Product and anti-Hermitian structures on the tangent space

E. Peyghan, A. Razavi and A. Heydari August 22, 2007

Abstract

Noting that the complete lift of a Rimannian metric *g* defined on a differentiable manifold *M* is not 0-homogeneous on the fibers of the tangent bundle *TM* . In this paper we introduce a new lift \tilde{g}_2 which is 0-homogeneous. It determines on slit tangent bundle a pseudo-Riemannian metric, which depends only on the metric *g* . We study some of the geometrical properties of this pseudo-Riemannian space and define the natural almost complex structure and natural almost product structure which preserve the property of homogeneity and find some new results.

Keywords: Almost complex structure, almost anti-Hermitian structure, almost product structure, complete lift metric, 0-homogeneous lift.

1. Introduction.

The importance of the complete lift g_2 of a Riemannian metric g is well known in Riemannian geometry, Finsler geometry and Physics, and has many applications in Biology too (see [1]). The tensor field g_2 determines a pseudo-Riemannian structure on slit tangent bundle $\widetilde{TM} = TM \setminus \{0\}$, but g_2 is not 0-homogeneous on the fibers of the tangent bundle*TM* . Therefore, we cannot study some global properties of the pseudo-Riemannian space $(TM, g₂)$. For instance we can not prove a theorem of Gauss-Bonnet type for this space (see [4]).

In this paper, we define a new kind of lift \tilde{g}_2 to *TM* of the Riemannian metric *g*. Thus \tilde{g}_2 determines on \widetilde{TM} a pseudo-Riemannian structure, which is 0homogeneous on the fibers of *TM* and depends only on *g* . Some geometrical properties of \tilde{g}_2 such as the Levi-Civita connection are studied.

 Almost complex and almost product structures are among the most important geometrical structures which can be considered on a manifold. Geometric properties of this structures have been studied in (see $[2]$ to $[7]$, $[11]$, $[12]$, $[15]$, $[16]$). We introduce the natural almost complex and product structures \overline{J} and \overline{Q} which depend only on *g* and preserve the property of homogeneity. Then we get almost anti-Hermitian structure (\tilde{g}_2, \tilde{J}) and almost product structure (\tilde{g}_2, \tilde{Q}) . By considering twin tensor of \tilde{g}_2 , we construct almost para-Hermitian and Hermitian structures on \widetilde{TM} .

Let *M* be a smooth manifold, *TM* its tangent bundle and $\chi(M)$ the algebra of vector fields on *M* . A *K* -structure on *M* is a fields of endomorphisms *K* on *TM* such that $K^2 = \varepsilon I$, where $\varepsilon = \pm 1$. Thus $\varepsilon = 1$ corresponds to an *almost product structure*, while $\varepsilon = -1$ provides an *almost complex structure*.

 A *K* -structure is *integrable* if and only if there exists an a linear torsionless connection on *M* such that $\nabla K = 0$, or equivalently the Nijenhuis tensor N_K vanishes. In this case, ∇ is called *almost complex (product) connection* if *K* be an almost complex (product) structure.

If *g* is a metric on *M* such that $g(KX, KY) = \sigma g(X, Y)$, $\sigma = \pm 1$, for arbitrary vector fields *X* and *Y* on *M*, then we shall say that the metric *g* is *K* -metric. The definition above unifies the following four cases:

The case $\varepsilon = 1, \sigma = 1$ corresponds to the (pseudo-) Riemannian *almost product manifold* (M, g, K) , the case $\varepsilon = 1, \sigma = -1$ provides the *almost para-Hermitian manifold* (M, g, K) , the case $\varepsilon = -1, \sigma = 1$ is known as the *almost Hermitian manifold* (M, g, K) , and finally the case $\varepsilon = -1, \sigma = -1$ corresponds to the *almost anti-Hermitian* manifold (M, g, K) .

Let us introduce a $(0, 2)$ tensor field h, the twin of g, by $h(X, Y) = g(KX, Y)$. Then

$$
h(X, Y) = \varepsilon \sigma h(Y, X), h(KX, KY) = \sigma h(X, Y).
$$

Notice that for $\varepsilon\sigma = 1$, the twin tensor is a metric, while for $\varepsilon\sigma = -1$ the twin tensor is a 2-form.

Let ψ be a (0,3) tensor fields defined by the formula

$$
\psi(X, Y, Z) = g((\nabla_X K)Y, Z) \equiv (\nabla_X h)(Y, Z) \tag{1.1}
$$

Obviously, if the tensor fields ψ vanishes then $\nabla K = 0$ for a torsionless (Levi-Civita) connection and the Nijenhuis tensor N_k is forced to vanish, too ([2]).

2. The Complete Lift

Let Γ_{ii}^k be the coefficients of the Riemannian connection of *M*, then $N_i^h = \Gamma_{0i}^h = y^a \Gamma_{ai}^h(x)$ can be regarded as coefficients of the canonical nonlinear connection *N* of *TM*, where (x^h, y^h) are the induced coordinates in *TM*.

N determines a horizontal distribution on \widetilde{TM} , which is supplementary to the vertical distribution *V* , such that, we have:

$$
T_u \widetilde{TM} = N_u \oplus V_u, \quad \forall u \in \widetilde{TM} \,.
$$

The adapted basis to *N* and *V* is given by $\{X_h, X_{\overline{h}}\}$ where

$$
X_h = \frac{\partial}{\partial x^h} - y^a \Gamma_{ah}{}^m \frac{\partial}{\partial y^m}, \qquad X_{\bar{h}} = \frac{\partial}{\partial y^h}
$$
(2.2)

and its dual basis is $\{dx^i, \delta y^i\}$ where

$$
\delta y^i = dy^i + y^a \Gamma_{aj}^i dx^j. \tag{2.3}
$$

The indices $a, b, ..., \overline{a}, \overline{b}, ...$, run over the range $\{1, 2, ..., n\}$. The summation convention will be used in relation to this system of indices. By straightforward calculations, we have the following lemma.

Lemma 1*.* The Lie bracket of the adapted frame of *TM* satisfies the following:

- *1*) $[X_i, X_j] = y^a K_{ii}{}^m X_{\bar{m}},$
- 2) $[X_i, X_{\overline{i}}] = \Gamma_{ii}^{m}$,
- 3) $[X_{\overline{x}}, X_{\overline{x}}] = 0$,

where $K_{\mu a}^{m}$ denote the components of the curvature tensor of M .

Let (M, g) be a Riemannian space, M being a real n-dimensional manifold and (TM, π, M) its tangent bundle. On a domain $U \subset M$ of a local chart, *g* has the components $g_{ij}(x)$, $(i, j, ... = 1, ..., n)$. Then on the domain of chart $\pi^{-1}(U) \subset TM$ we consider the functions $g_{ii}(x, y) = g_{ii}(x), \forall (x, y) \in \pi^{-1}(U)$ and put

$$
\| y \| = \sqrt{g_{ij}(x) y^i y^j}.
$$
 (2.4)

Then, $||y||$ is globally defined on TM, differentiable on \overline{TM} and continuous on the null section.

The complete lift of *g* to *TM* is defined by

$$
g_2(x, y) = 2g_{ij}(x)dx^i\delta y^j, \ \forall (x, y) \in \widetilde{TM}.
$$
 (2.5)

Then, g_2 is not 0-homogeneous on the fibers of TM.

Namely, for the homothety h_t : $(x, y) \rightarrow (x, ty)$ for all $t \in R^+$ we get

$$
(g_2 \circ h_t)(x, y) = 2t g_{ij}(x) dx^i \delta y^j = t g_2(x, y) \neq g_2(x, y).
$$

On
$$
\widetilde{TM}
$$
 we define an almost complex structure J by

$$
J(X_i) = -X_{\bar{i}}, \quad J(X_{\bar{i}}) = X_i, \quad i = 1, ..., n.
$$
 (2.6)

It is known that $(TM, J, g₂)$ is an almost anti-Hermitian manifold. Moreover, the integrability of the almost complex structure *J* implies that (M, g) is locally flat. (see [7])

Also, we define almost product structure Q on TM by

$$
Q(X_i) = X_{\bar{i}}, \quad Q(X_{\bar{i}}) = X_i, \quad i = 1, ..., n. \tag{2.7}
$$

Then, (\widetilde{TM}, Q, g_2) is an almost product manifold. Also, the integrability of the almost product structure Q implies that (M, g) is locally flat.

The previous space, called "the geometrical model on *TM* of the Riemannian space (M, g) ", is important in the study of the geometry of initial Riamannian space (M, g) ([6], [7]).

3. The 0-homogeneous lift of the Riemannian metric *g*

We can eliminate the inconvenience of the complete lift, introducing a new kind of lift to *TM* of the Riemannian metric *g* . Then we obtain the Levi-Civita connection for this metric.

Definition . Let \tilde{g}_2 be a the tensor field on $\tilde{T}M$ defined by

$$
\tilde{g}_2(x, y) = \frac{2}{\|y\|} g_{ij}(x) dx^i \delta y^i
$$
\n(3.1)

where $||y||$ was defined in (2.4). Then \tilde{g}_2 is called the 0-homogeneous lift of the Riemannian metric g to \overline{TM} .

We get, evidently:

Theorem 2. The following properties hold:

1. The pair (TM, \tilde{g}_2) is a pseudo-Riemannian space, depending only on the metric g.

2. \tilde{g}_2 *is 0-homogeneous on the fibers of the tangent bundle TM*.

In order to study the geometry of the pseudo-Riemannian space $(\widetilde{TM}, \tilde{g}_2)$ we can apply the theory of the (h, v) -Riemannian metric on *TM* given in the books [6], [7] and [9]. Looking at the relation (2.5) and (3.1) we can assert:

Theorem 3. The lifts g_2 and \tilde{g}_2 coincide on the hyper unit tangent sphere $g_{ij}(x_0) y^i y^j = 1$, for every point $x_0 \in M$.

Let $\overline{\nabla}$ be the Riemannian connection of *TM* with coefficient $\overline{\Gamma}_{BC}^A$, that is:

$$
\overline{\nabla}_{X_i} X_j = \overline{\Gamma}_{ji}{}^m X_m + \overline{\Gamma}_{ji}{}^{\overline{m}} X_{\overline{m}}, \qquad \overline{\nabla}_{X_i} X_{\overline{j}} = \overline{\Gamma}_{\overline{j}}{}^m_i X_m + \overline{\Gamma}_{\overline{j}}{}^{\overline{m}} X_{\overline{m}},
$$
\n
$$
\overline{\nabla}_{X_{\overline{j}}} X_j = \overline{\Gamma}_{j\overline{i}}{}^m X_m + \overline{\Gamma}_{j\overline{i}}{}^{\overline{m}} X_{\overline{m}}, \qquad \overline{\nabla}_{X_{\overline{j}}} X_{\overline{j}} = \overline{\Gamma}_{\overline{j}}{}^m_i X_m + \overline{\Gamma}_{\overline{j}}{}^{\overline{m}}_{\overline{j}} X_{\overline{m}}
$$
\n(3.2)

Then, we have

$$
\begin{aligned}\n\overline{\nabla}_{X_i} dx^h &= -\overline{\Gamma}_{mi}{}^h dx^m - \overline{\Gamma}_{\overline{mi}}{}^h \delta y^m, \\
\overline{\nabla}_{X_i} \delta y^h &= -\overline{\Gamma}_{mi}{}^{\overline{h}} dx^m - \overline{\Gamma}_{\overline{mi}}{}^{\overline{h}} \delta y^m, \\
\overline{\nabla}_{X_{\overline{i}}} dx^h &= -\overline{\Gamma}_{m\overline{i}}{}^h dx^m - \overline{\Gamma}_{\overline{mi}}{}^h \delta y^m, \\
\overline{\nabla}_{X_i} \delta y^h &= -\overline{\Gamma}_{m\overline{i}}{}^{\overline{h}} dx^m - \overline{\Gamma}_{\overline{mi}}{}^{\overline{h}} \delta y^m,\n\end{aligned} \tag{3.3}
$$

Since the torsion tensor $T(X,Y)$ of $\overline{\nabla}$ defined by $T(X,Y) = \overline{\nabla}_X Y - \overline{\nabla}_Y X - [X,Y]$ vanishes, we have the following relations by means of Lemma 1 and (3.2) .

(1)
$$
\overline{\Gamma}_{ji}^h = \overline{\Gamma}_{ij}^h
$$

\n(2) $\overline{\Gamma}_{ji}^{\overline{h}} = \overline{\Gamma}_{ij}^{\overline{h}} + y^a K_{jia}^h$
\n(3) $\overline{\Gamma}_{\overline{j}i}^h = \overline{\Gamma}_{i\overline{j}}^h$
\n(4) $\overline{\Gamma}_{\overline{j}i}^{\overline{h}} = \overline{\Gamma}_{i\overline{j}}^{\overline{h}} + \Gamma_{ji}^{\overline{h}}$
\n(5) $\overline{\Gamma}_{\overline{j}i}^h = \overline{\Gamma}_{\overline{l}j}^h$
\n(6) $\overline{\Gamma}_{\overline{j}i}^{\overline{h}} = \overline{\Gamma}_{\overline{l}j}^{\overline{h}}$
\n(7) $\overline{\Gamma}_{\overline{j}i}^h = \overline{\Gamma}_{i\overline{j}}^{\overline{h}}$
\n(8) $\overline{\Gamma}_{\overline{j}i}^{\overline{h}} = \overline{\Gamma}_{\overline{l}j}^{\overline{h}}$

Furthermore, we have the following lemma.

Lemma 4. The connection coefficients $\overline{\Gamma}_{BC}^A$ *of* $\overline{\nabla}$ *of the complete metric* \tilde{g}_2 *satisfy the following relations:*

(1)
$$
\overline{\Gamma}_{ji}^h = \Gamma_{ji}^h
$$

\n(2) $\overline{\Gamma}_{ji}^h = y^a K_{aij}^h$
\n(3) $\overline{\Gamma}_{\overline{j}i}^h = \frac{1}{2||y||^2} (g_{ij}y^h - \delta_i^h y_j)$
\n(4) $\overline{\Gamma}_{j\overline{i}}^h = \frac{1}{2||y||^2} (g_{ij}y^h - \delta_j^h y_i)$
\n(5) $\overline{\Gamma}_{\overline{j}i}^h = \Gamma_{ji}^h$
\n(6) $\overline{\Gamma}_{j\overline{i}}^h = 0$
\n(7) $\overline{\Gamma}_{\overline{j}i}^h = 0$
\n(8) $\overline{\Gamma}_{\overline{j}i}^h = -\frac{1}{2||y||^2} (\delta_i^h y_j + \delta_j^h y_i)$

Proof. The condition compatibility $\overline{\nabla}$ is equivalent with following equations:

$$
g_{ir}\overline{\Gamma}_{jm}^{r} + g_{jr}\overline{\Gamma}_{im}^{r} = 0
$$
 (3.5)

$$
g_{ir}(\overline{\Gamma}_{jm}^{r} - \overline{\Gamma}_{\overline{j}m}^{r}) + g_{jr}(\Gamma_{im}^{r} - \overline{\Gamma}_{im}^{r}) = 0
$$
 (3.6)

$$
g_{ir}\overline{\Gamma}_{\overline{j}m}^{r} + g_{jr}\overline{\Gamma}_{\overline{i}m}^{r} = 0 \qquad (3.7)
$$

$$
g_{ir}\overline{\Gamma}_{j\overline{m}}^{r} + g_{jr}\overline{\Gamma}_{i\overline{m}}^{r} = 0
$$
 (3.8)

$$
g_{ir}\overline{\Gamma}_{\overline{j}\,\overline{m}}^{\quad \ \ \tau} + g_{jr}\overline{\Gamma}_{i\,\overline{m}}^{\quad \ \ r} + \frac{1}{\|\ y\|^2}g_{ij}y_m = 0 \tag{3.9}
$$

$$
g_{ir}\overline{\Gamma}_{\overline{j}\overline{m}}^{\ \ r} + g_{jr}\overline{\Gamma}_{\overline{i}\overline{m}}^{\ \ r} = 0 \tag{3.10}
$$

From (3.10) we have $\overline{\Gamma}_{\overline{j}}{}^{h} = 0$, thus we get (7). From (3.4), (3.9) and (3.7), we have

$$
g_{ir}\overline{\Gamma}_{\overline{j}m}^{\ r} = -g_{ir}\overline{\Gamma}_{\overline{i}m}^{\ r} = -g_{ir}\overline{\Gamma}_{m\overline{i}}^{\ r} = g_{mr}\overline{\Gamma}_{\overline{i}\overline{j}}^{\ \ r} + \frac{g_{mj}y_i}{\|y\|^2}
$$

$$
= -g_{ir}\overline{\Gamma}_{m\overline{j}}^{\ r} - \frac{g_{im}y_j}{\|y\|^2} + \frac{g_{mj}y_i}{\|y\|^2}
$$

$$
= -g_{ir}\overline{\Gamma}_{\overline{j}m}^{\ r} - \frac{g_{im}y_j}{\|y\|^2} + \frac{g_{mj}y_i}{\|y\|^2}
$$

Thus we get (3) . From (3) and (3.4) , we have (4) . From (3.9) , (4) and (3.4) , we have

$$
g_{ir} \overline{\Gamma}_{\overline{j} \,\overline{m}}^{\overline{r}} + \frac{1}{2 \left\| y \right\|^2} g_{im} y_j - \frac{1}{2 \left\| y \right\|^2} g_{ji} y_m + \frac{g_{ij} y_m}{\left\| y \right\|^2} = 0,
$$

then we obtain (8).

From (3.4) and (3.5) we have

$$
g_{ir}\overline{\Gamma}_{jm}^{r} = -g_{jr}\overline{\Gamma}_{im}^{r} = -g_{jr}(\overline{\Gamma}_{mi}^{r} + y^{a}K_{ima}^{r}) = g_{mr}\overline{\Gamma}_{ji}^{r} - y^{a}K_{imaj} = g_{mr}\overline{\Gamma}_{ij}^{r} + y^{a}(K_{jiam} - K_{imaj})
$$

= $-g_{ir}\overline{\Gamma}_{mj}^{r} + y^{a}(K_{jiam} - K_{imaj}) = -g_{ir}(\overline{\Gamma}_{jm}^{r} + y^{a}K_{mja}^{r}) + y^{a}(K_{jiam} - K_{imaj}),$

thus we get (2) .

From (3.4) , (3.6) and (3.8) , we have

$$
g_{ir}\overline{\Gamma}_{jm}^{r} = -g_{jr}\overline{\Gamma}_{im}^{r} = -g_{jr}(\overline{\Gamma}_{mi}^{r} - \Gamma_{mi}^{r}) = g_{jr}(\Gamma_{mi}^{r} - \overline{\Gamma}_{mi}^{r})
$$

= $-g_{mr}(\Gamma_{ji}^{r} - \overline{\Gamma}_{ji}^{r}) = -g_{mr}(\Gamma_{ij}^{r} - \overline{\Gamma}_{ij}^{r}) = g_{ir}(\Gamma_{mj}^{r} - \overline{\Gamma}_{mj}^{r})$
= $g_{ir}\Gamma_{mj}^{r} - g_{ir}\overline{\Gamma}_{mj}^{r} = g_{ir}\Gamma_{mj}^{r} - g_{ir}(\overline{\Gamma}_{jm}^{r} + \Gamma_{mj}^{r})$

thus we obtain (5) and (6) . From (3.6) and (5) , we have (1) .

4. The almost anti-Hermitian structure (\tilde{g}_2, \tilde{J})

The almost complex structure J defined in (2.6) has not the property of homogeneity. The $F(\widetilde{TM})$ -linear mapping $J: \chi(\widetilde{TM}) \to \chi(\widetilde{TM})$, applies the 1-homogeneous vector fields X_i into 0-homogeneous vector fields $X_{\bar{i}}$ $(i = 1,...,n)$. Therefore, we consider the $F(\widetilde{TM})$ -linear mapping $\widetilde{J}: \chi(\widetilde{TM}) \to \chi(\widetilde{TM})$, given on the adapted basis by

$$
\tilde{J}(X_i) = -\|\ y\| \ X_{\bar{i}}, \qquad \tilde{J}(X_{\bar{i}}) = \frac{1}{\|\ y\|} X_i, \ (i = 1, ..., n). \tag{4.1}
$$

Obviously, \tilde{J} is a tensor field of type (1,1) on \widetilde{TM} , that is homogeneous on the fibers of *TM* .

Theorem 5. $(\widetilde{TM}, \widetilde{g}_2, \widetilde{J})$ *is an almost anti-Hermitian manifold.* **Proof**. It follows easily that

$$
\tilde{g}_2(JX_i, JX_j) = -\tilde{g}_2(X_i, X_j), \quad \tilde{g}_2(JX_{\bar{i}}, JX_{\bar{j}}) = -\tilde{g}_2(X_{\bar{i}}, X_{\bar{j}})
$$

$$
\tilde{g}_2(JX_{\bar{i}}, JX_j) = -\tilde{g}_2(X_{\bar{i}}, X_j).
$$

Hence

 \lceil

$$
\widetilde{g}_2(\widetilde{J}X,\widetilde{J}Y)=-\widetilde{g}_2(X,Y),\ \forall X,Y\in \chi(\widetilde{TM}).
$$

Proposition 6. *The Nijenhuis tensor field of the almost complex structure* \tilde{J} *on* \widetilde{TM} *is give by*

$$
\begin{cases}\nN_j(X_i, X_j) = (y_i \delta_j^s - y_j \delta_i^s - y^a K_{jia}^s) X_{\bar{s}}, \\
N_j(X_i, X_{\bar{j}}) = \frac{1}{\|y\|^2} (y_i \delta_j^s - y_j \delta_i^s - y^a K_{jia}^s) X_s, \\
N_j(X_{\bar{i}}, X_{\bar{j}}) = \frac{1}{\|y\|^2} (y_j \delta_i^s - y_i \delta_j^s + y^a K_{jia}^s) X_{\bar{s}}.\n\end{cases}
$$

Proof. Recall that the Nijenhuis tensor field N_j defined by \tilde{J} is given by

$$
N_{\tilde{J}}(X,Y)=[\tilde{J}X,\tilde{J}Y]-\tilde{J}[\tilde{J}X,Y]-\tilde{J}[X,\tilde{J}Y]-[X,Y],\qquad \forall X,Y\in \chi(\widetilde{TM}).
$$

Replacing the basis $(X_i, X_{\overline{i}})$ in the above formula and using following relation:

$$
X_i(||y||) = 0, \quad X_{\bar{i}}(||y||) = \frac{y_i}{||y||}
$$

We get the proof.

Theorem 7. *The almost complex structure* \tilde{J} *is a complex structure on* \widetilde{TM} *if and only if the Riemannian space* (M, g) *is of constant sectional curvature 1.* **Proof.** From the condition $N_{\tilde{I}} = 0$, one obtains:

$$
\{K_{jia}^s - (g_{ia}\delta_j^s - g_{ja}\delta_i^s)\}y^a = 0.
$$

Differentiating with respect to y^h , taking $y^a = 0 \quad \forall a \in \{1, ..., n\}$, it follows that the curvature tensor field of ∇ has the expression

$$
K_{jih}^s = g_{ih}\delta_j^s - g_{jh}\delta_i^s \tag{4.2}
$$

Using by the Schur theorem (in the case where *M* is connected and $\dim M \ge 3$) it follows that (M, g) has the constant sectional curvature 1.

Corollary 8. $(\widetilde{TM}, \widetilde{g}_2, \widetilde{J})$ *is an anti-Hermitian manifold if and only if the space* (M, g) is of constant sectional curvature 1.

From (4.2) we have

$$
R_{ij} = (n-1)g_{ij}, \qquad (n>1)
$$
\n(4.3)

where R_{rk} is the Ricci tensor and

 $S = n(n-1)$.

where *S* is the scalar tensor.

Corollary 9. If the structure (\tilde{g}_2, \tilde{J}) is a Hermitian structure on \widetilde{TM} then (M, g) is *an Einstein space with positive scalar curvature.*

Since $R_{ii} = R_{ii}$ then from (4.3) we get:

Corollary 10. *If the almost complex structure* \tilde{J} *is a complex structure then* $(M, R_{ii}(x))$ *is a Riemannian space.*

5. The almost product structure (\tilde{g}_2, \tilde{Q})

The almost product structure Q defined in (2.7) has not the property of homogeneity. The $F(TM)$ -linear mapping $Q: \chi(TM) \to \chi(TM)$, applies the 1-homogeneous vector fields X_i into 0-homogeneous vector fields $X_{\overline{i}}$ (*i* = 1, ..., *n*). Therefore, we consider the $F(\widetilde{TM})$ -linear mapping $\widetilde{Q}: \chi(\widetilde{TM}) \to \chi(\widetilde{TM})$, given on the adapted basis by

$$
\widetilde{Q}(X_i) = ||y|| X_{\overline{i}}, \quad \widetilde{Q}(X_{\overline{i}}) = \frac{1}{||y||} X_i, \ (i = 1, ..., n). \tag{5.1}
$$

Obviously, \tilde{Q} is a tensor field of type (1,1) on \widetilde{TM} , that is homogeneous on the fibers of *TM* . It is not difficult to prove:

Theorem 11. (TM, \tilde{g}_2, Q) *is an almost product manifold.*

In order to find conditions that \tilde{Q} be a product structure, we have to put zero for the Nijenhuis tensor field of \tilde{Q} ,

$$
N_{\tilde{Q}}(X,Y) = [\tilde{Q}X,\tilde{Q}Y] - \tilde{Q}[\tilde{Q}X,Y] - \tilde{Q}[X,\tilde{Q}Y] + [X,Y], \qquad \forall X,Y \in \chi(\widetilde{TM}).
$$

Theorem 12. $(\widetilde{TM}, \widetilde{g}_2, \widetilde{Q})$ *is a product manifold if and only if the space* (M, g) *is of constant sectional curvature -1.*

Proof. Similar to proposition 6 and theorem 7, by putting $N_{\tilde{o}} = 0$ we get

$$
K_{jia}^s = -(g_{ia}\delta_j^s - g_{ja}\delta_i^s). \tag{5.2}
$$

Therefore, using by the Schur theorem, it follows that (M, g) has the constant sectional curvature -1.

Theorem 13. If the structure (\tilde{g}_2, \tilde{Q}) is a product structure on \widetilde{TM} then (M, g) is an *Einstein space with negative scalar curvature.* **Proof.** From (5.2) we have $R_{ij} = (1 - n)g_{ij}$, $S = n(1 - n)$ for $n > 1$.

Since $R_{ii} = R_{ii}$ then we get:

Corollary 14. If the almost product structure \widetilde{Q} is a product structure then $(M, R_i(x))$ *is a Riemannian space.*

6. Almost Hermitian and para-Hermitian structures on *TM*k

In this section, we get twin tensor of metric \tilde{g}_2 and by using it introduce Almost Hermitian and para-Hermitian structures on \widetilde{TM} . Then we show that these structures are not Kahlerian or para-Kahlerian.

Lemma15. The twin tensor of structure (\tilde{g}_2, \tilde{J}) is a metric that is given by

$$
h_{\tilde{j}} = -2g_{ij}dx^i dx^j + \frac{2g_{ij}}{\|y\|^2} \delta y^i \delta y^j
$$

Proof. From relation $h_{\tilde{J}}(X, Y) = \tilde{g}_2(\tilde{J}X, Y)$ we have:

$$
h_j(X_i, X_j) = -\|\, y \|\, \tilde{g}_2(X_{\bar{i}}, X_j) = -2g_{ij}, \, h_j(X_{\bar{i}}, X_{\bar{j}}) = \frac{1}{\|\, y \,\|} \tilde{g}_2(X_i, X_{\bar{j}}) = \frac{2}{\|\, y \,\|} g_{ij}
$$
\n
$$
h_j(X_i, X_{\bar{j}}) = -\|\, y \,\|\, \tilde{g}_2(X_{\bar{i}}, X_{\bar{j}}) = 0.
$$

Theorem 16. $(\widetilde{TM}, h_{\tilde{J}}, \tilde{Q})$ *is an almost para-Hermitian manifold.* **Proof.** Straightforward computations, we obtain

$$
h_j(\tilde{Q}X_i, \tilde{Q}X_j) = 2g_{ij} = -h_j(X_i, X_j), \ h_j(\tilde{Q}X_{\bar{I}}, \tilde{Q}X_{\bar{J}}) = -\frac{2}{\|y\|^2} g_{ij} = -h_j(X_{\bar{I}}, X_{\bar{J}})
$$

$$
h_j(\tilde{Q}X_{\bar{I}}, \tilde{Q}X_j) = 0 = -h_j(X_{\bar{I}}, X_j)
$$

Therefore

$$
h_{\tilde{\jmath}}(\tilde{Q}X, \tilde{Q}Y) = -h_{\tilde{\jmath}}(X, Y)
$$

By definition $\Omega_{\tilde{Q}}^{h_j}(X, Y) = h_j(\tilde{Q}X, Y)$, the associated almost simplectic structure Ω^{h_j} is given in adapted basis by

$$
\Omega^{h_j} = \frac{4}{\|y\|} g_{ij}(x) dx^i \wedge \delta y^j.
$$

Theorem17. The space $(\widetilde{TM}, h_i, \widetilde{Q})$ cannot be an almost para-Kählerian manifold. **Proof.** since, $d(\frac{1}{\|y\|}) = -\frac{1}{\|y\|^2}d\|y\|$ and $d(g_{ij}dx^i \wedge \delta y^j) = 0$ then, the exterior differential of Ω^{h_j} satisfies the equation:

$$
d\Omega^{h_j} = -\frac{4}{\parallel y \parallel} d \parallel y \parallel \wedge \Omega^{h_j}.
$$

It follows, easily that $d\Omega_{\tilde{j}}^{h_{\tilde{Q}}} \neq 0$ on $\tilde{T}M$, i.e., $\Omega_{\tilde{j}}^{h_{\tilde{Q}}}$ is not closed.

From theorem 12,16, we have:

Theorem18. $(\widetilde{TM}, h_{\tilde{t}}, \tilde{Q})$ is a para-Hermitian manifold if and only if the space (M, g) is of constant sectional curvature -1.

Lemma19. The Levi-Civita connection coefficients $\bar{\nabla}^{h_j}$ of h_j satisfy the following *relations:*

(1)
$$
\overline{\Gamma}_{ji}^h = \Gamma_{ji}^h
$$
, (2) $\overline{\Gamma}_{ji}^h = \frac{1}{2} y^a K_{jia}^h$,
\n(3) $\overline{\Gamma}_{\overline{j}i}^h = -\frac{1}{2 ||y||^2} y^a K_{aji}^h$, (4) $\overline{\Gamma}_{j\overline{i}}^h = -\frac{1}{2 ||y||^2} y^a K_{ai}^h$,
\n(5) $\overline{\Gamma}_{\overline{j}i}^h = \Gamma_{ji}^h$, (6) $\overline{\Gamma}_{j\overline{i}}^h = 0$,
\n(7) $\overline{\Gamma}_{\overline{j}i}^h = 0$, (8) $\overline{\Gamma}_{\overline{j}i}^h = \frac{1}{||y||^2} (g_{ji} y^h - \delta_j^h y_i - \delta_i^h y_j)$.

Theorem 20. $\overline{\nabla}^{h_j}$ is an almost complex connection. **Proof.** From (1.1) we have

$$
\tilde{g}_{2}((\overline{\nabla}^{h_{\tilde{\jmath}}}_{X}\widetilde{J})Y,Z)\equiv(\overline{\nabla}^{h_{\tilde{\jmath}}}_{X}h_{\tilde{\jmath}})(Y,Z)
$$

Since $\overline{\nabla}^{h_j}$ is Levi-Civita connection for h_j then

$$
\tilde{g}_2((\bar{\nabla}_X^{h_j}\tilde{J})Y,Z)=0
$$

i.e. $\overline{\nabla}_x \widetilde{J} = 0$.

Similarly previous case, the twin tensor of structure (\tilde{g}_2, \tilde{Q}) is a metric that is

$$
h_{\widetilde{Q}} = 2g_{ij}dx^{i}dx^{j} + \frac{2g_{ij}}{\|y\|^{2}} \delta y^{i} \delta y^{j}
$$

Obviously, $h_{\tilde{Q}}$ is 0-homogeneous on the fibers of TM.

Theorem 21*.*

- *1.* $(\widetilde{TM}, h_{\widetilde{\rho}}, \widetilde{J})$ *is an almost Hermitian structure on* \widetilde{TM} *.*
- 2. The associated almost simplectic structure $\Omega_j^{h_{\overline{\partial}}}$ is given in adapted basis by

$$
\Omega_{\tilde{j}}^{h_{\tilde{\mathcal{Q}}}} = \frac{4}{\|y\|} g_{ij}(x) \delta y^i \wedge dx^j
$$

Theorem 22. *The space* $(\widetilde{TM}, h_{\widetilde{O}}, \widetilde{J})$ *cannot be an almost Kählerian manifold.*

From corollary 8 and theorem 21 we obtain following theorem.

Theorem 23. $(\widetilde{IM}, h_{\widetilde{O}}, \widetilde{J})$ is a Hermitian manifold if and only if the space (M, g) is *of constant sectional curvature 1.*

Lemma 24. The Levi-Civita connection coefficients $\overline{\nabla}^{h_{\tilde{\omega}}}$ of $h_{\tilde{\omega}}$ satisfy the following *relations:*

(1)
$$
\overline{\Gamma}_{ji}^h = \Gamma_{ji}^h
$$
, (2) $\overline{\Gamma}_{ji}^h = \frac{1}{2} y^a K_{jia}^h$,
\n(3) $\overline{\Gamma}_{\overline{j}i}^h = \frac{1}{2 ||y||^2} y^a K_{aji}^h$, (4) $\overline{\Gamma}_{j\overline{i}}^h = \frac{1}{2 ||y||^2} y^a K_{aij}^h$,
\n(5) $\overline{\Gamma}_{\overline{j}i}^h = \Gamma_{ji}^h$, (6) $\overline{\Gamma}_{j\overline{i}}^h = 0$,
\n(7) $\overline{\Gamma}_{\overline{j}i}^h = 0$, (8) $\overline{\Gamma}_{\overline{j}i}^h = \frac{1}{||y||^2} (g_{ji} y^h - \delta_j^h y_i - \delta_i^h y_j)$.

Theorem 25. $\overline{\nabla}^{h_{\tilde{\varrho}}}$ is an almost product connection.

Acknowledgement: The authors would like to thanks Professor Radu Miron for advising to work on this field.

References

[1] P.L. Antonelli, R. S. Ingarden and M. Matsumoto, *The theorey of sprays and Finsler spaces with applications in Physics and Biology*, Springer, 1993. Amer. Math. Soc. 72, 1966, pp. 167-219.

[2] A. Borowiec, M. Ferraris, M. Francaviglia and I. Volovich, *Almost complex and almost product Einstein manifolds from a variational principle,* J. Math. Phys. 40 1999, pp. 3446-3464.

[3] S. S. Chern, *The geometry of G-structures*, Bull. Amer. Math. Soc. 72, 1966, pp. 167-219.

 [4] O. Gil-Medrano and A. M. Naveira, *The Gauss-Bonnet integrand for a class of Riemannian manifolds admitting two orthogonal comlementary foliations*, Canad. Math. Bull. 26(3),1983, 358-364.

[5] A. Gray, *Pseudo-Riemannian almost product manifolds and submersions*, J. math. and Mech., 16,pp. 715-737.

[6] S.Kobayashi, Transformation groups in differential geometry, *Springer-Verlag, Berlin 1972.*

[7] S.Kobayashi and K. Nomizu, Foundations of Differential Geometry, *vol. II, Interscience, New York 1963.*

[8] Manuel de Leon and Paulo R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics , *North-Holland Mathematics studies, 1989*.

[9] R. Miron, *The Homogeneous Lift of a Riemannian Metric*, Springer-Verlag, 2000.

[10] R. Miron, The Geometry of Higher-Order Lagrange Spaces, *Kluwer Academic Publishers, 1997.*

[11] M. I. Munteanu, *Old and New Structures on the Tangent Bundle,* Proceedings of the Eighth International Conference on Geometry, Integrability and Quantization,

June 9-14, 2006, Varna, Bulgaria, Eds. I. M. Mladenov and M. de Leon, Sofia 2007, 264-278.

[12] M. I. Munteanu, *Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold,* to appear in Mediterranean Journal of Mathematics, 2008.

[13] A. M. Naveira, *A classification of Riemannian almost-product manifolds*, Rend. Mat. 3,1983, pp. 577-592.

[14] B. L. Reinhart, *Differential geometry of foliations*, Springer-Verlag, Berlin 1983.

[15] A.G. Walker, *Connecxions for parallel distribution in the large*, Quart. J. Math. Oxford(2) 6 1955, pp.301-308, 9 1958, pp. 221-231.

[16] K. Yano, *Differential geometry on complex and almost complex spaces*, Pergamon press, Oxford 1965.

Department of Mathematics and Computer Science AmirKabir University.

Tehran.Iran.

E-mail address: e_peyghan@aut.ac.ir E-mail address: arazavi@aut.ac.ir

Faculty of Science of Tarbiatmodares University. Tehran.Iran. E-mail address: abasheydari@gmail.com