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FIRST EIGENVALUES OF GEOMETRIC OPERATORS

UNDER THE RICCI FLOW

XIAODONG CAO

Abstract. In this paper, we prove that the first eigenvalues of
−∆ + cR (c ≥ 1

4
) is nondecreasing under the Ricci flow. We also

prove the monotonicity under the normalized Ricci flow for the
case c = 1/4 and r ≤ 0.

1. First Eigenvalue of −∆+ cR

Let M be a closed Riemannian manifold, and (M, g(t)) be a smooth
solution to the Ricci flow equation

∂

∂t
gij = −2Rij

on 0 ≤ t < T . In [Cao07], we prove that all eigenvalues λ(t) of the
operator −∆+ R

2
are nondecreasing under the Ricci flow on manifolds

with nonnegative curvature operator. Assume f = f(x, t) is the corre-
sponding eigenfunction of λ(t), that is

(−∆+
R

2
)f(x, t) = λ(t)f(x, t)

and

∫

M

f 2dµ = 1. More generally, we define

(1.1) λ(f, t) =

∫

M

(−∆f +
R

2
f)fdµ,

where f is a smooth function satisfying

d

dt
(

∫

M

f 2dµ) = 0,

∫

M

f 2dµ = 1.

We can then derive the monotonicity formula under the Ricci flow.
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Theorem 1.1. [Cao07] On a closed Riemannian manifold with non-
negative curvature operator, the eigenvalues of the operator −∆ + R

2
are nondecreasing under the Ricci flow. In particular,

(1.2) d
dt
λ(f, t) = 2

∫

M

Rijfifjdµ+

∫

M

|Rc|2f 2dµ ≥ 0.

In (1.2), when d
dt
λ(f, t) is evaluated at time t, f is the corresponding

eigenfunction of λ(t).

Remark 1.2. Clearly, at time t, if f is the eigenfunction of the eigen-
value λ(t), then λ(f, t) = λ(t). By the eigenvalue perturbation the-
ory, we may assume that there is a C1-family of smooth eigenvalues
and eigenfunctions (for example, see [KL06], [RS78] and [CCG+07]).
When λ is the lowest eigenvalue, we can further assume that the corre-
sponding eigenfunction f be positive. Since the above formula does not
depend on the particular evolution of f , so d

dt
λ(t) = d

dt
λ(f, t).

Remark 1.3. In [Li07a], J. Li used the same technique to prove that
the monotonicity of the first eigenvalue of −∆ + 1

2
R under the Ricci

flow without assuming nonnegative curvature operator. A similar result
appeared in the physics literature [OSW05].

Remark 1.4. When c = 1
4
, the monotonicity of first eigenvalue has

been established by G. Perelman in [Per02]. The evolution of first eigen-
value of Laplace operator under the Ricci flow has been studied by L.
Ma in [Ma06]. The evolution of Yamabe constant under the Ricci flow
has been studied by S.C. Chang and P. Lu in [CL07].

In this paper, we shall study the first eigenvalues of operators −∆+
cR (c ≥ 1

4
) without curvature assumption on the manifold. Our first

result is the following theorem.

Theorem 1.5. Let (Mn, g(t)), t ∈ [0, T ), be a solution of the Ricci
flow on a closed Riemannian manifold Mn. Assume that λ(t) is the
lowest eigenvalue of −∆+ cR (c ≥ 1

4
), f = f(x, t) > 0 satisfies

(1.3) −∆f(x, t) + cRf(x, t) = λ(t)f(x, t)

and

∫

M

f 2(x, t)dµ = 1. Then under the Ricci flow, we have

d
dt
λ(t) = 1

2

∫

M

|Rij +∇i∇jϕ|
2 e−ϕdµ+

4c− 1

2

∫

M

|Rc|2 e−ϕdµ ≥ 0,

where e−ϕ = f 2.
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Proof. (Theorem 1.5) Let ϕ be a function satisfying e−ϕ(x) = f 2(x).
We proceed as in [Cao07], we have

(1.4)

d
dt
λ(t) = (2c− 1

2
)

∫

Rij∇iϕ∇jϕe
−ϕdµ

−(2c− 1)

∫

Rij∇i∇jϕe
−ϕdµ+ 2c

∫

|Rc|2e−ϕdµ.

Integrating by parts and applying the Ricci formula, it follows that

(1.5)

∫

Rij∇i∇jϕ e−ϕdµ =

∫

Rij∇iϕ∇jϕ e−ϕdµ−
1

2

∫

R∆e−ϕdµ

and

(1.6)

∫

Rij∇i∇jϕe
−ϕdµ +

∫

|∇∇ϕ|2e−ϕdµ

= −

∫

∆e−ϕ
(

∆ϕ+
1

2
R−

1

2
|∇ϕ|2

)

dµ

= (2c− 1
2
)

∫

R∆e−ϕdµ.

In the last step, we use

2λ(t) = ∆ϕ+ 2cR−
1

2
|∇ϕ|2.

Combining (1.5) and (1.6), we arrive at

(1.7)

∫

|∇∇ϕ|2e−ϕdµ = 2c

∫

R∆e−ϕdµ−

∫

Rij∇iϕ∇jϕ e−ϕdµ.

Plugging (1.7) into (1.4), we have

d
dt
λ(t) =

∫

Rij∇i∇jϕe
−ϕdµ+ 2c

∫

|Rc|2e−ϕdµ

+c

∫

R△(e−ϕ)dµ−
1

2

∫

Rij∇iϕ∇jϕ e−ϕdµ

=

∫

Rij∇i∇jϕe
−ϕdµ+ 2c

∫

|Rc|2e−ϕdµ+
1

2

∫

|∇∇ϕ|2e−ϕdµ

= 1
2

∫

|Rij +∇i∇jϕ|
2 e−ϕdµ+ (2c−

1

2
)

∫

|Rc|2 e−ϕdµ ≥ 0.

This proves the theorem as desired. �

2. First Eigenvalue under the Normalized Ricci Flow

In this section, we derive the evolution of λ(t) under the normalized
Ricci flow equation

∂

∂t
gij = −2Rij +

2

n
rgij .
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Here r =
R

M
Rdµ

R

M
dµ

is the average scalar curvature. It follows from Eq.

(1.3) that λ ≤ cr. We now compute the derivative of the lowest eigen-
value of −∆+ cR.

Theorem 2.1. Let (Mn, g(t)), t ∈ [0, T ), be a solution of the normal-
ized Ricci flow on a closed Riemannian manifold Mn. Assume that λ(t)
is the lowest eigenvalue of −∆+cR (c ≥ 1

4
), f > 0 is the corresponding

eigenfunction. Then under the normalized Ricci flow, we have
(2.1)

d
dt
λ(t) = −2rλ

n
+ 1

2

∫

M

|Rij +∇i∇jϕ|
2 e−ϕdµ+ 4c−1

2

∫

M

|Rc|2 e−ϕdµ,

where e−ϕ = f 2. Furthermore, if c = 1
4
and r ≤ 0, then

(2.2) d
dt
λ(t) = 2

n
r(λ− r

4
) + 1

2

∫

M

|Rij +∇i∇jϕ−
r

n
gij|

2 e−ϕdµ ≥ 0.

Remark 2.2. After we submitted our paper, J. Li suggested to us that
(2.2) is true for all c ≥ 1/4, with an additional nonnegative term

4c−1
2

∫

M

|Rc−
r

n
gij|

2 e−ϕdµ,

see [Li07b] for a similar result.

Remark 2.3. As a consequence of the above monotonicity formula
of λ(t), we can prove that both compact steady and expanding Ricci
breathers (cf. [Ive93], [Per02]) must be trivial, such results have been
discussed by many authors (for example, see [Ive93], [Ham95], [Ham88],
[Per02], [Cao07] and [Li07a], etc.).

When M is a two-dimensional surface, r is a constant. We have the
following corollary.

Corollary 2.4. Let (M2, g(t)), t ∈ [0, T ), be a solution of the normal-
ized Ricci flow on a closed Riemannian surface M2. Assume that λ(t)
is the lowest eigenvalue of −∆ + cR (c ≥ 1

4
), we have ertλ is nonde-

creasing under the normalized Ricci flow. Moreover, if r ≤ 0, then λ
is nondecreasing.
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