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Abstract 
Noting that the complete lift of a Rimannian metric g  defined on a differentiable 
manifold M  is not 0-homogeneous on the fibers of the tangent bundle TM . In this 
paper we introduce a new lift 2g�  which is 0-homogeneous. It determines on slit 
tangent bundle a pseudo-Riemannian metric, which depends only on the metric g . 
We study some of the geometrical properties of this pseudo-Riemannian space and 
define the natural almost complex structure and natural almost product structure  
which preserve the property of homogeneity and find some new results.   
 
Keywords: Almost complex structure, almost anti-Hermitian structure, almost 
product structure, complete lift metric, 0-homogeneous lift.  

1. Introduction. 

The importance of the complete lift 2g  of a Riemannian metric g  is well known in 
Riemannian geometry, Finsler geometry and Physics, and has many applications in 
Biology too (see [1]). The tensor field 2g  determines a pseudo-Riemannian structure 

on slit tangent bundle k {0}TM TM= ,  but 2g  is not 0-homogeneous on the fibers of 
the tangent bundleTM . Therefore, we cannot study some global properties of the 
pseudo-Riemannian space k

2( )TM g, . For instance we can not prove a theorem of 
Gauss-Bonnet type for this space (see [4]). 
    In this paper, we define a new kind of lift 2g�  to TM  of the Riemannian metric g . 

Thus 2g�  determines on kTM  a pseudo-Riemannian structure, which is 0-
homogeneous on the fibers of TM  and depends only on g . Some geometrical 
properties of 2g�  such as the Levi-Civita connection are studied.  
    Almost complex and almost product structures are among the most important 
geometrical structures which can be considered on a manifold. Geometric properties 
of this structures have been studied in (see [2] to [7], [11], [12], [15], [16]). We 
introduce the natural almost complex and product structures iJ  and iQ  which depend 
only on g  and preserve the property of homogeneity. Then we get almost anti-
Hermitian structure i

2( )g J,�  and almost product structure i
2( )g Q,� . By considering twin 

tensor of 2g� ,  we construct  almost para-Hermitian and Hermitian structures on kTM . 
     Let M  be a smooth manifold, TM  its tangent bundle and ( )Mχ  the algebra of 
vector fields on M . A K -structure on M  is a fields of endomorphisms K  on  TM  
such that 2K Iε= , where 1ε = ± . Thus 1ε =  corresponds to an almost product 
structure, while 1ε = −  provides an almost complex structure. 
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     A K -structure is  integrable if and only if there exists an a linear torsionless 
connection on  M  such that 0K∇ = , or equivalently the Nijenhuis tensor KN  
vanishes. In this case, ∇  is called almost complex (product) connection if K  be an 
almost complex (product) structure.   
     If g  is a metric on M  such that ( ) ( )g KX KY g X Yσ, = , , 1σ = ± , for arbitrary 
vector fields X  and Y  on M , then we shall say that the metric g is K -metric.  
The definition above unifies the following four cases: 
The case 1, 1ε σ= =  corresponds to the (pseudo-) Riemannian almost product 
manifold ( , , )M g K , the case 1, 1ε σ= = −  provides the almost para-Hermitian  
manifold ( , , )M g K ,  the case 1, 1ε σ= − =  is known as the almost Hermitian 
manifold ( , , )M g K   , and finally the case 1, 1ε σ= − = −  corresponds to the almost 
anti-Hermitian manifold ( , , )M g K . 
    Let us introduce a (0 2),  tensor field h , the twin of g , by ( ) ( )h X Y g KX Y, = , .  
Then  
 ( ) ( ) ( ) ( )h X Y h Y X h KX KY h X Yεσ σ, = , , , = , .  
Notice that for 1εσ = ,  the twin tensor is a metric, while for 1εσ = −  the twin tensor 
is a 2-form. 
     Let ψ  be a (0,3) tensor fields defined by the formula  
                        ( , , ) (( ) , ) ( )( , )X XX Y Z g K Y Z h Y Zψ = ∇ ≡ ∇                                (1.1) 
Obviously, if the tensor fields ψ  vanishes then 0K∇ =  for a torsionless (Levi-Civita) 
connection and the Nijenhuis tensor KN  is forced to vanish, too ([2]).  

2. The Complete Lift 

Let k
ijΓ  be the coefficients of the Riemannian connection of M , then 

0 ( )h h a h
j j ajN y x= Γ = Γ  can be regarded as coefficients of the canonical nonlinear 

connection N  of TM , where ( )h hx y,  are the induced coordinates in TM .  
N determines a horizontal distribution on kTM , which is supplementary to the vertical 
distribution V , such that, we have:  
       k k

u u uT TM N V u TM= ⊕ , ∀ ∈ .                                                (2.1) 

The adapted basis to N  and V  is given by { }h hX X,  where  

           ,a m
h ah hh m hX y X

x y y
∂ ∂ ∂

= − Γ =
∂ ∂ ∂

                                                   (2.2) 

and its dual basis is { }i idx yδ,  where  
                                       i i a i j

ajy dy y dxδ = + Γ .                                                        (2.3) 

The indices a b a b, , ..., , , ... , run over the range {1 2 }n, , ..., . The summation convention 
will be used in relation to this system of indices. By straightforward calculations, we 
have the following lemma.  
Lemma 1. The Lie bracket of the adapted frame of TM  satisfies the following:  
1)  [ ] a m

i j jia mX X y K X, = ,   

2)  [ ] m
i jijX X, = Γ ,  

3)  [ ] 0i jX X, = ,  
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where m
jiaK  denote the components of the curvature tensor of M .   

Let ( )M g,  be a Riemannian space, M  being a real n-dimensional manifold and 
( )TM Mπ, ,  its tangent bundle. On a domain U M⊂  of a local chart, g  has the 
components ( )ijg x , ( 1 )i j n, ,... = ,..., . Then on the domain of chart 1( )U TMπ − ⊂  we 

consider the functions 1( ) ( ) ( ) ( )ij ijg x y g x x y Uπ −, = ,∀ , ∈  and put  

                                       ( ) i j
ijy g x y y= .& &                                                           (2.4) 

Then, y& &  is globally defined on TM , differentiable on kTM  and continuous on the 
null section.  
 
The complete lift of g  to TM  is defined by  
                     k

2 ( ) 2 ( ) ( )i j
ijg x y g x dx y x y TMδ, = , ∀ , ∈ .                                     (2.5)  

Then, 2g  is not 0-homogeneous on the fibers of TM .  
Namely, for the homothety ( ) ( )th x y x ty: , → ,  for all t R+∈  we get  
 2 2 2( )( ) 2 ( ) ( ) ( )i j

t ijg h x y tg x dx y tg x y g x yδ, = = , ≠ , .D  

 
On kTM  we define an almost complex structure J  by  
                       ( ) ( ) 1i ii iJ X X J X X i n= − , = , = ,..., .                                   (2.6) 

It is known that k
2( , , )TM J g   is an almost anti-Hermitian manifold. Moreover, the 

integrability of the almost complex structure J  implies that ( , )M g  is locally flat. 
(see [7]) 
Also, we define almost product structure Q  on kTM  by  
                                 ( ) ( ) 1i ii iQ X X Q X X i n= , = , = ,..., .                             (2.7) 

Then, k 2( , , )TM Q g  is an almost product manifold. Also, the integrability of the almost 
product structure Q  implies that ( , )M g  is locally flat. 
The previous space, called "the geometrical model on TM  of the Riemannian space 
( )M g, ", is important in the study of the geometry of initial Riamannian space 
( )M g,  ([6], [7]).  

3. The 0-homogeneous lift of the Riemannian metric g  

We can eliminate the inconvenience of the complete lift, introducing a new kind of 
lift to TM  of the Riemannian metric g . Then  we obtain the Levi-Civita connection 
for this  metric. 
Definition . Let 2g�  be a the tensor field on kTM  defined by   

                             2
2( ) ( ) i i

ijg x y g x dx y
y

δ, =�
& &

                                                  (3.1)  

where y& &  was defined in (2 4). .Then 2g�  is called the 0-homogeneous lift of the 

Riemannian metric g  to kTM .  
We get, evidently:  
Theorem 2. The following properties hold:  
1. The pair k 2( )TM g, �  is a pseudo-Riemannian space, depending only on the metric g .   
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2 . 2g�  is 0-homogeneous on the fibers of the tangent bundle TM .  

In order to study the geometry of the pseudo-Riemannian space k
2( )TM g, �  we can 

apply the theory of the ( )h v, -Riemannian metric on TM  given in the books [6], [7] 
and [9]. Looking at the relation (2.5) and (3.1) we can assert: 
Theorem 3. The lifts 2g  and 2g�  coincide on the hyper unit tangent sphere 

0( ) 1i j
ijg x y y = , for every point 0x M∈ .  

 
Let ∇  be the Riemannian connection of TM  with coefficient A

BCΓ , that is:  

       
, ,

,
i i

i i

m m m m
X Xj ji m ji m m mj j i j i

m m m m
X Xj m m m mj i j i j j i j i

X X X X X X

X X X X X X

= Γ +Γ = Γ +Γ∇ ∇

= Γ +Γ = Γ +Γ∇ ∇
                         (3.2) 

   
Then, we have  

               

,

,

,

,

i

i

i

i

h h m h m
X mi mi

h h m h m
X mi mi

h h m h m
X mi mi

h h m h m
X mi mi

dx dx y

y dx y

dx dx y

y dx y

δ

δ δ

δ

δ δ

∇ = −Γ −Γ

∇ = −Γ −Γ

∇ = −Γ −Γ

∇ = −Γ −Γ

                                                          (3.3)                                     

  
Since the torsion tensor ( )T X Y,  of ∇  defined by ( ) [ ]X YT X Y Y X X Y, = − − ,∇ ∇  
vanishes, we have the following relations by means of Lemma 1 and (3 2). .  
  

                                     

(1) (2)

(3) (4)

(5) (6)

h h a hh h
ji ijji ij jia

h h h h h
jij i i j j i i j

h h h h
j i i j j i i j

y KΓ = Γ = +Γ Γ

Γ = Γ Γ = Γ +Γ

Γ = Γ Γ = Γ

                   (3.4) 

Furthermore, we have the following lemma.  
Lemma 4. The connection coefficients A

BCΓ  of ∇  of the complete metric 2g�  satisfy 
the following relations:  
 

2 2

2

(1) (2)

1 1(3) ( ) (4) ( )
2 2

(5) (6) 0

1(7) 0 (8) ( )
2

hh h h a
aijji ji ji

h h h h h h
ij i j ij j ij i j i

hh h
jij i j i

h h h h
i j j ij i j i

Ky

g y y g y y
y y

y y
y

δ δ

δ δ

Γ = Γ Γ =

Γ = − Γ = −

ΓΓ = Γ =

Γ = Γ = − +

& & & &

& &

 

Proof. The condition compatibility ∇  is equivalent with following equations:  
  
                                                                   0r r

ir jm jr img gΓ + Γ =                                                (3.5) 

                                                        ( ) ( ) 0r r r r
ir jm jr im imj mg gΓ −Γ + Γ −Γ =             (3.6) 

                                                        0r r
ir jrj m i mg gΓ + Γ =                                       (3.7) 
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                                                        0r r
ir j m jr i mg gΓ + Γ =                                       (3.8) 

                                                        2

1 0r r
ir jr i m ij mj mg g g y

y
Γ + Γ + =

& &
                 (3.9) 

                                                        0r r
ir jrj m i mg gΓ + Γ =                                     (3.10) 

From (3 10).  we have 0h
j iΓ = , thus we get (7) . From (3.4), (3.9) and (3 7). , we have  

2

2 2

2 2

mj ir r r r
i m mi i jir ir ir mrj m

im j mj ir
m jir

im j mj ir
j mir

g y
g g g g

y
g y g y

g
y y

g y g y
g

y y

Γ = − = − = +Γ Γ Γ

= − − +Γ

= − − +Γ

& &

& & & &

& & & &

 

Thus we get (3) . From (3)  and (3.4), we have (4) .   
From (3 9) (4). , and (3.4),we have  

 2 2 2

1 1 0
2 2

r ij m
j mir im j ji m

g y
g g y g y

y y y
+ − + = ,Γ & & & & & &

 

then  we obtain (8) .  
From (3.4) and (3.5) we have  
 

( ) ( )

( ) ( ) ( )

r r rr r a r a a
jm ji ijim miir jr jr ima mr imaj mr jiam imaj

r ra a r a
mj jmir jiam imaj ir mja jiam imaj

g g g y K g y K g y K K

g y K K g y K y K K

= − = − + = − = + −Γ Γ ΓΓ Γ

= − + − = − + + − ,Γ Γ
 
thus we get (2) .  
From (3.4) (3.6),  and (3 8). , we have  

 

( ) ( )

( ) ( ) ( )

( )

r r r rr r
j m i m m i m iir jr jr mi jr mi

r r r rr r
m jji ijji ij mjmr mr ir

r r rr r
m j j mmj mj mjir ir ir ir

g g g g

g g g

g g g g

= − = − −Γ = Γ −Γ Γ Γ Γ

Γ Γ Γ= − − = − − = −ΓΓ Γ

Γ Γ Γ= − = − +Γ Γ

 

 
thus we obtain (5)  and (6) . From (3.6)  and (5) , we have (1).   

4.  The almost anti-Hermitian structure i
2( )g J,�  

The almost complex structure J defined in (2 6).  has not the property of homogeneity. 
The k( )F TM -linear mapping k k( ) ( )J TM TMχ χ: → , applies the 1-homogeneous vector 
fields iX  into 0-homogeneous vector fields ( 1 )iX i n= ,..., . Therefore, we consider 

the k( )F TM -linear mapping i k k( ) ( )J TM TMχ χ: → , given on the adapted basis by   

               i i 1( ) , ( ) ( 1 )i ii iJ X y X J X X i n
y

= − = , = ,..., .& &
& &

                (4.1) 

Obviously, iJ  is a tensor field of type (1 1),  on kTM , that is homogeneous on the fibers 
of TM . 
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Theorem 5. k i

2( , )TM g J,�  is an almost anti-Hermitian manifold. 
Proof. It follows easily that 

2 2 2 2( , ) ( , ), ( , ) ( , )i j i j i j i jg JX JX g X X g JX JX g X X= − = −� � � �  

2 2( , ) ( , ).j ji ig JX JX g X X= −� �  
Hence  

i i k
2 2( ) ( ), , ( ).g J X JY g X Y X Y TMχ, = − , ∀ ∈� �  

 
Proposition 6. The Nijenhuis tensor field of the almost complex structure J�  on kTM  
is give by  

2

2

( , ) ( ) ,

1( , ) ( ) ,

1( , ) ( ) .

s s a s
i j i j j i jia sJ

s s a s
i i j j i jia sjJ

s s a s
j i i j jia si jJ

N X X y y y K X

N X X y y y K X
y

N X X y y y K X
y

δ δ

δ δ

δ δ

⎧
⎪ = − −
⎪
⎪

= − −⎨
⎪
⎪

= − +⎪
⎩

�

�

�

& &

& &

 

  
Proof. Recall that the Nijenhuis tensor field JN �  defined by J�  is given by  

k( , ) [ , ] [ , ] [ , ] [ , ], , ( ).JN X Y JX JY J JX Y J X JY X Y X Y TMχ= − − − ∀ ∈�
� � � � � �  

Replacing the basis ( , )i iX X  in the above formula and using following relation: 

( ) 0, ( ) i
i i

yX y X y
y

= =& & & &
& &

 

We get the proof. 
  
Theorem 7. The almost complex structure iJ  is a complex structure on kTM  if and 
only if the Riemannian space ( )M g,  is of constant sectional curvature 1.  
Proof. From the condition 0JN =� , one obtains:  

{ ( )} 0s s s a
jia ia j ja iK g g yδ δ− − = .  

Differentiating with respect to hy , taking 0 {1, , }ay a n= ∀ ∈ … , it follows that the 
curvature tensor field of  ∇  has the expression 
                                                      s s s

jih ih j jh iK g gδ δ= −                                            (4.2) 
Using by the Schur theorem (in the case where M  is connected and dim 3M ≥ ) it 
follows that ( , )M g  has the constant sectional curvature 1. 
Corollary 8. k i

2( , )TM g J,�  is an anti-Hermitian manifold if and only if the space 
( )M g,  is of constant sectional curvature 1.  
 
From (4 2).  we have  
                                 ( 1) ( 1)ij ijR n g n= − , >                                                     (4.3)  

where rkR  is the Ricci tensor and  
 ( 1)S n n= − .   
where S  is the scalar tensor.  
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Corollary 9. If the structure i

2( )g J,�  is a Hermitian structure on kTM  then ( )M g,  is 
an Einstein space with positive scalar curvature.  
 
Since ij jiR R=  then from (4.3)  we get:  

Corollary 10. If the almost complex structure iJ  is a complex structure then 
( ( ))ijM R x,  is a Riemannian space.  

5.  The almost product structure i
2( )g Q,�  

The almost product structure Q  defined in (2 7).  has not the property of homogeneity. 
The k( )F TM -linear mapping k k( ) ( )Q TM TMχ χ: → , applies the 1-homogeneous vector 
fields iX  into 0-homogeneous vector fields ( 1 )iX i n= ,..., . Therefore, we consider the 
k( )F TM -linear mapping i k k( ) ( )Q TM TMχ χ: → , given on the adapted basis by   

                 i i 1( ) , ( ) ( 1 )i ii iQ X y X Q X X i n
y

= = , = ,..., .& &
& &

                    (5.1) 

Obviously, Q�  is a tensor field of type (1 1),  on kTM , that is homogeneous on the 
fibers of TM . It is not difficult to prove:  
Theorem 11. k 2( , )TM g Q, ��  is an almost product manifold.  

In order to find conditions that iQ  be a product structure, we have to put zero for the 
Nijenhuis tensor field of iQ ,  
 

k( , ) [ , ] [ , ] [ , ] [ , ], , ( ).QN X Y QX QY Q QX Y Q X QY X Y X Y TMχ= − − + ∀ ∈�
� � � � � �  

 
Theorem 12. k 2( , )TM g Q, ��  is a product manifold if and only if the space ( )M g,  is of 
constant sectional curvature -1. 
Proof. Similar to  proposition 6 and theorem 7, by putting  0QN =�  we get 

                                     ( )s s s
jia ia j ja iK g gδ δ= − − .                                                     (5.2) 

Therefore, using by the Schur theorem, it follows that ( , )M g  has the constant 
sectional curvature -1. 
Theorem 13. If the structure i

2( )g Q,�  is a product structure on kTM  then ( )M g,  is an 
Einstein space with negative scalar curvature.  
Proof. From (5 2). we have (1 ) (1 )ij ijR n g S n n= − , = −  for 1n > .   
 
Since ij jiR R=  then we get:  

Corollary 14. If the almost product structure iQ  is a product structure then 
( ( ))ijM R x,  is a Riemannian space. 
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6. Almost Hermitian and para-Hermitian structures on kTM  

In this section, we get twin tensor of metric 2g�   and by using it introduce Almost 

Hermitian and para-Hermitian structures on kTM .   Then we show that these structures 
are not Kahlerian or para-Kahlerian. 
 
Lemma15. The twin tensor of structure 2( , )g J��  is a metric that is given by  

i 2

2
2 iji j i j

ijJ

g
h g dx dx y y

y
δ δ= − +

& &
 

Proof. From relation i
i

2( ) ( )Jh X Y g J X Y, = ,�  we have: 

2 2 2

1 2( , ) ( , ) 2 , ( , ) ( , )i j j ij i iji i j jJ Jh X X y g X X g h X X g X X g
y y

= − = − = =� �� �& &
& & & &

 

2( , ) ( , ) 0.i j i jJh X X y g X X= − =� �& &   

Theorem 16. k( , )JTM h Q,� �  is an almost para-Hermitian manifold.  
Proof. Straightforward  computations, we obtain  

2

2( , ) 2 ( , ), ( , ) ( , )i j ij i j iji j i jJ J J Jh QX QX g h X X h QX QX g h X X
y

= = − = − = −� � � �
� � � �

& &
 

( , ) 0 ( , )j ji iJ Jh QX QX h X X= = −� �
� �  

Therefore 
( , ) ( , )J Jh QX QY h X Y= −� �
� �  

 
By definition i

i
i
i( ) ( )Jh

Q JX Y h QX YΩ , = , , the associated almost simplectic structure JhΩ �  
is given in adapted basis by 

4 ( ) .Jh i j
ijg x dx y

y
δΩ = ∧�

& &
 

Theorem17. The space k( )JTM h Q, ,� �  cannot be an almost para- Kahlerian��  manifold. 

Proof. since, 2
1 1( )y y

d d y= −& & & &
& &  and ( ) 0i j

ijd g dx yδ∧ =  then, the exterior 

differential of JhΩ �  satisfies the equation:  

 
4

J Jh hd d y
y

Ω = − ∧Ω .� �& &
& &

 

It follows, easily that i
i 0Qh

JdΩ ≠  on iTM , i.e., i
iQh

JΩ  is not closed. 
From theorem 12,16, we have:   
Theorem18. k( , )JTM h Q,� �  is a para-Hermitian manifold if and only if the space 
( )M g,  is of constant sectional curvature -1. 
 
Lemma19. The Levi-Civita connection coefficients Jh∇ �  of iJh  satisfy the following 
relations:  
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2 2

2

1(1) , (2) ,
2

1 1(3) , (4) ,
2 2

(5) , (6) 0,

1(7) 0, (8) ( ).

h h h a h
ji ji ji jia

h a h h a h
aji aijj i j i

h h h
jij i j i

h h h h h
ji j i i jj i j i

y K

y K y K
y y

g y y y
y

δ δ

Γ = Γ Γ =

Γ = − Γ = −

Γ = Γ Γ =

Γ = Γ = − −

& & & &

& &

 

Theorem 20. Jh∇ �  is an almost complex connection.  
Proof. From (1.1)  we have  
 i

i2 (( ) ) ( )( )J Jh h
X X Jg J Y Z h Y Z∇ , ≡ ∇ ,� ��  

Since Jh∇ �  is Levi-Civita connection for iJh  then  

 i
2 (( ) ) 0Jh

Xg J Y Z∇ , =��  

i.e. i 0X J = .∇  
Similarly previous case, the twin tensor of structure 2( , )g Q��  is a metric that is  

 i 2

2
2 iji j i j

ijQ

g
h g dx dx y y

y
δ δ= +

& &
 

Obviously, iQh  is 0-homogeneous on the fibers of TM.  
Theorem 21. 
1. k i

i( )QTM h J, ,  is an almost Hermitian structure on kTM .  

2. The associated almost simplectic structure i
iQh

JΩ  is given in adapted basis by  

 i
i 4 ( )Qh i j

ijJ g x y dx
y

δΩ = ∧
& &

  

 
Theorem 22. The space k i

i( )QTM h J, ,  cannot be an almost Kahlerian��  manifold.  
From corollary 8 and theorem 21 we obtain following theorem. 
Theorem 23. k i

i( )QTM h J, ,  is a Hermitian manifold if and only if the space ( )M g,  is 
of constant sectional curvature 1. 
Lemma 24. The Levi-Civita connection coefficients Qh

∇ �  of iQh  satisfy the following 
relations:  

2 2

2

1(1) , (2) ,
2

1 1(3) , (4) ,
2 2

(5) , (6) 0,

1(7) 0, (8) ( ).

h h h a h
ji ji ji jia

h a h h a h
aji aijj i j i

h h h
jij i j i

h h h h h
ji j i i jj i j i

y K

y K y K
y y

g y y y
y

δ δ

Γ = Γ Γ =

Γ = Γ =

Γ = Γ Γ =

Γ = Γ = − −

& & & &

& &

 

Theorem 25. Qh∇ �  is an almost product connection.  
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