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Abstract

The Finsleroid-Finsler space is constructed over an underlying Riemannian space
by the help of a scalar g(x) and an input 1-form b of unit length. Explicit form of the
entailed tensors, as well as the respective spray coefficients, is evaluated. The involutive
case means the framework in which the characteristic scalar g(x) may vary in the direction
assigned by b, such that dg = µb with a scalar µ(x). We show by required calculation
that the involutive case realizes through the A-special relation the picture that instead
of the Landsberg condition Ȧijk = 0 we have the vanishing α̇ijk = 0 with the normalized
tensor αijk = Aijk/||A||. Under the involutive condition, the derivative tensor Ai|j and the
curvature tensor Ri

k have explicitly been found, assuming the input 1-form b be parallel.

Key words: Finsler metrics, spray coefficients, curvature tensors.
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1. Introduction and synopsis of new conclusions

Among various possible methods to specify the Finsler space, raising forth the
Landsberg condition Ȧijk = 0 occupies an important geometrical role (see [1-3]). In
the Finsleroid–Finsler space, the condition can be realized in a simple and attractive way
[4-7]. At the same time, the condition requires the Finsleroid charge g to be a constant.
How should we overcome the restriction?

At the first sight, in the Finsler geometry the weak Landsberg condition Ȧi = 0 is to
be considered as being a next–step extension of the proper Landsberg condition Ȧijk = 0.
However, in the Finsleroid–Finsler space both the conditions are tantamount (because of
the particular representation (1.13) of the Cartan tensor Aijk).

A scrupulous analysis performed has revealed a remarkable observation that an at-
tractive method to permit g 6= const is to use the nullification condition α̇ijk = 0 with
the normalized Cartan tensor αijk (which is defined by (1.18)). Clearly, the condition is
attained when the A-special relation (2.5) holds. Remarkably, the relation occurs being
reachable upon assuming that the scalar g(x) reveals the involutive behaviour: dg = µ(x)b
(see (3.1)).

In Section 2 we indicate the interesting implications of the A-special condition, in-
cluding the observation that the skew–part of the hv-curvature tensor is proportional
to the indicatrix curvature tensor (according to (2.15)). It is the part that enters the
right-hand side of the covariant conservation law (2.20).

In Section 3 the involutive case is formulated, showing that under the b-parallel
condition (which reads ∇b = 0, where ∇ means the Riemannian covariant derivative
operative in the associated Riemannian space) the case entails the A-special relation.

In Conclusions, several important ideas motivated our approach are emphasized.
Clear explicit representations of the basic tensors involved are obtained systemati-

cally in Appendix A by means of direct calculation.
In Appendix B, we indicate the explicit form for the spray coefficients of the space

under study. They include the part Ek which involves the gradient of g(x) (see (B.20)
and (B.21)).

Appendix C is devoted to evaluations in the involutive case. Two key tensors have
been explicitly evaluated, namely, Ai|j (given by (C.19)) and Ri

k (given by (C.29)), as-
suming that the 1-form b is parallel (such that ∇b = 0).

We deal with the Finsler space notion which is specified by the condition that the
Finslerian metric function K(x, y) be of the functional dependence

K(x, y) = Φ (g(x), bi(x), aij(x), y) (1.1)

of the particular case given by the formulas (A.36)–(A.41) of Appendix A. In (1.1), the
argument set

(
g(x), bi(x), aij(x)

)
involves, respectively, a scalar, a covariant vector field,

and a Riemannian metric tensor.
The Finsleroid–Finsler space can be constructed as follows. Let M be an

N -dimensional C∞ differentiable manifold, TxM denote the tangent space to M at a
point x ∈ M , and y ∈ TxM\0 mean tangent vectors. Suppose we are given on M a
positive–definite Riemannian metric

S = S(x, y).

Denote by
RN = (M,S)
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the obtained N -dimensional Riemannian space. Let us also assume that the manifold M
admits a non–vanishing 1-form

b = b(x, y)

and
||b||Riemannian = 1. (1.2)

It is convenient to use the variable

q =
√
S2 − b2. (1.3)

The space RN entering the above definition is called the associated Riemannian

space. With respect to natural local coordinates in the space RN we have the local
representations

aijbibj = 1 (1.4)

and
b = bi(x)y

i, (1.5)

together with

S =
√

aij(x)yiyj. (1.6)

The reciprocity ainanj = δij is assumed, where δij stands for the Kronecker symbol. The
covariant index of the vector bi will be raised by means of the Riemannian rule

bi = aijbj ,

which inverse reads
bi = aijb

j .

We also introduce the tensor

rij(x) := aij(x)− bi(x)bj(x) (1.7)

to have the representation

q =
√

rij(x)yiyj. (1.8)

From (1.4) and (1.7) it follows that

rijb
j = 0 (1.9)

From the fundamental metric function function K, we explicitly calculate distin-
guished Finslerian tensors, including the covariant tangent vector ŷ = {yi}, the Finslerian
metric tensor {gij} together with the contravariant tensor {gij} defined by the reciprocity
conditions gijg

jk = δki , and the angular metric tensor {hij}, by making use of the following
conventional Finslerian rules in succession:

yi :=
1

2

∂K2

∂yi
, gij :=

1

2

∂2K2

∂yi∂yj
=

∂yi
∂yj

, hij := gij − lilj , (1.10)

where

li = gijl
j , lj =

yj

K
. (1.11)

After that, we can elucidate the algebraic structure of the associated Cartan tensor

Aijk :=
K

2

∂gij
∂yk

, (1.12)
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which leads to the simple representation

Aijk =
1

N

(
hijAk + hikAj + hjkAi −

1

AhAh
AiAjAk

)
(1.13)

(see (A.87)) with
Ak = gijAijk (1.14)

and

AhA
h =

N2

4
g2 (1.15)

(see (A.63)).
Owing to (1.15), the norm

||A|| =
√
AkAk (1.16)

is equal to

||A|| = N

2
|g(x)|. (1.17)

It is convenient to construct the normalized Cartan tensor

αijk :=
1

||A||Aijk (1.18)

and the vector

αk :=
1

||A||Ak (1.19)

which length is 1:
αhα

h = 1. (1.20)

We have

αijk =
1

N
(hijαk + hikαj + hjkαi − αiαjαk) (1.21)

everywhere in the Finsleroid–Finsler space.
In our analysis, an important role is played by the tensor

Hij = hij − αiαj , (1.22)

which obviously possesses the nullification properties

Hijy
j = 0, HijA

j = 0. (1.23)

The curvature of indicatrix is well–known to be described by the tensor

R̂i
j
mn :=

1

K2

(
Ah

j
mAi

h
n −Ah

j
nAi

h
m

)
. (1.24)

In the Finsleroid–Finsler space, the tensor possesses the representation

K2R̂ijmn =
1

N2
(AkAk)

(
hinhmj − himhnj

)
(1.25)

(see (A.93)).

In the next section we shall set forth an interesting special condition.
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2. A-special condition

By means of the over-dot we denote the action of the operator |mlm, such that

Ȧi = Ai|ml
m, Ȧijk = Aijk|ml

m, α̇i = αi|ml
m, α̇ijk = αijk|ml

m, (2.1)

with |m meaning the h-covariant derivative (see (B.9)).
Let us set forth the nullification

α̇ijk = 0. (2.2)

Whenever the representation (1.21) is valid, the condition (2.2) is equivalent to the van-
ishing

α̇i = 0 (2.3)

of the normalized vector (1.19).
Denote

γk =
1

2AhAh

(AmAm)|k, γ =
1

2AhAh

(AmAm)|kl
k. (2.4)

Assume that the A-special relation

Ai|k = γkAi + ηHik (2.5)

holds, where η is a scalar. The relation (2.5) can obviously be written as

αi|k = ηHik. (2.6)

Since Hiky
k = 0, from (2.5) we directly conclude that

Ȧi = γAi, (2.7)

which is obviously tantamount to (2.3). From the representation (1.13) of the tensor Aijk

we obtain

Aijk|l = γlAijk + η
1

N

(
HijHkl +HikHjl +HjkHil

)
, (2.8)

which entails

Ȧijk = γAijk. (2.9)

Also, (2.3) entails the nullification
Ḣjk = 0 (2.10)

(consider the representation (1.22) of the tensor Hjk and take into account that

hjk|l = 0

in any Finsler space), where
Ḣjk = Hjk|ml

m.

The hv-curvature tensor

Pjikl := −
(
Aijl|k −Ajkl|i + Akil|j

)
+ Aij

uȦukl − Ajk
uȦuil + Aki

uȦujl (2.11)
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(this representation is tantamount to the definition (3.4.11) on p. 56 of the book [2]) gets
reduced upon substituting (2.8) and (2.9):

Pjikl = −2η
1

N

(
HijHkl +HikHjl +HjkHil

)
+ γ(Aij

uAukl −Ajk
uAuil + Aki

uAujl). (2.12)

Let us consider the skew–part

P [ji]
kl :=

1

2
(P ji

kl − P ij
kl). (2.13)

From (2.12) it follows that

P[ji]kl = γ(Aki
uAujl −Ajk

uAuil). (2.14)

In view of the representation (1.24) of the indicatrix curvature tensor R̂i
j
mn, we may write

(2.14) as
P[ji]kl = γK2R̂jikl. (2.15)

Thus the following assertion is valid.

THEOREM 2.1. If the A-special relation (2.5) holds together with the representation

(1.13) of the Cartan tensor, then the skew–part of the hv-curvature tensor is proportional

to the indicatrix curvature tensor, according to (2.15).

Since

gjl
(
Rj

i
il|t +Rj

i
lt|i +Rj

i
ti|l

)
= P li

iuR
u
lt + P li

luR
u
ti + P li

tuR
u
il (2.16)

(see the formula (3.5.3) on p. 58 of the book [2]), we have

gjl
(
Rj

i
il|t +Rj

i
lt|i +Rj

i
ti|l

)
= 2P [li]

iuR
u
lt − P [li]

tuR
u
li. (2.17)

so that the covariant divergence of the tensor

ρij :=
1

2
(Ri

m
mj +Rm

ijm)−
1

2
gijR

mn
nm (2.18)

is given by

ρij|i = −P [lm]
muR

u
lj +

1

2
P [lm]

juR
u
lm (2.19)

which can be written as
ρij|i = Jj (2.20)

with

Jj = P [lm]
ku

(
−Ru

ljδ
k
m +

1

2
Ru

lmδ
k
j

)
. (2.21)

Using (2.15) together with (1.25) entails

Jj =
1

4
g2γ
(
hl

uh
m

k − hl
kh

m
u

)(
−Ru

ljδ
k
m +

1

2
Ru

lmδ
k
j

)
. (2.22)
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3. Finsleroid–Finsler space upon involution

Let us set forth the involution condition

gi = µbi, µ = µ(x), (3.1)

where gi = ∂g/∂xi, and formulate the following definition.

Definition. The arisen space

IFFPD
g := {FFPD

g with gi = µbi, µ = µ(x)} (3.2)

is called the involutive Finsleroid–Finsler space. The involved µ(x) is called the involution
scalar.

In the space (3.2), the quantities defined in (2.4) become simply

γk =
1

g
gk, γ =

1

g
gkl

k, (3.3)

so that the A-special relation (2.5) takes on the form

Ai|k =
1

g
gkAi + ηHik. (3.4)

We say that the space FFPD
g is b-parallel, if the 1-form b is parallel in the sense of

the associated Riemannian space, that is, when

∇ibj = 0. (3.5)

It proves that the following theorem is valid.

THEOREM 3.1. In the b-parallel involutive space IFFPD
g the A-special relation

(3.4) holds.

See Appendix C, in which all the involved evaluations (which are not short) have
been presented and the representation (C.19) has been arrived at, which belongs to the
type (3.4). The η entered the right-hand part of (3.4) can be written down from (C.19).

As a direct consequence of the above theorem,

{∇b = 0 and dg = µb} =⇒ α̇i = 0. (3.6)

From (2.4) and (3.1) we have

γ =
1

K

µ

g
b. (3.7)

With this formula, the current (2.22) takes on the explicit representation

Jj =
1

4K
µgb
(
hl

uh
m
k − hl

kh
m
u

)(
−Ru

ljδ
k
m +

1

2
Ru

lmδ
k
j

)
(3.8)

which is proportional to the involution scalar µ.
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4. Conclusions

The Finsleroid–Finsler space involves a characteristic scalar, g(x), such that the
vanishing of the scalar reduces the space to a Riemannian space. Varying g(x) entails
varying the form of the Finsleroid. The Landsberg case of the Finsleroid–Finsler space
implies strictly g = const, as a direct consequence of the formulas (1.13)–(1.15). To set a
liberty to the scalar g(x), we must overcome the restrictive case. It proves that a fruitful
idea is to substitute the condition α̇ijk = 0 with the Landsberg condition Ȧijk = 0 proper.
Would one assume ||A|| = const, one observes that α̇ijk = 0 implies Ȧijk = 0. In the
Finsleroid–Finsler space under study, g 6= const implies ||A|| 6= const (see (1.17)).

The involution condition (3.1) can be written as dg = µbi(x)dx
i which means geo-

metrically that the scalar g(x) varies in the direction assigned by the vector bi(x).
The obtained involutive curvature tensor Ri

k (given by (C.29)) is of the novel type,
being created by the gradient of the Finsleroid charge and constructed from the involutive
spray coefficients Ek. The tensor is meaningful even if the associated Riemannian space
is flat.

It would be appealing to develop in future the extensions which can go over the
b-parallel case ∇b = 0.

We have examined the conservation law for the fundamental tensor ρij , obtaining the
result (2.20)–(2.22). In the Landsberg case, the hv-curvature tensor Pijkl is well-known
to be totally symmetric in all four of its indices (see p. 60 in [2]), such that the skew-part
P [lm]

ku, and whence the right-hand part of (2.20), vanishes. Under the A-special condition,
however, the tensor is meaningful, being proportional to the indicatrix curvature tensor
in accordance with (2.15), so that the current Jj given by (2.21) is not the zero.

Various Finslerian ideas of applications (see [8-10]) can well be matched to the (g 6=
const)-Finsleroid-Finsler space.

Appendix A: Evaluation of quantities of the space FPD
g

Below, we evaluate the key objects of the space FPD
g under the general setting when

the Finsleroid charge g may depend on x, so that g = g(x). The unit norm ||b|| = 1 of the
input 1-form b is assumed. Our treatment will be of local character. Any dimension N ≥ 2
is admissible. The Riemannian squared length S2 = b2+q2 underlines the Finslerian space
under study.

It is appropriate to use the variables

ui := aijy
j, vi := yi − bbi, vm := um − bbm = rmny

n ≡ amnv
n, (A.1)

where rmn = amn − bmbn. We obtain the relations

rij =
∂vi
∂yj

, (A.2)

uiv
i = viy

i = q2, vib
i = vibi = 0, (A.3)
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rinv
n = vi, vkv

k = q2, (A.4)

and
∂b

∂yi
= bi,

∂q

∂yi
=

vi
q
. (A.5)

In terms of the variable
w =

q

b
, (A.6)

we obtain
∂w

∂yi
=

zi
b2q

, zi = bvi − q2bi ≡ bui − S2bi, (A.7)

and
yizi = 0, bizi = b2 − S2,

together with
aijzizj = S2(S2 − b2) ≡ S2b2λ,

where

λ = w2 ≡ 1

b2
(S2 − b2). (A.8)

We also introduce the η–tensor by means of the components

ηij := rij −
1

q2
vivj , ηij := rij −

1

q2
vivj , ηij := rij − 1

q2
vivj. (A.9)

It follows directly that
ηnj = anmηmj , ηij = ainηjn, (A.10)

ηniy
i = 0, (A.11)

ηijb
j = 0, ηijz

j = 0, aijηij = N − 2, (A.12)

and

∂

(
1

q
vk

)

∂yj
=

1

q
ηkj ,

∂ηij
∂yk

= − 1

q2
(viηjk + vjηik). (A.13)

We shall also use the vector

ek :=
b

q2
vk − bk ≡ b

q2
uk −

S2

q2
bk, (A.14)

obtaining

ek = −q

∂

(
b

q

)

∂yk
, (A.15)

∂ek
∂yj

=
b

q2
ηkj −

1

q2
vkej =

b

q2
ηkj −

1

b
(ek + bk)ej , (A.16)

eky
k = 0, (A.17)
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ekb
k = − 1

w2
λ, ejηij = 0,

∂ηij
∂yk

= −1

b
(eiηjk + biηjk + ejηik + bjηik), (A.18)

and
zk = q2ek, (A.19)

together with

w4aijeiej = (1 + w2)λ ≡ S2

b2
λ. (A.20)

Using the generating function V = V (x, w) defined from the representation

K = bV, (A.21)

we obtain
∂K

∂yi
= biV +

1

bq
ziV

′,
∂2K

∂yi∂yj
=

1

q
ηijV

′ +
1

b3q2
zizjV

′′. (A.22)

The prime {′} means differentiation with respect to w. Taking into account the Finslerian
rules

li =
∂K

∂yi
, yi = Kli, hij = K

∂2K

∂yi∂yj
, gij = hij + lilj , (A.23)

from (A.22) we find the representations

gij =
1

w
V V ′ηij +

V V ′

bq
(bizj + bjzi) + V 2bibj +

1

b2q2

(
V V ′′ + (V ′)2

)
zizj (A.24)

and

hij =
1

w
V V ′ηij +

1

b2q2
V V ′′zizj . (A.25)

The determinant of the metric tensor is found to read

det(gij) =
1

w2
γ

(
1

w
V V ′

)N−2

V 3 det(aij) (A.26)

with
γ = w2V ′′. (A.27)

Below, the scalar g = g(x) is specified as follows:

− 2 < g(x) < 2. (A.28)

We shall apply the convenient notation

h =

√
1− 1

4
g2, G =

g

h
. (A.29)

The Finsleroid–characteristic quadratic form

B(x, y) := b2 + gbq + q2 ≡ 1

2

[
(b+ g+q)

2 + (b+ g−q)
2
]
> 0, (A.30)

where g+ = 1
2
g + h and g− = 1

2
g − h, is of the negative discriminant

D{B} = −4h2 < 0 (A.31)
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and, therefore, is positively definite.
We shall use also the function τ(x, w) defined by

B = b2τ, (A.32)

obtaining from (A.30) the quadratic–case representation

τ = 1 + g(x)w + w2. (A.33)

We use this function to produce the generating function V according to the rule

V = exp

∫
wdw

τ
. (A.34)

Since the function (A.33) is representable in the form

τ = h2 +
(
w +

g

2

)2
, (A.35)

the integration process in (A.34) is simple, namely, the resultant Finslerian metric function
K = bV (see (A.21)) is given by the following definition.

Definition. The scalar function K(x, y) given by the formulas

K(x, y) =
√

B(x, y)J(x, y) (A.36)

and
J(x, y) = e−

1

2
G(x)f(x,y), (A.37)

where

f = − arctan
G

2
+ arctan

L

hb
, if b ≥ 0, (A.38)

and

f = π − arctan
G

2
+ arctan

L

hb
, if b ≤ 0, (A.39)

with
L = q +

g

2
b, (A.40)

is called the Finsleroid–Finsler metric function.

The function K has been normalized such that

0 ≤ f ≤ π,

f = 0, if q = 0 and b > 0; f = π, if q = 0 and b < 0,

and the Finsleroid length K(x, bi(x)) of the vector bi is equal to the Riemannian length
scalar ||b|| = 1, such that

K
(
x, bi(x)

)
= 1. (A.41)

Sometimes it is convenient to use also the function

A = b+
g

2
q. (A.42)
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The identities
L2 + h2b2 = B, A2 + h2q2 = B (A.43)

are valid.
The zero–vector y = 0 is excluded from consideration. The positive (not absolute)

homogeneity holds:
K(x, λy) = λK(x, y), λ > 0, ∀x, ∀y.

Given the function K of the form (A.36), the generating function is obtained from
(A.32) to read

V = τJ (A.44)

Using (A.37), it is easy to verify that

(
lnV

)′
=

w

τ
, (A.45)

which manifests that the integral representation (A.34) takes place.

Definition. The arisen space

FFPD
g := {RN ; bi(x); g(x); K(x, y)} (A.46)

is called the Finsleroid–Finsler space.

Definition. The space RN entering the above definition is called the associated

Riemannian space.

Definition. Within any tangent space TxM , the Finsleroid–metric function K(x, y)
produces the Finsleroid

FPD
g {x} := {y ∈ FPD

g {x} : y ∈ TxM,K(x, y) ≤ 1}. (A.47)

Definition. The Finsleroid Indicatrix IPD
g {x} ∈ TxM is the boundary of the

Finsleroid:
IPD
g {x} := {y ∈ IPD

g {x} : y ∈ TxM,K(x, y) = 1}. (A.48)

Since at g = 0 the FFPD
g –space is Riemannian, then the body FPD

g=0 {x} is a unit ball

and IPD
g=0 {x} is a unit sphere.

Definition. The scalar g(x) is called the Finsleroid charge. The 1-form b = bi(x)y
i

is called the Finsleroid–axis 1-form.

The determinant (A.26) takes on the form

det(gij) = V 2N 1

τN
det(aij). (A.49)

The contravariant components gij of the associated Finslerian metric tensor can be
given by the representation

1

w
V V ′gij = aij + pbibj + r(biyj + bjyi) + tyiyj (A.50)

with
r = − g

bw
, p+ br = 0, t =

g

B
(1 + gw). (A.51)
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Therefore,
K2

B
gij = aij +

g

w
bibj − g

bw
(biyj + bjyi) +

g

Bw
(1 + gw)yiyj. (A.52)

From (A.24) it follows that

B

K2
gij = ηij + w2(biej + bjei) + τbibj +

w2

τ
(τ − gw) eiej . (A.53)

In this way we obtain

B

K2
gij = aij +

g

B

[
Bwbibj −

1

w
vivj + bw(bivj + bjvi)− b2w3bibj

]
.

Eventually, we obtain the Finsleroid metric tensor representation

B

K2
gij = aij +

g

B

[
b2(1 + gw)wbibj + bw(bivj + bjvi)−

1

w
vivj

]
. (A.54)

We can explicate the associated vector

Ak = gijAijk (A.55)

by applying the known general formula

Ak = K
∂ln
(√

det(gij)
)

∂yk
,

so that

Ak =

(
ln

(√
det(gij)

))′

K
∂w

∂yk
. (A.56)

From (A.52) it follows that

1

w
V V ′gknbk = bn − g

w

bτ
yn. (A.57)

The first member of (A.22) entails the equality

yk =
1

b
K2

(
bk +

b2w2

B
ek

)
. (A.58)

With

K
∂w

∂yk
= V wek

(see (A.7) and (A.19)) and (A.49), the representation (A.56) of the vector Ak is found to
read

Ak = −KNg

2B
qek. (A.59)

Using here (A.58), we may also write

Ak =
NK

2
g
1

bw

(
bk −

b

K2
yk

)
. (A.60)
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Another convenient form is

Ak =
NK

2
g
1

qB
(q2bk − bvk). (A.61)

From (A.57) and (A.60) it follows immediately that

Ak =
Ng

2Kbw

[
Bbk − b(1 + gw)yk

]
. (A.62)

It can readily be seen that the representations (A.60) and (A.62) entail

AkAk =
N2g2

4
. (A.63)

We have

ykb
k = b

K2

B
(1 + gw), (A.64)

Akb
k =

KNg

2B
bw, bkA

k =
Ng

2K
bw, (A.65)

and

Kgkjbj =
2bw

Ng
Ak + blk, (A.66)

together with

K2gkjbj = Bbk − gbwyk. (A.67)

The relation (A.59) can be inverted, yielding

ek = − 2B

KNgq
Ak. (A.68)

Taking into account the formulas (A.7), (A.19), and (A.68), we may write simply

∂w

∂yi
= −2B

b2
1

KNg
Ai. (A.69)

This formula is convenient to use in many involved evaluations.

With (A.52), it follows that

Kgkjgj =
1

K
B
(
gk − (bg)bk

)
+

2bw

Ng
(bg)Ak +

2

N
[b(bg)− (yg)]Ak + b(bg)lk. (A.70)

Now we perform differentiation of the functions indicated in (A.29) with respect to
the Finsleroid parameter g, obtaining

∂h

∂g
= −1

4
G,

∂G

∂g
=

1

h3
,

∂

(
G

h

)

∂g
=

1

h4

(
1 +

g2

4

)
, (A.71)

∂f

∂g
= − 1

2h
+

b

B

(1
4
Gq +

1

2h
b
)
, (A.72)
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and

2K
∂K

∂g
= bqJ2 − 1

h3
fK2 +G

[
1

2h
− b

B

(1
4
Gq +

1

2h
b
)]

K2, (A.73)

or

∂K2

∂g
= MK2, (A.74)

where

M =
bq

B
− 1

h3
f +

1

2

G

hB
(q2 +

1

2
gbq),

or

M = − 1

h3
f +

1

2

G

hB
q2 +

1

h2B
bq. (A.75)

Using

ei = −bi +
b

q2
vi,

we find

Mi =
4q2

gNBK
Ai. (A.76)

Differentiating (A.74) with respect to yi just yields

∂yi
∂g

= Myi +
1

2
MiK

2. (A.77)

In view of (A.59) and (A.76), we may write

∂yi
∂g

= Myi −
q2qK2

B2
ei, (A.78)

or
∂yi
∂g

= Myi +
2q2K

gNB
Ai. (A.79)

With the tensor

Hij = hij −
AiAj

AnAn
, (A.80)

we can arrive at

∂gij
∂g

= Mgij +
q2

B

2

gN
(Ailj + liAj)−

bq

B
Hij −

2bq

B

4

g2N2
AiAj. (A.81)

From (A.61) we obtain the simple result

∂Ai

∂g
=

(
1

2
M +

1

g
− b

B
q

)
Ai. (A.82)

From (A.62) it follows that

∂

(
K

Ng
Ak

)

∂g
= −1

2

(
yk − bbk

)
.
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From (A.75) we get

∂M

∂g
=

3g

4h2
M +

1

h2

q2

B
− 1

h2

q2

B2

(
b2 +

1

2
gbq

)
.

Next, with (A.62) we now evaluate the derivative

∂Ak

∂yn
= − 1

K
Anl

k − Ng

2Kw
(1 + gw)

(
δkn − lkln −

4

N2g2
AkAn

)
− 2

N

1

K
AkAn. (A.83)

The previous representation can be written as

∂Ak

∂yn
= − 1

K
Anl

k − Ng

2Kw
(1 + gw)Hk

n −
2

N

1

K
AkAn (A.84)

in terms of the tensor

Hk
n = δkn − lkln −

4

N2g2
AkAn (A.85)

given by (A.80).
The Cartan tensor

Aijk =
1

2
K

∂gij
∂yk

(A.86)

takes on the form

Aijk =
1

N

(
hjkAi + hikAj + hijAk −

1

AhAh

AiAjAk

)
, (A.87)

or in terms of the tensor (A.85),

Aijk =
1

N

(
HjkAi +HikAj +HijAk +

2

AhAh

AiAjAk

)
. (A.88)

We can conclude that

AkAijk =
1

N

(
AiAj + hijAkA

k
)
≡ 1

N

(
2AiAj +HijAkA

k
)
. (A.89)

Also, we find

AijkA
k
mn =

1

N
AiAjmn +

1

N
AjAimn +

2

N2
HijAmAn +

1

N

1

N
AkA

kHijHmn. (A.90)

From (A.87) it follows that

AijkAijk =
1

N

(
3− 2

N

)
AhAh. (A.91)

The curvature of indicatrix is well–known to be described by the tensor

R̂i
j
mn :=

1

K2

(
Ah

j
mAi

h
n −Ah

j
nAi

h
m

)
. (A.92)

Inserting (A.90) in (A.92), we find that

K2R̂ijmn =
1

N2
(AkAk)

(
hinhmj − himhnj

)
. (A.93)
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Contracted objects

Rim = R̂i
j
mj (A.94)

and
R = R̂i

j
mjg

im (A.95)

are found to be

Rim =
1

K2

(
2

N
− 1

)
1

N
(AkAk)him (A.96)

and

R =
1

K2

(
2

N
− 1

)
(N − 1)

1

N
(AkAk). (A.97)

If we consider the derivative

∂Ak

∂yn
= gkm

∂Am

∂yn
+

2

K
AkmnA

m

and apply (A.84) together with (A.89), we obtain

∂Ak

∂yn
= − 1

K
Anlk −

Ng

2Kw
Hkn +

2

N

1

K
AkAn. (A.98)

Also,
τij := Aij − AkAi

k
j , (A.99)

where

Aij := K
∂Ai

∂yj
+ liAj . (A.100)

The identities
τijy

j = 0, τijA
j = 0

hold. We obtain

τij = −N

4

g(2b+ gq)

q
Hij. (A.101)

Differentiating (A.85) leads to

K
∂Hk

n

∂ym
= −Hk

mln − lkHnm +
2

Ng

1

w
HnmA

k +
2

Ng

1

w
(1 + gw)Hk

mAn. (A.102)

If we apply (A.98) to (A.87), we get

∂Aijk

∂yn
=

1

K

2

N
(AjknAi + AiknAj + AijnAk)−

1

K

(
ljAkni + liAknj + lkAijn

)

+
1

K

1

N

2

N

[
HjkAiAn +HikAjAn +HijAkAn

]

− g

2Kw

[
HjkHin +HikHjn +HjiHkn

]
. (A.103)

If we introduce the tensor
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τijkn := K
∂Aijk

∂yn
+ ljAkni+ liAknj+ lkAijn−AjkmA

m
in−AikmA

m
jn−AjimA

m
kn, (A.104)

then we can conclude from (A.103) and (A.90) that

τijkn = −g(2 + gw)

4w

[
HjkHin +HikHjn +HjiHkn

]
. (A.105)

In calculating the Finsleroid–case spray coefficients there appears the vector

Ek := M(yg)yk +
1

2
K2(yg)Mhg

kh − 1

2
MK2ghg

kh. (A.106)

Noting (A.76), we obtain

Ek = M(yg)yk +K
2b2w2

gNB
(yg)Ak − 1

2
MK2ghg

kh. (A.107)

We may calculate the derivative

Ek
n :=

∂Ek

∂yn
. (A.108)

We obtain

Ek
n = MT k

n +K
2b2w2

gNB
Akgn

+
2b2w2

gNB
(yg)Akln −

4w

gN
(yg)

2

Ng
AnA

k

+
4b2w3

gNB
(yg)

2

Ng
AnA

k +
2b2w2

gNB
(yg)

[
Anl

k − Ng

2w
(1 + gw)Hk

n

]
− 1

2
K2Mnghg

kh (A.109)

with

T k
n = gny

k + (yg)δkn −
1

2
Kghg

khln −
1

2
K

∂
(
Kghg

kh
)

∂yn
.

The contraction Kghg
kh is to be taken from (A.70).

Using (A.81) yields

(
∂gkj
∂g

gi +
∂gik
∂g

gj −
∂gij
∂g

gk

)
Ak =

(
MAj +

q2

B

gN

2
lj −

2bq

B
Aj

)
gi +

(
MAi +

q2

B

gN

2
li −

2bq

B
Ai

)
gj

−
(
Mgij +

q2

B

2

gN
(Ailj + liAj)−

bq

B
Hij −

2bq

B

4

g2N2
AiAj

)
gkA

k. (A.110)
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We can write down simple explicit representations for the partial derivatives with
respect to x, using the notation

gj =
∂g

∂xj
, sk = ym∇kbm. (A.111)

We may use the equality
∂w

∂xk
= − 1

b2q
S2sk +∆ (A.112)

(see (A.6)), where ∆ symbolizes the summary of the terms which involve partial deriva-
tives of the input Riemannian metric tensor aij with respect to the coordinate variables
xk. We use the Riemannian covariant derivative

∇ibj := ∂ibj − bka
k
ij, (A.113)

where

akij :=
1

2
akn(∂jani + ∂ianj − ∂naji) (A.114)

are the Christoffel symbols given rise to by the associated Riemannian metric.
First of all, we differentiate the quadratic form B given by (A.30), obtaining

∂B

∂xj
= bqgj +

2

b
(B − S2)sj − g

1

q
S2sj +∆. (A.115)

Also, starting with (A.21), we find

∂K

∂xj
=

1

2
MKgj +K

b

B
gwsj +∆, (A.116)

where we have used (A.74).
Eventually, the following sufficiently simple representation is obtained:

∂Ai

∂xj
=

(
1

2
M +

1

g
− b

B
q

)
Aigj +

NK

2
g
1

qB
S2∇jbi

+
b

B
gwsjAi −

1

B

(
2

b
(B − S2)sj − g

1

q
S2sj

)
Ai

+
1

w2

1

b3
S2sjAi −

NK

2
g
1

qB

1

b
S2sjbi +∆. (A.117)

Appendix B: Finsleroid–Finsler spray coefficients

Evaluations involve the induced spray coefficients

Gk = γk
ijy

iyj, (B.1)

which entail the coefficients

Gi
k : =

∂Gi

∂yk
, Gi

km : =
∂Gi

k

∂ym
, Gi

kmn : =
∂Gi

km

∂yn
, (B.2)
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and

Ḡi =
1

2
Gi, Ḡi

k =
1

2
Gi

k, Ḡi
km =

1

2
Gi

km, Ḡi
kmn =

1

2
Gi

kmn. (B.3)

The homogeneity gives rise to the identities

2Gi = Gi
ky

k, Gi
k = Gi

kmy
m, Gi

kmny
n = 0. (B.4)

The pair (x, y), — the so–called line element, — is the argument of the Finslerian
objects;

γk
ij :=

1

2
gkn
(
∂gni
∂xj

+
∂gnj
∂xi

− ∂gji
∂xn

)
(B.5)

are the Christoffel symbols given rise to by the Finsleroid–Finsler metric function K.
Below, the abbreviation h means horizontal. On the basis of the above coefficients

the Finslerian connection coefficients Γk
ij of h–type are constructed according to the

well-known rule:
Γk

ij = γk
ij − Ḡn

iCn
k
j − Ḡn

jCn
k
i + ḠknCnij (B.6)

with

Ḡn
i = γn

ijy
j − 2ḠmCm

n
i = Γn

ijy
j =

1

2
Gn

i (B.7)

and
2Ḡm = γm

ijy
iyj = Ḡm

iy
i = Γm

ijy
iyj = Gm, (B.8)

where Cnij = AnijK
−1 and Cn

k
j = An

k
jK

−1. By the help of these coefficients the
h-covariant derivatives of tensors are constructed as exemplified by

Ai|j := ∂jAi − Ḡk
j

∂Ai

∂yk
− Γk

ijAk (B.9)

(see [1,2]).
For the hh-curvature tensor Ri

k we use the formula

K2Ri
k := 2

∂Ḡi

∂xk
− ∂Ḡi

∂yj
∂Ḡj

∂yk
− yj

∂2Ḡi

∂xj∂yk
+ 2Ḡj ∂2Ḡi

∂yk∂yj
(B.10)

(which is tantamount to the definition (3.8.7) on p. 66 of the book [2]). The concomitant
tensors

Ri
km :=

1

3K

(
∂(K2Ri

k)

∂ym
− ∂(K2Ri

m)

∂yk

)
, (B.11)

and

Rn
i
km :=

∂(KRi
km)

∂yn
−
(
Ȧi

nm|k − Ȧi
nk|m + Ȧi

ukȦ
u
nm − Ȧi

umȦ
u
nk

)
(B.12)

(see p. 60 in the book [2]) arise. We have

Ri
ky

k = 0 (B.13)

and
Ri

kmy
m = KRi

k. (B.14)
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In calculations, it proves convenient to write the derivative (B.9) in the alternative
form

Ai|j = ∂jAi − Ḡk
jτik

1

K
− Γ̃k

ijAk + Ḡk
jAkli

1

K
(B.15)

(li = gikl
k) with

Γ̃k
ij = γk

ij − Ḡn
iAn

k
j

1

K
+ ḠknAnij

1

K
(B.16)

and
τij = Aij − AkAi

k
j, (B.17)

where

Aij = K
∂Ai

∂yj
+ liAj. (B.18)

We know that

τij = −N

4

g(2b+ gq)

q
Hij (B.19)

(see (A.101)).

By means of attentive (lengthy) evaluations we can arrive at the following assertion.

THEOREM B1. The explicit form of the spray coefficients of the Finsleroid–Finsler

space reads

Gk = gq
[
akj+(pbk+ryk)bj

]
yh(∇hbj−∇jbh)+

g

q

(
yk − bbk

)
(ys)+akmny

myn+Ek, (B.20)

where p and r are the quantities presented in (A.51) and Ek is the vector (A.107). The

notation
(ys) = yhsh (B.21)

has been used, where
sk = ym∇kbm. (B.22)

A careful consideration of the formulas (B.20)–(B.22) shows that the following the-
orem is valid.

THEOREM B2. The Finsleroid–Finsler space FPD
g is of the Landsberg type if and

only if the following three conditions hold: the Finsleroid charge is a constant

g = const, (B.23)

the input 1-form b is closed

∂ibj − ∂jbi = 0, (B.24)

and the expansion

∇mbn = k (amn − bmbn) (B.25)

takes place, where k = k(x) is a scalar.

Under the conditions of this theorem, we have Ek = 0 and (ys) = kq2, so that the
representation (B.20) reduces to

Gk = gkq
(
yk − bbk

)
+ akmny

myn. (B.26)
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It can readily be seen that at any dimension N ≥ 3 the Berwald case corresponds to
k = 0, so that

Gm
{Berwaldian} = amjny

jyn. (B.27)

At the dimension N = 2, the Finsleroid–Finsler space FPD
g is of the Landsberg type if

and only the space is of the Berwald type (independently of value of k).

NOTE. Theorem B2 is known from the previous publications [4-7]. Theorem B1 is
a new result. When g = const, the coefficients Ek vanish identically, in which case the
above spray coefficients (B.20) coincide with the spray coefficients given by Eq. (4.5) in
[7].

Appendix C: Finsleroid–involutive tensors

Henceforth, we assume the involutive case

gi = µbi, µ = µ(x), (C.1)

which entails
b(bg) = (yg), (bg) = µ, (yg) = µb. (C.2)

The notation (yg) = yigi and (bg) = bigi is used; gi = ∂g/∂xi. Under these conditions,
the formula (A.70) reads merely

Kgkjgj =
2bw

Ng
(bg)Ak + b(bg)lk (C.3)

and the representation (A.107) reduces to read

Ek =
1

2
M(yg)yk − M̂K

1

Ng
w(yg)Ak, (C.4)

where

M̂ = M − 2b2w

B
. (C.5)

Differentiating this scalar yields the simple result:

∂M̂

∂ym
=

4b2

B

1

KNg
Am. (C.6)

The eventual representation reads

Ek
n = MT k

n+
4b2w2

gNB
(yg)Akln−

4wb2(1 + gw)

gNB

2

Ng
(yg)AnA

k− b2w

B
(yg)(1+gw)Hk

n (C.7)

with

T k
n = (yg)lkln +

2

Ng
w(yg)lkAn +

1

2
(yg)Hk

n −
2

Ng
w(yg)Akln

+
2

Ng

2(1 + gw)

Ng
(yg)AnA

k +
1

2
(yg)(1 + gw)Hk

n. (C.8)
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We find

AkE
k = −Ng

4
Kw(yg)

(
M − 2b2w

B

)
(C.9)

and

AkE
k
n = M

(
−Ng

2
wln + (1 + gw)An

)
(yg) +

2b2w2

B

Ng

2
(yg)ln −

2wb2(1 + gw)

B
(yg)An,

or

AkE
k
n =

(
M − 2b2w

B

)(
−Ng

2
wln + (1 + gw)An

)
(yg). (C.10)

Also,

Ek
nA

n =
(
M − 2b2w

B

)
(1 + gw)(yg)Ak +M

Ng

2
w(yg)lk (C.11)

and

HkmE
k
n = M

[
1

2
(yg)Hmn +

1

2
(yg)(1 + gw)Hmn

]
− b2w

B
(yg)(1 + gw)Hmn, (C.12)

together with

Ek
nHn

i = M

[
1

2
(yg)Hk

i +
1

2
(yg)(1 + gw)Hk

i

]
− b2w

B
(yg)(1 + gw)Hk

i. (C.13)

We obtain

−En
iAn

k
j + EknAnij = − 1

N

[
M

1

2
(yg)Hij − M̂

1

2
(yg)(1 + gw)Hij

]
Ak

+M̂
g

2
w(yg)Hk

jli + M̂gw(yg)
1

AhAh

AkAjli

+
1

N

[
M

1

2
(yg)Hk

j − M̂
1

2
(yg)(1 + gw)Hk

j

]
Ai

+M
g

2
w(yg)Hijl

k +Mgw(yg)
1

AhAh

AiAjl
k. (C.14)

The last formula just entails

(
−En

iAn
k
j + EknAnij

)
Ak = −Ng2

8

[
M(yg)Hij − M̂(yg)(1 + gw)Hij

]
+ M̂gw(yg)Ajli.

(C.15)
The formula (A.110) can be written as

(
∂gkj
∂g

gi +
∂gik
∂g

gj −
∂gij
∂g

gk

)
Ak =
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µM̂

(
b

K
(Ajli + Ailj)−

Ng

2K
qlilj −

Ng

2K
qHij +

2

NKg
bwAiAj

)
. (C.16)

Let us assume that the b-parallel case

∇ibj = 0

takes place. Then it proves convenient to write the derivative (B.15) in the form

Ai|j = ∂jAi −
1

2
Ek

jτik
1

K
− Γ̃k

ijAk +
1

2
Ek

jAkli
1

K
+∆ (C.17)

with

Γ̃k
ij = γk

ij −
1

2
En

iAn
k
j

1

K
+

1

2
EknAnij

1

K
+∆, (C.18)

and required insertions lead to the following simple result:

KAi|j =
1

g
KAigj +

1

4
µM̂

Ng

2

B

q
Hij +

1

4
µM

Ng

2

(
b(2b+ gq)

2q
+ q + gb

)
Hij. (C.19)

Next, we consider the derivative tensor

Ek
nm :=

∂Ek
n

∂ym
(C.20)

to find the contraction

AnEk
nm =

∂AnEk
n

∂ym
− Ek

n

∂An

∂ym
.

Make required cancellation and use (C.4), obtaining

AnEk
nm = M̂ [w − g(1 + gw)]

2

NKg
(yg)AmA

k

+

[
M̂(1 + gw)Ak +M

Ng

2
wlk

]
1

K
(yg)lm

+2
2

KNg
(yg)AkAm − M̂(1 + gw)(yg)

1

K
Aml

k

+
2q2

BK
w(yg)lkAm +M

Ng

2
(yg)w

1

K
Hk

m +M
Ng

4Kw
(1 + gw)(yg)Hk

m.

We get

EnEk
nm =

1

2
M(yg)Ek

m − M̂K
1

Ng
w(yg)AnEk

nm.

Now, write (C.7)–(C.8) as follows:

Ek
n = M

(
(yg)lkln +

2

Ng
w(yg)lkAn +

1

2
(yg)Hk

n

)



24

+ M̂

[
− 2

Ng
w(yg)Akln +

2

Ng

2(1 + gw)

Ng
(yg)AnA

k +
1

2
(yg)(1 + gw)Hk

n

]
, (C.21)

or

−Ek
nE

n
m + 2EnEk

nm =
1

4
M2(yg)2Hk

m

+MM̂(yg)2

(
2

Ng

2

Ng

B

b2
AkAm − 1

4
(1 + gw)Hk

m

)

−M̂2(yg)2

(
4

N2g2
(1 + gw)2AkAm +

1

4

B

b2
Hk

m

)

− M̂
2

Ng
w(yg)2

[
2

2

Ng
AkAm − M̂(1 + gw)lkAm +

2q̃2

B
wlkAm +M

Ng

2
wHk

m

]
. (C.22)

Below we again assume that the b-parallel condition

∇ibj = 0

holds. Since
∂M

∂xm
=

∂M

∂g
gm +∆,

we can straightforwardly come from (C.4) to

∂Ek

∂xm
=

1

µ
Ekµm +

1

2
(yg)yk

∂M

∂g
gm − K

Ng
wAk(yg)

∂M̂

∂g
gm +

1

2
M̂w(yg)(yk − bbk)gm +∆,

where µm = ∂µ/∂xm and the formula placed below (A.82) has been applied. In this way
we obtain

ym
∂Ek

∂xm
=

1

µ
(yµ)Ek +

1

2
(yg)2yk

∂M

∂g
− K

Ng
wAk(yg)2

∂M̂

∂g
+

1

2
M̂w(yg)2(yk − bbk) + ∆

and

2
∂Ei

∂xk
− yj

∂2Ei

∂xj∂yk
= 2

1

µ
Eiµk −

1

µ
(yµ)Ei

k + (yg)2Si
k +∆. (C.23)

Now it is easy to continue the calculation: we shall use the equality

∂M̂

∂g
=

∂M

∂g
+

2b2q2

B2
(C.24)

ensued from (C.5).
We find

Si
k = −1

2

(
B

b2
2

Ng

2

Ng
AkA

i + (1 + gw)Hi
k +Hi

k + (1 + gw + w2)
2

Ng

2

Ng
AiAk

)
∂M

∂g
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−
(
B

b2
2

Ng

2

Ng
AkA

i + (1 + gw)Hi
k + (1 + gw + w2)

2

Ng

2

Ng
AiAk

)
b2q2

B2

− M̂w

(
1

2
Hi

k +
2

Ng

2

Ng
AiAk −

2

Ng
wAkl

i

)
, (C.25)

where we must insert the derivative

∂M

∂g
=

1

h2

[
3g

4
M +

q2

B
− q2

B2

(
b2 +

1

2
gbq

)]
(C.26)

(see the formulas below (A.82)).
The respective involutive curvature tensor Ri

k is constructed according to

K2Ri
k = 2

∂Ēi

∂xk
− yj

∂Ēi
k

∂xj
− Ēi

nĒ
n
k + 2ĒnĒi

nk + ynan
i
kmy

m, (C.27)

where

Ēi =
1

2
Ei, Ēi

k =
1

2
Ei

k, Ēi
nk =

1

2
Ei

nk, (C.28)

and an
i
km stands for the Riemannian curvature tensor of the associated Riemannian space.

The explicit formulas (C.22)–(C.26) must be inserted in (C.27), yielding the following
result:

K2Ri
k =

1

µ
Eiµk −

1

2µ
(yµ)Ei

k

+
1

2
(yg)2

[
−1

2

(
2
B

b2
2

Ng

2

Ng
AkA

i + (1 + gw)Hi
k

)
∂M

∂g

−
(
2
B

b2
2

Ng

2

Ng
AkA

i + (1 + gw)Hi
k

)
b2q2

B2

−M̂w

(
1

2
Hi

k +
2

Ng

2

Ng
AiAk −

2

Ng
wAkl

i

)]

+
1

16
M2(yg)2Hk

m +
1

4
MM̂ (yg)2

(
2

Ng

2

Ng

B

b2
AkAm − 1

4
(1 + gw)Hk

m

)

−1

4
M̂2(yg)2

(
4

N2g2
(1 + gw)2AkAm +

1

4

B

b2
Hk

m

)

−1

4
M̂

2

Ng
w(yg)2

(
2

2

Ng
AkAm − M̂(1 + gw)lkAm +

2q2

B
wlkAm +M

Ng

2
wHk

m

)
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+ ynan
i
kmy

m. (C.29)

In evaluations, we apply the representation

∂Mi

∂g
= −4

bq3

B2

2

KNg
Ai. (C.30)
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