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Abstract

For positive integers n and l, we study the cyclic U(gl
n
)-module generated by the l-th power of the

α-determinant det(α)(X). This cyclic module is isomorphic to the n-th tensor space (Syml(Cn))⊗n of
the symmetric l-th tensor space of Cn for all but finite exceptional values of α. If α is exceptional,
then the cyclic module is equivalent to a proper submodule of (Syml(Cn))⊗n, i.e. the multiplicities of
several irreducible subrepresentations in the cyclic module are smaller than those in (Syml(Cn))⊗n. The
degeneration of each isotypic component of the cyclic module is described by a matrix whose size is given
by a Kostka number and entries are polynomials in α with rational coefficients. Especially, we determine
the matrix completely when n = 2. In that case, the matrix becomes a scalar and is essentially given by
the classical Jacobi polynomial. Moreover, we prove that these polynomials are unitary.

In the Appendix, we consider a variation of the spherical Fourier transformation for (Snl,S
n

l ) as a
main tool to analyze the same problems, and describe the case where n = 2 by using the zonal spherical
functions of the Gelfand pair (S2l,S

2
l ).

Keywords: Alpha-determinant, cyclic modules, Jacobi polynomials, singly confluent Heun ODE, per-
manent, Kostka numbers, irreducible decomposition, spherical Fourier transformation, zonal spherical
functions, Gelfand pair.
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1 Introduction

Let A(Matn) be the associative C-algebra consisting of polynomials in variables {xij}1≤i,j≤n. We introduce
a U(gln)-module structure on A(Matn), where U(gln) is the universal enveloping algebra of the general linear
Lie algebra gln = gln(C), by

ρ
gln
(Eij)f =

n∑

k=1

xik
∂f

∂xjk
(f ∈ A(Matn)) ,

which is obtained as a differential representation of the translation of GLn = GLn(C).
Since the determinant det(X) of the matrix X = (xij)1≤i,j≤n is a relative GLn-invariant in A(Matn),

obviously the linear span C · det(X) is a one-dimensional irreducible (highest weight) U(gln)-submodule of
A(Matn). This submodule is equivalent to the skew-symmetric tensor representation ∧n(Cn) of the natural
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representation of U(gln) on Cn. The symmetric counterpart of the determinant is the permanent per(X)
given by

per(X) =
∑

σ∈Sn

xσ(1)1xσ(2)2 · · ·xσ(n)n.

Although per(X) is not a relative invariant of GLn, the cyclic module ρ
gln
(U(gln)) · per(X) (i.e. the smallest

invariant subspace in A(Matn) containing per(X)) is irreducible and is equivalent to the symmetric tensor
representation Symn(Cn) of the natural representation.

The α-determinant of X is defined by

(1.1) det(α)(X) =
∑

σ∈Sn

αν(σ)xσ(1)1xσ(2)2 · · ·xσ(n)n,

where ν(σ) is n minus the number of cycles in σ ∈ Sn. The notion of the α-determinant was first introduced
in [V] in order to describe the coefficients in the expansion of det(I − αA)−1/α, which is used to treat the
multivariate binomial and negative binomial distributions in a unified way. Later, it is also used to define a
certain random process in [ST]. We note that a pfaffian analogue (α-pfaffian) is also introduced and studied
in the same (probability theoretic) view point by the second author in [Mat].

The α-determinant is a common generalization of (and/or an interpolation between) the determinant

and permanent since det(−1)(X) = det(X) and det(1)(X) = per(X). In this sense, the α-determinant

cyclic module ρ
gln
(U(gln)) · det(α)(X) is regarded as an interpolation of two irreducible representations —

the skew-symmetric tensor representation and symmetric tensor representation. In [MW], the second and

third authors determined the structure of the U(gln)-cyclic module ρ
gln
(U(gln)) · det(α)(X). The irreducible

decomposition of ρ
gln
(U(gln)) · det(α)(X) is given by

(1.2) ρ
gln
(U(gln)) · det(α)(X) ∼=

⊕

λ⊢n
fλ(α) 6=0

(
Mλ

n

)⊕fλ

.

Here we denote by Mλ
n the irreducible highest weight U(gln)-module of highest weight λ (we identify the

highest weight and the corresponding partition), fλ the number of standard tableaux with shape λ and
fλ(α) the (modified) content polynomial [Mac] for λ defined by

(1.3) fλ(α) =

ℓ(λ)∏

i=1

λi∏

j=1

(1 + (j − i)α).

In other words, the structure of ρ
gln
(U(gln)) ·det(α)(X) changes drastically when α = ±1/k (k = 1, 2, . . . , n−

1). This result implies that det(α)(X) may obtain some special feature like det(X) and/or per(X) for such

special values of α. Actually, when α = −1/k for some k, det(−1/k)(X) has an analogous property of the
alternating property of the determinant. Based on this fact, for instance, we can construct a relative GLn-
invariant from det(−1/k)(X) (see [KW1]). It is worth noting that we also introduced an analogous object

of the α-determinant det(α)q (X) in the quantum matrix algebra, and study the quantum enveloping algebra

cyclic module Uq(gln) · det(α)q (X) in [KW2]. Compared to the classical case [MW], the cyclic module in the
quantum case is much complicated whereas has a rich structure.

As a next stage, as in the beginning of the study of infinite dimensional representation theory by Gel’fand
and Năımark [GN] in the middle of the last century, it is natural to proceed in the study of the cyclic modules

ρ
gln
(U(gln)) · det(α)(X)s for s ∈ C under a suitable reformulation (see Section 5.2). In this case, the cyclic

modules ρ
gln
(U(gln)) · det(α)(X)s is not finite dimensional in general. Actually, if s is not a nonnegative

integer, then det(α)(X)s is no longer a polynomial and ρ
gln
(U(gln)) ·det(α)(X)s becomes infinite dimensional

unless α = −1. On the contrary, when s = l is a positive integer, ρ
gln
(U(gln)) · det(α)(X)l is a submodule of

the polynomial algebra A(Matn) and is finite dimensional.



Alpha-determinant cyclic modules and Jacobi polynomials 3

In this article, we treat the finite-dimensional cases, that is, we study the cyclic module ρ
gln
(U(gln)) ·

det(α)(X)l for a given positive integer l. We first show that the irreducible decomposition is given in the
form

(1.4) ρ
gln
(U(gln)) · det(α)(X)l ∼=

⊕

λ⊢nl

(Mλ
n)

⊕mλ
n,l(α),

where mλ
n,l(α) denotes the multiplicity of the irreducible submodule with highest weight λ which satisfies

0 ≤ mλ
n,l(α) ≤ Kλ(ln) (Theorem 3.1). Here Kλµ is the Kostka number defined as the number of semi-

standard tableaux of shape λ and weight µ. Moreover, there exists a certain matrix Fλ
n,l(α) of size Kλ(ln),

which is called the transition matrix for λ, whose entries are polynomials in α such that mλ
n,l(α) = rkFλ

n,l(α)

for each λ. By this fact, for all but finitely many α, we have mλ
n,l(α) = Kλ(ln) for any λ. Namely, the cyclic

module ρ
gln
(U(gln)) · det(α)(X)l is equivalent to the space (Syml(Cn))⊗n of the symmetric l-tensors on Cn

for almost all α. We note that Fλ
n,1(α) is a scalar matrix fλ(α) · I (see (1.2) and (1.3)).

Consequently, we have to describe the transition matrix Fλ
n,l(α) and/or its rank rkFλ

n,l(α)(= mλ
n,l(α))

explicitly. When n = 2, we can completely determine the explicit form of the transition matrices (see Section
4). In this case, each transition matrix is a scalar and given by a classical Jacobi polynomial. (Precisely, the
scalar satisfies a singly confluent Heun ordinary differential equation with respect to α. See Corollary 4.2.)
In other words, the Jacobi polynomials play the role of the content polynomials. Moreover, one shows that
these Jacobi polynomials are unitary, and hence the multiplicity mλ

2,l(α) is non-zero unless |α| = 1 for each
partition λ of 2l. These are our main result.

Here we should remark that the Jacobi polynomial does not appear as a spherical function (i.e. a matrix
coefficient of a representation) in our story, and hence, it is important to clarify the reason why the transition
matrix becomes a (unitary) Jacobi polynomial when n = 2. It seems a far-reaching matter at present to
describe the transition matrices when n ≥ 3. In fact, we can only give explicit expressions of transition
matrices in a few special cases. It is not clear whether (the entries of) the transition matrices are given by
certain special polynomials. We leave these problems to the future study.

This paper is organized as follows. In Section 2, we recall the GLn-module structure of the tensor space
(Syml(Cn))⊗n. This space is the basic one for the study of α-determinant cyclic modules. In Section 3,

we study the structure of the cyclic module U(gln) · det(α)(X)l. The transition matrix, which determines
the multiplicity of the irreducible component in the cyclic module, is defined in this section. In Section 4,
we exclusively deal with the simple case where n = 2. As stated above, the transition matrix in this case
is explicitly given by a classical Jacobi polynomial. In Section 5, we give a conjecture for the permanent
cyclic module U(gln) · per(X)l (α = 1 case), introduce a certain suitable reformulation of our problem for

the general complex power cases (i.e. U(gln) ·det(α)(X)s for s ∈ C) and give a remark on ϕ-immanant cyclic
modules which is a generalization of the situation.

In the Appendix, we investigate our problems by another approach; We adopt a variation of the spherical
Fourier transformation for (Snl,S

n
l ) as a main tool to analyze the structure of U(gln) · det(α)(X)l, and give

another proof of the results in Section 3. We also describe the transition matrices in the case where n = 2
by using the zonal spherical functions of the Gelfand pair (S2l,S

2
l ).

2 Preliminaries on representation of U(gln)
Let Z+ be the set of all non-negative integers. For a positive integer n, we put [n] = {1, 2, . . . , n}. Let
e1, . . . , en be the standard basis of Cn. The symmetric l-tensor space Sl(Cn) is the set of all polynomials of
degree l in variables ei and expressed as follows:

Syml(Cn) =
⊕

m1,...,mn∈Z+,
m1+···+mn=l

C · em1
1 e

m2
2 · · · emn

n .
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Let Mn,l be the set of all Z+-matrices of size n such that the sum of entries in each column is equal to l:

Mn,l =
{
M = (mij)1≤i,j≤n

∣∣∣ mij ∈ Z+,

n∑

i=1

mij = l (1 ≤ j ≤ n)
}
.

Put
e
M = e

m11
1 e

m21
2 · · ·emn1

n ⊗ · · · ⊗ e
m1n
1 e

m2n
2 · · · emnn

n

for each M ∈ Mn,l. Then the tensor space (Syml(Cn))⊗n is given by

(Syml(Cn))⊗n =
⊕

M∈Mn,l

C · eM .

The universal enveloping algebra U(gln) acts on Cn in a natural way: Eij · ek = δjkei, where δjk is

Kronecker’s delta. This action induces the action of U(gln) on (Syml(Cn))⊗n as

(2.1) Epq · eM =

n∑

k=1

mqke
M+Rpq

k (1 ≤ p, q ≤ n, M = (mij)1≤i,j≤n ∈ Mn,l),

where Rpq
k is the matrix of size n whose (i, j)-entry is equal to (δip − δiq)δjk. We note that Rpq

k = −Rqp
k .

The irreducible decomposition of the U(gln)-module (Syml(Cn))⊗n is well known and given by

(Syml(Cn))⊗n ∼=
⊕

λ⊢nl

(Mλ
n)

⊕Kλ(ln) ,

see e.g. [FH, W]. Here Mλ
n denotes the highest weight module of U(gln) with highest weight λ = (λ1, . . . , λn)

and Kλ(ln) denotes the Kostka number which is defined as the number of semi-standard tableaux of shape
λ and weight (ln) = (l, l, . . . , l).

Example 2.1. Let n = 2. Then M2,l =
{
( r s
l−r l−s )

∣∣ 0 ≤ r, s ≤ l
}
. When l = 2 we see that

E21 · e(
2 1
0 1 ) =2e(

2 1
0 1 )+

“
−1 0
1 0

”

+ e
( 2 1
0 1 )+

“
0 −1
0 1

”

= 2e(
1 1
1 1 ) + e

( 2 0
0 2 ) = 2e1e2 ⊗ e1e2 + e

2
1 ⊗ e

2
2,

E11 · e(
2 1
0 1 ) =3e(

2 1
0 1 ) = 3e21 ⊗ e1e2

for instance. The irreducible decomposition of (Syml(C2))⊗2 is given as

(Syml(C2))⊗2 ∼=
l⊕

s=0

M(2l−s,s)
2 .

The following lemma plays a fundamental role in the discussion below.

Lemma 2.1. Let In be the identity matrix of size n. Then it holds that (Syml(Cn))⊗n = U(gln) · elIn .
Namely, the vector e

lIn = e
l
1 ⊗ e

l
2 ⊗ · · · ⊗ e

l
n is a cyclic vector of the U(gln)-module (Syml(Cn))⊗n.

Proof. Fix a positive integer l. Let M̃n,l be the subset

M̃n,l = {M ∈ Mn,l | eM ∈ U(gln) · elIn}

of Mn,l. Let us prove (Syml(Cn))⊗n =
⊕

M∈eMn,l
C · eM , or equivalently

(2.2) M̃n,l ⊃ Mn,l
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by induction on n.

The universal enveloping algebra U(gln−1) is embedded in U(gln) as a subalgebra in a natural way.
Assume that the inclusion (2.2) holds up to n− 1. Then the matrices of the form

M ′ ⊕ (l) =




0

M ′
...
0

0 . . . 0 l


 (M ′ ∈ Mn−1,l)

are contained in M̃n,l by the introduction hypothesis. Applying several Ejn’s successively to e
M ′⊕(l) suitably

many times, we first see that any matrix of the form

(2.3)




m1n

M ′
...

mn−1,n

0 . . . 0 mnn


 (M ′ ∈ Mn−1,l,

n∑

i=1

min = l)

belongs to M̃n,l.

Next, we put

Mn,l(p) =
{
M ∈ Mn,l

∣∣∣ j ∈ {p+ 1, p+ 2, . . . , n− 1} and i ∈ {1, 2, . . . , j − 1, n} =⇒ mij = 0
}

for each 0 ≤ p ≤ n − 1. Notice that Mn,l(0) ⊂ Mn,l(1) ⊂ · · · ⊂ Mn,l(n − 1) = Mn,l. We show that

Mn,l(p) ⊂ M̃n,l for any 0 ≤ p ≤ n− 1 by induction on p. By definition, we see that any element in Mn,l(0)

is of the form (2.3), so that we have Mn,l(0) ⊂ M̃n,l. Assume Mn,l(p − 1) ⊂ M̃n,l for 1 ≤ p ≤ n − 1. Take

any matrix M = (mij)1≤i,j≤n in Mn,l(p), and put M̃ =M +
∑p−1

i=1 mipR
pi
p +mnpR

pn
p . Equivalently, M̃ is a

matrix defined by

m̃ip =





m1p +m2p + · · ·+mp−1,p +mp,p +mn,p if i = p,

mip if p+ 1 ≤ i ≤ n− 1

0 otherwise,

and m̃ij = mij for j 6= p. It is easy to see that M̃ ∈ Mn,l(p− 1). Then, using Lemma 2.2 below, we get

E
m1p

1p E
m2p

2p · · ·Emp−1,p

p−1,p Emnp

np · efM ≡ (non-zero constant)× e
M (mod

⊕

N∈Mn,l(p−1)

C · eN ).

Therefore we have M ∈ M̃n,l by the induction hypothesis on p, and hence Mn,l(p) ⊂ M̃n,l. In particular, we

get Mn,l = Mn,l(n− 1) ⊂ M̃n,l, which is the desired conclusion.

In the proof, we have used the following lemma which is readily verified.

Lemma 2.2. Suppose that M ∈ Mn,l(p− 1) and 1 ≤ i, k ≤ p− 1. Then M +Rip
k =M −Rpi

k ∈ Mn,l(p− 1).
In particular,

Ed
ipe

M ≡ mpp(mpp − 1) · · · (mpp − d+ 1)eM−dRpi
p (mod

⊕

N∈Mn,l(p−1)

C · eN )

holds for d ≥ 1.
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The linear map ρgln : U(gln) → EndC(A(Matn)) defined by

(ρgln(Eij) · f)(X) =
n∑

k=1

xik
∂f

∂xjk
(X) (1 ≤ i, j ≤ n, f ∈ A(Matn))

determines a representation of U(gln) on A(Matn). We abbreviate ρgln(Eij) as Eij .
For each M ∈ Mn,l, put X

M =
∏n

i,j=1 x
mij

ij . The action of U(gln) to XM is given by

Epq ·XM =

n∑

k=1

mqkX
M+Rpq

k (1 ≤ p, q ≤ n).

Combining this with (2.1) and Lemma 2.1, we see that the linear map e
M 7→ XM (M ∈ Mn,l) gives the

isomorphism

(2.4) (Syml(Cn))⊗n ∼=
⊕

M∈Mn,l

C ·XM = U(gln) · xl11xl22 · · ·xlnn ⊂ A(Matn).

3 The cyclic modules U(gln) · det(α)(X)l

3.1 α-determinants and intertwiners

Let α be a complex number. We consider the cyclic module U(gln) · det(α)(X)l for a positive integer l.

When α = 0, we have det(0)(X) = x11x22 · · ·xnn. From (2.4) we obtain the irreducible decomposition

(3.1) U(gln) · det(0)(X)l ∼= (Syml(Cn))⊗n ∼=
⊕

λ⊢ln

(Mλ
n)

⊕Kλ(ln) .

In general, the module U(gln) · det(α)(X)l is a submodule of U(gln) · det(0)(X)l because det(α)(X)l ∈⊕
M∈Mn,l

C ·XM = U(gln) · det(0)(X)l. Therefore we have

Theorem 3.1. It holds that

U(gln) · det(α)(X)l ∼=
⊕

λ⊢ln

(Mλ
n)

⊕mλ
n,l(α),

where mλ
n,l(α) is a nonnegative integer at most Kλ(ln) and mλ

n,l(0) = Kλ(ln).

In order to obtain further properties of the multiplicities mλ
n,l(α), we construct a U(gln)-intertwiner from

(Syml(Cn))⊗n to U(gln) · det(α)(X)l explicitly for each α.
For a sequence (k1, . . . , kn) ∈ [n]×n, define

D(α)(k1, . . . , kn) = det(α)




xk11 xk12 . . . xk1n

xk21 xk22 . . . xk2n

...
...

. . .
...

xkn1 xkn2 . . . xknn


 .

For a matrix N ∈ Mn,1, there exists some (k1, . . . , kn) ∈ [n]×n such that N = (δi,kj
)1≤i,j≤n. Then we let

D(α)(N) = D(α)(k1, . . . , kn).

Let M = (mij)1≤i,j≤n ∈ Mn,l. A sequence (M1, . . . ,Ml) ∈ (Mn,1)
×l is called a partition of M and

denoted by (M1, . . . ,Ml) 
 M if M1 + · · · + Ml = M . We also put M ! =
∏n

i,j=1mij !. For instance,

(lIn)! = l!n. Now we define the element D(α)(M) ∈ A(Matn) by

(3.2) D(α)(M) =
M !

(lIn)!

∑

(M1,...,Ml)
M

D(α)(M1)D
(α)(M2) · · ·D(α)(Ml),

where the sum runs over all partitions of M . It is clear that D(α)(lIn) = det(α)(X)l.
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Example 3.1.

D(α)

(
2 1
0 1

)
= D(α)

(
1 1
0 0

)
D(α)

(
1 0
0 1

)
= D(α)(1, 1)D(α)(1, 2).

D(α)

(
2 1
1 2

)
=

(2!)2

(3!)2

{
6D(α)

(
1 1
0 0

)
D(α)

(
1 0
0 1

)
D(α)

(
0 0
1 1

)
+ 3D(α)

(
1 0
0 1

)2
D(α)

(
0 1
1 0

)}

=
1

3

(
2D(α)(1, 1)D(α)(1, 2)D(α)(2, 2) +D(α)(1, 2)2D(α)(2, 1)

)
.

TakeM = (mij)1≤i,j≤n ∈ Mn,l and suppose thatmqk > 0. ThenM+Rpq
k ∈ Mn,l. Let (M1, . . . ,Ml) 
M

and (M ′
1, . . . ,M

′
l ) 
 M + Rpq

k . We write (M1, . . . ,Ml)
p,q; k−−−→ (M ′

1, . . . ,M
′
l ) if there exists some j such that

M ′
i =Mi + δijR

pq
k . We notice that

(3.3) #
{
(M ′

1, . . . ,M
′
l ) 
M +Rpq

k

∣∣∣ (M1, . . . ,Ml)
p,q; k−−−→ (M ′

1, . . . ,M
′
l )
}
= mqk

because Mj + Rpq
k ∈ Mn,1 if and only if (Mj)qk = 1 so that the number of such choices of j is just

mqk =
∑l

j=1(Mj)qk. We also notice that

(M1, . . . ,Ml)
p,q; k−−−→ (M ′

1, . . . ,M
′
l ) ⇐⇒ (M ′

1, . . . ,M
′
l )

q,p; k−−−→ (M1, . . . ,Ml).

The following fact is crucial.

Proposition 3.2. For any p, q ∈ [n] and M ∈ Mn,l, we have

(3.4) Epq ·D(α)(M) =

n∑

k=1

mqkD
(α)(M +Rpq

k ).

Example 3.2.

E11 ·D(α)

(
2 1
1 2

)
= 3D(α)

(
2 1
1 2

)
, E12 ·D(α)

(
2 1
1 2

)
= D(α)

(
3 1
0 2

)
+ 2D(α)

(
2 2
1 1

)
,

E21 ·D(α)

(
2 1
1 2

)
= 2D(α)

(
1 1
2 2

)
+D(α)

(
2 0
1 3

)
, E22 ·D(α)

(
2 1
1 2

)
= 3D(α)

(
2 1
1 2

)
.

Proof of Proposition 3.2. First we notice that we can verify the case where l = 1 easily (see Lemma 2.1 in
[MW]). By using this result, for any M ∈ Mn,l, we have

Epq ·D(α)(M) =
M !

(lIn)!

∑

(M1,...,Ml)
M

l∑

j=1

D(α)(M1) · · · (Epq ·D(α)(Mj)) · · ·D(α)(Ml)

=
M !

(lIn)!

n∑

k=1

∑

(M1,...,Ml)
M

l∑

j=1

(Mj)qkD
(α)(M1) · · ·D(α)(Mj +Rk

pq) · · ·D(α)(Ml)

=
M !

(lIn)!

n∑

k=1

∑

(M1,...,Ml)
M

∑

(M ′

1,...,M
′

l )
M+Rpq

k

(M1,...,Ml)
p,q; k−−−→(M ′

1,...,M
′

l )

D(α)(M ′
1) · · ·D(α)(M ′

l )

=
M !

(lIn)!

n∑

k=1

∑

(M ′

1,...,M
′

l
)
M+Rpq

k

∑

(M1,...,Ml)
M

(M ′

1,...,M
′

l )
q,p; k−−−→(M1,...,Ml)

D(α)(M ′
1) . . . D

(α)(M ′
l ).
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By (3.3), we see that

∑

(M1,...,Ml)
M

(M ′

1,...,M
′

l )
q,p; k−−−→(M1,...,Ml)

1 = #
{
(M1, . . . ,Ml) 
 (M +Rpq

k ) +Rqp
k

∣∣∣ (M ′
1, . . . ,M

′
l )

q,p; k−−−→ (M1, . . . ,Ml)
}

= (M +Rpq
k )pk = mpk + 1.

Hence it follows that

Epq ·D(α)(M) =

n∑

k=1

(mpk + 1)
M !

(lIn)!

∑

(M ′

1,...,M
′

l
)
M+Rpq

k

D(α)(M ′
1) · · ·D(α)(M ′

l )

=

n∑

k=1

mqkD
(α)(M +Rpq

k )

since (mpk + 1)M ! = mqk(M +Rpq
k )! if mqk > 0. Thus we have proved (3.4).

Now we give an explicit intertwiner from (Syml(Cn))⊗n to U(gln) ·det(α)(X)l. The following proposition
is a generalization of Lemma 2.3 and Proposition 2.4 in [MW] for the case where l = 1.

Proposition 3.3. We have

U(gln) · det(α)(X)l =
∑

M∈Mn,l

C ·D(α)(M).

Furthermore, the linear map Φ(α) determined by

Φ(α)(eM ) = D(α)(M), M ∈ Mn,l,

gives a surjective U(gln)-intertwiner from (Syml(Cn))⊗n to U(gln) · det(α)(X)l.

Proof. From Proposition 3.2, the space
∑

M∈Mn,l
C ·D(α)(M) is invariant under the action of U(gln). Since

D(α)(lIn) = det(α)(X)l, the space U(gln) ·det(α)(X)l is a submodule of
∑

M∈Mn,l
C ·D(α)(M). Furthermore,

by (2.1) and Proposition 3.2, the linear map Φ(α) determined by

Φ(α)(eM ) = D(α)(M), M ∈ Mn,l,

gives a surjective U(gln)-intertwiner from (Syml(Cn))⊗n to
∑

M∈Mn,l
C · D(α)(M). It follows from Lemma

2.1 that

∑

M∈Mn,l

C ·D(α)(M) =
∑

M∈Mn,l

C · Φ(α)(eM ) ⊂ U(gln) · Φ(α)(elIn) = U(gln) · det(α)(X)l

as we desired.

3.2 Transition matrices

We show that the multiplicity mλ
n,l(α) in Theorem 3.1 is described as a rank of a certain matrix for each

highest weight λ.
The module (Syml(Cn))⊗n is decomposed in the form

(Syml(Cn))⊗n =
⊕

λ⊢nl

Kλ(ln)⊕

i=1

U(gln) · vλi .
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Here vλi (i = 1, . . . ,Kλ(ln)) are highest weight vectors corresponding to the weight λ. Under the isomorphism

Φ(0) and surjective intertwiner Φ(α), we see that

U(gln) · det(0)(X)l =
⊕

λ⊢nl

Kλ(ln)⊕

i=1

U(gln) · Φ(0)(vλi ),

U(gln) · det(α)(X)l =
⊕

λ⊢nl

Kλ(ln)∑

i=1

U(gln) · Φ(α)(vλi ).

Since Φ(α)(vλi ) is the highest weight vector unless it vanishes, there exists a matrix Fλ
n,l(α) = ((Fλ

n,l(α))ij)
of size Kλ(ln) such that

(3.5) Φ(α)(vλj ) =

Kλ(ln)∑

i=1

(Fλ
n,l(α))ijΦ

(0)(vλi )

for each j. We call the matrix Fλ
n,l(α) the transition matrix. We notice that the definition of Fλ

n,l(α) is

dependent on the choice of vectors vλ1 , . . . , v
λ
Kλ(ln)

but Fλ
n,l(α) is uniquely determined up to conjugacy. By

definition, its entries belong to Q[α]. We now obtain the

Theorem 3.4. For each α ∈ C and λ ⊢ nl, the multiplicity mλ
n,l(α) in Theorem 3.1 is equal to the rank of the

matrix Fλ
n,l(α) defined via (3.5). Namely, the irreducible decomposition of the cyclic module U(gln)·det(α)(X)l

is given by

U(gln) · det(α)(X)l ∼=
⊕

λ⊢nl
ℓ(λ)≤n

(Mλ
n)

⊕ rkFλ
n,l(α).(3.6)

We need to obtain an explicit expression of the matrix Fλ
n,l(α) to evaluate the multiplicity mλ

n,l(α). When

n = 2, we show that the matrix Fλ
2,l(α) is of size 1 and given explicitly by a hypergeometric polynomial. See

the next section for the detailed discussion for this case. In general, it is not easy to calculate the matrix
Fλ
n,l(α), and we have no effective method to evaluate the multiplicity mλ

n,l(α).

We give several examples of an explicit calculation of transition matrices for the highest weights with
special types.

Example 3.3. If l = 1, then we have Fλ
n,1(α) = fλ(α)I for any partition λ of n, where fλ(α) is defined in

(1.3). See Corollary 3.4 in [MW].

Example 3.4. For λ = (nl), the Kostka number Kλ(ln) is equal to 1. The vector v(nl) = e
l
1 ⊗ e

l
1 ⊗ · · · ⊗ e

l
1

is the highest weight vector with the highest weight (nl). By Proposition 3.3 we have

Φ(α)(v(nl)) = D(α)(1, 1, . . . , 1)l =
{n−1∏

j=1

(1 + jα)x11x22 · · ·xnn
}l

=

n−1∏

j=1

(1 + jα)l · Φ(0)(v(nl))

and hence

F
(nl)
n,l (α) =

n−1∏

j=1

(1 + jα)l.
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Example 3.5. For λ = (nl − 1, 1), the Kostka number Kλ(ln) is equal to n− 1. Put

wi = e
l
1 ⊗ e

l
1 ⊗ · · ·⊗

i-th

e
l−1
1 e2 ⊗ · · · ⊗ e

l
1

for each 1 ≤ i ≤ n. Then v
(nl−1,1)
i = wi − wi+1 (1 ≤ i ≤ n − 1) are linearly independent highest weight

vectors corresponding to the weight (nl − 1, 1). It is easy to see that

Φ(α)(v
(nl−1,1)
i ) = (1 − α)(1 + (n− 1)α)l−1

n−2∏

j=1

(1 + jα)l · Φ(0)(v
(nl−1,1)
i )

which readily implies

F
(nl−1,1)
n,l (α) = (1− α)(1 + (n− 1)α)l−1

n−2∏

j=1

(1 + jα)l · In−1.

4 U(gl2)-cyclic modules and Jacobi polynomials

In this section, we study the case where n = 2. The transition matrix Fλ
2,l(α) is of size 1 and explicitly given

by a hypergeometric polynomial in α which is in fact the Jacobi polynomial. Moreover, we see that these
Jacobi polynomials are unitary.

4.1 Explicit irreducible decomposition of U(gl2) · det(α)(X)l

For a non-negative integer n, complex numbers b and c such that c 6= −1,−2, . . . ,−n+ 1, let F (−n, b, c;x)
be the Gaussian hypergeometric polynomial

F (−n, b, c;x) = 1 +

n∑

k=1

(−n)k(b)k
(c)k

xk

k!
.

Here (a)k stands for the Pochhammer symbol (a)k = a(a+ 1) · · · (a+ k − 1). For any partition λ of 2l with
length ≤ 2, we have Kλ(l2) = 1, whence Fλ

2,l(α) is a scalar.

Theorem 4.1. For non-negative integers l and s such that 0 ≤ s ≤ l, we have

(4.1) F
(2l−s,s)
2,l (α) = (1 + α)l−sGl

s(α),

where Gγ
n(x) is the polynomial given by

Gγ
n(x) = F (−n, γ − n+ 1,−γ;−x).

By the hypergeometric differential equation satisfied by Gγ
n(x), the explicit form of F

(2l−s,s)
2,l (α) given in

Theorem 4.1 shows that F
(2l−s,s)
2,l (α) satisfies the following singly confluent Heun differential equation (see

[SL]).

Corollary 4.2. The polynomial f(x) = F
(2l−s,s)
2,l (−x) satisfies the differential equation

(4.2)

{
d2

dx2
+

(
2

x− 1
− l

x

)
d

dx
+
s− (l − s)2 − x

x(x− 1)2

}
f(x) = 0.



Alpha-determinant cyclic modules and Jacobi polynomials 11

Remark 4.1. Since it seems difficult at present to obtain the transition matrices explicitly in general, we
are naturally lead to the following questions: Can one obtain the equation (4.2) directly by investigating (a

certain structure of) the cyclic module U(gl2) · det(α)(X)l itself? If it is possible, is the derivation of the
differential equation generalized to the cases where n ≥ 3?

The roots of the polynomial Gγ
n(x) satisfy the following property.

Proposition 4.3. For a real number γ such that γ ≥ n, the polynomial Gγ
n(x) is unitary, i.e., every root

of Gγ
n(x) is on the unit circle T = {z ∈ C | |z| = 1}. Furthermore, Gγ

2n(1) 6= 0 and Gγ
2n+1(1) = 0 for any

nonnegative integer n.

Therefore we obtain the following irreducible decomposition from Theorem 3.1 and Proposition 3.4.

Corollary 4.4. For any α ∈ C \ T, we have

U(gl2) · det(α)(X)l ∼= (Syml(C2))⊗2 ∼=
l⊕

s=0

M(2l−s,s)
2 .

For α = ±1, we have

U(gl2) · per(X)l ∼=
⌊l/2⌋⊕

j=0

M(2l−2j,2j)
2

∼= Syml(Sym2(C2)),

U(gl2) · det(X)l = C · det(X)l ∼= M(l,l)
2 .

4.2 Proof of Theorem 4.1

The highest weight vector associated with the highest weight (2l − s, s) in the module (Syml(C2))⊗2 (∼=⊕l
s=0 M

(2l−s,s)
2 ) is given by

v(2l−s,s) =

s∑

j=0

(−1)j
(
s

j

)
e
l−j
1 e

j
2 ⊗ e

l−s+j
1 e

s−j
2 .

The image of this under Φ(α) is

(4.3) Φ(α)(v(2l−s,s)) =

s∑

j=0

(−1)j
(
s

j

)
D(α)

(
l − j l − s+ j
j s− j

)
.

Lemma 4.5. For 0 ≤ p ≤ q ≤ l, we have

D(α)

(
l − p l − q
p q

)

=

(
l

q

)−1 min{p,l−q}∑

r=0

(
l − p

q − p+ r

)(
p

r

)
D(α)(1, 1)l−q−rD(α)(1, 2)q−p+rD(α)(2, 1)rD(α)(2, 2)p−r.

Proof. Sequences (M1, . . . ,Ml) ∈ (M2,1)
×l satisfying M1 + · · ·+Ml =

(
l−p l−q
p q

)
are permutations of

l−q−r︷ ︸︸ ︷(
1 1
0 0

)
, . . . ,

(
1 1
0 0

)
,

q−p+r︷ ︸︸ ︷(
1 0
0 1

)
, . . . ,

(
1 0
0 1

)
,

r︷ ︸︸ ︷(
0 1
1 0

)
, . . . ,

(
0 1
1 0

)
,

p−r︷ ︸︸ ︷(
0 0
1 1

)
, . . . ,

(
0 0
1 1

)
,
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where r runs over 0, 1, . . . ,min{p, l − q}. Since the number of such sequences is (l!)/{(l − q − r)! (q − p +
r)! (p− r)!}, we have

D(α)

(
l − p l − q
p q

)
=
(l − p)! (l − q)! p! q!

(l!)2

min{p,l−q}∑

r=0

l!

(l − q − r)! (q − p+ r)! r! (p − r)!

×D(α)(1, 1)l−q−rD(α)(1, 2)q−p+rD(α)(2, 1)rD(α)(2, 2)p−r.

This completes the proof.

The polynomial F
(2l−s,s)
2,l (α) is determined by the identity Φ(α)(v(2l−s,s)) = F

(2l−s,s)
2,l (α)Φ(0)(v(2l−s,s)).

By comparing the coefficients of xl11x
l−s
12 xs22 in the both sides, we see that

F
(2l−s,s)
2,l (α) = [xl11x

l−s
12 xs22] Φ

(α)(v(2l−s,s)).

Here [xa11x
b
12x

c
21x

d
22]f(x11, x12, x21, x22) stands for the coefficient of xa11x

b
12x

c
21x

d
22 in f(x11, x12, x21, x22). By

using Lemma 4.5 together with

D(α)(1, 1) = (1 + α)x11x12, D(α)(1, 2) = x11x22 + αx21x12,

D(α)(2, 1) = αx11x22 + x21x12, D(α)(2, 2) = (1 + α)x21x22,

we have

[xl11x
l−s
12 xs22]D

(α)

(
l − j l − s+ j
j s− j

)

=

(
l

s− j

)−1(
l − j

s− j

)(
[(x11x12)

l−s]D(α)(1, 1)l−s
)
·
(
[(x11x22)

s]D(α)(1, 2)s−jD(α)(2, 1)j
)

=
(l − j)! (l − s+ j)!

l! (l− s)!
(1 + α)l−sαj

for 0 ≤ j < s/2. We can check that this identity holds for any 0 ≤ j ≤ s in a similar way. Hence it follows
from (4.3) that

F
(2l−s,s)
2,l (α) =

s!

l! (l− s)!
(1 + α)l−s

s∑

j=0

(l − j)! (l − s+ j)!

(s− j)!
· (−α)

j

j!

= (1 + α)l−s
s∑

j=0

s! (l − j)! (l − s+ j)!

l! (l − s)! (s− j)!
· (−α)

j

j!

= (1 + α)l−sF (−s, l− s+ 1,−l;−α).

Thus we have proved Theorem 4.1.

4.3 Proof of Proposition 4.3

Let γ be a positive real number and n a non-negative integer such that γ ≥ n. We prove the unitarity of
the polynomial Gγ

n(x) by the property of the Jacobi polynomial (see e.g. [S])

P (α,β)
n (x) =

(
n+ α

n

)
F

(
−n, n+ α+ β + 1, α+ 1;

1− x

2

)
.

We see by definition that

(4.4) Gγ
n(x) =

(
n− γ − 1

n

)−1

P (−γ−1,2γ−2n+1)
n (1 + 2x).

We recall the following formulas ((4.1.3), (4.22.1), and (4.1.5) in [S]).
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Lemma 4.6. For any α, β ∈ C and non-negative integer n, the following formulas hold.

P (α,β)
n (x) =(−1)nP (β,α)

n (−x),(4.5)

P (α,β)
n (x) =

(
1− x

2

)n

P (−2n−α−β−1,β)
n

(
x+ 3

x− 1

)
,(4.6)

P
(α,β)
2n (x) =

(−1)nn!

(2n)!
(α + n+ 1)nP

(− 1
2 ,α)

n (1− 2x2),(4.7)

P
(α,β)
2n+1 (x) =

(−1)nn!

(2n+ 1)!
(α+ n+ 1)n+1xP

( 1
2 ,α)

n (1− 2x2).(4.8)

From (4.4) and (4.5), we have

Gγ
n(x) =

(
n− γ − 1

n

)−1

(−1)nP (2γ−2n+1,−γ−1)
n (−1− 2x).

By (4.6), it follows

Gγ
n(x) =

(
n− γ − 1

n

)−1

(−1)n(1 + x)nP (−γ−1,−γ−1)
n

(
x− 1

x+ 1

)
.

Applying (4.7) and (4.8) to this expression, we obtain the following lemma.

Lemma 4.7. It holds that

Gγ
2m(x) =

(−1)mm!

(−γ)m
(x+ 1)2mP (−1/2,−γ−1)

m

(
1− 2

(
x− 1

x+ 1

)2
)
,

Gγ
2m+1(x) =

(−1)m+1m!

(−γ)m
(x− 1)(x+ 1)2mP (1/2,−γ−1)

m

(
1− 2

(
x− 1

x+ 1

)2
)
.

In particular, Gγ
2m(1) 6= 0 and Gγ

2m+1(1) = 0.

In general, the distribution of the roots of Jacobi polynomials are described as follows.

Lemma 4.8 (Theorem 6.72 in [S]). For any real number u, let E(u) be the Klein symbol, i.e.,

E(u) =





u− 1, if u is an integer and u ≥ 0,

⌊u⌋ , if u is not an integer and u ≥ 0,

0 if u < 0.

Let α and β be complex numbers and n a non-negative integer. Assume
∏n

k=1(α+k)(β+k)(n+α+β+k) 6= 0.
Define three numbers X, Y , and Z by

X =E

(
1

2
(|2n+ α+ β + 1| − |α| − |β|+ 1)

)
,

Y =E

(
1

2
(−|2n+ α+ β + 1|+ |α| − |β|+ 1)

)
,

Z =E

(
1

2
(−|2n+ α+ β + 1| − |α|+ |β|+ 1)

)
.
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Then, if we denote by N(I) the number of roots of P
(α,β)
n (x) on an interval I ⊂ R, we have

N((−1, 1)) =

{
2 ⌊(X + 1)/2⌋ , if (−1)n

(
n+α
n

)(
n+β
n

)
> 0,

2 ⌊X/2⌋+ 1, if (−1)n
(
n+α
n

)(
n+β
n

)
< 0,

N((−∞,−1)) =

{
2 ⌊(Y + 1)/2⌋ , if

(
2n+α+β

n

)(
n+β
n

)
> 0,

2 ⌊Y/2⌋+ 1, if
(
2n+α+β

n

)(
n+β
n

)
< 0,

N((1,∞)) =

{
2 ⌊(Z + 1)/2⌋ , if

(
2n+α+β

n

)(
n+α
n

)
> 0,

2 ⌊Z/2⌋+ 1, if
(
2n+α+β

n

)(
n+α
n

)
< 0.

Let us set α = −1/2, β = −γ − 1 and n = 2m (resp. α = 1/2, β = −γ − 1 and n = 2m + 1) in
the lemma above and assume that γ ≥ n. It follows that X = Y = 0 and Z = m, from which we have

N((−1, 1)) = N((−∞,−1)) = 0 and N((1,∞)) = m. Since the degree of the polynomial P
(−1/2,−γ−1)
m (x)

(resp. P
(1/2,−γ−1)
m (x) ) ism, all roots of P

(−1/2,−γ−1)
m (x) (resp. P

(1/2,−γ−1)
m (x)) belong to the interval (1,∞).

Therefore it follows from Lemma 4.7 that

a ∈ C, Gγ
n(a) = 0 =⇒ a− 1

a+ 1
∈ iR =⇒ |a| = 1.

This completes the proof of Proposition 4.3.

5 Several remarks on the future study

We give here several comments for the future study.

5.1 Permanent cases

When α = −1, det(−1)(X) is just the ordinary determinant and we can easily see that the cyclic module

U(gln) · det(−1)(X)l is isomorphic to M(ln)
n . However, in the case where α = 1, we have not obtained the

irreducible decomposition of the cyclic module U(gln) · det(1)(X)l generated by the permanent per(X) =

det(1)(X). Actually, only we can give here is the following conjecture.

Conjecture 5.1. U(gln) · det(1)(X)l ∼= Syml(Symn(Cn)).

This claim is equivalent to the assertion that the character of U(gln) ·det(1)(X)l is given by the plethysm
hl ◦hn. (For the definition of the plethysm for symmetric functions, see [Mac, Section I-8]). We have already
verified this conjecture in the following cases: (i) l = 1 (see [MW]), (ii) n = 1, 2 (see the previous section),
(iii) n = 3 and l = 2 (see Example 5.1 below).

Example 5.1. Let n = 3 and l = 2. If we take a suitable highest weight vectors and employ a similar
calculation in the proof of Theorem 4.1, we have

F
(6)
3,2 (α) = (1 + α)2(1 + 2α)2,

F
(5,1)
3,2 (α) = (1 − α)(1 + α)2(1 + 2α)I2,

F
(4,2)
3,2 (α) = (1 + α)2 · diag

(
2(1− α), 2(1− α), 2 − 2α+ 3α2

)
,

F
(4,1,1)
3,2 (α) =

1

2
(1− α)(1 + α)(2 − 5α2),

F
(3,3)
3,2 (α) = (1 − α)2(1 + α2),

F
(3,2,1)
3,2 (α) =

1

4
(1− α)(1 + α)(4 − 6α+ 5α2)I2,

F
(2,2,2)
3,2 (α) =

1

2
(1− α)2(2− 2α+ 5α2).
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In particular, when α = 1 we see that

mλ
3,2(1) =

{
1 λ = (6), (4, 2),

0 otherwise

and hence it follows that

U(gl3) · per(X)2 ∼= M(6)
3 ⊕M(4,2)

3
∼= Sym2(Sym3(C3))

which agrees with our conjecture.

5.2 Complex powers of α-determinants

An appropriate reformulation of a setting is necessary to study “the cyclic module U(gln) · det(α)(X)s” with
a complex number s. Here we introduce a suitable space in which we can treat such cyclic modules.

We take a U(gln)-submodule

ML•
n =



F1 · · ·Fk | k ≥ 0, Fi ∈

⊕

M∈Mn,1

C ·XM





of A(Matn), and consider the tensor product

ML•
n ⊗C

(
∞⊕

k=0

C · w(α, s − k)

)

where {w(α, s− k)}k≥0 are formal vectors. We introduce a U(gln)-module structure on it by

(5.1) Y · (F ⊗ w(α, s− k)) = (Y · F )⊗ w(α, s− k) + (s− k)F (Y · det(α)(X))⊗ w(α, s− k − 1)

for Y ∈ gln and F ∈ ML•
n. Let MLn(α, s) be the quotient U(gln)-module of ML•

n⊗C (
⊕∞

k=0 C · w(α, s − k))
with respect to the submodule generated by

(5.2) (F · det(α)(X))⊗ w(α, s − k)− F ⊗ w(α, s − k + 1) (F ∈ ML•
n, w(α, 0) = 1).

For F (X) ∈ ML•
n and k ∈ Z+, we denote by F (X) det(α)(X)s−k the element in MLn(α, s) represented by

F (X)⊗ w(α, s − k). We notice that det(α)(X) det(α)(X)s−k = det(α)(X)s−k+1 by (5.2).

Denote by V(α, s) the submodule of MLn(α, s), generated by the vector det(α)(X)s(= 1 ⊗ w(α, s)).
When s is a non-negative integer l, we can naturally consider that

MLn(α, l) ⊂ ML•
n

because 1⊗ w(α, l) = det(α)(X)l ⊗ 1 so that it follows that

V(α, l) ∼= U(gln) · det(α)(X)l.

Thus we regard the space V(α, s) as a suitable formulation of the cyclic module U(gln) ·det(α)(X)s for s ∈ C.
We note that MLn(α, l) can be realized in the quotient field for the algebra ML•

n when l is a negative integer.

Example 5.2. Let α = −1. Then V(−1, s) = U(gln) · det(X)s is one-dimensional space and we have

Epp · det(−1)(X)s = s det(−1)(X)s for any 1 ≤ p ≤ n from (5.1). Thus the module V(−1, s) is the irreducible
module with “highest weight (s, s, . . . , s)”.
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The module V(α, s) is infinite dimensional in general. For instance, if α = 0 and s ∈ C \Z+, then we see
that

Ek
12 · det(0)(X)s = s(s− 1) · · · (s− k + 1)(x11x12x33x44 · · ·xnn)k det(0)(X)s−k

for each k ≥ 0 and these vectors are linearly independent, and this obviously implies dimC V(0, s) = ∞. In
the infinite dimensional cases, the following two problems are fundamental:

1. Unitarizability of each irreducible subrepresentation appearing in the decomposition of the cyclic mod-
ule U(gln) · det(α)(X)s.

2. Description of the “content function” for each isotypic component in U(gln) · det(α)(X)s as a certain
special function such as a solution of some Fuchsian type ordinary differential equation. (See Remark
4.1.)

We will treat these problems in our future studies.

5.3 Generalized immanants

Let ϕ be a class function on Sn. We define the ϕ-immanant by

immϕ(X) =
∑

σ∈Sn

ϕ(σ)x1σ(1) · · ·xnσ(n).

For l class functions ϕ1, . . . , ϕl, consider the cyclic module

U(gln) ·
l∏

i=1

immϕi(X),

which is the submodule of
⊕

M∈Mn,l
C · XM . In the article we discuss the special case where ϕ1(σ) =

· · · = ϕl(σ) = αν(σ). The discussion, and hence several propositions, in Section 3 can be extended to this
generalized situation because we do not use any special feature of the function αν(σ). See the Appendix
below.

Acknowledgement. The authors thank Jyoichi Kaneko for fruitful discussion on the Jacobi polynomials.

6 Appendix: Transition matrices and zonal spherical functions

by Kazufumi KIMOTO

We investigate the structure of the cyclic module Vn,l(α) = U(gln) · det(α)(X)l by embedding it to the
tensor product space (Cn)⊗nl and utilizing the Schur-Weyl duality. We show that the entries of the transition
matrices Fλ

n,l(α) are given by a variation of the spherical Fourier transformation of a certain class function
on Snl with respect to the subgroup Sn

l (Theorem 6.4). This result also provides another proof of Theorem

3.4. Further, we calculate the polynomial F
(2l−s,s)
2,l (α) by using an explicit formula of the values of zonal

spherical functions for the Gelfand pair (S2n,Sn ×Sn) due to Bannai and Ito (Theorem 6.11).

6.1 Irreducible decomposition of Vn,l(α) and transition matrices

Fix n, l ∈ N. Consider the standard tableau T with shape (ln) such that the (i, j)-entry of T is (i− 1)l+ j.
For instance, if n = 3 and l = 2, then

T =
1 2
3 4
5 6

.
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We denote by K = R(T) and H = C(T) the row group and column group of the standard tableau T

respectively. Namely,

(6.1) K =
{
g ∈ Snl

∣∣ ⌈g(x)⌉ = ⌈x⌉ , x ∈ [nl]
}
, H =

{
g ∈ Snl

∣∣ g(x) ≡ x (mod l), x ∈ [nl]
}
.

We put

(6.2) e =
1

|K|
∑

k∈K

k ∈ C[Snl].

This is clearly an idempotent element in C[Snl]. Let ϕ be a class function on H . We put

Φ =
∑

h∈H

ϕ(h)h ∈ C[Snl].

Consider the tensor product space V = (Cn)⊗nl. We notice that V has a (U(gln),C[Snl])-module structure
given by

Eij · ei1 ⊗ · · · ⊗ einl
=

nl∑

s=1

δis,j ei1 ⊗ · · · ⊗ s-th
ei ⊗ · · · ⊗ einl

,

ei1 ⊗ · · · ⊗ einl
· σ = eiσ(1)

⊗ · · · ⊗ eiσ(nl)
(σ ∈ Snl)

where {ei}ni=1 denotes the standard basis of Cn. The main concern of this subsection is to describe the
irreducible decomposition of the left U(gln)-module V · eΦe.

We first show that Vn,l(α) is isomorphic to V · eΦe for a special choice of ϕ. Consider the group
isomorphism θ : H → Sl

n defined by

θ(h) = (θ(h)1, . . . , θ(h)l); θ(h)i(x) = y ⇐⇒ h((x− 1)l + i) = (y − 1)l+ i.

We also define an element D(X ;ϕ) ∈ A(Matn) by

D(X ;ϕ) =
∑

h∈H

ϕ(h)

n∏

q=1

l∏

p=1

xθ(h)p(q),q =
∑

h∈H

ϕ(h)

n∏

q=1

l∏

p=1

xq,θ(h)−1
p (q)

=
∑

σ1,...,σl∈Sn

ϕ(θ−1(σ1, . . . , σl))

n∏

q=1

l∏

p=1

xσp(q),q.

We note that D(X ;αν(·)) = det(α)(X)l since ν(θ−1(σ1, . . . , σl)) = ν(σ1) + · · ·+ ν(σl) for (σ1, . . . , σl) ∈ Sn
l .

Take a class function δH on H defined by

δH(h) =

{
1 h = 1

0 h 6= 1.

We see that D(X ; δH) = (x11x22 . . . xnn)
l. We need the following lemma (The assertion (1) is just a rewrite

of Lemma 2.1, and (2) is immediate to verify).

Lemma 6.1. (1) It holds that

U(gln) · e⊗l
1 ⊗ · · · ⊗ e

⊗l
n = V · e = Syml(Cn)⊗n,

U(gln) ·D(X ; δH) =
⊕

ipq∈{1,2,...,n}
(1≤p≤l, 1≤q≤n)

C ·
n∏

q=1

l∏

p=1

xipqq
∼= Syml(Cn)⊗n.
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(2) The map

T : U(gln) ·D(X ; δH) ∋
n∏

q=1

l∏

p=1

xipqq 7−→ (ei11 ⊗ · · · ⊗ eil1)⊗ · · · ⊗ (ei1n ⊗ · · · ⊗ eiln) · e ∈ V · e

is a bijective U(gln)-intertwiner.

We see that

T (D(X ;ϕ)) =
∑

h∈H

ϕ(h)T
(

n∏

q=1

l∏

p=1

xθ(h)p(q),q

)

=
∑

h∈H

ϕ(h)(eθ(h)1(1) ⊗ · · · ⊗ eθ(h)l(1))⊗ · · · ⊗ (eθ(h)1(n) ⊗ · · · ⊗ eθ(h)l(n)) · e

= e
⊗l
1 ⊗ · · · ⊗ e

⊗l
n ·

∑

h∈H

ϕ(h)h · e = e
⊗l
1 ⊗ · · · ⊗ e

⊗l
n · eΦe

by (2) in Lemma 6.1. Using (1) in Lemma 6.1, we have the

Lemma 6.2. It holds that

U(gln) ·D(X ;ϕ) ∼= V · eΦe

as a left U(gln)-module. In particular, V · eΦe ∼= Vn,l(α) if ϕ(h) = αν(h).

By the Schur-Weyl duality, we have

V ∼=
⊕

λ⊢nl

Mλ
n ⊠ Sλ.

Here Sλ denotes the irreducible unitary right Snl-module corresponding to λ. We see that

dim
(
Sλ · e

)
=
〈
indG

K 1K , Sλ
〉
Snl

= Kλ(ln),

where 1K is the trivial representation of K and 〈π, ρ〉Snl
is the intertwining number of given representations

π and ρ of Snl. Since Kλ(ln) = 0 unless ℓ(λ) ≤ n, it follows the

Theorem 6.3. It holds that

V · eΦe ∼=
⊕

λ⊢nl
ℓ(λ)≤n

Mλ
n ⊠

(
Sλ · eΦe

)
.

In particular, as a left U(gln)-module, the multiplicity of Mλ
n in V · eΦe is given by

dim
(
Sλ · eΦe

)
= rkEnd(Sλ·e)(eΦe).

Let λ ⊢ nl be a partition such that ℓ(λ) ≤ n and put d = Kλ(ln). We fix an orthonormal basis

{eλ1 , . . . , eλfλ} of Sλ such that the first d vectors eλ1 , . . . , e
λ
d form a subspace (Sλ)K consisting of K-invariant

vectors and left fλ − d vectors form the orthocomplement of (Sλ)K with respect to the Snl-invariant inner
product. The matrix coefficient of Sλ relative to this basis is

(6.3) ψλ
ij(g) =

〈
e
λ
i · g, eλj

〉
Sλ

(g ∈ Snl, 1 ≤ i, j ≤ fλ).
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We notice that this function is K-biinvariant. We see that the multiplicity of Mλ
n in V · eΦe is given by the

rank of the matrix
(
∑

h∈H

ϕ(h)ψλ
ij(h)

)

1≤i,j≤d

.

As a particular case, we obtain the

Theorem 6.4. The multiplicity of the irreducible representation Mλ
n in the cyclic module U(gln) ·det(α)(X)l

is equal to the rank of

(6.4) Fλ
n,l(α) =

(
∑

h∈H

αν(h)ψλ
ij(h)

)

1≤i,j≤d

,

where {ψλ
ij}i,j denotes a basis of the λ-component of the space C(K\Snl/K) of K-biinvariant functions on

Snl given by (6.3).

Remark 6.5. (1) By the definition of the basis {ψλ
ij}i,j in (6.3), we have Fλ

n,l(0) = I.

(2) Since αν(g−1) = αν(g) and ψλ
ij(g

−1) = ψλ
ji(g) for any g ∈ Snl, the transition matrices satisfy Fλ

n,l(α)
∗ =

Fλ
n,l(α).

(3) In Examples 6.6 and 6.8 below, the transition matrices are given by diagonal matrices. We expect that
any transition matrix Fλ

n,l(α) is diagonalizable in MatKλ(ln)
(C[α]).

Example 6.6. If l = 1, then H = G = Sn and K = {1}. Therefore, for any λ ⊢ n, we have

(6.5) Fλ
n,1(ϕ) =

n!

fλ

〈
ϕ, χλ

〉
Sn

I

by the orthogonality of the matrix coefficients. Here χλ denotes the irreducible character ofSn corresponding
to λ. In particular, if ϕ = αν(·), then

(6.6) Fλ
n,1(α) = fλ(α)I

since the Fourier expansion of αν(·) (as a class function on Sn) is

(6.7) αν(·) =
∑

λ⊢n

fλ

n!
fλ(α)χ

λ,

which is obtained by specializing the Frobenius character formula for Sn (see, e.g. [Mac]).

Example 6.7. Let us calculate F
(nl)
n,l (α) by using Theorem 6.4. Since S(nl) is the trivial representation, it

follows that (S(nl))K = S(nl) and

F
(nl)
n,l (α) =

∑

h∈H

αν(h) 〈e · h, e〉=
∑

σ1,...,σl∈Sn

αν(σ1) . . . αν(σl) = ((1 + α)(1 + 2α) . . . (1 + (n− 1)α))
l
,

where e denotes a unit vector in S(nl).

Example 6.8. Let us calculate F
(nl−1,1)
n,l (α) by using Theorem 6.4. As is well known, the irreducible (right)

Snl-module S(nl−1,1) can be realized in Cnl as follows:

S(nl−1,1) =

{
(xj)

nl
j=1 ∈ Cnl

∣∣∣∣∣

nl∑

j=1

xj = 0

}
.
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This is a unitary representation with respect to the ordinary hermitian inner product 〈·, ·〉 on Cnl. It is
immediate to see that

(
S(nl−1,1)

)K
=
{
(xj)

nl
j=1 ∈ S(nl−1,1)

∣∣∣xpl+1 = xpl+2 = · · · = x(p+1)l (0 ≤ p < n)
}
.

Take an orthonormal basis e1, . . . , en−1 of
(
S(nl−1,1)

)K
by

ej =
1√
nl

(
l︷ ︸︸ ︷

ωj , . . . , ωj,

l︷ ︸︸ ︷
ω2j , . . . , ω2j , . . . ,

l︷ ︸︸ ︷
ωnj, . . . , ωnj

)
(1 ≤ j ≤ n− 1),

where ω is a primitive n-th root of unity. Then, the (i, j)-entry of the transition matrix F
(nl−1,1)
n,l (α) is

∑

h∈H

αν(h) 〈ei · h, ej〉=
1

nl

∑

σ1,...,σl∈Sn

n∑

p=1

l∑

q=1

αν(σ1) . . . αν(σl)ωσq(p)i−pj

=

(
∑

τ∈Sn

αν(τ)

)l−1(
1

n

∑

σ∈Sn

n∑

p=1

αν(σ)ωσ(p)i−pj

)
.

The first factor is ((1 + α)(1 + 2α) . . . (1 + (n− 1)α))
l−1

. We show that

1

n

∑

σ∈Sn

n∑

p=1

αν(σ)ωσ(p)i−pj = (1 − α)(1 + α)(1 + 2α) . . . (1 + (n− 2)α)δij (i, j = 1, 2, . . . , n− 1).

For this purpose, by comparing the coefficients of αn−m in both sides, it is enough to prove

1

n

∑

σ∈Sn

ν(σ)=n−m

n∑

p=1

ωσ(p)i−pj =

{[
n− 1

m− 1

]
−
[
n− 1

m

]}
δij (i, j,m = 1, 2, . . . , n− 1),

where
[
n
m

]
denotes the Stirling number of the first kind (see, e.g. [GKP] for the definition). Since

# {σ ∈ Sn ; ν(σ) = n−m, σ(p) = x} =

{[
n−1
m−1

]
x = p,[

n−1
m

]
x 6= p

for each p, x ∈ [n], it follows that

1

n

∑

σ∈Sn

n∑

p=1

αν(σ)ωσ(p)i−pj =
1

n

n∑

p=1

ω−pj





[
n− 1

m− 1

]
ωpi +

∑

x 6=p

[
n− 1

m

]
ωxi





=

{[
n− 1

m− 1

]
−
[
n− 1

m

]}
1

n

n∑

p=1

ωp(i−j)

=

{[
n− 1

m− 1

]
−
[
n− 1

m

]}
δij ,

which is the required conclusion. Here we notice that
∑

x 6=p ω
xi = −ωpi since 1 ≤ i < n. Consequently, we

obtain

F
(nl−1,1)
n,l (α) =

(
(1− α) ((1 + α)(1 + 2α) . . . (1 + (n− 2)α))l (1 + (n− 1)α)l−1δij

)
1≤i,j≤n−1

,

so that the multiplicity of M(nl−1,1)
n in Vn,l(α) is zero if α ∈ {1,−1,−1/2, . . . ,−1/(n − 1)} and n − 1

otherwise.
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The trace of the transition matrix Fλ
n,l(α) is

(6.8) fλ
n,l(α) = trFλ

n,l(α) =
∑

h∈H

αν(h)ωλ(h),

where ωλ is the zonal spherical function for λ with respect to K defined by

ωλ(g) =
1

|K|
∑

k∈K

χλ(kg) (g ∈ Snl).

This is regarded as a generalization of the modified content polynomial since fλ
n,1(α) = fλfλ(α) as we see

above. It is much easier to handle these polynomials than the transition matrices. If we could prove that
a transition matrix Fλ

n,l(α) is a scalar matrix, then we would have Fλ
n,l(α) = d−1fλ

n,l(α)I (d = dim(Sλ)K)

and hence we see that the multiplicity of Mλ
n in Vn,l(α) is completely controlled by the single polynomial

fλ
n,l(α). In this sense, it is desirable to obtain a characterization of the irreducible representations whose
corresponding transition matrices are scalar as well as to get an explicit expression for the polynomials
fλ
n,l(α). Here we give a sufficient condition for λ ⊢ nl such that Fλ

n,l(α) is a scalar matrix.

Proposition 6.9. (1) Denote by NH(K) the normalizer of K in H. The transition matrix Fλ
n,l(α) is

scalar if (Sλ)K is irreducible as a NH(K)-module.

(2) If λ is of hook-type (i.e. λ = (nl − r, 1r) for some r < n), then Fλ
n,l(α) is scalar.

Proof. Notice that NH(K) ∼= Sn. Consider a linear map T ∈ End((Sλ)K) given by

T (x) =

d∑

j=1

(
∑

h∈H

αν(h)
〈
x · h, eλj

〉
Sλ

)
e
λ
j (x ∈ (Sλ)K),

where d = dim(Sλ)K . It is direct to check that T gives an intertwiner of (Sλ)K as a NH(K)-module. Hence,
by Schur’s lemma, T is a scalar map (and Fλ

n,l(α) is a scalar matrix) if (Sλ)K is an irreducibleNH(K)-module.

When λ = (nl − r, 1r) for some r < n, it is proved in [AMT, Proposition 5.3] that (S(nl−r,1r))K ∼= S(n−r,1r)

as NH(K)-modules. Thus we have the proposition.

Example 6.10. Let us calculate f
(nl−1,1)
n,l (α). We notice that χ(nl−1,1)(g) = fixnl(g)− 1 where fixnl denotes

the number of fixed points in the natural action Snl y [nl]. Hence we see that

f
(nl−1,1)
n,l (α) =

∑

h∈H

αν(h) 1

|K|
∑

k∈K

(fixnl(kh)− 1) =
∑

h∈H

αν(h) 1

|K|
∑

k∈K

∑

x∈[nl]

δkhx,x −
∑

h∈H

αν(h).

It is easily seen that khx 6= x for any k ∈ K if hx 6= x (x ∈ [nl]). Thus it follows that

1

|K|
∑

k∈K

∑

x∈[nl]

δkhx,x =
∑

x∈[nl]

δhx,x
1

|K|
∑

k∈K

δkx,x =
1

l
fixnl(h) (h ∈ H).

Therefore we have

f
(nl−1,1)
n,l (α) =

1

l

∑

h∈H

αν(h) fixnl(h)−
∑

h∈H

αν(h) = f
(n)
n,1 (α)

l−1f
(n−1,1)
n,1 (α)

= (n− 1)(1− α)(1 − (n− 1)α)l−1
n−2∏

i=1

(1 + iα)l.

Since the transition matrix F
(nl−1,1)
n,l is a scalar one and its size is dimS(n−1,1) = n−1, we get F

(nl−1,1)
n,l (α) =

(1− α)(1 − (n− 1)α)l−1
∏n−2

i=1 (1 + iα)lIn−1 again.

We will investigate these polynomials fλ
n,l(α) and their generalizations in [K].
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6.2 Irreducible decomposition of V2,l(α) and Jacobi polynomials

In this section, as a particular example, we consider the case where n = 2 and calculate the transition matrix
Fλ
2,l(α) explicitly. Since the pair (S2l,K) is a Gelfand pair (see, e.g. [Mac]), it follows that

Kλ(l2) =
〈
indS2l

K 1K , Sλ
〉
S2l

= 1

for each λ ⊢ 2n with ℓ(λ) ≤ 2. Thus, in this case, the transition matrix is just a polynomial and is given by

(6.9) Fλ
2,l(α) = trFλ

2,l(α) =
∑

h∈H

αν(h)ωλ(h) =

l∑

s=0

(
l

s

)
ωλ(gs)α

s.

Here we put gs = (1, l+ 1)(2, l+ 2) . . . (s, l + s) ∈ S2n. Now we write λ = (2l− p, p) for some p (0 ≤ p ≤ l).
The value ω(2l−p,p)(gs) of the zonal spherical function is calculated by Bannai and Ito [BI, p.218] as

ω(2l−p,p)(gs) = Qp(s;−l− 1,−l− 1, l) =

p∑

j=0

(−1)j
(
p

j

)(
2l− p+ 1

j

)(
l

j

)−2(
s

j

)
,

where

Qn(x;α, β,N) = 3F̃2

(−n, n+ α+ β + 1,−x
α+ 1,−N ; 1

)

=

N∑

j=0

(−1)j
(
n

j

)(−n− α− β − 1

j

)(−α− 1

j

)−1(
N

j

)−1(
x

j

)

is the Hahn polynomial (see also [Mac, p.399]). We also denote by n+1F̃n

(
a1,...,ap

b1,...,bq−1,−N
;x
)
the hypergeo-

metric polynomial

pF̃q

(
a1, . . . , ap

b1, . . . , bq−1,−N
;x

)
=

N∑

j=0

(a1)j . . . (ap)j
(b1)j . . . (bq−1)j(−N)j

xj

j!

for p, q,N ∈ N in general (see [AAR]). We now re-prove Theorem 4.1 as follows:

Theorem 6.11. Let l be a positive integer. It holds that

F
(2l−p,p)
2,l (α) =

l∑

s=0

(
l

s

)
Qp(s; l− 1, l − 1, l)αs = (1 + α)l−pGl

p(α)

for p = 0, 1, . . . , l.

Proof. Let us put x = −1/α. Then we have

l∑

s=0

(
l

s

)
Qp(s; l − 1, l− 1, l)αs =

p∑

j=0

(−1)j
(
p

j

)(
2l− p+ 1

j

)(
l

j

)−1

αj(1 + α)l−j

= x−l(x− 1)l−p

p∑

j=0

(
p

j

)(
2l− p+ 1

j

)(
l

j

)−1

(x− 1)p−j

and

(1 + α)l−pGl
p(α) = x−l(x− 1)l−p

p∑

j=0

(−1)j
(
p

j

)(
l − p+ j

j

)(
l

j

)−1

(−x)p−j .
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Here we use the elementary identity

l∑

s=0

(
l

s

)(
s

j

)
αs =

(
l

j

)
αj(1 + α)l−j .

Hence, to prove the theorem, it is enough to verify

(6.10)

p∑

i=0

(
p

i

)(
l − p+ i

i

)(
l

i

)−1

xp−i =

p∑

j=0

(
p

j

)(
2l − p+ 1

j

)(
l

j

)−1

(x− 1)p−j .

Comparing the coefficients of Taylor expansion of these polynomials at x = 1, we notice that the proof is
reduced to the equality

(6.11)

r∑

i=0

(
l− i

l − r

)(
l − p+ i

l − p

)
=

(
2l− p+ 1

r

)

for 0 ≤ r ≤ p, which is well known (see, e.g. (5.26) in [GKP]). Hence we have the conclusion.

Thus we obtain the irreducible decomposition

V2,l(−1) ∼= M(l,l)
2 , V2,l(α) ∼=

⊕

0≤p≤l

Gl
p(α) 6=0

M(2l−p,p)
2 (α 6= −1)(6.12)

of V2,l(α) again.

Remark 6.12. (1) The calculation above uses the advantage for the fact that (Snl,S
n
l ) is the Gelfand pair

only when n = 2.

(2) We have used the result in [BI, p.218] for the theorem. It is worth mentioning that one may prove
conversely the result in [BI, p.218] from Theorem 4.1.

Acknowledgement. The author would thank Professor Itaru Terada for noticing that his work [AMT] is
useful for the discussion in Section 6.2.
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