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FIRST EIGENVALUES OF GEOMETRIC OPERATORS
UNDER THE RICCI FLOW

XIAODONG CAO

ABSTRACT. In this paper, we prove that the first eigenvalues of
—A+¢R (¢ > %) is nondecreasing under the Ricci flow. We also
prove the monotonicity under the normalized Ricci flow for the
case c=1/4 and r < 0.

1. First Eigenvalue of —A + cR

Let M be a closed Riemannian manifold, and (M, g(t)) be a smooth
solution to the Ricci flow equation

0

580 = ~ 20

on 0 <t < T. In [Cao07], we prove that all eigenvalues A(t) of the
operator —A + % are nondecreasing under the Ricci low on manifolds
with nonnegative curvature operator. Assume f = f(x,t) is the corre-
sponding eigenfunction of A\(¢), that is

(=84 9) (1) = A1) (2.1

and / f2du = 1. More generally, we define
M

(1) M) = [ (Af+ 50

where f is a smooth function satisfying

S Paw=o. [ pau=i.

We can then derive the monotonicity formula under the Ricci flow.
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Theorem 1.1. [Cao07] On a closed Riemannian manifold with non-
negative curvature operator, the eigenvalues of the operator —A + 1—;
are nondecreasing under the Ricci flow. In particular,

12)  A\(fp) =2 /M Ry fofydy + /M (Ref? f2dp > 0.

In (L2]), when %)\( f,t) is evaluated at time ¢, f is the corresponding
eigenfunction of A\(t).

Remark 1.2. Clearly, at time t, if f is the eigenfunction of the eigen-
value \(t), then A(f,t) = A(t). By the eigenvalue perturbation the-
ory, we may assume that there is a C'-family of smooth eigenvalues
and eigenfunctions (for example, see [KLOG6], [RST8] and [CCGT07]).
When X is the lowest eigenvalue, we can further assume that the corre-
sponding eigenfunction f be positive. Since the above formula does not
depend on the particular evolution of f, so %)\(t) = %)\(f, t).

Remark 1.3. In [Li07a], J. Li used the same technique to prove that
the monotonicity of the first eigenvalue of —A + %R under the Ricci
flow without assuming nonnegative curvature operator. A similar result
appeared in the physics literature [OSW05].

Remark 1.4. When ¢ = i, the monotonicity of first eigenvalue has
been established by G. Perelman in [Per02]. The evolution of first eigen-
value of Laplace operator under the Ricci flow has been studied by L.
Ma in [Ma06]. The evolution of Yamabe constant under the Ricci flow
has been studied by S.C. Chang and P. Lu in [CLOT].

In this paper, we shall study the first eigenvalues of operators —A +
cR (¢ > i) without curvature assumption on the manifold. Our first
result is the following theorem.

Theorem 1.5. Let (M™,g(t)), t € [0,T), be a solution of the Ricci
flow on a closed Riemannian manifold M™. Assume that \(t) is the
lowest eigenvalue of —A + cR (¢ > 1), f = f(z,t) > 0 satisfies

and/ f*(z,t)dp = 1. Then under the Ricci flow, we have
M

4c

—1
LA(t) = %/M IRy + ViVl e ?dp + /M |Re|? e=¢dp > 0,

2

where e=? = f2.
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Proof. (Theorem [ILB)) Let ¢ be a function satisfying e %) = f2(z).
We proceed as in [Cao07], we have

IANt) = (2c—1) / Ri;jVipV jpe?dp

—(2c¢—1) /RijVingpe_“”du + 20/ |Re|?e™%dpu.
Integrating by parts and applying the Ricci formula, it follows that
(1.5) /Rijvivjw e Pdu = /Rijviapngo e Pdu — %/RAe_wd,u

and

(1.4)

/RijVingpe_wdu + / IVVlPe ?du
(1.6) = —/Ae_”(Aap + %R - %|V¢\2)dﬂ
= (2¢— %)/RAewdu.
In the last step, we use
IN(t) = Ap + 2R — %|w|2.
Combining (L)) and (I6), we arrive at
(1.7) /|VVQ0|26_“Dd,u = 2c/RAe_“0d,u— /Rijviapngo e ?dju.
Plugging (L7) into (L.4]), we have
IN(t) = /RijViVjape_“Dd,ujL 2¢ [ |Re|*e?du
+c/RA(e‘“°)d,u - % R;iVioVp e ?dp
= /R,-jViVjcpe_“”d,ujLQc/|Rc|2e_“”d,u+%/|VVQ0|26_“”d,u
= %/|Rij + ViV 0l? e ?dp+ (2¢ — %) / |Re|?* e~?du > 0.
This proves the theorem as desired. U

2. First Eigenvalue under the Normalized Ricci Flow

In this section, we derive the evolution of \(¢) under the normalized
Ricci flow equation

0 2
5180 = —2R;; + T8
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L Bl 5 the average scalar curvature. It follows from Eq.

(L3) that A < ¢r. We now compute the derivative of the lowest eigen-
value of —A + cR.

Theorem 2.1. Let (M",g(t)), t € [0,T), be a solution of the normal-
ized Ricci flow on a closed Riemannian manifold M™. Assume that \(t)
is the lowest eigenvalue of —A+cR (¢ > i), f > 0 is the corresponding

eigenfunction. Then under the normalized Ricci flow, we have
(2.1)

INt) =22+ 1 /M |Rij + V;Vjp|* e ?dp+ 151 /M |Rc|? e ?dy,

1

where e=? = f2. Furthermore, if ¢ = 7 and r <0, then

r _
(2.2) gAt)=2r(A =)+ %/M |Rij + ViVjp — Egij|2 e ¥du > 0.

Remark 2.2. After we submitted our paper, J. Li suggested to us that
(2.3) is true for all ¢ > 1/4, with an additional nonnegative term

r _
%/ |Re — _gij|2 e~ “dp,
M n
see [Li0Tb] for a similar result.

Remark 2.3. As a consequence of the above monotonicity formula
of A(t), we can prove that both compact steady and expanding Ricci
breathers (cf. [Ive93|, [Per02]) must be trivial, such results have been
discussed by many authors (for example, see [[ve93|, [Ham95], [Ham8§],
[Per02], [Cao07] and [Li07al, etc.).

When M is a two-dimensional surface, r is a constant. We have the
following corollary.

Corollary 2.4. Let (M?,g(t)), t € [0,T), be a solution of the normal-
ized Ricci flow on a closed Riemannian surface M?*. Assume that \(t)
is the lowest eigenvalue of —A + cR (¢ > 1), we have €™ is nonde-
creasing under the normalized Ricci flow. Moreover, if r < 0, then A
s nondecreasing.
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