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CONVEXITY PROPERTIES

FOR

GENERALIZED MOMENT MAPS I

YASUFUMI NITTA

Abstract. We study generalized moment maps for a Hamiltonian action on
a connected compact H-twisted generalized complex manifold introduced by
Lin and Tolman and prove the convexity and connectedness properties of the
generalized moment maps for a Hamiltonian torus action.

1. Introduction

A notion of generalized complex structures was introduced by Hitchin [5] and
developed by Gualtieri [4]. It provides a unifying framework for both complex
and symplectic geometry, and a useful geometric language for understanding some
recent development in string theory. Generalized Kähler geometry, the generalized
complex geometry analogue of Kähler geometry, was introduced by Gualtieri, who
also shows that it is essentially equivalent to that of a bihermitian structure, which
was first discovered by physicists studying super-symmetric nonlinear sigma model
in [2].

For a group action on manifolds, notions of Hamiltonian actions and moment
maps play a very impotant role in many geometry. It is an interesting and impor-
tant question if there exists natural notions of Hamiltonian actions and moment
maps. In [10], Lin and Tolman introduced notions of a Hamiltonian action and a
generalized moment map for generalized complex geometry. They showed in [10] a
reduction theorem for Hamiltonian actions of compact Lie groups on an H-twisted
generalized complex and Kähler manifold. As an application, they constructed ex-
plicit examples of bihermitian structures on CP

n, Hirzebruch surfaces, the blow
up of CP2 at arbitrarily many points, and other toric varieties, as well as complex
Grassmannians. Their construction is a powerful tool for producing bihermitian
structures on manifolds which can be produced as a symplectic reduction of CN .
Moreover, it was shown by Kapustin and Tomasilleo in [6] that the mathematical
notion of Hamiltonian actions on a generalized Kähler manifold corresponds exactly
to the physiccal notion of general (2, 2) gauged sigma models with 3-form fluxes.

Convexity and connectedness properties for moment maps of Hamiltonian torus
actions on a connected compact symplectic manifold was shown by Atiyah [1] and
Guillemin and Sternberg [3]. In the present paper, we study Hamiltonian torus
actions on a connected compact H-twisted generalized complex manifold and prove
the convexity and connectedness properties of a generalized moment map for Hamil-
tonian torus actions. The main result is stated below. The detailed notations and
definitions are in section 2 and section 3.

http://arxiv.org/abs/0710.3924v1
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Theorem A. Let an m-dimensional torus Tm act on a connected compact H-
twisted generalized complex manifold (M,J ) in a Hamiltonian way with a general-
ized moment map µ : M −→ t∗ and a moment one form α ∈ Ω1(M ; t∗). Then:

(1) the levels of µ are connected;
(2) the image of µ is convex;
(3) the fixed points of the action form a finite union of connected submanifolds

C1, · · · , CN :

Fix(Tm) =

N
⋃

i=1

Ci.

On each component the generalized moment map µ is constant: µ(Ci) =
{ai}, and the image of µ is the convex hull of the images a1, · · · , aN of the
fixed points of the action, that is,

µ(M) =

{

N
∑

i=1

λiai |
N
∑

i=1

λi = 1, λi ≥ 0

}

.

This paper is organized as follows. In section 2 we briefly review of the theory
of generalized complex structures and generalized Kähler structures. In section 3
we introduce the notion of generalized moment maps for Hamiltonian actions on
a generalized complex manifold and prove that the generalized moment map has
a property of a Bott-Morse function. At the last section, we shall give a proof of
Theorem A.

2. Generalized complex structures

First we recall the basic theory of generalized complex structures; see [4] for the
details.

Given a closed 3-form H on an n-dimensional manifold M , we define the H-
twisted Courant bracket of sections of the sum T ⊕T ∗ of the tangent and cotangent
bundles by

[X + ξ, Y + η]H = [X,Y ] + LXη − LY ξ −
1

2
d (η(X)− ξ(Y )) + iY iXH,

where LX denotes the Lie derivative along a vector field X . The vector bundle
T ⊕ T ∗ is also endowed with a natural inner product of signature (n, n):

〈X + ξ, Y + η〉 = 1

2
(η(X) + ξ(Y )).

Definition 2.1. Let M be a manifold, and H be a closed 3-form on M . A general-
ized almost complex structure on M is a complex structure J on the bundle T ⊕T ∗

which preserves the natural inner product. If sections of the
√
−1-eigenspace of J

is closed under the H-twisted Courant bracket, J is called anH-twisted generalized
complex structure. If H = 0, we call it simply a generalized complex structure.

An H-twisted generalized complex structure can be fully described in terms of its√
−1-eigenspace L, which is a maximal isotropic subspace of (T ⊕T ∗)⊗C satisfying

L ∩ L̄ = {0} and to be closed under the H-twisted Courant bracket.
Let π : (T ⊕ T ∗) ⊗ C −→ T ⊗ C be the natural projection. The type of an

H-twisted generalized complex structure J is the codimension of π(L) in T ⊗ C,
where L is the

√
−1-eigenspace of J .
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Example 2.1 (Complex structures (type n)). Let J be a usual complex structure
on a 2n-dimensional manifold M . Consider the endomorphism

JJ =

(

J 0
0 −J∗

)

,

where the matrix is written with respect to the direct sum T ⊕ T ∗. Then JJ

is a generalized complex structure of type n on M ; the
√
−1-eigenspace of JJ is

LJ = T1,0 ⊕ T 0,1, where T1,0 is the
√
−1-eigenspace of J .

Example 2.2 (Symplectic structures (type 0)). Let ω be a symplectic structure on a
2n-dimensional manifoldM , viewed as a skew-symmetric isomorphism ω : T −→ T ∗

via the interior product X 7→ iXω. Consider the endomorphism

Jω =

(

0 −ω−1

ω 0

)

.

Then Jω is a generalized complex structure of type 0 on M ; the
√
−1-eigenspace

of Jω is

Lω = {X −
√
−1iXω| X ∈ T ⊗ C}.

Example 2.3 (B-field shift). Let (M,J ) be an H-twisted generalized complex man-
ifold and B ∈ Ω2(M) be a closed 2-form on M . Then the endomorphism

JB =

(

1 0
B 1

)

J
(

1 0
−B 1

)

is also an H-twisted generalized complex structure. It is called the B-field shift of
J . The type of JB coincides with that of J . The

√
−1 eigenspace LB of JB can

be written by

LB = {X + f + iXB | X + f ∈ L},
where L is the

√
−1 eigenspace of J .

The type of an H-twisted generalized complex structure is not required to be
constant along the manifold, and it may jump along loci. Gualtieri constructed a
generalized complex structure on CP

2 which is type 2 along a cubic curve and type
0 outside the cubic curve. The detailed construction can be seen in [4].

Next we briefly review the notion of H-twisted generalized Kähler structures.

Definition 2.2. Let M be a manifold, and H be a closed 3-form on M . an
H-twisted generalized Kähler structure on M is a pair of commuting H-twisted
generalized complex structures (J1,J2) so that G = −J1J2 is a positive definite
metric, that is, G2 = id, G preserves the natural inner product, and G(X + ξ, Y +
η) := 〈G(X + ξ), X + ξ〉 > 0 for all non-zero X + ξ ∈ T ⊕ T ∗.

Example 2.4.

(1) Let (M, g, J) be a Kähler manifold and ω = gJ be the Kähler form. By
examples above, J and ω induce generalized complex structures JJ and
Jω , respectively. Moreover, JJ commutes with Jω and

G = −JJJω =

(

0 g−1

g 0

)

is a positive definite metric on T ⊕ T ∗. Hence (JJ ,Jω) is a generalized
Kähler structure on M .



4 YASUFUMI NITTA

(2) Let (J1,J2) be an H-twisted generalized Kähler structure, and B be a
closed 2-form on M . Then ((J1)B, (J2)B) is also an H-twisted generalized
Kähler structure. It is called the B-field shift of (J1,J2).

In [4], a characterization of H-twisted generalized Kähler pairs was given in
terms of Hermitian geometry, which is represented below.

Theorem 2.1 (M. Gualtieri, [4]). For each H-twisted generalized Kähler structure
(J1,J2), there exists unique 2-form b, Riemannian metric g, and two orthogonal
complex structures J± such that

J1,2 =
1

2

(

1 0
b 1

)(

J+ ± J− −(ω−1
+ ∓ ω−1

− )
ω+ ∓ ω− −(J∗

+ ± J∗
−)

)(

1 0
−b 1

)

,

where ω± = gJ± satisfy

(1) dc−ω− = −dc+ω+ = H + db.

Conversely, any quadruple (g, b, J±) satisfying condition (1) defines an H-twisted
generalized Kähler structure.

EveryH-twisted generalized complex manifold may not admit an H-twisted gen-
eralized Kähler structure. However, following lemma claims that every H-twisted
generalized complex manifold admits a generalized almost Kähler structure. This
is a generalized complex geometry analogue of the fact that a symplectic mani-
fold admits an almost complex structure which is compatible with the symplectic
structure.

Lemma 2.1. Let (M,J ) be an H-twisted generalized complex manifold. Then
there exists a generalized almost complex structure J ′ which is compatible with J ,
that is, J ′ is a generalized almost complex structure which commutes with J and
G = −JJ ′ is a positive definite metric.

Proof. Choose a Riemannian metric g on M and put

G̃ =

(

0 g−1

g 0

)

.

Then G̃ is a postitive definite metric on T ⊕ T ∗. Now we define a symplectic
structure W on T ⊕ T ∗ by

W(X + ξ, Y + η) = 〈J (X + ξ), Y + η〉.
Since G̃ and W are non-degenerate, there exists an endomorphism A on T ⊕ T ∗

which satisfies

W(X + ξ, Y + η) = G̃(A(X + ξ), Y + η)

for all X + ξ, Y + η ∈ T ⊕ T ∗. The map A is skew-symmetric because

G̃(A∗(X + ξ), Y + η) = G̃(X + ξ,A(Y + η)) = G̃(A(Y + η), X + ξ)

= W(Y + η,X + ξ) = −W(X + ξ, Y + η)

= G̃(−A(X + ξ), Y + η),

where A∗ denotes the adjoint operater of A with respect to the positive difinite
metric G̃. Moreover since A is invertible, AA∗ is symmetric and positive, that is,
(AA∗)∗ = AA∗ and

G̃(AA∗(X + ξ), X + ξ) > 0
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for all non-zeroX+ξ ∈ T⊕T ∗. So we can define
√
AA∗ the square root of AA∗. Of

course
√
AA∗ is also symmetric and positive definite. Let J ′ be an endomorphism

on T ⊕ T ∗ defined by J ′ = (
√
AA∗)−1A. Since A commutes with

√
AA∗, J ′

also commutes with A and
√
AA∗. Hence J ′ is orthogonal with respect to G̃ and

(J ′)2 = −id.

By the definition of A we have AJ = −JA−1, and
√
AA∗J = J (

√
AA∗)−1.

Therefore we have

JJ ′ = J (
√
AA∗)−1A

= −
√
AA∗A−1J

= −(J ′)−1J
= J ′J ,

in particular J ′ commutes with J . Moreover, for each X + ξ, Y + η ∈ T ⊕ T ∗, we
have

〈J ′(X + ξ),J ′(Y + η)〉 = −W(JJ ′(X + ξ),J ′(Y + η))

= −G̃(AJJ ′(X + ξ),J ′(Y + η))

= −G̃(J ′AJ (X + ξ),J ′(Y + η))

= −G̃(AJ (X + ξ), Y + η)

= −W(J (X + ξ), Y + η)

= 〈X + ξ, Y + η〉.

Hence J ′ is a generalized almost complex structure on M which commutes J .
Finally G := −JJ ′ is a positive definite metric on T ⊕T ∗ since G = G̃

√
AA∗. This

completes the proof. �

If J ′ is a generalized almost complex structure which is compatible with an
H-twisted generalized complex structure J , then we can apply the argument of
Gualtieri in [4] and construct a Riemannian metric g, a 2-form b, and two orthogonal
almost complex structures J± which satisfy the equation

(2) J =
1

2

(

1 0
b 1

)(

J+ + J− −(ω−1
+ − ω−1

− )
ω+ − ω− −(J∗

+ + J∗
−)

)(

1 0
−b 1

)

.

Of course, J+ and J− are not integrable in general.

3. Hamiltonian action on generalized manifolds

In this section we introduce the definition of Hamiltonian actions on H-twisted
generalized complex manifolds given in [10].

Definition 3.1 (Y. Lin and S. Tolman, [10]). Let a compact Lie group G with its
Lie algebra g act on an H-twisted generalized complex manifold (M,J ) preserving
J , whereH ∈ Ω3(M)G is a closed 3-form. The action of G is said to be Hamiltonian
if there exists a G-equivariant smooth function µ : M −→ g∗, called the generalized
moment map, and a g∗-valued one form α ∈ Ω1(M, g∗), called the moment one
form such that



6 YASUFUMI NITTA

• ξM −
√
−1(dµξ +

√
−1αξ) lies in L for all ξ ∈ g, where ξM denotes the

induced vector field onM and L ⊂ (T⊕T ∗)⊗C denotes the
√
−1-eigenspace

of J , and
• iξMH = dαξ for all ξ ∈ g.

Example 3.1.

(1) Let G act on a symplectic manifold (M,ω) preserving ω, and µ : M −→ g∗

be an usual moment map, that is, µ is G-equivariant and iξMω = dµξ for
all ξ ∈ g. Then G also preserves Jω , µ is also a generalized moment map,
and α = 0 is a moment one form for this action. Hence the G-action on
(M,Jω) is Hamiltonian.

(2) Let (M,J) be a complex manifold and G act on (M,JJ ) in a Hamiltonian
way. Then G also preserves the original complex structure J . Since LJ =
T1,0 ⊕ T 0,1 and ξM ∈ π(LJ), so we have ξM = 0 for all ξ ∈ g. Thus if G is
connected, the G-action on M must be trivial.

(3) Let G act on an H-twisted generalized complex manifold (M,J ) with a
generalized moment map µ and a moment one form α. If B ∈ Ω2(M)G is
closed, then G acts on M preserving the B-field shift of J with generalized
moment map µ and moment one form α′, where (α′)ξ = αξ + iξMB for all
ξ ∈ g.

By the definition and examples above, we can say that the notion of generalized
moment maps is a generalization of the notion of moment maps in symplectic
geometry. Generalized moment maps are studied by Lin and Tolman in [10]. They
showed in [10] that a reduction theorem for Hamiltonian actions of compact Lie
groups on an H-twisted generalized complex and Kähler manifold holds.

Now we can state Theorem A in Introduction. Before we begin a proof, we
prove a notable property of generalized moment maps. At first we prove following
lemmata.

Lemma 3.1. Let a compact Lie group G act on an H-twisted generalized conplex
manifold (M,J ) preserving J . Then there exists a G-invariant generalized almost
complex structure which is compatible with J .

Proof. Choose a G-invariant Riemannian metric g on M and put

G =

(

0 g−1

g 0

)

.

Then G is a G-invariant positive definite metric on T ⊕ T ∗. Let A be an endomor-
phism on T ⊕ T ∗ defined by A = G−1J . Since G and J are G-invariant, so A is
also G-invariant. Now if we define

J ′ = (
√
AA∗)−1A,

then J ′ is a generalized almost complex structure on M which is compatible with
J . Moreover since A is G-invariant, J ′ is also G-invariant. This completes the
proof. �

Lemma 3.2. Let an m-dimensional torus Tm act on an H-twisted generalized
conplex manifold (M,J ) in a Hamiltonian way with a generalized moment map µ
and a moment one form α. Then for an arbitrary subtorus G ⊂ Tm the fixed point
set of G-action

Fix(G) = {p ∈ M | θ · p = p (∀θ ∈ G)}
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is an even dimensional submanifold of M .

Proof. Choose a G-invariant generalized almost complex structure J ′ which is com-
patible with J . Then there exists a Riemannian metric g, a 2-form b, and two
orthogonal almost complex structures J± which satisfies the equation (2). Since J
and J ′ are G-invariant, so g and J± are also G-invariant. For each p ∈ Fix(G) and
θ ∈ G, the differential of the action of θ at p,

(θ∗)p : TpM −→ TpM,

preserves the almost complex structures J±. In addition, since G-action preserves
the metric g, the exponential mapping expp : TpM −→ M with respect to the
metric g is equivariant, that is,

expp((θ∗)pX) = θ · expp X
for any θ ∈ G and X ∈ TpM . This concludes that the fixed point of the action of θ
near p correspond to the fixed point of (θ∗)p on TpM by the exponential mapping,
that is,

TpFix(G) =
⋂

θ∈G

ker(1− (θ∗)p).

Since (θ∗)p ◦ J± = J± ◦ (θ∗)p, the eigenspace with eigenvalue 1 of (θ∗)p is invariant
under J±, and is therefore an almost complex subspace. In particular, TpFix(G) is
even dimensional. �

We remark in the proof of Proposition 3.2 that the fixed point set Fix(G) is an
almost complex submanifold with respect to J±. In particular, we see ω± is non-
degenerate on Fix(G). Moreover, it is known that Fix(G) is a generalized complex
submanifold when H = 0 (see [11] for the details).

The following proposition claims that a generalized moment map has a property
of a Bott-Morse function. This fact plays a crucial role in the proof of Theorem A.

Proposition 3.1. Let an m-dimeansional torus Tm act on a compact H-twisted
generalized conplex manifold (M,J ) in a Hamiltonian way with a generalized mo-
ment map µ and a moment one form α. Then µξ is a Bott-Morse function with
even index and coindex for all ξ ∈ t.

Proof. Let ξ ∈ t and T ξ denote the subtorus of Tm which is generated by ξ. First
we shall prove that the critical set

Crit(µξ) = {p ∈ M | (dµξ)p = 0}
coincides with the fixed point set of T ξ-action Fix(T ξ). Choose a Tm-invariant
generalized almost complex structure J ′ which is compatible with J . Then J can
be written by the form of the equation (2) by corresponding quadruple (g, b, J±).
Note that the metric g and orthogonal almost complex structures J± are all Tm-
invariant.

Since ξM −
√
−1(dµξ +

√
−1αξ) ∈ L by the definition of Hamiltonian actions, so

(dµξ)p = 0 implies p ∈ Fix(T ξ). In particular we obtain Crit(µξ) ⊂ Fix(T ξ). On
the other hand, since Fix(T ξ) = {p ∈ M | (ξM )p = 0} so we can view µξ locally as
an imaginary part of a pseudoholomorphic function on an almost complex manifold
(Fix(T ξ), J±). By applying the principle of the maximum and compactness of
Fix(Tm), we see that µξ is constant on each connected component of Fix(T ξ).
Moreover the gradient of µξ with respect to the metric g is tangent to Fix(T ξ) on
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there because g and µξ are T ξ-invariant. This shows that Fix(T ξ) ⊂ Crit(µξ), and
hence we obtain Crit(µξ) = Fix(T ξ). In particular, Crit(µξ) is an even dimensional
submanifold of M .

To prove µξ is a Bott-Morse function, we shall calculate the Hessian of µξ on
Crit(µξ). First note that the induced vector field ξM can be written by

ξM =
1

2

(

ω−1
+ (dµξ)− ω−1

− (dµξ)
)

.

Let ∇ be the Riemannian connection with respect to g, and ∇2µξ denotes the
Hessian of µξ. Then by an easy calculation we have

g(∇2µξ(Y ), Z) = Y (Zµξ)−∇Y Z(µξ)

= Y (g(J±ξ
±
M , Z))− g(J±ξ

±
M ,∇Y Z)

= g(∇Y J±ξ
±
M , Z)

= g((∇Y J±)ξ
±
M , Z) + g(J±(∇Y ξ

±
M ), Z),

where ξ±M = ω−1
± (dµξ) = −J±g

−1(dµξ). Thus for each p ∈ Crit(µξ) we have

(∇2µξ)p = J±(∇Yp
ξ±M )

because (ξ±M )p = 0. Let (Lξ)p be an endomorphism on TpM defined by

(Lξ)p(Y ) = [ξM , Y ]p = −∇Yp
ξM .

Then since ξM = 1
2

(

ξ+M − ξ−M
)

, (Lξ)p can be written by

(Lξ)p = −1

2
(J+ − J−)(∇2µξ)p.

Now we prove that TpCrit(µ
ξ) = ker(∇2µξ)p. Since Crit(µξ) is a submanifold

of M , it is easy to see TpCrit(µ
ξ) ⊂ ker(∇2µξ)p. So we may only show that

ker(∇2µξ)p ⊂ TpCrit(µ
ξ). At first we have ker(∇2µξ)p ⊂ ker(Lξ)p by the calcu-

lation above. If we identify (Lξ)p with a vector field on TpM , the one parameter
family of diffeomorphism {(exp tξ∗)p}t∈R on TpM coincides with {exp t(Lξ)p}t∈R.
So ker(Lξ)p coincides with the fixed point set of {(exp tξ∗)p}t∈R. Hence we have

ker(∇2µξ)p ⊂ ker(Lξ)p =
⋂

θ∈T ξ

ker(1− (θ∗)p) = TpFix(T
ξ) = TpCrit(µ

ξ),

and this shows that TpCrit(µ
ξ) = ker(∇2µξ)p. In particular, µξ is a Bott-Morse

function.
Finally, by an easy calculation we see that (∇2µξ)p commutes with J+ − J−

for all p ∈ Crit(µξ). So we can define a non-degenerate 2-form on each non-zero
eigenspace of (∇2µξ)p by g(J+ − J−). Hence each non-zero eigenspace of (∇2µξ)p
is even dimensional, in particular the index and coindex of the critical manifold are
even. �

Remark 3.1. If M is noncompact, then the generalized moment map is not a Bott-
Morse function in general. Indeed, if we consider a trivial circle action on a complex
manifold (M,J), then the imaginary part of an arbitrary holomorphic function is
a generalized moment map for this action.
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4. Proof of Theorem A

We shall prove Theorem A in this section. This proof involves induction over
m = dimTm. Consider the statements:

Am : ”the level sets of µ are connected, for any Tm-action”,

Bm : ”the image of µ is convex, for any Tm-action”.

Then we have

(1) ⇔ Am holds for all m,

(2) ⇔ Bm holds for all m.

At first we see that A1 holds by using Proposition 3.1 and the fact that level sets
of a Bott-Morse function on a connected compact manifold are connected if the
critical manifolds all have index and coindex 6= 1 (see [12] for example). B1 holds
clearly because in R connectedness is convexity.

Now we prove Am−1 =⇒ Bm. Choose a matrix A ∈ Zm×(m−1) of maximal rank.
If we identify A with a linear mapping A : Rm−1 −→ Rm, then A induces an action
of Tm−1-action on M by θ ·p := (Aθ) ·p for each θ ∈ Tm−1 and p ∈ M . This Tm−1-
action is a Hamiltonian action with a generalized moment map µA(p) := Atµ(p)

and a moment one form αξ
A := αAξ, where At denotes the transpose of A.

Given any a ∈ t∗ and p0 ∈ µ−1
A (a),

p ∈ µ−1
A (a) ⇔ Atµ(p) = a = Atµ(p0) ⇔ µ(p)− µ(p0) ∈ kerAt

so that

µ−1
A (a) = {p ∈ M | µ(p)− µ(p0) ∈ kerAt}.

By the statement Am−1, µ
−1
A (a) is connected. Therefore, if we connect p0 to p1 by

a path pt in µ−1
A (a), we obtain a path µ(pt)−µ(p0) in kerAt. Since At is surjective,

so kerAt is 1-dimensional. Hence µ(pt) must go through any convex combination
of µ(p0) and µ(p1), which shows that any point on the line segment from µ(p0) to
µ(p1) must be in µ(M).

Any p0, p1 ∈ M with µ(p0) 6= µ(p1) can be approximated arbitrarily closely by
points p′0 and p′1 with µ(p′1)−µ(p′0) ∈ kerAt for a matrix A ∈ Zm×(m−1) of maximal
rank. By the argument above, we see that the line segment from µ(p′0) to µ(p′1)
must be in µ(M). By taking limits p′0 −→ p0, and p′1 −→ p1 we can conclude that
µ(M) is convex.

Next we proveAm−1 =⇒ Am. By identifying t with Rm, we write µ = (µ1, · · · , µm).
The generalized moment map µ is called effective if the 1-forms dµ1, · · · , dµm are
linearly independent. Note that p ∈ M is a regular point of µ if and only if
(dµ1)p, · · · , (dµm)p are linearly independent.

Lemma 4.1. If µ is not effective, the action reduces to a Hamiltonian action of
an (m− 1)-dimensional subtorus.

Proof. If µ is not effective, there exists 0 6= c = (c1, · · · , cm) ∈ Rm such that
∑m

i=1 cidµi = 0. So if we denote the canonical basis of t ∼= Rm by ξ1, · · · , ξn, then
we have

m
∑

i=1

ci

(

(ξi)M + αi

)

=

m
∑

i=1

ci

(

(ξi)M −
√
−1(dµi +

√
−1αi)

)

∈ L,
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where α = (α1, · · · , αm). Since
∑m

i=1 ci ((ξi)M + αi) is real and L ∩ L̄ = {0}, we
obtain

∑m
i=1 ci(ξi)M = 0. Consider ξ =

∑m
i=1 ciξi ∈ t. Then µξ is constant along

M because ξM = 0. For the simplicity, we may assume ξ1, · · · , ξm−1, ξ are linearly
independent. Then the Tm−1-action generated by ξ1, · · · , ξm−1 is a Hamiltonian
action with a generalized moment map (µ1, · · · , µm−1) and a moment one form
(α1, · · · , αm−1). �

So we may assume that µ is effective. Then for each 0 6= ξ ∈ t, µξ is not a
constant function. So the critical manifold Crit(µξ) is an even dimensional proper
submanifold. Now consider the union of critical manifolds C = ∪η 6=0Crit(µ

η).

Lemma 4.2. The union C is a countable union of even dimensional proper sub-
manifold, that is,

C = ∪06=η∈ZmCrit(µη).

Proof. We may only show that C ⊂ ∪06=η∈ZmCrit(µη). For a rational vector ξ =
∑m

i=1 ciξi, ξ̃ = (Πm
i=1qi)ξ ∈ Zm, where ci = pi/qi and pi, qi ∈ Z. Since

Crit(µξ) = Fix(T ξ) = Fix(T ξ̃) = Crit(µξ̃),

we see that Crit(µξ) ⊂ ∪06=η∈ZmCrit(µη). If ξ is irrational, then for rational element
η ∈ tξ where tξ is the Lie algebra of T ξ, we have Fix(T ξ) ⊂ Fix(T η). So we obtain

Crit(µξ) = Fix(T ξ) ⊂ Fix(T η) ⊂ ∪06=η∈ZmCrit(µη).

Hence we have proved C = ∪06=η∈ZmCrit(µη). �

In particular,M\C is dense subset ofM . In addition, since the condition p ∈ M\
C is equivalent to the condition that (dµ1)1, · · · , (dµm)p are linearly independent,
we obtain M \ C is open dense subset of M .

Lemma 4.3. The set of regular values of µ in µ(M) is a dense subset of µ(M).

Proof. For each a = µ(p) ∈ µ(M), there exists a sequence {pi}∞i=1 ⊂ M \ C which
satisfies that limi→∞ pi = p. Since pi is a regular point of µ, µ(M) contains a
neighborhood of µ(pi) by implicit function theorem. Moreover there exists a regular
value ai ∈ t∗ which is sufficiently close to µ(pi) and µ−1(ai) 6= φ by Sard’s theorem.
Hence the sequence {ai}∞i=1 approximates a. �

By the similar argument, the set of a = (a1, · · · , am) ∈ t∗ that (a1, · · · , am−1) is
a regular value of (µ1, · · · , µm−1) in µ(M) is also a dense subset of µ(M). Hence,
by continuity, to prove that µ−1(a) is connected for every a = (a1, · · · , am) ∈ t∗, it
suffics to prove that µ−1(a) is connected whenever (a1, · · · , am−1) is a regular value
for the reduced generalized moment map (µ1, · · · , µm−1). By the induction hypoth-
esis, the submanifold Q = ∩m−1

i=1 µ−1
i (ai) is connected whenever (a1, · · · , am−1) is a

regular value for (µ1, · · · , µm−1). To finish the proof, we need following lemma.

Lemma 4.4. If (a1, · · · , am−1) is a regular value for (µ1, · · · , µm−1), the function
µm : Q −→ R is a Bott-Morse function of even index and coindex.

Proof. By the hypothesis, Q is a 2n− (m− 1) dimensional connected submanifold
of M . For each p ∈ Q, the subspace W of the cotangent space T ∗

pM generated by
(dµ1)p, · · · , (dµm−1)p is (m − 1) dimensional because p is regular. So the tangent
space TpQ of Q coincises with the annihilator of W ;

TpQ = {X ∈ TpM | f(X) = 0 (∀f ∈ W )}.
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Hence p ∈ Q is a critical point of µm : Q −→ R if and only if there exists real
numbers c1, · · · , cm−1 such that

m−1
∑

i=1

ci(dµi)p + (dµm)p = 0.

This means that p is a critical point of the function µξ : M −→ R, where ξ =
(c1, · · · , cm−1, 1) ∈ t ∼= R

m. By Proposition 3.1, µξ is a Bott-Morse function with
even index and coindex. We shall prove the critical manifold Crit(µξ) intersects Q
transversally at p, that is,

TpM = TpCrit(µ
ξ) + TpQ.

This is equivalent to W ∩ T ∗
pCrit(µ

ξ) = {0}. To see this, we need to prove
∑m−1

i=1 ci(dµi)p(X) = 0 for anyX ∈ TpCrit(µ
ξ) and

∑m−1
i=1 ci(dµi)p ∈ W∩T ∗

pCrit(µ
ξ).

This means that the linear functionals (dµ1)p, · · · , (dµm−1)p remain linearly inde-
pendent when restricted to the subspace TpCrit(µ

ξ). Consider the vector fields

ξ+1 , · · · , ξ+m−1 on M defined by

dµi = ω+(ξ
+
i ), i = 1, · · · ,m− 1.

Then (ξ+1 )p, · · · , (ξ+m−1)p are linearly independent on TpM because p is regular. So

they are also linearly independent on T ∗
pCrit(µ

ξ). Since the 2-form ω+ is still non-

degenerate when it is restricted to Crit(µξ), so (dµ1)p, · · · , (dµm−1)p are linearly
independent on T ∗

pCrit(µ
ξ) and hense Crit(µξ) is transverse to Q as claimed.

This implies that the orthogonal complement of the subspace TpCrit(µ
ξ) is con-

tained in TpQ. Hence the Hessian of µξ at p is non-degenerate on this space with
even index and coindex. In other words, Crit(µξ)∩Q is the critical manifold of µξ|Q
of even index and coindex. The same holds for µm|Q since it only differs from µξ

by the constant
∑m−1

i=1 ciai. Thus we have proved that the function µm : Q −→ R

is a Bott-Morse function with even index and coindex. �

By applying Lemma 4.4, if (a1, · · · , am−1) is a regular value for (µ1, · · · , µm−1),
then the level set µ−1

m (am) ∩Q = µ−1(a) is connected. This shows that Am−1 =⇒
Am.

Finally, we shall prove the third claim, that is, the image of the generalized
moment map µ is the convex hull of the images of the fixed points of the action.
By Lemma 3.2, the fixed point set Fix(Tm) of the action decomposes into finitely
many even dimensional connected submanifolds C1, · · · , CN of M . The generalized
moment map µ is constant on each of these sets because Ci ⊂ Crit(µξ) for i =
1, · · · , N and any ξ ∈ t. Hence there exists a1, · · · , aN ∈ t∗ such that

µ(Ci) = {ai}, i = 1, · · · , N.

By what we have proved so far the convex hull of the points a1, · · · , aN is con-
tained in µ(M). Conversely, let a ∈ t∗ be a point which is not in the convex
hull of a1, · · · , aN . Then there exists a vector ξ ∈ t with rationally independent
components such that

ai(ξ) < a(ξ), i = 1, · · · , N.

Since the components of ξ are rationally independent, we have Crit(µξ) = Fix(Tm).
Hence the function µξ : M −→ R attains its maximum on one of the sets C1, · · · , CN .
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This implies
sup
p∈M

µξ(p) < a(ξ),

and hence a 6∈ µ(M). This shows that µ(M) is the convex hull of the points
a1, · · · , aN and Theorem A is proved. �

Remark 4.1. If M is an orbifold and H is a closed 3-form on M , we can define
notions of H-twisted generalized complex structures of M and Hamiltonian actions
of compact Lie groups on an H-twisted generalized complex orbifold in usual way.
By applying same arguments of our proof and Theorem 5.1 in [9], Theorem A still
holds when M is a connected compact H-twisted generalized complex orbifold. Of
course, C1, · · · , CN are connected suborbifolds in this case.

Remark 4.2. When the manifold is noncompact and the Lie group is non abelian,
the convexity and connected properties still hold in the sense of Theorem 1.1 and
Theorem 4.3 in [8]. In view of the works of Lerman, Meinrenken, Tolman, and
Woodward in [8], we can import notions of symplectic cuts and Cross-section theo-
rem in symplectic geometry to generalized complex geometry. These techniques tell
us that the convexity and connected properties still hold in general cases. Detailed
proof can be seen in our work [13].
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