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Abstract

We show that every source connected Lie groupoid always has global
bisections through any given point. This bisection can be chosen to be
the multiplication of some exponentials as close as possible to a pre-
scribed curve. The existence of bisections through more than one pre-
scribed points is also discussed. We give some interesting applications
of these results.
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1 Introduction

The notion of groupoids generalizes that of both groups and the Cartesian
product of a set, namely the pair groupoid. It is Ehresmann who first made
the concept of groupoid ([6,7]) central to his vision of differential geometry. Lie
groupoids, originally called differentiable groupoids, were also introduced by
Ehresman (see several papers contained in [5]) and theories of Lie groupoids,
especially the relationships with that of Lie algebroids defined by Pradines
([14, 15]) have been investigated by many people and much work has been
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done in this field. Readers can find the most basic definitions and examples of
(Lie) groupoids in the texts such as Mackenzie’s [12], his recent book [13], and
[2,11]. The importance of groupoid theories were already shown in the studies
on symplectic groupoids and Poisson geometry, for example, illustrated by
Weinstein ([17,18]), Coste ([3]), Dazord ([4]), Karasëv ([9]), Zakrzewski ([19])
and many other authors.

By definition, a Lie groupoid is a groupoid where the set Ob of objects and the
set Mor of morphisms are both manifolds, the source and target operations are
submersions, and all the category operations (source and target, composition,
and identity-assigning map) are smooth. In our humble opinion, a Lie groupoid
can thus be thought of as a “many-object generalization” of a Lie group, just
as a groupoid is a many-object generalization of a group.

On a group G, the left translations Lg: h 7→ gh form a group which is isomor-
phic to G itself. In the groupoid world, the concepts of left translations are
replaced by a family of elements which is called a bisection of the groupoid
[13, I,1.4]. For a groupoid R, we call any section s → R of the α-fibers for
which β ◦ s is a diffeomorphism a bisection of R (also known as admissible
sections in [12]). Bisections may be regarded as generalized elements of the
groupoids and similarly, the exponential maps take values in the collections
of all bisections. Although in most situations where bisections are used, the
question is local and the existence of local bisection are of course correct, it
has remained an unsettled problem whether global bisection exist through an
arbitrary point. In this paper, we give an affirmative answer to this question.

We will prove that there exists a bisection through a given point of a Lie
groupoid which is source connected (Theorem 3.1). Moreover, we show that
this bisection is of the form expX1 expX2 · · · expXk, where Xi are some sec-
tions of the corresponding Lie algebroid and compact supported. Furthermore,
we prove that these Xi can be chosen as close as possible to a prescribed curve
(Theorem 3.2).

We also prove that if the groupoid is transitive and the base space is more than
1-dimensional, then for any given points g1, · · · , gn, such that their sources
and targets are subject to the concordance condition (see (1)), there exists a
bisection through all of them (Theorem 4.1).

As stated by Mackenzie in [13]: “Groupoids possess many of the features which
give groups their power and importance, but apply in situations which lack the
symmetry which is characteristic of group theory and its applications”, we shall
apply our theorems to varies cases of groupoids and obtain some interesting
results.

This paper is organized as follows. Section 2 begins with an account of basic
concepts of Lie groupoids, its bisections, Lie algebroids and exponentials (our
conventions follow that of [13]). Section 3 gives the main Theorem 3.1 (we also
provide a stronger version of this result, Theorem 3.2) and some applications
are added in. Section 4 studies the existence problem of bisections through
more than one points. Section 5 is devoted to prove Theorem 3.2 which implies
Theorem 3.1, and a detailed proof is spilt into several lemmas. To understand
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what is going on, the reader is referred to the seven pictures illustrating the
geometric images.

2 Lie Groupoids and its Tangent Lie algebroids

Definition 2.1. [13]A groupoid consists of a set R and a subset M ⊂ R, called
respectively the groupoid and the base, together with two maps α and β from
R to M , called respectively the source and target, and a partial multiplication
(g, h) 7→ gh in R defined on the set of composable pairs:

R[2] , {(g, h) ∈ R× R| β(g) = α(h)} ,

all subject to the following conditions:

i) α(gh) = α(g) and β(gh) = β(h) for all (g, h) ∈ R[2];

ii) f(gh) = (fg)h for all f, g, h ∈ R such that β(f) = α(g) and β(g) = α(h);

iii) α(x) = β(x) = x for all x ∈M ;

iv) gβ(g) = α(g)g = g for all g ∈ R;

v) each g ∈ R has a two-sided inverse g−1 such that α(g−1) = β(g), β(g−1) =
α(g) and g−1g = β(g), gg−1 = α(g).

A groupoid R on the base M , with respectively source and target maps α, β,
will be denoted by (R ⇒ M ; α, β), or, more briefly, (R,M). We adopt the
convention that, whenever we write a multiplication gh, we are assuming that
is defined (see Pic. 1))

For x ∈M , its orbit, denoted by Ox, is the set β ◦ α−1(x) ⊂ M .

Lie groupoid (R ⇒ M ; α, β) is a groupoid with differential structures and
the base space M is an embedded submanifold, the target and source maps
are submersions and all the operations are smooth. The orbit Ox is also a
submanifold of M . We also notice that, for any α-fiber P = α−1(x), β|P :
P → Ox is again a submersion.

We take the tangent Lie algebroid (LieR, ρ) of (R,M) as

LieR ,
⋃

x∈M

Txα
−1(x) = {v ∈ TxR|x ∈M,α∗(v) = 0} .

In turn, the bracket of Γ(LieR) is determined by the commutator of left in-
variant vector fields and the anchor map is given by ρ = βR∗|M .
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A bisection of a Lie groupoid (R,M) is a smooth map s :M → R such that

1) α ◦ s = IdM ;

2) β ◦ s is a diffeomorphism of M (see Pic. 2).

The collection of all bisections of R is a group, in sense of the following oper-
ations.

Identity):
The base M serves as the identity, if regarded as a map M → R;

Multiplication):
Let s and w be two bisections, their multiplication sw is again a bisection
defined by (see Pic. 3)

sw(x) = s(x)w(β ◦ s(x)), ∀x ∈M ;

Inversion):
The inverse of s is defined by (see Pic. 4)

s−1(x) = (s ◦ (β ◦ s)−1(x))−1, ∀x ∈M.
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We recall the result of Kumpera and Spencer.

Lemma 2.2. [10] Let R be any Lie groupoid over base M , and let A = LieR

be its Lie algebroid with anchor ρ. For X ∈ Γ(A), let
←−
X be the left invariant

vector field corresponding to X, and recall that ρ(X) = β∗(
←−
X ) is its projected

vector field on M. Then
←−
X is complete if and only if ρ(X) is complete. In

fact, φ̃t(g) is defined whenever φt(β(g)) is defined, where φ̃t(g) and φt(g) are

the flows generated by
←−
X and ρ(X), respectively.

As a corollary, let X ∈ Γ(A) be any section which has a compact support,

we know that
←−
X is complete. We denote exp(tX) :M → R (t ∈ R) the map

exp(tX)(x) , φ̃t(x), ∀x ∈M,
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called the exponential of X. One has

φ̃t(g) = g exp(tX)(β(g)), ∀g ∈ R.

Furthermore,

α ◦ exp(tX) = IdM , β ◦ exp(tX) = φt ,

which shows that exp(tX) is a bisection of R, for any t ∈ R.

Another important fact is that

(exp tX)−1 = exp(−tX).

In the special case that, the Lie groupoid degenerates to a group, i.e., M = pt is
a point, the exponential map becomes the ordinary exponential of Lie groups.
We need the following basic results of Lie group theories.

Lemma 2.3. Let G be a Lie group and let e ∈ G be its unit element. Then
there exists an open neighborhood N of e, and an open neighborhood O ⊂ g =
TeG near zero, such that

exp : O → N

is a diffeomorphism [8, 16].

For a general Lie groupoid (R,M) and x ∈ M , by Gx , α−1(x) ∩ β−1(x) we
denote the isotropic group at x. Gx is a Lie group. By gx , kerρx ⊂ Ax

we denote the isotropic algebra at x, which is a Lie algebra, in fact, the Lie
algebra of Gx.

If X ∈ Γ(A) is a section with compact support and Xx ∈ gx, then exp(tX)(x)
is the usual exponential map exp t(Xx), regarding Xx ∈ gx.

Definition 2.4. A bisection of (R,M) is said to be finitely generated if it has
the form expX1 expX2 · · · expXk, for some X1, · · · , Xk ∈ Γ(A) and every Xi

has a compact support. It is said to be finitely generated over U , an open set
U ⊂ M , if each support of Xi is contained in U .

3 Main Theorems and their Applications

Theorem 3.1. Let (R,M) be an α-connected Lie groupoid. Then for any g ∈
R, there exists a finitely generated bisection s of R through g, i.e., s(α(g)) = g.

An immediate consequence of this theorem is the well known fact that, for a
connected Lie group G, every element g can be expressed into

g = expX1 expX2 · · · expXk,

for some Xi ∈ TeG.

In this paper we would like to prove a stronger version of Theorem 3.1 stated
as follows.
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Theorem 3.2. Let (R,M) be Lie groupoid and x ∈M . Let g ∈ α−1(x) and let

Ũ ⊂ α−1(x) be a connected open set which contains both x and g. Suppose that

U is an open set containing β(Ũ), then there exists a bisection s of R through
g, and s(y) = y for all y ∈ U c (= M − U). Moreover, s is finitely generated
over U .

The proof of this theorem is given in the last section of this paper. As an
application of Theorem 3.1 as well as 3.2, we have the following interesting
conclusions. We always assume that the reader is familiar with the various
kinds of groupoids mentioned below, especially their bisections.

Theorem 3.3. [Homogeneity of manifolds [1].] Let M be a connected smooth
manifold. Then, for any two points x, y ∈ M and any connected open set U
containing x and y, there exists a diffeomorphism Φ : M → M , such that
Φ(x) = y and Φ(m) = m for all m ∈ U c.

This theorem is of course implied by the following one.

Theorem 3.4. With the same assumptions as in the previous one, for any
two points x, y ∈ M , and for an arbitrary open neighbor U containing x and
y, there exist some smooth vector fields X1, ..., Xk compact supported within
U , such that

ϕ1
k ◦ · · · ◦ ϕ

1
2 ◦ ϕ

1
1(x) = y,

where ϕti is the flow of Xi.

Proof of Theorem 3.3 and 3.4. We recommend [13, Example 1.1.7, 1.4.3]
for background information on the pair groupoid M×M , for which a bisection
is exactly a diffeomorphism of M . The exponential of a vector field which has
compact support is its flow. And the multiplication of two bisections, namely
diffeomorphism, are exactly their compositions. The conclusion of Theorem
3.4 is exactly the translation of Theorem 3.2 into the pair groupoid case.

In what follows, we consider a vector bundle E
q
→ M and we denote by Φ(E)

the linear frame groupoid of E, simply called the frame groupoid. Please refer
to [12, III] and [13, Example 1.1.12], where it is denoted by Π(E)), which is
the collection of all linear isomorphisms from a fiber of E to some generally
different fiber of E, i.e., an element in Φ(E) is a vector space isomorphisms
ξ : Ex → Ey for x, y ∈ M . The bisections group of Φ(E) is in fact Aut(E),
the group of vector bundle automorphisms of E. It is proved in that Φ(E)
is also a Lie groupoid on M . One may directly draw from Theorem 3.1 the
following result.

Theorem 3.5. Let (E → M) be a vector bundle over a connected smooth
manifold M . For any two points x, y ∈ M and an isomorphism of vector
spaces φ : Ex → Ey, there exists an automorphism Φ : E → E of vector
bundles such that Φ|Ex

= φ.

6



Of course we can add some structures in E. If (E, [ , ]) is a Lie algebra
bundle, one has the Lie-algebra-bundle frame groupoid ΦAut(E) ([13, Example
1.7.12]). If (E, 〈 , 〉) is a Riemannian vector bundle, one gets the orthonormal
frame groupoid ΦO(E) ([13, Example 1.7.9]). For these two examples, see also
Corollary 3.6.11 in [13]. We are then easy to draw the following analogue
conclusions.

Theorem 3.6. Let (E → M, [ , ]) be a Lie algebra bundle over a connected
smooth manifold M . For any two points x, y ∈ M and an isomorphism of
Lie algebras φ : Ex → Ey, there exists an automorphism Φ : E → E of Lie
algebra bundles such that Φ|Ex

= φ.

Theorem 3.7. Let (E → M, 〈 , 〉) be a Riemannian vector bundle over a con-
nected smooth manifold M . For any two points x, y ∈M and an isomorphism
of metric spaces φ : Ex → Ey, there exists an automorphism Φ : E → E of
Riemannian vector bundles such that Φ|Ex

= φ.

Finally, we consider the action groupoid M∢G coming from a right action of
a connected Lie group G on a connected manifold M ([13, Example 1.1.9], see
also [12]). Here M∢G =M×G is a Lie groupoid on M . Recall that a bisection
of M∢G can be identified with a smooth G-valued function s : M → G such
that the map

M → M, m 7→ ms(m), ∀m ∈M

is a diffeomorphism of M . Such kinds of s are called invertible functions. So
we have the following theorem.

Theorem 3.8. For any prescribed x ∈ M , g ∈ G, one can find an invertible
function s :M → G satisfying s(x) = g.

4 Bisections through Points

Now we consider a more generalized problem: does there exists a bisection
through two (or more) given points of a groupoid? The answer is also yes,
under some topological conditions.

We recall that for a transitive Lie groupoid (R,M), the map β|α−1(x) : α
−1(x) →

M is a surjection as well as a submersion, for any x ∈ M .

The following one is the main theorem in this section. We always assume that
the natural number n > 2.

Theorem 4.1. Let (R,M) be a transitive and α-connected Lie groupoid and
suppose that dimM > 2. For any different n points g1,· · · ,gn ∈ R, and let
α(gi) = xi, β(gi) = yi, i = 1, · · · , n. Then there exists a bisection s of R such
that s(x1) = g1, · · · , s(xn) = gn if and only if

xi 6= xj , and yi 6= yj , ∀i 6= j. (1)

Moreover, this bisection is finitely generated.
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In what follows we devote to proving this theorem. We need some preparations
and let us introduce some concepts first. For n pairs of points

pi = (xi, yi) ∈M ×M, i = 1, · · · , n,

they are said to be concordant if they are subject to condition (1). If they are
concordant and there is a proper arrangement of their indices such that they
make a loop, we say they consist a chain. That is, for some permutation of
the indices p̌i = pθ(i) = (x̌i, y̌i) = (xθ(i), yθ(i)), where θ ∈ S(n) (the permutation
group), one has

y̌1 = x̌2, y̌2 = x̌3, · · · , y̌n = x̌1.

We shall write
p̌1 y p̌2 y · · ·y p̌n

to denote such a chain (see Pic. 5).

✻
x̌1 = y̌n

�
�✒x̌2 = y̌1

· · · · · ·

❅
❅
❅❘
x̌n−1 = y̌n−2

�
�

�✠❍❍❍❍❍❨

x̌n = y̌n−1Pic. 5
�
�
�✒

✲
❅
❅
❅
❅
❅❘ ✲

�
�
�✒

Pic. 6

Definition 4.2. Let pi = (xi, yi) ∈ M ×M , i = 1, · · · , n be some pairs of
points in M . p1, · · · , pn are said to be independent, if they are concordant
and there is not any subset of {pi} that can consist a chain.

Remark 4.3. We recall the pair groupoid M×M of pairs of points p = (x, y).
We say an elements p ∈M×M can be expressed by some p1, · · · , pm ∈M×M ,

if there are some m1,· · · , mk ∈ {1, · · · , m}, such that

p = qm1
qm2
· · · qmk

,

where each qml
is pml

or the inverse p−1
ml

. One can prove that, for concordant

n elements p1, · · · , pn, they are independent if and only if each pi = (xi, yi) is

not possible to be expressed by p1, p2, · · · , p̂i, · · · , pn. This is the reason that

we use “independent”.

For example, the five pairs in Pic.6 are independent.

Lemma 4.4. Let pi = (xi, yi) ∈M×M , i = 1, · · · , n be some pairs of points in
M . Then p1, · · · , pn are independent if and only if there exists some σ ∈ S(n),
such that for p̄1 = (x̄1, ȳ1) = pσ(1) = (xσ(1), yσ(1)), · · · , p̄n = (x̄n, ȳn) = pσ(n) =
(xσ(n), yσ(n)), one has

x̄2 6= ȳ1;

x̄3 6= ȳ1, x̄3 6= ȳ2;

· · · · · · ,
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x̄k 6= ȳl, for l= 1, · · · , k − 1;

· · · · · · ,

x̄n 6= ȳl, for l= 1, · · · , n− 1.

(In this case and for convenience, we will say p̄i are well-ordered.)

Proof. “⇐”: We adopt a negative approach. If there are some elements p̄m1
,

· · · , p̄mk
consist a chain

p̄m1
y p̄m2

y · · ·y p̄mk
,

then from ȳm1
= x̄m2

, we conclude m1 > m2. Similarly, from ȳmj
= x̄mj+1

, we
conclude mj > mj+1 and finally one has m1 > m2 > · · · > mk. On the other
hand, x̄m1

= ȳmk
implies mk > m1: contradiction!

“⇒”: We give an inductive proof. For n = 2, if two elements p1 = (x1, y1) and
p2 = (x2, y2) are independent, then p1 6= p−1

2 , i.e., either x2 6= y1 or x1 6= y2
holds. So one can always find σ ∈ S(2), which is either Id or the flip (1, 2).

Suppose that for n > 2, the lemma holds. For any independent n+1 elements
p1, · · · , pn+1, we claim that there exist some k ∈ {1, · · · , n+ 1}, such that

xk 6= yj, ∀j ∈
{
1, · · · , k̂, · · · , n+ 1

}
.

In fact, if it is not true, then for each xi, one find some ψ(i) ∈
{
1, · · · , î, · · · , n+ 1

}

and xi = yψ(i). Obviously ψ(i) is unique. It is also easy to see that ψ is a per-
mutation of n+ 1 numbers. Thus, if we find the smallest number m > 1 such
that ψm+1(1) = 1, then we find a chain:

(xψm(1), yψm(1)) y (xψm−1(1), yψm−1(1)) y · · ·y (x1, y1),

which contradicts with the assumption that p1, · · · , pn+1 are independent.

By this claim we pick σ0 = (k, n + 1) ∈ S(n + 1), which is the flip of k and
n + 1 and now for

p̃i = (x̃i, ỹi) = pσ0(i) = (xσ0(i), yσ0(i)), i = 1, · · · , n+ 1,

one has
x̃n+1 = xk 6= ỹj = yσ0(j), ∀j = 1, · · · , n. (2)

By the inductive assumption, we are able to find σ1 ∈ S(n), such that

p̄i = p̃σ1(i), i = 1, · · · , n,

satisfies the well-ordered condition. Of course if we write p̄n+1 = p̃n+1, then
(2) shows that p̄1, · · · , p̄n+1 are also well-ordered.
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Lemma 4.5. Let (R,M) be a transitive and α-connected Lie groupoid. Sup-
pose that dimM > 2 and let x1, · · · , xk be some points of M . Then for any
g ∈ R, if x = α(g) and y = β(g) are not contained in the set ∪ki=1 {xi}, then
there exists a bisection s such that s(x) = g and s(xi) = xi, for all i = 1, · · · ,
k.

Proof. Consider the open set Ũ = (β−1(x1) ∪ · · · ∪ β−1(xk))
c ∩ α−1(x). Obvi-

ously x and g are contained in Ũ . Since β|α−1(x) : α
−1(x) → M is a surjective

submersion, we know that

dimα−1(x)− dim(β−1(xi) ∩ α
−1(x)) = dimM > 2.

And hence by α−1(x) being connected, Ũ is also connected. Let U = β(Ũ) =
(∪ki=1 {xi})

c be the corresponding open set in M . So Theorem 3.2 claims that
there exists a bisection s with s(x) = g and s(xi) = xi, i = 1, · · · , k.

Proposition 4.6. Let (R,M) be a transitive and α-connected Lie groupoid
and suppose that dimM > 2. For n points g1,· · · ,gn ∈ R, and let α(gi) = xi,
β(gi) = yi, i = 1, · · · , n, if

pi = (xi, yi), i = 1, · · · , n,

are independent, then there exists a bisection s of R such that s(x1) = g1, · · · ,
s(xn) = gn.

Proof. By Lemma 4.4, it suffices to assume that those pi are already well-
ordered. I.e., for each i,

xi and yi /∈
i−1⋃

j=1

{yj} ∪
n⋃

k=i+1

{xk} .

Thus, Lemma 4.5 tells us that there exists a bisection si such that

si(xi) = gi, si(yj) = yj, ∀j < i, and si(xk) = xk, ∀k > i.

Now, let w1 = s1, w2 = s1s2, · · · , wn = s1s2 · · · sn and we claim s = wn is the
bisection we are looking for. We show this fact inductively. Of course we have

w1(x1) = g1, w1(xj) = xj , j = 2, · · · , n.

Suppose that

wk(xj) = gj, ∀j 6 k, wk(xl) = xl, ∀l > k + 1

is already proved, then for j < k + 1,

wk+1(xj) = (wksk+1)(xj)

= wk(xj)sk+1(β ◦ wk(xj)) = gjsk+1(yj) = gjyj = gj.
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For k + 1,

wk+1(xk+1) = (wksk+1)(xk+1)

= wk(xk+1)sk+1(β ◦ wk(xk+1)) = xk+1sk+1(xk+1) = gk+1.

And for l > k + 1,

wk+1(xl) = (wksk+1)(xl)

= wk(xl)sk+1(β ◦ wk(xl)) = xlsk+1(xl) = xl.

This completes the proof.

Proof of Theorem 4.1. “⇒”: If there exists a bisection s of R such that
s(x1) = g1, · · · , s(xn) = gn and these g1, · · · , gn are different points in R, then

gi = s(xi), g−1
i = s−1(yi).

Since both s and s−1 are both embeddings of M into R and gi 6= gj (i 6= j),
xi 6= xj , yi 6= yj , this shows that these pi = (xi, yi) are concordant n pairs of
points in M .

“⇐”: Suppose that these pi are concordant. We find all subsets of {p1, · · · , pn}
which consist chains. It is easy to see that any two such subsets are disjoint.
Let k be the number of these chains.

We induct with k, which is obviously less than 1
2
(n+ 1). If k = 0, i.e., these

pi are independent, Proposition 4.6 already assures the existence of such a
bisection through all gi. We assume that for k 6 m the conclusion is right.
Now suppose that one has all the chains S1, · · · , Sm+1, it suffices to assume
Sm+1 is the chain

p1 y p2 y · · ·y pr,

where r = ♯Sm+1 6 n. Choose an arbitrary y0 ∈M such that

y0 /∈
n⋃

j=1

{xj} ∪
n⋃

j=1

{yj} .

Since R is transitive, one can find some h0 ∈ R such that α(h0) = y0, β(h0) =
x1. Let g0 = grh

−1
0 . Hence α(g0) = xr, β(g0) = y0. It is easy to see that g0,

g1, g2, · · · , ĝr, · · · , gn are different points in R, and the corresponding

p0 = (xr, y0), p1 = (x1, y1), · · · , p̂r, · · · , pn = (xn, yn) ∈ M ×M

has only m chains S1, · · · , Sm. And we are able to determine a bisection s̃
such that

s̃(xr) = g0, s̃(xi) = gi, ∀i ∈ {1, · · · , r̂, · · · , n} .

By the mean time, Lemma 4.5 gives a bisection s̆ such that

s̆(y0) = h0, s̆(yi) = yi, ∀i ∈ {1, · · · , r̂, · · · , n} .

11



Then it is a direct check that the bisection s̃s̆ satisfies

s̃s̆(xi) (i 6= r)

= s̃(xi)s̆(β ◦ s̃(xi)) = giyi = gi,

and

s̃s̆(xr) = s̃(xr)s̆(β ◦ s̃(xr)) = g0s̆(x0) = g0h0 = gr.

This shows that s̃s̆ is just what we need. The preceding process of construction
of such a bisection also shows that s̃s̆ is finitely generated. This completes the
proof.

Remark 4.7. From the proof, one is able to see that, in Theorem 4.1, the
condition “R is transitive and dimM > 2” can be replaced by “each orbit of
the base space M is more than 1-dimensional”.

In what follows we present some applications of Theorem 4.1 in certain kind
of groupoids. They are respectively similar to Theorem 3.3, 3.5, 3.6, 3.7 and
3.8 but concerning several pairs of points, and the proofs are omitted.

Theorem 4.8. Let M be a connected smooth manifold. Then, for any pre-
scribed points xi, yi ∈ M such that (xi, yi), i = 1, · · · , n are concordant, there
exists a diffeomorphism Φ :M → M , such that Φ(xi) = yi, i = 1, · · · , n.

Theorem 4.9. Let (E → M) be a vector (resp. Lie algebra, Riemannian)
bundle over a connected smooth manifold M . For any prescribed points xi,
yi ∈ M and isomorphisms of vector (resp. Lie algebra, Riemannian) spaces
φi : Exi → Eyi, such that (xi, yi), i = 1, · · · , n are concordant, there exists an
automorphism Φ : E → E of vector (resp. Lie algebra, Riemannian) bundles
such that Φ|Exi

= φi.

Theorem 4.10. Let G be a connected Lie group which acts on a manifold M
and suppose that dimM > 2. If the action is transitive, then for any prescribed
xi ∈M , gi ∈ G such that (xi, xigi), i = 1, · · · , n are concordant, then one can
find an invertible function s :M → G satisfying s(xi) = gi, i = 1, · · · , n.

5 Proof of Theorem 3.2

We split the proof of Theorem 3.2 into several steps. In this section, we fix
a Lie groupoid (R,M) which is α-connected. We also assume that the base
space M is connected. Let A = LieR.

Lemma 5.1. Let x ∈ M , g ∈ α−1(x) and c : [0, 1] → α−1(x) be a smooth
curve such that c(0) = x, c(1) = g. If the base curve c̄ = β ◦ c : [0, 1] → M
is an injection and suppose that c̄ is contained in some open set U ⊂ M , then
there exists some X ∈ Γ(A) with compact support in U , such that

exp tX(x) = c(t), ∀t ∈ [0, 1].

In particular, expX is a bisection through g and expX|Uc is the identity map.

12



Proof. For each t ∈ [0, 1], we define Xt ∈ Ac̄(t) to be

Xt = lc(t)−1∗c
′(t).

Since c̄ does not intersect with itself, one is able to extend this t-function into
a well defined section X ∈ Γ(A) which is compact supported in U . It is clearly
that exp tX(x) = c(t).

Lemma 5.2. For each x ∈ M and each open neighborhood U near x, there
exists an open setW ⊂ α−1(x) containing x, such that for each element g ∈ W,
there exists a bisection s : M → R through g and s(y) = y for all y ∈ U c.
Moreover, s has the form s = expX, for some X ∈ Γ(A) and X has a compact
support contained in U .

Proof. The target map β : R → M is a submersion. For the α-fiber Px =
α−1(x), β|Px

: Px → Ox is also a submersion. Let dimOx = m, dimPx = m+n.
Hence, there exist two local coordinate systems (S; x1, · · · , xm, y1, · · · , yn) of
Px near x and (T ; x1, · · · , xm) ofOx near x and they are subject to the following
requirements:

1) S ∼= R
m+n, x is the origin point;

2) T ∼= R
m, x is also the origin point;

3) β|S is given canonically by

β : (x1, · · · , xm, y1, · · · , yn) 7→ (x1, · · · , xm).

4) T is contained in U and T ⊂ U is compact.

So, for two different points g, h ∈ S, if β(g) 6= β(h), one is able to find a curve
c connecting g and h. Moreover, this curve can be chosen so that it lies entirely
in S, such that c̄ = β ◦ c, which lies in T , is a curve without self-intersections.

Let Gx = α−1(x)∩ β−1(x) be the isotropic group at x. Find the two open sets
N and O as claimed by Lemma 2.3. Of course we can assume that they are
both simply connected.

Write G0 = Gx ∩ S, which is a closed subset of S. Write N0 = N ∩ S,
which is an open set of G0, where G0 has the relative topology coming from
S. Therefore, for each point h ∈ N0, one is able to find an open ball B(h) of
S with h at the center, such that

B(h) ∩N0 ⊂ N0 .

Now, let
W , ∪h∈N0

B(h) ⊂ S.

We claim that this W is just what we need. In fact, for each g ∈ W, there are
possibly two cases:
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Case 1) β(g) = x, i.e., g ∈ Gx ∩ W = N0. Then by Lemma 2.3, we find an
Xx ∈ O ⊂ Ax, such that exp(Xx) = g. Then extend Xx arbitrarily to a section
X ∈ Γ(A) with compact support contained in U and we get a bisection expX
through g.

Case 2) β(g) 6= x. In this case, one can of course find a smooth curve c :
[0, 1] → W, such that c(0) = x, c(1) = g, and more importantly, the curve
c̄ = β ◦ c which connects x with β(g), is a curve who does not intersect with
itself. Then by Lemma 5.1, we also obtain an X ∈ Γ(A) with compact support
contained in U and we get a bisection expX through g.

Both of the two kinds of X we constructed vanish outside of U . Hence the
bisection expX maps every y ∈ U c to itself.

With these preparations, we are able to prove the strong version main theorem.

Proof of Theorem 3.2. We choose a smooth curve c : [0, 1] → α−1(x) which

lies in Ũ such that c(0) = α(g), c(1) = g, and hence the open set U covers the
base curve c̄ = β ◦ c which connects α(g) and β(g).

For each t ∈ [0, 1], consider the point c̄(t) ∈ M . Set U = M , Lemma 5.2
says that there is neighborhood Wt ⊂ α−1(c̄(t)) near c̄(t), such that for each
h ∈ Wt, there is a bisection through h.

Now, these lc(t)Wt become an open coverage of the curve c. Since the interval
[0, 1] is compact, we find the following data (see Pic. 7):

1) a partition of [0, 1]:

0 = t0 < t1 < t2 < · · · < tk−1 < tk = 1;

2) finitely some open sets Wi = Wti , i = 0, 1, · · · , k, such that c̄(ti) ∈ Wi;
and hence the collection of lc(ti)Wi (i = 0, 1, · · · , k) finitely covers the
curve c;

3) some points

a1 ∈ (t0, t1), a2 ∈ (t1, t2), · · · , ak ∈ (tk−1, tk),

such that

c(a1) ∈ W0 ∩ lc(t1)W1, c(a2) ∈ lc(t1)W1 ∩ lc(t2)W2,

· · · , c(ak) ∈ lc(tk−1)Wk−1 ∩ lc(tk)Wk .

✩✫✪
✬✩
•

lc(ti)Wi

c(ti)
•
✻

c(ai)

✫✪
✬✩
•

lc(ti−1)Wi−1

c(ti−1)✫✪
✬✩
•

lgWk

g = c(1)

✫✪
✬✩
•

W0

α(g) = c(0) = c̄(0) ✫✪
✬✩
•
•

c(ti−1)−1c(ai)
✁
✁☛

si

c̄(ti−1)Wi−1

··
····
·· ············ ····

✫✪
✬✩
•c̄(ti)

•···············
···

·
···
···
·ωi

c(ti)−1c(ai)

Wi

✫✪
✬✩
•

β(g) = c̄(1)Wk

✁
✁
✁
✁
✁
✁

✁
✁
✁
✁
✁
✁

M
Pic. 7
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By the last condition, we know that there is a bisection s1 through c(a1). And
since lc(t1)−1c(a1) ∈ W1, there exists a bisection w1 through lc(t1)−1c(a1). Simi-
larly, since lc(ti−1)−1c(ai) ∈ Wi−1, there is a bisection si through lc(ti−1)−1c(ai).
And since lc(ti)−1c(ai) ∈ Wi, there exists a bisection wi through lc(ti)−1c(ai).
· · · · · · We can require these bisections s1, · · · , sk, and w1, · · · , wk are the
identity maps on U c and they are all of the forms si = expXi, wi = exp Yi, for
some Xi, Yi ∈ Γ(A) with compact supports in U .

We now show that the section s1w
−1
1 s2w

−1
2 · · · skw

−1
k is a bisection through g.

We notice the following inductive formulas, hold for all i = 1, · · · , k:

1) β ◦ si(c̄(ti−1)) = c̄(ai);

2) β ◦ wi(c̄(ti)) = c̄(ai).

Using these, one is able to get

3) w−1
i (c̄(ai)) = wi(c̄(ti))

−1 = c(ai)
−1c(ti);

4) (siw
−1
i )(c̄(ti−1)) = lc(ti−1)−1c(ti) = c(ti−1)

−1c(ti).

And hence we obtain

s1w
−1
1 s2w

−1
2 · · · skw

−1
k (x)

= s1w
−1
1 (c̄(t0))s2w

−1
2 (c̄(t1)) · · · siw

−1
i (c̄(ti − 1)) · · · skw

−1
k (c̄(tk − 1))

= c(t1)c(t1)
−1c(t2) · · · c(ti−1)

−1c(ti) · c(tk−1)
−1c(tk)

= c(tk) = g.

It is also easy to check that s(y) = y for all y ∈ U c. Since w−1
k = exp(−Yi), we

know that s1w
−1
1 s2w

−1
2 · · · skw

−1
k is just the bisection we need. This completes

the proof.
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