

Throughout the paper we use the following notation: M is an m-dimensional
manifold, X, Y, .. are either contravariant vectors or vector fields, α, β, ... are
either covariant vectors or 1-forms, X ,Y , ... are pairs (X,α), (Y, β), ..., χk(M)
is the space of k-vector fields, Ωk(M) is the space of differential k-forms, Γ are
spaces of global cross sections of vector bundles, d is the exterior differential
and L is the Lie derivative. All the manifolds and mappings are assumed
smooth.

Generalized geometric structures in the sense of Hitchin [8] are similar to
classical structures but defined on the big tangent bundle T bigM = TM⊕T ∗M
with the neutral metric

g((X,α), (Y, β)) =
1

2
(α(Y ) + β(X))

and the Courant bracket [2]

[(X,α), (Y, β)] = ([X, Y ], LXβ − LY α +
1

2
d(α(Y )− β(X)).

A maximal g-isotropic subbundle E of T bigM (or of the complexification
T bigc M = T bigM ⊗R C) is an almost Dirac structure and if ΓE is closed by
the Courant bracket E is a Dirac structure.

A generalized almost complex structure is a vector bundle endomorphism
Φ ∈ End(T bigM) that satisfies the following conditions

Φ2 = −Id, g(X ,ΦY) + g(ΦX ,Y) = 0.

Furthermore, if the Nijenhuis torsion of Φ vanishes, i.e.,

(2.1) NΦ(X ,Y) = [ΦX ,ΦY ]− Φ[X ,ΦY ]− Φ[ΦX ,Y ] + Φ2[X ,Y ] = 0,
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where the brackets are Courant brackets, Φ is an integrable or a generalized
complex structure.

The generalized, almost complex structure Φ is equivalent with the pair
(E, Ē) of its (±

√
−1)-eigenbundles (the bar denotes complex conjugation),

which are complex almost Dirac structures such that E ∩ Ē = 0, hence, Φ
may be defined by E. Φ is integrable iff E is Dirac.

The structure Φ has the following representation by classical tensor fields

Φ

(

X

α

)

=

(

A ♯π

♭σ −tA

)(

X

α

)

,

where

π ∈ χ2(M), σ ∈ Ω2(M), A ∈ End(TM), ♯πα = i(α)π, ♭σX = i(X)σ,

t denotes transposition, and the following conditions hold

(2.2) π(α ◦ A, β) = π(α, β ◦A), σ(AX, Y ) = σ(X,AY ), A2 = −Id− ♯π♭σ.

In this classical representation the integrability conditions of Φ are [3, 13]:

i) the bivector field π defines a Poisson structure on M , i.e., [π, π] = 0 where
the bracket is the Schouten-Nijenhuis bracket with the sign convention of
[12];

ii) the Schouten concomitant of the pair (π,A) vanishes, i.e.,

R(π,A)(α,X) = ♯π(LX(α ◦ A)− LAXα)− (L♯παA)(X) = 0;

iii) the Nijenhuis tensor of A (defined by (2.1) with Lie brackets) satisfies the
condition

NA(X, Y ) = ♯π[i(X ∧ Y )dσ];
iv) the associated 2-form σA(X, Y ) = σ(AX, Y ) satisfies the condition

dσA(X, Y, Z) =
∑

Cycl(X,Y,Z)

dσ(AX, Y, Z).

A generalized, Riemannian metric is a Euclidean (positive definite) metric
G on the bundle T bigM , which is compatible with the neutral metric g of
T bigM in the sense that the musical isomorphism

♯G : T bigM = TM ⊕ T ∗M → T ∗M ⊕ TM ≈ T bigM,

3



where ≈ is defined by (α,X) ⇆ (X,α) and

2g(♯G(X,α), (Y, β)) = G((X,α), (Y, β)),

satisfies the conditions [7]

♯2G = Id, g(♯G(X,α), ♯G(Y, β)) = g((X,α), (Y, β)).

It turns out that a generalized, Riemannian metric is equivalent with a
pair (γ, ψ) where γ is a classical Riemannian metric on M and ψ ∈ Ω2(M).
More exactly,

(γ, ψ) ⇆ ♯G

(

X

α

)

=

(

ϕ ♯γ

♭β
tϕ

)(

X

α

)

where ϕ = −♯γ ◦ ♭ψ, ♭β = ♭γ ◦ (Id− ϕ2) [7].
A generalized almost Hermitian structure is a pair (Φ, G), where Φ is

a generalized almost complex structure and G is a generalized Riemannian
metric, such that the following skew-symmetry condition holds

G(ΦX ,Y) +G(X ,ΦY) = 0 (X ,Y ∈ ΓT bigM).

Using the g-skew-symmetry of Φ we see that the previous condition is equiv-
alent with the commutation condition ♯G ◦ Φ = Φ ◦ ♯G, which implies that
the pair (Φc = ♯G ◦Φ, G) (c comes from complementary) is a second general-
ized almost Hermitian structure that commutes with Φ. A commuting pair
(Φ,Φc) defines G by ♯G = −Φ ◦ Φc.

Theorem 2.1. [7] A generalized almost Hermitian structure (G,Φ) is equiv-
alent with a quadruple (γ, ψ, J+, J−), where γ is a classical, Riemannian
metric on M , ψ is a 2-form, and (γ, J±) are two classical almost Hermitian
structures of M defined as follows by the matrix of Φ:

(2.3) J± = A+ ♯π ◦ ♭ψ±γ.

The generalized, almost Hermitian manifold (M,G,Φ) is generalized, Her-
mitian if the structure Φ is integrable and generalized, almost Kähler if the
complementary structure Φc is integrable. If both Φ and Φc are integrable
(M,G,Φ) is a generalized, Kähler manifold. The classical structures with the
same names yield the simplest examples.

4



Theorem 2.2. The structure (G,Φ) is generalized Kähler iff one of the fol-
lowing hypotheses holds: 1) J± are integrable and one has the equalities

(2.4) dC+ω+ = −dψ, dC−ω− = dψ,

where ω±(X, Y ) = γ(J±X, Y ) are the Kähler forms of the Hermitian struc-
tures (γ, J±) and the operators dC± are defined by the structures J± via the
formulas

dC = C−1dC =
√
−1(∂̄ − ∂) (Cλ = (

√
−1)p−qλ, λ ∈ Ωp,q(M));

2) J± are integrable and one has the equalities

(2.5) (∇XJ±)(Y ) = ∓1

2
♯γ[(i(X ∧ Y )dψ) ◦ J± + i(X ∧ (J±Y ))dψ],

where ∇ is the Levi-Civita connection of the metric γ; 3) the (3, 0) and (0, 3)
type components of dψ are zero and the connections

(2.6) ∇±
XY = ∇XY ± 1

2
♯γ[i(X ∧ Y )dψ]

satisfy the condition ∇±J± = 0, respectively.

Characterizations 1) and 3) were proven by Gualtieri [7], where it is also
shown that (2.4) is equivalent with

(2.7) dω+(J+X, J+Y, J+Z) = −dω−(J−X, J−Y, J−Z) = dψ(X, Y, Z).

The connections (2.6) are called the Bismut connections and they are the
unique metric connections with covariant torsion dψ. Characterization 2)
follows by replacing F± by J± in Proposition 4.6 of [15].

3 Locally conformal integrable structures

Consider the automorphism Cτ : T bigM → T bigM defined by [6, 14, 16]

Cτ (X,α) = (X, eτα), τ ∈ C∞(M).

We call it a conformal change of T bigM because it produces a conformal
change of the metric g:

g(Cτ (X,α), Cτ (Y, β)) = eτg((X,α), (Y, β)).
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Furthermore, if τ is locally constant the change will be called a homothety.
The natural way to apply a conformal change to any Φ ∈ End(T bigM)

is by conjugation. In particular, the generalized almost complex structure Φ
and the generalized Riemannian metric operator ♯G will change as follows

Φ 7→ Φ′ = C−τ ◦ Φ ◦ Cτ , ♯G 7→ ♯G′ = C−τ ◦ ♯G ◦ Cτ .

Accordingly, one gets

(3.1)

(

A ♯π

♭σ −tA

)

7→
(

A ♯eτπ

♭e−τσ −tA

)

,

(

ϕ ♯γ

♭β
tϕ

)

7→
(

ϕ ♯e−τγ

♭e−τβ
tϕ

)

(the minus sign in e−τγ is because we look at γ as the covariant tensor of the
metric). It follows that if G⇔ (γ, ψ) then G′ ⇔ (e−τγ, e−τψ).

If (G,Φ) is a generalized almost Hermitian structure (G′,Φ′) is a gener-
alized almost Hermitian structure too. Moreover, formulas (2.3) and (3.1)
show that the corresponding pair of classical Hermitian structures does not
change, i.e., J ′

± = J±.

Definition 3.1. A generalized almost complex structure Φ is globally confor-
mal integrable if there exists a conformal change Cτ such that Φ′ is integrable.
If such changes Cτ exist locally (i.e., in a neighborhood of each point), Φ is a
locally conformal integrable structure. Similarly, one has notions of (locally)
generalized Hermitian, almost Kähler and Kähler structures.

We obtain the conditions of conformal integrability by applying conditions
i)-iv) of Section 2 to the tensor fields (A, eτπ, e−τσ). The result is

Proposition 3.1. The generalized almost complex structure Φ is globally
conformal integrable if there exists a function τ ∈ C∞(M) such that ̟ = dτ
satisfies the conditions

(3.2) [π, π] = −2(♯π̟) ∧ π,

(3.3) R(π,A)(α,X) = ̟(AX)♯πα−̟(X)A♯πα,

(3.4) NA(X, Y )− ♯π[i(X ∧ Y )dσ] = −σ(X, Y )♯π̟

+̟(X)[(Id+ A2)(Y )]−̟(Y )[(Id+ A2)(X)],
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(3.5) dσA(X, Y, Z)−
∑

Cycl(X,Y,Z)

dσ(AX, Y, Z)

= −[̟ ∧ σA + (̟ ◦ A) ∧ σ](X, Y, Z).
Proof. Condition i) is [eτπ, eτπ] = 0 and a straightforward calculation shows
its equivalence with (3.2). If we use the formula

LfXA = fLXA + (AX)⊗ df −X ⊗ (df ◦ A) (f ∈ C∞(M))

in ii) for Φ′ the result is (3.3). Furthermore, a simple calculation gives the
following expression of iii) for Φ′:

(3.6) NA(X, Y )− ♯π[i(X ∧ Y )dσ] = −♯π[i(X ∧ Y )(dτ ∧ σ)]

= −σ(X, Y )♯πdτ − (Xτ)(♯π ◦ ♭σ)(Y ) + (Y τ)(♯π ◦ ♭σ)(X).

In view of (2.2) this result is equivalent to (3.4) Finally, the new associated
2-form is e−τσA and condition iv) for Φ′ becomes (3.5).

Proposition 3.2. Let Φ be a generalized complex structure on M and let Φ′

be obtained by a conformal change of Φ. Assume that dimM > 2 and that Φ
satisfies one of the following conditions: 1) π is non degenerate, 2) ∀x ∈M ,
A2
x 6= −Id and Ax has no real eigenvalue, 3) rank π > 2 and σ is non

degenerate. Then Φ′ is integrable iff the conformal change is a homothety.

Proof. If Φ is integrable, Φ′ is integrable too iff the right hand side of the
equalities (3.2)-(3.5) vanishes. Condition (♯π̟) ∧ π = 0 holds iff either
rank π = 2 or ♯π̟ = 0. In case 1) we must have the latter equality, which
also implies ̟ = 0, and we are done. To discuss case 2), assume that dxτ 6= 0
and take a vector field X such that Xτ 6= 0 on a neighborhood Ux. Then,
the annulation of the right hand side of (3.3) yields A|im ♯π = fId on Ux. If
we apply this equality to a 1-form ♭σY where the vector field Y is arbitrary
and use (2.2), we see that A|Ux

satisfies an equation of the form

P(A) = A3 − fA2 + A− fId = (A− fId)(A2 + Id) = 0.

Since A2 + Id 6= 0, the minimal polynomial of A is either A− fId or P(A)
and A must have a real eigenvalue. Thus, the hypothesis of case 2) implies
dτ = 0 as required. In case 3), since rank π > 2 we have ♯πdτ = 0 and the
annulation of the right hand side of (3.4) reduces to

(3.7) (Xτ)♯π♭σ(Y )− (Y τ)♯π♭σ(X) = 0.
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On the other hand, rank π > 2 implies that ∀X ∈ χ1(M) with ♯π♭σ(X) 6= 0
there exists λ ∈ Ω1(M) such that ♯π♭σX, ♯πλ are linearly independent. If σ is
non degenerate we may put λ = ♭σY and (3.7) implies Xτ = 0. Furthermore,
if ♯π♭σ(X) = 0, (3.7) reduces to (Xτ)♯π♭σ(Y ) = 0 for any Y and we get
Xτ = 0 again. Therefore dτ = 0.

Accordingly, we get the following characterization of the locally conformal
integrable, generalized, almost complex structures.

Theorem 3.1. Let (M,Φ) be a generalized almost complex manifold that
satisfies the hypotheses of Proposition 3.2. Then Φ is locally conformal in-
tegrable iff there exists a closed 1-form ̟ ∈ Ω1(M) such that conditions
(3.2)-(3.5) hold. The structure Φ is globally conformal integrable iff ̟ is
exact.

Proof. If ̟ exists we have a covering M = ∪Ua such that ̟|Ua
= dτa for

some local functions τa and C−τaΦCτa are integrable. Conversely, if we have
a covering Ua of M with functions τa such that C−τaΦCτa are integrable then
Proposition 3.2 shows that dτa = dτb on Uα ∩ Uβ . Thus, the local forms
dτa glue up to the required global closed form ̟. The last assertion of the
theorem is obvious.

Like in the classical case [11], we call ̟ the Lee form. It is worth noticing
that if ̟ ∧ dσ = 0 the first equality of (3.6) shows that (π,A, dσ−̟ ∧ σ) is
a Poisson quasi-Nijenhuis structure [10].

In order to get the characterization of generalized, locally conformal
Kähler structures we go from a generalized almost Hermitian structure (G,Φ)
to the equivalent quadruple (γ, ψ, J±), change it to (e−τγ, e−τψ, J±) and ask
the latter to satisfy Gualtieri’s conditions (2.4). The result is

Proposition 3.3. The generalized almost Hermitian structure (G,Φ) is con-
formal generalized Kähler iff J± are integrable and there exists τ ∈ C∞(M)
such that the form ̟ = dτ satisfies the conditions

(3.8) dψ ± dCω± = ̟ ∧ ψ ∓ (̟ ◦ J) ∧ ω±.

Proof. The requirement for J± is clear. For Φ′, (2.7) becomes

(dψ − dτ ∧ ψ)(X, Y, Z) = ±(dω± − dτ ∧ ω±)(J±X, J±Y, J±Z).

If we evaluate the wedge products and take into account that ω±(J±X, J±Y ) =
ω±(X, Y ) we get (3.8).
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Proposition 3.4. IfM is a generalized Kähler manifold of dimension greater
than 4 then a conformal change leads to a generalized Kähler structure iff it
is a homothety.

Proof. By (3.8) the required condition is

(̟) ∧ ψ ∓ (̟ ◦ J) ∧ ω± = 0.

This implies ̟ ∧ (̟ ◦ J) ∧ ω± = 0. Since rank ω± > 4 a well known Cartan
lemma tells that this condition holds iff ̟ = dτ = 0.

As a consequence we get

Theorem 3.2. If dimM > 4, the generalized almost Hermitian structure
(γ, ψ, J±) is a locally conformal, generalized Kähler structure iff J± are inte-
grable and there exists a closed 1-form ̟ (the Lee form) that satisfies condi-
tion (3.8). The same structure is globally generalized Kähler iff ̟ is exact.

The proof is the same like for Theorem 3.1.
In order to state some other conditions that are equivalent to (3.8) we

recall the Weyl connection defined by a Riemannian metric γ and a closed
1-form ̟:

∇̃XY = ∇XY − 1

2
̟(X)Y − 1

2
̟(Y )X +

1

2
γ(X, Y )♯γ̟,

where ∇ is the Levi-Civita connection of γ. The Weyl connection is the
Levi-Civita connection of e−τγ for the local functions τ that satisfy dτ = ̟
and it is the unique torsionless connection such that ∇̃Xγ = ̟(X)γ.

Proposition 3.5. In Theorem 3.2, condition (3.8) may be replaced by each
of the following conditions: i) the Weyl connection satisfies the conditions

(3.9) (∇̃XJ±)(Y ) = ∓1

2
♯γ{[i(X ∧ Y )(dψ −̟ ∧ ψ)] ◦ J±

+i[X ∧ (J±Y )](dψ −̟ ∧ ψ)},
ii) the connections

(3.10) ∇̃±
XY = ∇̃XY ± 1

2
♯γ [i(X ∧ Y )(dψ −̟ ∧ ψ)]

satisfy the condition ∇̃±J± = 0, respectively.
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Proof. Instead of using (2.7), use (2.5), respectively, (2.6) to express the fact
that (e−τγ, e−τψ, J±) is a generalized Kähler structure. The integrability of
J± implies the annulation of the (3, 0), (0, 3) components of dψ [7].

Condition i) of Proposition 3.5 shows that if dψ = ̟ ∧ ψ then (γ, J±) is
a pair of classical, locally conformal Kähler structures with the same metric
and the same Lee form. Condition ii) is interesting because, at least in the
generalized Kähler case, it may be related to physics [5].

Example 3.1. Take M = R2n\{0} ≈ S2n−1 × R by the diffeomorphism
κ(x) = (x/||x||, ln||x||/lnλ) (x ∈ R2n\{0}) defined for any choice of λ ∈
(0, 1). Denote by xi (i = 1, ..., 2n) the natural coordinates on R2n and con-
sider the symplectic form ω =

∑n

h=1 dx
h ∧ dxn+h and an arbitrary, constant

(1, 1)-tensor field A that satisfies the condition ω(AX, Y ) = ω(X,AY ) (such
tensor fields obviously exist). Then ωA (defined like σA) is closed, (ω,A) is
a Hitchin pair [3] and it has a corresponding generalized complex structure
Φ with the chosen tensor field A, the Poisson bivector field π defined by
♯π ◦ ♭ω = −Id and the 2-form σ defined by ♭σ = ♭ω ◦ A2 + ♭ω. If we apply to
Φ the conformal change Cln||x||2 we get a conformal integrable, generalized,
almost complex structure Φ′ with the tensor fields (A, ||x||2π, (1/||x||2)σ).
Now, consider the quotient H2n = (R2n\{0})/∆λ where ∆λ is the infinite
cyclic group generated by the transformation x 7→ λx, which is called the
Hopf manifold and where κ induces a diffeomorphism H2n ≈ S2n−1 × S1. It
is obvious that Φ′ is invariant by ∆λ. Hence, there exists an induced general-
ized, almost complex structure Ψ on H and Ψ is locally conformal integrable
via the conformal changes C−ln||x||2. The conditions (3.2)-(3.5) are satisfied
for the closed 1-form

̟ = −2
∑2n

i=1 x
idxi

||x||2 .

Since ̟ is proportional to the length element of S1 (see the isomorphism κ)
̟ is not exact and Ψ is not globally conformal integrable.

Example 3.2. The Hopf manifold H2n (n > 1) also has locally conformal
generalized Kähler structures that are not globally conformal. Indeed, take
the flat metric γ0 =

∑2n
i=1(dx

i)2 of R2n, an arbitrary constant 2-form ψ0, and
two γ0-compatible, constant, complex structures J±, for instance

J+(
∂

∂xh
) =

∂

∂xn+h
, J+(

∂

∂xn+h
) = − ∂

∂xh
,
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J−(
∂

∂x2h−1
) =

∂

∂x2h
, J−(

∂

∂x2h
) = − ∂

∂x2h−1
,

where h = 1, ..., n. The quadruple (γ0, ψ0, J±) defines a generalized Kähler
structure (G0,Φ) on R2n\{0} and (γ0, ψ0, J±) 7→ (γ0/||x||2, ψ0/||x||2, J±) pro-
duces a conformal generalized Kähler structure (G′

0,Φ
′). The latter projects

to a locally conformal generalized Kähler structure of H2n, which satisfies
(3.8) for ̟ = −2dln||x||, and is not globally conformal generalized Kähler
because ̟ is not exact. If J+ = J− this example reduces to a well known
example of a classical locally conformal Kähler structure that is not glob-
ally conformal Kähler [11]. It is also known that the manifold H4 has no
generalized Kähler structures with a constant J+ [7].

Example 3.3. Recall that a generalized Sasakian structure on a manifoldM
is equivalent with a pair of classical, normal, almost contact, metric structures
(F±, Z±, ξ±, γ) complemented by a pair of forms ψ ∈ Ω2(M), κ ∈ Ω1(M) such
that the quadruple

(et(γ + dt2), et(ψ + κ ∧ dt), J± = F± + dt⊗ Z± − ξ± ⊗ ∂

∂t
)

defines a generalized Kähler structure on M × R [15]. Thus, the similar
quadruple without the factors et defines a conformal generalized Kähler struc-
ture. The later is invariant by translations along the factor R and it descends
to a locally, not globally, conformal, generalized Kähler structure onM×S1.

Let (γ, ψ, J±, ̟) be a locally conformal generalized Kähler structure on
M . A hypersurface ι : N →֒ M that satisfies the condition ι∗̟ = 0 will be
called a Lee hypersurface and we will describe the induced structure of an
orientable, Lee hypersurface.

It is known that any orientable hypersurface of a Hermitian manifold
(M, γ, J) has an induced metric, almost contact structure (F, Z, ξ) such that
its

√
−1-eigenbundle is a CR-structure (e.g., [1]). The induced structure is

obtained by taking a normal unit vector field ν of N and by defining

(3.11) Z = −Jν, ξ = ♭γZ, F |TN∩J(TN) = J, F (Z) = 0.

Following [15] we can say more about the induced structure. Indeed, us-
ing the normal bundle νN = span{ν} it follows easily that, if we look at J as
a generalized complex structure, the hypersurface N is a CRF-submanifold
with the generalized CRF-structure defined by the classical almost contact
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structure (3.11) (see Proposition 2.5 and Definition 3.1 of [15]). Thus, the
induced structure in not just CR, it is a classical CRF-structure (see Defini-
tion 3.2 of [15]). From Proposition 3.1 of [15] it follows that, in our case, the
supplementary integrability condition (besides the CR condition) is

(3.12) [Z, F 2X +
√
−1FX ] ∈ H ⊕Qc,

where H is the
√
−1-eigenbundle of F and Q = span{Z} is the 0-eigenbundle

of F . Using the property F 3 + F = 0 it follows that (3.12) may be changed
to

(3.13) F ◦ (LZF ) ◦ F = 0,

equivalently,

(3.14) LZF = (ξ ◦ LZF )⊗ Z.

Another fact to be noticed is that if ω is the Kähler form of (γ, J) then
ι∗ω = Ξ where Ξ(X, Y ) = γ(FX, Y ) (X, Y ∈ χ1(N)) is the fundamental
form of the structure (F, Z, ξ, γ). In particular, we get

Proposition 3.6. Any orientable hypersurface of a classical Kähler manifold
has an induced classical CRF-structure with a closed fundamental form.

Back to our subject, the announced result about Lee hypersurfaces is

Proposition 3.7. An orientable Lee hypersurface of a locally conformal,
generalized, Kähler manifold inherits two metric, almost contact structures
(F±, Z±, ξ±, γ) with the fundamental forms Ξ± that satisfy the condition

(3.15) ̟(ν)Ξ± = ±i(Z)ι∗(dψ ± dCω±).

Proof. Pull back (3.8) by ι, then apply the operator i(Z).
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