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Abstract

The Finsleroid-Finsler space is constructed over an underlying Riemannian space
by the help of a scalar g(z) and an input 1-form b of unit length. Explicit form of the
entailed tensors, as well as the respective spray coefficients, is evaluated. The involutive
case means the framework in which the characteristic scalar g(z) may vary in the direction
assigned by b, such that dg = pb with a scalar p(z). We show by required calculation
that the involutive case realizes through the A-special relation the picture that instead
of the Landsberg condition Aijk = 0 we have the vanishing ¢;;; = 0 with the normalized
tensor ayj, = Ayjr/||Al|. Under the involutive condition, the derivative tensor A;; and the
curvature tensor R’ have explicitly been found, assuming the input 1-form b be parallel.
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1. Introduction and synopsis of new conclusions

Among various possible methods to specify the Finsler space, raising forth the
Landsberg condition A,-jk = 0 occupies an important geometrical role (see [1-3]). In
the Finsleroid-Finsler space, the condition can be realized in a simple and attractive way
[4-7]. At the same time, the condition requires the Finsleroid charge g to be a constant.
How should we overcome the restriction?

At the first sight, in the Finsler geometry the weak Landsberg condition A; = 0 is to
be considered as being a next—step extension of the proper Landsberg condition Aijk = 0.
However, in the Finsleroid—Finsler space both the conditions are tantamount (because of
the particular representation (1.13) of the Cartan tensor A;;).

A scrupulous analysis performed has revealed a remarkable observation that an at-
tractive method to permit g # const is to use the nullification condition d;j;, = 0 with
the normalized Cartan tensor «;jj, (which is defined by (1.18)). Clearly, the condition is
attained when the A-special relation (2.5) holds. Remarkably, the relation occurs being
reachable upon assuming that the scalar g(z) reveals the involutive behaviour: dg = pu(z)b
(see (3.1)).

In Section 2 we indicate the interesting implications of the A-special condition, in-
cluding the observation that the skew—part of the hv-curvature tensor is proportional
to the indicatrix curvature tensor (according to (2.15)). It is the part that enters the
right-hand side of the covariant conservation law (2.20).

In Section 3 the involutive case is formulated, showing that under the b-parallel
condition (which reads Vb = 0, where V means the Riemannian covariant derivative
operative in the associated Riemannian space) the case entails the A-special relation.

In Conclusions, several important ideas motivated our approach are emphasized.

Clear explicit representations of the basic tensors involved are obtained systemati-
cally in Appendix A by means of direct calculation.

In Appendix B, we indicate the explicit form for the spray coefficients of the space
under study. They include the part E* which involves the gradient of g(z) (see (B.20)
and (B.21)).

Appendix C is devoted to evaluations in the involutive case. Two key tensors have
been explicitly evaluated, namely, A;; (given by (C.19)) and R’; (given by (C.29)), as-
suming that the 1-form b is parallel (such that Vb = 0).

We deal with the Finsler space notion which is specified by the condition that the
Finslerian metric function K (x,y) be of the functional dependence

K(l’,y) :<I>(g(z),bz(x),a,j(x),y) (11)

of the particular case given by the formulas (A.36)—(A.41) of Appendix A. In (1.1), the
argument set (g(z), bi(z), a;;(z)) involves, respectively, a scalar, a covariant vector field,
and a Riemannian metric tensor.

The Finsleroid-Finsler space can be constructed as follows. Let M be an
N-dimensional C'* differentiable manifold, 7, M denote the tangent space to M at a
point z € M, and y € T,M\0 mean tangent vectors. Suppose we are given on M a
positive—definite Riemannian metric

S =5(z,y).

Denote by
7—\)'N = (Ma S)



the obtained N-dimensional Riemannian space. Let us also assume that the manifold M
admits a non—vanishing 1-form

b=0b(z,y)
and
||b||Riemannian =1 (12)

It is convenient to use the variable
q=V5%—-0. (1.3)

The space Ry entering the above definition is called the associated Riemannian
space. With respect to natural local coordinates in the space Ry we have the local
representations

a’bb; =1 (1.4)
and .
b=0b(z)y", (1.5)
together with
S =/ ai(x)y'y’. (1.6)

The reciprocity a™a,; = ¢'; is assumed, where 0°; stands for the Kronecker symbol. The
covariant index of the vector b; will be raised by means of the Riemannian rule

b = a¥ b;,
which inverse reads .
b,’ = aijb’.
We also introduce the tensor
rij(x) = a;j(x) — bi(x)b;(z) (1.7)
to have the representation
q = \/rij(x)y'y’. (1.8)
From (1.4) and (1.7) it follows that
riib) =0 (1.9)

From the fundamental metric function function K, we explicitly calculate distin-
guished Finslerian tensors, including the covariant tangent vector § = {y;}, the Finslerian
metric tensor {g;;} together with the contravariant tensor {g*} defined by the reciprocity
conditions g;;¢’* = ¥, and the angular metric tensor {h;;}, by making use of the following
conventional Finslerian rules in succession:

1 8K2 1 82K2 8yl

i — T T A, i — T A oA — - hZ: Z—lll, 110
Yy 2 Oy 9ij -~ 5 Oyidyi  Oyi i = Yij j (1.10)

where .

) , yj
li = gijl], V= E (111)
After that, we can elucidate the algebraic structure of the associated Cartan tensor

K 0g;;

Ay = 99 (1.12)

2 Oyt



which leads to the simple representation

1

1
Aijr = N (hijAk + hirAj + hjrpAi — W

AiAjAk)

(see (A.87)) with

A, = gijAzyk
and N2
ApAl = ng

(see (A.63)).
Owing to (1.15), the norm

IA]] = A* Ay

is equal to
N
14l = 5 lg()].
It is convenient to construct the normalized Cartan tensor
1
Qijk = 7 Aijk
AT
and the vector
1 A
Qp = —— Ag
|| All
which length is 1:
OéhOéh =1.

We have
Qi = N (hijOék + hikOéj + hjkOéi — aiajozk)

everywhere in the Finsleroid—Finsler space.
In our analysis, an important role is played by the tensor

Hij = hij — 0s0y,
which obviously possesses the nullification properties
Hijyj =0, HijAj =0.
The curvature of indicatrix is well-known to be described by the tensor

1

Rijmn = F

(Ahijihn — AhjnAihm>.

In the Finsleroid-Finsler space, the tensor possesses the representation

1

27 —
K Rijmn - N2

(AkAk) <hinhmj - himhnj>

(see (A.93)).

In the next section we shall set forth an interesting special condition.

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)



2. A-special condition

By means of the over-dot we denote the action of the operator |m{™, such that

Ai = Ai|mlm> Aijk = Aijk|mlma Q; = Oéi\mlm, dijk = Oéz‘jk\mlm> (2-1)
with |m meaning the h-covariant derivative (see (B.9)).
Let us set forth the nullification

Whenever the representation (1.21) is valid, the condition (2.2) is equivalent to the van-
ishing

a; =0 (2.3)
of the normalized vector (1.19).
Denote ] ]
= A"A =——(ATA K 2.4
Yk 2AhAh ( m)|k> Y 2AhAh ( m)\kl ( )
Assume that the A-special relation
Ajl = T Ai + (2.5)

holds, where 7 is a scalar. The relation (2.5) can obviously be written as
Q| = T}Hik. (2'6>

Since Hgy* = 0, from (2.5) we directly conclude that

which is obviously tantamount to (2.3). From the representation (1.13) of the tensor Ay
we obtain

1
Aijrnn = niAijr + TIN (Hinkl + HiHj + ijHz‘l)7 (2.8)

which entails

Aijk = ’YAz‘jk- (2-9)
Also, (2.3) entails the nullification

Hjp =0 (2.10)
(consider the representation (1.22) of the tensor #H;; and take into account that
Rk =0

in any Finsler space), where

Mk = Hpml™

The hv-curvature tensor

P = —(Aijur — Ajrai + Apaj) + A" A — A Ay + A" Ay (2.11)



(this representation is tantamount to the definition (3.4.11) on p. 56 of the book [2]) gets
reduced upon substituting (2.8) and (2.9):

P = —277% (HijHu + HiMjo + HppHa) + (A" Aurt — A" Avit + A" Augr). (2.12)
Let us consider the skew—part
plit,, = %(Pﬂkl _ Py, (2.13)
From (2.12) it follows that
B = v(Ari" Aujt — Aji" Auar)- (2.14)

In view of the representation (1.24) of the indicatrix curvature tensor }A%ij mn, We may write
(2.14) as A
P[ji}kl = ’7K2Rjikl- (215)

Thus the following assertion is valid.

THEOREM 2.1. If the A-special relation (2.5) holds together with the representation
(1.13) of the Cartan tensor, then the skew—part of the hv-curvature tensor is proportional
to the indicatriz curvature tensor, according to (2.15).

Since
g (Ry'ae + Ry + Byt ) = PRty + Py Ry + Py R (2.16)
(see the formula (3.5.3) on p. 58 of the book [2]), we have
¢! (R/W + Ry + R/u-u) = 2P, R*y — PV RY;. (2.17)

so that the covariant divergence of the tensor

1 m m 1 mn
pi = 5 (B g+ B%m) = 590 8™ am (2.18)
is given by
. 1
plj\i = _P[lm]muRulj + §P[lm}juRulm (219>
which can be written as .
Pili = Jj (2.20)
with
1
J; = Pl <—R“lj5’fm + 5R“lmé’fj) : (2.21)

Using (2.15) together with (1.25) entails

1 1
Jj = 1927 (hluhmk - hlkhmu> <—Rulj5km + §Rulm5kj) - (2.22)



3. Finsleroid—Finsler space upon involution

Let us set forth the involution condition
gi = by, p=p(x), (3.1)
where g; = dg/0x', and formulate the following definition.
Definition. The arisen space
I}"}"fD = {fngD with g; = pb;, p = p(x)} (3.2)

is called the involutive Finsleroid—Finsler space. The involved p(z) is called the involution
scalar.

In the space (3.2), the quantities defined in (2.4) become simply

1 1
e = =Gk, v =—gil¥, (3.3)
g g

so that the A-special relation (2.5) takes on the form
1
Ay = ggkAi + nHig- (3.4)

We say that the space Fff D'is b-parallel, if the 1-form b is parallel in the sense of
the associated Riemannian space, that is, when

It proves that the following theorem is valid.

THEOREM 3.1. In the b-parallel involutive space I]:ng D the A-special relation
(3.4) holds.

See Appendix C, in which all the involved evaluations (which are not short) have
been presented and the representation (C.19) has been arrived at, which belongs to the
type (3.4). The n entered the right-hand part of (3.4) can be written down from (C.19).

As a direct consequence of the above theorem,

{Vb=0and dg = pb} = &; =0. (3.6)

From (2.4) and (3.1) we have
1 Mb

~ K (3.7)
With this formula, the current (2.22) takes on the explicit representation
1 I 1m I 1m u ok 1 U k
J; = E,ugb(h S — Bk u) —R"0 4+ SR 0 (3.8)

which is proportional to the involution scalar p.



4. Conclusions

The Finsleroid—Finsler space involves a characteristic scalar, g(z), such that the
vanishing of the scalar reduces the space to a Riemannian space. Varying g(z) entails
varying the form of the Finsleroid. The Landsberg case of the Finsleroid-Finsler space
implies strictly g = const, as a direct consequence of the formulas (1.13)—(1.15). To set a
liberty to the scalar g(x), we must overcome the restrictive case. It proves that a fruitful
idea is to substitute the condition d¢;;; = 0 with the Landsberg condition A,-jk = 0 proper.
Would one assume ||A|| = const, one observes that ¢z = 0 implies A;;; = 0. In the
Finsleroid-Finsler space under study, g # const implies ||A|| # const (see (1.17)).

The involution condition (3.1) can be written as dg = pb;(x)dx" which means geo-
metrically that the scalar g(z) varies in the direction assigned by the vector b;(x).

The obtained involutive curvature tensor Ry (given by (C.29)) is of the novel type,
being created by the gradient of the Finsleroid charge and constructed from the involutive
spray coefficients E*. The tensor is meaningful even if the associated Riemannian space
is flat.

It would be appealing to develop in future the extensions which can go over the
b-parallel case Vb = 0.

We have examined the conservation law for the fundamental tensor p;;, obtaining the
result (2.20)-(2.22). In the Landsberg case, the hv-curvature tensor Py is well-known
to be totally symmetric in all four of its indices (see p. 60 in [2]), such that the skew-part
Plml,.., and whence the right-hand part of (2.20), vanishes. Under the A-special condition,
however, the tensor is meaningful, being proportional to the indicatrix curvature tensor
in accordance with (2.15), so that the current J; given by (2.21) is not the zero.

Various Finslerian ideas of applications (see [8-10]) can well be matched to the (g #
const)-Finsleroid-Finsler space.

Appendix A: Evaluation of quantities of the space ]-"fD

Below, we evaluate the key objects of the space .ng D under the general setting when
the Finsleroid charge g may depend on z, so that ¢ = g(x). The unit norm ||b|| = 1 of the
input 1-form b is assumed. Our treatment will be of [ocal character. Any dimension N > 2
is admissible. The Riemannian squared length S? = b?+¢? underlines the Finslerian space
under study.

It is appropriate to use the variables
u; = agy’, vl o=y’ — b, U = Up — bbyy = Ty Y™ = A 0™, (A1)

where 7,,,;, = Gmn — binb,. We obtain the relations

— (A.2)

uvt = vyt = ¢, bt =v'h; =0, (A.3)



TV = v;, vt = @2, (A.4)
and 9% 5
q U;
= Ug, - - A5
oy ' q (4.5)
In terms of the variable q
= = A.
w=1 (A6)
we obtain 9
Wz B 0 9
and

together with B
aziz; = S*(S% — b?) = S,

where 1
A=w?= b—2(52 —b?). (A.8)
We also introduce the n—tensor by means of the components
1 i i L ij i Lo
It It CUT I e L n ZZT]—?U v’ (A.9)
It follows directly that B o
Ny =a g, 0 = any, (A.10)
iy’ = 0, (A.11)
T]Z]bj = O, 7]2'ij = O, aijmj =N — 2, (A12)
and
1
(i)
W = 577@', Dy* = —?('Uinjk + Vi) (A.13)
We shall also use the vector
b b S?
€L — ?Uk — bk = ?uk — ?bk, (A14)
obtaining
b
'(3)
q
e = —q B (A.15)
a—yj ?T]k] — ?vkej = ?T]k] — g(ek + bk)ej, (A16)

ery” =0, (A.17)



6kbk = _EA’ 6]77ij =0, 8yg = —E(einjk + bmjk + €Nk + bjmk), (A-18)
and
2 = ¢Cex, (A.19)
together with
52
whaee; = (1 +w?)\ = ﬁ)\ (A.20)

Using the generating function V' = V(x,w) defined from the representation

K =0V, (A.21)

we obtain oK ) P ) )
- — b,V T Z'V,, p - = Z"V, 7 V” A22
Oy’ Ty ayoy g T gt (4.22)

The prime {'} means differentiation with respect to w. Taking into account the Finslerian
rules

0K PK
By Y j DDy Gij j T il ( )
from (A.22) we find the representations
1 % 1
0y = V'Vl g+ by) + Vb o+ g (Vv + (V)) 2z, (A.24)
and
hi = SV Ly A25
0 = Vit gV Viz. (A.25)
The determinant of the metric tensor is found to read
1 1 N-2
_ / 3
with
v =w?V". (A.27)
Below, the scalar g = g(x) is specified as follows:
—2<yg(z) <2 (A.28)
We shall apply the convenient notation
h=J1-1g a=1 (A.29)
19 = .
The Finsleroid—characteristic quadratic form
1
Blz,y) =V +gbg+q" =3 [(b +9+9)* + (b + g—q)z] >0, (A.30)
where g, = % g+ hand g = %g — h, is of the negative discriminant

D{B} = —4h2 <0 (A.?)l)



10
and, therefore, is positively definite.
We shall use also the function 7(x,w) defined by
B = VT, (A.32)
obtaining from (A.30) the quadratic—case representation
=1+ g(@)w+w? (A.33)
We use this function to produce the generating function V' according to the rule

wdw

V=exp [ —. (A.34)
T
Since the function (A.33) is representable in the form

T=h*+ (w + g>2 : (A.35)

the integration process in (A.34) is simple, namely, the resultant Finslerian metric function
K =0V (see (A.21)) is given by the following definition.

Definition. The scalar function K (x,%) given by the formulas

K(x,y) =/ B(z,y) J(z,y) (A.36)

and )
J(x,y) = e720@I ), (A.37)
where
G L .
f = —arctan — + arctan —, if b>0, (A.38)
2 hb
and
G L .
f =m — arctan 5 + arctan " if 6<0, (A.39)
with
L=q+ %b, (A.40)

is called the Finsleroid—Finsler metric function.
The function K has been normalized such that

0< f<m,

f=0,if g=0 and b>0; f=m if ¢g=0 and b<0,

and the Finsleroid length K (z,b'(z)) of the vector b’ is equal to the Riemannian length
scalar ||b|| = 1, such that '
K (z,b'(z)) = 1. (A.41)

Sometimes it is convenient to use also the function

A=b+ gq. (A.42)
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The identities
L? + h2p? = B, A2+ h?¢* =B (A.43)

are valid.
The zero—vector y = 0 is excluded from consideration. The positive (not absolute)
homogeneity holds:
K(z,\y) = AK(z,y), A>0, Vo, Vy.

Given the function K of the form (A.36), the generating function is obtained from
(A.32) to read
V=r1J (A.44)

Using (A.37), it is easy to verify that

| S

(InV) = (A.45)

/\\‘

which manifests that the integral representation (A.34) takes place.

Definition. The arisen space
FF;P = {Rx; bi(x); g(x); K(x,y)} (A.46)

is called the Finsleroid—Finsler space.

Definition. The space Ry entering the above definition is called the associated
Riemannian space.

Definition. Within any tangent space T, M, the Finsleroid-metric function K (z,y)
produces the Finsleroid

g

Definition. The Finsleroid Indicatriz Ifg} € T,M is the boundary of the
Finsleroid:

Ig{x} ={y eIl {m} cye T, M, K(x,y) =1}, (A.48)

Since at g = 0 the F.F,"”-space is Riemannian, then the body F) () 18 @ unit ball
and 170 9=0 {x} is a unit sphere.

Definition. The scalar g(z) is called the Finsleroid charge. The 1-form b = b;(x)y’
is called the Finsleroid—axis 1-form.

The determinant (A.26) takes on the form
1
det(gi;) = V2N ~ det(ai;). (A.49)

The contravariant components ¢/ of the associated Finslerian metric tensor can be
given by the representation

—VV'g" = a¥ + pb'V +r(b'y’ + Vy') + ty'y’ (A.50)
w

with p p
r==L o prr=0. =204 gu) (A51)
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Therefore,
—g” =a" + =0V — =0y +Vy') + =—(1+ gw)y'y’. (A.52)
B w bw Bw
From (A.24) it follows that
2 w?
T2 dis = Thij +w*(biej + bje;) + Thib; + - (7 — gw) e;e;. (A.53)

In this way we obtain

B g
T

Bwbzbj — lvﬂ)j + b'LU(bi'Uj + bj'Ui) — b2w?’bibj] .
w

Eventually, we obtain the Finsleroid metric tensor representation

B
el

1
= a;; + % V(1 + gw)wb;b; + bw(bv; + bjv;) — Evivj] . (A.54)

We can explicate the associated vector
by applying the known general formula

Jln ( det(gij)>

A=K
k ayk Y
so that .
ow
From (A.52) it follows that

1
—VV'g" b, = b — gﬂyn. (A.57)
w br

The first member of (A.22) entails the equality

1, b?w?
Y = EK (bk +—3 6k> : (A.58)
With 5
w
Ka—yk = Vwek
(see (A.7) and (A.19)) and (A.49), the representation (A.56) of the vector Ay is found to
read KN

Using here (A.58), we may also write

NK 1 b
A, = TQ@ <bk - ﬁyk) . (A-6O)



Another convenient form is

NK 1
A= —qg—
k 2qu(

qzbk — bvk)
From (A.57) and (A.60) it follows immediately that

E_ Ng

k J—
= Kb BV —b(1 + gw)y*|.

It can readily be seen that the representations (A.60) and (A.62) entail

N2 2
AR A, = 49 .
We have
K2
ypb® = bf(l + gw),
KNg Ng
A k Ak
kb °R bw, bk Qwa,
and

Kg"b; = %’Ak + bl*,
together with
K?g"b; = Bb — gbwy”.
The relation (A.59) can be inverted, yielding

2B
KNgq

Cp = — k-

Taking into account the formulas (A.7), (A.19), and (A.68), we may write simply

ow 2B 1

dyi ¥ KNg '

This formula is convenient to use in many involved evaluations.

With (A.52), it follows that

. 1 2bw
Kg"g; = — B (g* — (bg)b*) + —(bg)A'“ +

K Ng N

2 b(bg) — (yg)] A* + blbg)I".
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(A.61)

(A.62)

(A.63)

(A.64)

(A.65)

(A.66)

(A.67)

(A.68)

(A.69)

(A.70)

Now we perform differentiation of the functions indicated in (A.29) with respect to

the Finsleroid parameter g, obtaining

(A.71)

(A.72)



and

ok 2Ky J2——fK2+G

z R E(lg

B\4

or
OK?
dg

- MK?2,

where b . e
q
M=—2—-5f+ hB(q + gbq)

or

1 G
M=— f—i———q2—|—

2hB h2Bbq

Using
b
- _bz + ?'Uza
we find
_ A
' gNBK'"

Differentiating (A.74) with respect to y* just yields

a?/z’
dg

1

In view of (A.59) and (A.76), we may write

dy; *qK?
= My, — T
dg Y B ©
o 0 20°K
Yi q
g Vit NB
With the tensor AA
Hij = hij — ma

we can arrive at

0gi; ¢ 2 bg 2bg
“HI Mg D (AL LA — 2 — T2
ag gJ+BgN< ]_'_ J) BHJ B

From (A.61) we obtain the simple result

2h

4

g2N2

b)] K?,

AA;.
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(A.73)

(A.74)

(A.75)

(A.76)

(A.77)

(A.78)

(A.79)

(A.80)

(A.81)

(A.82)
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From (A.75) we get

2 2
OM 39, 1¢ 14
dg  4h? B h2B2

Next, with (A.62) we now evaluate the derivative

0AF 1 Ng 4 21
=——AF——(1 ok, — 1k, — AFA, | — =—=A%A,. A.83
o K 2K LTI ( N2 g2 NE (4.83)
The previous representation can be written as
0AF 1 . Ny i 21 .
- | — ——A%A A.84
oy~ ko g T - g AT (A.84)
in terms of the tensor 1
ko sk k k
Hn—én—lln—WAAn (A.85)
given by (A.80).
The Cartan tensor
A — lKag"j (A.86)
k= oyk '
takes on the form
1 1
Aijk = N (hjkAi + higAj + hij Ay — Ah—AhAiAjAk) , (A.87)
or in terms of the tensor (A.85),
1 2
We can conclude that
1 1
AkAijk =5 (AZ-AJ» + hijAkAk) = N (QAZ-AJ- + HijAkAk) . (A.89)
Also, we find
& 1 1 2 11 &

From (A.87) it follows that

) 1 2
igk A _ _ h
Al A, N(3 N)A Ap. (A.91)

The curvature of indicatrix is well-known to be described by the tensor
1
K?
Inserting (A.90) in (A.92), we find that

JoX — (Ahijihn - AhjnA,-hm>. (A.92)

1

27 _
K Rijmn - N2

(A*Ay) (hinhmj - himhnj) (A.93)



Contracted objects

Rzm Rijmj
and =
R = R’ njg™
are found to be
1 2 1 Ak A
Rzm - T2 N -1 N( k)hzm
and
1 2 i
=2 y 1) (V=15 (A%
If we consider the derivative
0A; 0A™ 2
- mTa . —A mnAm
oyn Ik oy" + KF

and apply (A.84) together with (A.89), we obtain

0A; 1 Ng 21
=——Al;, — —— ——A,A,.
oyn KAtk = 5 e Ty o kA
Also,
Tij = Aij - AkAikju
where 94

The identities ' '
Tijyj = O, TijAJ =0

hold. We obtain

N g(2b+ gq)
Tij = —Zf}[”
Differentiating (A.85) leads to
OHF 2 1 2 1
oy H Hom + Nng + Ngw( + gw)H

If we apply (A.98) to (A.87), we get

0A;1 12 1
0—y’]‘ KN (AjrnAi + AienAj + AijnAx) — I (lekm' + i Agpj + lkAijn)
112
T [ijAiAn M A A, + HijAkAn}
g
- [H]km + HaHyn + HJ%,W} .

If we introduce the tensor

16

(A.94)

(A.95)

(A.96)

(A.97)

(A.98)

(A.99)

(A.100)

(A.101)

(A.102)

(A.103)
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oy"

Tijkn = K + 1 Akni + 1Ak + e Aijn — Ajem A™ in — Aikm A" i1 — Ajim A" kn, (AL104)

then we can conclude from (A.103) and (A.90) that

92+ gw)
4w

Tijkn = —

HixHin + HaHn + ’HJH,m] . (A.105)
In calculating the Finsleroid—case spray coefficients there appears the vector

1 1
EY = M(yg)y* + 5K*(yg) Mag"™" = SMEK?gg"™". (A.106)

Noting (A.76), we obtain

k k 20%w? o1 2 kh
E* = M(yg)y +K9NB (yg)A™ — 5 MK grg™. (A.107)
We may calculate the derivative
Ek
EF, = g — (A.108)
Y
We obtain o202
EF, = MT*, + K=" Ak,
" nt N
2b%w? 4w 2
/L — — A, AF
NB (vg) gN(yg)Ng
40%w3 2 p o 20%w? Ny 1
A, AP — =21 Fol — 2K M,gng™ (A1
o ) A+ = ) 201+ gu)Hta| = K2 Mugng™ (A109)
with

kh
1 1 3<K9h9 )
T, = gy” & — ~Kgng*l, - - K ———2.
9y + (y9) 599 5 o7
The contraction K g,g*" is to be taken from (A.70).
Using (A.81) yields

agkj 0gi agij E
< . ¢ — A =
( dg gi+ dg 9i dg 9k

2 2
q° gN 2bq q° gN 2bq
<MAj+ B 2 l; i Aj>g + (M + B o B 9;

2 9 b g 4
- (Mg,-j + L= (il + 14y — g, - 21
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We can write down simple explicit representations for the partial derivatives with
respect to z, using the notation

0
We may use the equality
GRS I (A.112)
ork — b2g” " '

(see (A.6)), where A symbolizes the summary of the terms which involve partial deriva-
tives of the input Riemannian metric tensor a;; with respect to the coordinate variables
2*. We use the Riemannian covariant derivative

V,-bj = ij - bk&kij, (A113)
where .
atij = 50" (Djni + Orttng — Dnasi) (A.114)

are the Christoffel symbols given rise to by the associated Riemannian metric.
First of all, we differentiate the quadratic form B given by (A.30), obtaining

OB 2 , 1.,
Also, starting with (A.21), we find
0K 1 b
E i §Mng—|—K§gwsj—l—A, (A.116)

where we have used (A.74).
Eventually, the following sufficiently simple representation is obtained:

0A; 1 1 b NK 1
L= | =M+ — =q | Aig; + ——9—=5%V b,
oxJ (2 * g Bq) 95+ 2 quS Vi

b 1 (2 , 1,
—I—ngsin -3 (E(B — S%)s; — g;S s]) A;

11 NK 11

2
A
5784 2 “qBb

+

Appendix B: Finsleroid—Finsler spray coefficients

Evaluations involve the induced spray coefficients

GF = Wkijyiyja (B-l)
which entail the coefficients
- oG’ , OG", - 0G0,
G'y: =— G'ym: = , G'emn . = , B.2
k oy k oy k oy (B.2)
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and
_. 1 . _. 1 . _. 1 . _ . 1 .
L Lo T zm:_zm’ Zmn:_zmn- B.
G 2G, Gy 2Gk, Gy 2Gk Gy 2Gk (B.3)
The homogeneity gives rise to the identities
2G2 = Gikyk, le = Gikmym, Gikmnyn = 0. (B4)
The pair (x,y), — the so—called line element, — is the argument of the Finslerian

objects;
1 Ogni  Ogni  Ogi;
k kn ny nj Ji
i = = . — — B5
T 29 (8:£J T or T o (B5)
are the Christoffel symbols given rise to by the Finsleroid—Finsler metric function K.
Below, the abbreviation h means horizontal. On the basis of the above coefficients
the Finslerian connection coefficients T'*;; of h-type are constructed according to the
well-known rule:

with ,
and ) S o
2G™ = y"yy'y) = Gyt =Ty = G™, (B.8)

where C,;; = AniK™' and C,f; = A,*;K~'. By the help of these coefficients the
h-covariant derivatives of tensors are constructed as exemplified by

L OA;

(see [1,2]).
For the hh-curvature tensor R’ we use the formula
' ~i WYl 9207 2
K2R, — 28G 0G" 0G i 0°G y 0°G (B.10)

A NS _
orr oy ot Y owiogr T ooy

(which is tantamount to the definition (3.8.7) on p. 66 of the book [2]). The concomitant

tensors
. 1 (0(K2Ri,)  O(K2Ri,,)
Ry = — — , B.11
y 3K< oy™ oyk ( )
and
i a(KRikm) ii ii it Au ii u

(see p. 60 in the book [2]) arise. We have
Ri* =0 (B.13)

and ' '
Ry.y" = KR'. (B.14)
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In calculations, it proves convenient to write the derivative (B.9) in the alternative
form

Ayj = 0;A; — G’fjnk% — T AL+ G’fjAkz% (B.15)
(i = ginl®) with
sz’j = sz'j - G_miAnkj% + C_T’k"Amj% (B.16)
and
Ty = Ay — AL AL, (B.17)
where -
A=K 8y; + L A;. (B.18)
We know that N g(2b+ gq)
i = T . Hij (B.19)

(see (A.101)).

By means of attentive (lengthy) evaluations we can arrive at the following assertion.

THEOREM B1. The explicit form of the spray coefficients of the Finsleroid—Finsler
space reads

GF = gq akj—l—(pbk—l—ryk)bj]yh(vhbj—ijh)—l—% (" = BBY) (ys) +a® my™y" + B, (B.20)

where p and r are the quantities presented in (A.51) and E* is the vector (A.107). The

notation
(ys) = y"sn (B.21)
has been used, where
sg =Y " Vibn. (B.22)

A careful consideration of the formulas (B.20)—(B.22) shows that the following the-
orem is valid.

THEOREM B2. The Finsleroid-Finsler space F['P is of the Landsberg type if and
only if the following three conditions hold: the Finsleroid charge is a constant

g = const, (B.23)
the input 1-form b is closed
8ibj — @bl = 0, (B24)
and the expansion
Vibn =k (@mn — binby) (B.25)

takes place, where k = k(x) is a scalar.

Under the conditions of this theorem, we have E* = 0 and (ys) = kq¢?, so that the
representation (B.20) reduces to

GF = gkq (yk — bbk) + a* o y™y". (B.26)
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It can readily be seen that at any dimension N > 3 the Berwald case corresponds to
k =0, so that '
G?]éorwaldian} = amjnyjyn’ (B27)
At the dimension N = 2, the Finsleroid-Finsler space Ff P'is of the Landsberg type if
and only the space is of the Berwald type (independently of value of k).

NOTE. Theorem B2 is known from the previous publications [4-7]. Theorem B1 is
a new result. When g = const, the coefficients E* vanish identically, in which case the
above spray coefficients (B.20) coincide with the spray coefficients given by Eq. (4.5) in
[7].

Appendix C: Finsleroid—involutive tensors

Henceforth, we assume the involutive case

gi = 1b;, p= p(z), (C.1)

which entails
b(bg) = (yg),  (bg) =p,  (yg) = pb. (C.2)

The notation (yg) = y'g; and (bg) = b'g; is used; g; = 0g/dz'. Under these conditions,
the formula (A.70) reads merely

- 2bw
Kghg; = N—g(bg)Ak + b(bg)l¥ (C.3)

and the representation (A.107) reduces to read

1 —~ 1
E" = ~M(yg)y* — MK —w(yg) A", (C.4)
2 Ng
where
— 2b%w
M=M — . .
- (C5)
Differentiating this scalar yields the simple result:
oM 4 1
The eventual representation reads
4b%w? 4wb?(1 + gw) 2 b*w
Ek, = MT* Akl —— 2 = A AR ——— 1 k )
n " NB (vg) A", JNB Ng(yg) n 7 (W9)(L+gw)He, (C.7)
with
T, = ()1l + o w(yg)l A + (09— o (yg) A
2 2(1+gw 1
+ —w(yg)AnA’“ + 5 (yg) (1 + gu)H",,. (C.8)

Ng Ng 2
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We find N o2
k_ Vg _arw
ALE" = 1 Kw(yg) (M 5 ) (C.9)
and
N 20%w? N 2wb%(1 + gw
a8 = M (=2t 1 (14 gu)A, ) (g) + 22N gy, - 290N s
2 B 2 B
o 252 N
ALEF, = (M— w) < ool + (1+ gw)A, ) (yg). (C.10)
B 2
Also,
202 N
E*, A" = (M - B“’) (1 + gw)(yg)A* + MTgw(yg)lk (C.11)
and
. 1 1 b w
together with
k aym 1 k 1 k b*w k
ERnH" = M S (yg) M + S (yg) (L + gu)H | — = (yg) (1 + gw)H". (C.13)
We obtain
—E" A+ B Ay = N Mi(yg)/Hij - M§(?/9)(1 + gw)H;; | A
79 k T k
+MZw(yg) ol + Mgw(yg)AhA A" Ajl;
41 Ml( VHY; — Ml( )1+ gw)H"; | A
N 9 yg j 9 Yyg quw FARE
g k k
+ Miw(yg)?-[ijl + Mgw(yg)AhA A AR (C.14)

The last formula just entails

2

n n Ng 77 77
(=B A" + B Ay ) Ay = == [ M{yg)Hs; = M(yg) (1 + gu)Has | + Mgu(yg) Al
(C.15)
The formula (A.110) can be written as

agkj A9k o 9gi ko
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—~( b Ng Ng
,LLM(E(AJ'ZZ' + Aily) — 2qu il — q’Hw + — NK ———bwA;A; ) (C.16)
Let us assume that the b-parallel case
Vib; =0

takes place. Then it proves convenient to write the derivative (B.15) in the form

1 1
Ayj = 0;A; — JT”“K TF A + 2Ek Akl = +A (C.17)

with ] ] ]
TF =A% — —E" A = + ~E"™A LA (C.18)

2 "IK T2 K
and required insertions lead to the following simple result:

1 1 ~NgB Ng [ b(2b+ gq)
KAy, = -KAg; + —uM—— M—=| ——= b |Hi;. 1
i = g gj+4u 5 q?—[ 4u 5 ( % +q+ gb | Hi; (C.19)
Next, we consider the derivative tensor
OE*
By = C.20
o (C.20)

to find the contraction
OAE*, gk 0A"

oy™ B " oym

Make required cancellation and use (C.4), obtaining

AnEknm =

A"E 0 = Mw — g(1 + gw)] (yg) A AF

2
NKg

—~ N 1
+ | M (14 gw)A* + MTlek ?(yg)lm

2 k Y 1 k
+2KN (y9) A" A — M(1 + gw)(yg) - Am!

2

2 Ng
+iw(yg)lkAm + M—=

Ng
B 5 (yg)w H’“m + M2 (14 gw) (yg)HE,.

4Kw
We get

1 —~ 1
E"E*,.. = ~M(yg)E*,, — MK — A"EF. .
5 (yg) Ngw(yg)

Now, write (C.7)—(C.8) as follows:

9 1
ko k e k L k
E", = M((yg)l I, + Ngw(yg)l A, + 2(yg)’H n>
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—~

2 2(1
T (14 gw)

_i k il SR Al k 1 k
Ngw(yg)A L, + Ng N (yg) A, A® + 2(yg)(1+gw)“rl n] (C.21)

or
1
—E*,E",, +2E"E",,, = ZMz(ngH’fm

— 2 2B 1
MM Bl [—— L/ [ — k

A2 2 4 2 gk 15 k
M*(yg) <N292(1+9w) A+ 5 H m>

2 — 27 N
2= AFA, — M(1+ guw)lFA,, + %wlkAm + MTQwHkm] . (C.22)

Below we again assume that the b-parallel condition
V,-bj - 0

holds. Since
oM _ o
dxm g Gm

we can straightforwardly come from (C.4) to

+ A,

OE* 1 1 oM K oM 1
— —_pF ~ (Y)Y =g — —wA" (yg)—— M A A
o~ Hm 5 W9y 99 9" " Ng (v9) 95 9" T 2 w(yg)(y” — bb%)gm + A,

where g, = Op/0x™ and the formula placed below (A.82) has been applied. In this way
we obtain

OE* 1 oM K LOM 11—

1
mZ— Ek - 2k~ Ak e —M 20,k k A
- M(yu) +5W9)7y 9 Ng" (yg) 5 3 w(yg) (y" —bb") +

and
OF" - O2E! 1 . 1 . .
2 — =2-F'up — — E' 28t + A, 2
ot~ amag 2 M(yu) K+ (yg) S’ + (C.23)

Now it is easy to continue the calculation: we shall use the equality

OM oM L2
dg  0Og B2

(C.24)

ensued from (C.5).
We find

om
dg

: 1{B 2 2 . . . 2 2
i = ___AAZ 1 7 7 1 2__A2A
S’k 2(b2NgNg R A+ (1 + gw)H'y + H'y + ( +gw+w)NgNg k)
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B2 2 ; ; 2 i\
T z 2 2 i 2 i

where we must insert the derivative

oM 1 {3y 7 ¢

(see the formulas below (A.82)).
The respective involutive curvature tensor R’} is constructed according to

OE" OB, . - o .
K2R, =27 —i= =k i frn L OFEE 4y an oy, (C.27)
oxk oI
where
v | i 1 i 1
E'= B,  Ey=gBhw  Eu=Ea (C.28)

and a,,*;m stands for the Riemannian curvature tensor of the associated Riemannian space.
The explicit formulas (C.22)—(C.26) must be inserted in (C.27), yielding the following
result:

. 1 . 1 .
KRy = —E' g — o~ (yp) E'x
@ 21
1 o 1(.,B 2 ; . \OM
+§(?/9) [ <2b N AkA + (14 gw)H k) 8—g

B 2 2 -\ b?¢?
92 2 2 A A4 (1 i | 2L
< b Ng Ng' * + +gw)%k> B?

— (1 . 2 2 . 2 .
_Mw<27'[ +N—N—AAk_NgwAkl>

2 2 B 1
20, N2k 2 2 by, 1 k
+16M (yg)Hm+4MM(yg) (NgNngAA 4(1+gw)7-l m)

1/\2 2 4 2 Ak k

24> N
— M1+ gw)l*A,, + Fwl’fAm + M 29 ’H’%)
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In evaluations, we apply the representation

=4 ——A,. .
dg B2 KNg (C.30)
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