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Abstract

This article is about the interplay between topological dynamics and
differential geometry. One could ask how many informations of the geom-
etry are carried in the dynamic of the geodesic flow. M. Paternain proved
in [6] that an expansive geodesic flow on a surface implies that there are
no conjugate points. Instead of regarding notions that describe chaotic be-
havior (for example expansiveness) we regard a notion that describes the
stability of orbits in dynamical systems, namely equicontinuity and distal-
ity. In this paper we give a new sufficient and necessary condition for a
compact Riemannian surface to have all geodesics closed (P-manifold):
(M, g) is a P-manifold iff the geodesic flow SM ×R → SM is equicontinu-
ous. We also prove a weaker theorem for flows on manifolds of dimension
3. At the end we discuss some properties of equicontinuous geodesic flows
on noncompact surfaces and higher dimensional manifolds.

1 Introduction

In the complete paper all geodesics are parametrized by arc length and the
geodesic flow is complete. The manifolds and the Riemannian metrics are C∞.
π : TM → M denotes the canonical projection. At first we summarize some
facts about recurrent maps and we state theorem [2.7] (due to Boris Kolev and
Marie-Christine Pérouème) about the set of fixed points of recurrent maps on
surfaces. In section 3 we study the geodesic return map. In section 4 we prove
that equicontinuous geodesic flows are periodic. In section 5 we prove that if a
flow without singularities on a 3-dimensional manifold admits a global Poincaré
section and has enough periodic orbits, then the flow is pointwise periodic. In
the last section we show that the existence of an equicontinuous geodesic flow on
a compact manifold M implies that the fundamental group is finite. Moreover,
we discuss equicontinuous geodesic flows on noncompact manifolds.
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2 Recurrent Behavior

Definition 2.1. A dynamical system (X,T ) is called distal if
inf{d(xt, yt)|t ∈ T} = 0 implies x = y.
A system (X,T ) is called equicontinuous (regular) if for all ǫ > 0 there exists
an δ(ǫ) > 0 such that for all x, y with d(x, y) < δ(ǫ) we have d(xt, yt) < ǫ for
all t ∈ T .

Here is a well-known fact about equicontinuous systems on compact metric
spaces:

Theorem 2.2. An equicontinuous flow Φ : X × R → X on a compact metric
space is uniformly almost periodic, i.e. for every ǫ > 0 there exists an τ > 0
such that in every intervall I of length τ there exists an t ∈ I such that for all
x we have d(Φ(t, x), x) < ǫ.

Proof: See theorem 2.2 in [1].
A weaker form of uniform almost periodicity for maps is the following:

Definition 2.3. A continuous map f on a metric space (X, d) is recurrent if
there exists a sequence nk → ∞ such that for supx∈X d(fnk(x), x) → 0 k → ∞.

Definition 2.4. A continuous map f : X → X on a metric space (X, d) is
called paracompact-recurrent on Y ⊂ X if there exists a sequence nk → ∞ such
that for k → ∞ we have supx∈C d(fnk(x), x) → 0, where C ⊂ Y is a compact
subset of X.

Note that in the definition of paracompact-recurrence the sequence nk is
fixed and does not depend on C ⊂ Y and that paracompact-recurrence and
recurrence are independent from the metric which defines the topology if the
space X is compact.

Lemma 2.5. If f is recurrent, then fm is recurrent.

Set sk := supx∈X d(fnk(x), x). We conclude

d(fnkm(x), x) ≤
m−1∑

i=0

d(f (m−i)nk (x), f (m−i−1)nk(x))

≤
m−1∑

i=0

d(fnk(f (m−i−1)nk (x)), f (m−i−1)nk (x)) ≤ msk.

�

Lemma 2.6. Given a continuous map on a compact surface S. Let F be a finite
non empty subset of Fix(f) (the fixed point set). If f is paracompact-recurrent
on S − F , then f is recurrent.
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W.l.o.g we can suppose that our metric is induced from a Riemannian met-
ric. Let {x1, · · · , xm} denote F and choose a tiny ǫ > 0 and define

C := S − (
⋃

i

B(xi, ǫ)).

ci = ∂B(xi, ǫ) defines a simple closed curve. Choose a K := K(ǫ) such that for
all k > K we have:

sup
x∈C

d(fnk(x), x) < 4ǫ and fnk(ci) ⊂ B(ci,
ǫ

2
).

This is possible, since there is a compact subset in S − F that contains ci and
C.
Hence fnk(B(xi, ǫ)) ⊂ B(xi, 2ǫ) thus d(fnk(x), x) < 4ǫ for all x ∈ Cc and
k > K. Consequently d(fnk(x), x) < 4ǫ for all x ∈ X and k > K, i.e. f is
recurrent. �

The following nice theorem can be found in [4] as theorem 1.1.

Theorem 2.7. A non trivial orientation-preserving and recurrent homeomor-
phism of the sphere S2 has exactly two fixed points.

3 The Geodesic Return Map

A well-known technic to study geodesic flows on a surface is to study the
geodesic return map. Let A denote the open annulus.
Suppose that we have an equicontinuous geodesic flow Φ on the unit tangent
bundle SM of an orientable Riemannian surface M . Let γ be a simple closed
geodesic. Let denote W = SM |γ−Tγ (the set of all unit tangent vectors based
on γ which are not element of Tγ). Note that W is homeomorphic to the union
of two open annulus A0 and A1. We can identify v ∈ A0 with (x, θ) where
π(v) = x and θ ∈ (0, 1) is the angle of v and γ̇(t) divided by π.
Since every orbit is recurrent, we can define for our flow Φ the map F : A0 → A0

by
F (x, θ) = (x0, θ0),

where x0 = π(Φt0(x, θ)) is the next intersection point of {π(Φt(x, θ))|t > 0}
with γ such that Φt0(x, θ) = (x0, θ0) ∈ A0. We just simple write F : A → A. F
can be extended to an homeomorphism of S2 by two-point-compactification. In
this case F has two fixed points {∞} and {−∞} as we will see. If for v = (x, θ)
we have θ near zero, the geodesic Φt(v) stays near γ̇ (by equicontinuity), hence
Fn(x, θ) is near zero for all n, thus {∞} and {−∞} are fixed points. In this
paper, we call the extension of F the geodesic return map and denote it by
F : S2 → S2.

Proposition 3.1. If Φ is equicontinuous then F is recurrent on S2.

We only need to show that F is paracompact-recurrent on S2 − ({∞} ∪
{−∞}), since then we can apply lemma [2.6].

For 0 < θ0 < θ1 < 1 we set

K(θ0, θ1) = {(x, v) ∈ A|θ0 ≤ v ≤ θ1}.
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Lemma 3.2. For K := K(θ0, θ1) and large M := M(θ0, θ1), the constant

s(θ0, θ1,M) := inf{t1 − t0| −M < t0 < t1 < M,Φt0(v) ∈ A,Φt1(v) ∈ A, v ∈ K}

is strict positive. Every geodesic γv intersects γ at least 2 times in the forward
direction on the intervall [0,M ] and at least 2 times in the backward direction
on the intervall [−M, 0] if v ∈ K.

Proof: Use the compactness of K. �

Lemma 3.3. There exists a constant ν(θ0, θ1,M, r) > 0 for

every s(θ0,θ1,M)
2 > r > 0, large M and K(θ0, θ1) such that the following holds:

If for some w ∈ SM we have an v ∈ K(θ0, θ1) with d(v,w) < ν(θ0, θ1, r,M),
then there is an unique tw such that |tw| < r and Φtw(w) ∈ A.

Proof: Use the compactness of K. �

Given v ∈ A then for every integer n we define t(n, v) as the following:
t(n, v) is the unique element of R such that Φt(n,v)(v) = Fn(v) and t(0, v) = 0.
Moreover given v ∈ A and t ≥ 0 we define:

P (v, t) := max{n ≥ 0|t(n, v) ≤ t}.

Note that we can find a neighbourhood U0 of γ looking like a strip (M is
orientable) , therefore U0 − γ is the distinct union of two open strips S∗ and
S∗. We can define what lies in U0 − γ above and below γ. The area where the
points of A are pointing in-ward is defined to be S∗ (” above ”). The other
points of U − γ are lying in S∗ ( ” below ”).

For j ∈ {0, 1} choose sequences (θj,i)i with

θ0,i+1 < θ0,i < θ1,i < θ1,i+1

and converging strictly to j. Set Ki = K(θ0,i, θ1,i) and fix a v0 ∈ ∩iKi.

Lemma 3.4. There exist sequences Ti → ∞, 0 < ζi → 0 and 0 < βi → 0 such
that:

1. π(ΦTi+ζi(v)) ∈ S∗ for all v ∈ Ki

2. π(ΦTi−ζi(v)) ∈ S∗ for all v ∈ Ki

3. ΦTi
(v0) ∈ A

4. d(ΦTi+s(v), v) < βi for all v ∈ Ki and |s| < 2ζi

5. For every v ∈ Ki there exists an unique intersection point of γ and
π(ΦTi+s(v)), where s ranges over |s| < 4ζi

Proof: Choose sequences 0 < δi → 0, 0 < si → 0 and αi → 0 such that if
v ∈ Ki and w ∈ SM with d(v,w) < δi then

i) π(Φsi(w)) ∈ S∗
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ii) π(Φ−si(w)) ∈ S∗

iii) d(Φt(w), v) < αi for all |t| ≤ 8si

iv) π(Φt(w)) has an unique intersection point with γ where t ranges over |t| ≤
8si.

v) π(Φ[−20si,20si](w)) ⊂ U0

This can be done easy. First choose an increasing sequence Mi such that we can
define s(θ0,i+1, θ1,i+1,Mi) (and therefore s(θ0,i+1, θ1,i+1,Mi+1) is also defined )
and a decreasing sequence si → 0 such that

32si < min{
s(θ0,i+1, θ1,i+1,Mi)

2
,
s(θ0,i, θ1,i,Mi)

2
}

and then a decreasing sequence δi > 0

δi < ν(θ0,i, θ1,i,Mi,
si
2
).

Moreover δi is chosen so small, that d(w,Ki) < δi implies that Φtw(w) lies in
Ki+1 (tw is from definition [3.3]). Since si, δi → 0 and our flow Φ is defined
on a compact space, surely αi exists and by regarding only large i we have
π(Φ[−20si,20si](w)) ⊂ U0. If d(v,w) < δi and v ∈ Ki then i) ii) and v) holds. We
check that iv) holds:
Note that for d(v,w) < δi and v ∈ Ki we have Φtw(w) ∈ Ki+1 and

[−8si, 8si] ⊂ [−8si − tw, 8si + tw] ⊂ [−9si, 9si],

and therefore Φ[−8si,8si](w) lies in Φ[−9si,9si](Φtw(w)) .
Hence we conclude that iv) holds since 18si < s(θ0,i+1, θ1,i+1,Mi).
Now choose a sequence Si → ∞ such that d(ΦSi

(x), x) < δi for all x (apply
theorem [2.2]). There exists an unique |ri| < si such that ΦSi+ri(v0) ∈ A. Set
Ti := Si + ri and ζi := 2si. Given v ∈ Ki note that

Ti + ζi = Si + ri + 2si > Si + si

and |Ti + ζi − Si| < 3si. From this , i), iv) and v) we conclude ΦSi+si(v) ∈ S∗

and therefore ΦTi+ζi(v) ∈ S∗. Analogously we conclude from ii), iv) and v) that
ΦTi−ζi(v) ∈ S∗. Thus 1,2 and 3 is proven.
If |t| ≤ 2ζi = 4si, then |Ti + t− Si| < 5si thus the orbit segment
Φ[Ti−2ζi,Ti+2ζi](v) lies in the orbit segment Φ[Si−8si,Si+8si](v), hence by iv) has
an unique intersection point with γ. This proves 5. Since 2ζi → 0 and uniformly
ΦTi

(x) → x and M is compact, there exists a sequence βi. �

Proof of the proposition: Set pi := P (v0, Ti + ζi). We show that for this
sequence F is paracompact-recurrent. Note that P (v0, Ti + ζi) = P (v0, Ti) by
lemma [3.4] and Ki ⊃ Kj if j ≤ i. Given any compact set C ⊂ A choose I0
such that C ⊂ KI0 . The functions

Gi : A → N
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defined by Gi(v) = P (v, Ti + ζi) are constant on KI0 if i ≥ I0.
Indeed, by construction the functions Gi are locally constant on Ki, hence
constant pi = P (v0, Ti + ζi) on the connected set Ki. Therefore Gi = pi on KI0

if i ≥ I0.
We have |Ti − t(v,Gi(v))| < 2ζi for v ∈ Ki by construction, since we know
from lemma [3.4, 1 and 2] that P (v, Ti − ζi) = pi − 1. Therefore we conclude
from lemma [3.4, 4)] that for all v ∈ KI0 and i ≥ I0 we have d(F pi(v), v) =
d(Φt(v,pi)(v), v) < βi. �

4 Equicontinuous Geodesic Flows On Surfaces

Definition 4.1. (M,g) is called a P-manifold if all geodesics are closed.

The following lemma is easy to prove:

Lemma 4.2. If (M,g) is a P-manifold then the geodesic flow (SM,Φ) is
equicontinuous.

Proof: It is a well-known fact that if M is a P-manifold then the flow is
periodic (compare [8]) and M is compact. Let L denote the smallest period.
Choose for ǫ > 0 an δ > 0 such that d(v,w) < δ implies

d(Φt(v),Φt(w)) < ǫ

for |t| < 2L, hence it holds for all t. �

To prove our first theorem we need the following theorem.

Theorem 4.3 (Ballmann). Every compact Riemannian manifold (M,g) of di-
mension 2 has at least three simple closed geodesics.

Proof: See [2]. �

Theorem 4.4. Given a compact Riemannian manifold (M,g) of dimension 2
then the following conditions are equivalent:

1. M is a P-manifold.

2. (SM,Φ) is equicontinuous.

1) implies 2) by lemma [4.2]. We show that 2) implies 1). Take a simple
closed geodesic γ.

Lemma 4.5. If Z is a compact set in M−γ, then there are 0 < θ0,Z < θ1,Z < 1
such that for every geodesic α intersecting Z we have that Φ(Z × R) ∩ A is a
subset of K(θ0,Z , θ1,Z).

Proof: Choose an open set V around γ such that V ∩ Z = ∅. Choose δ > 0
such that d(w, Tγ) < δ implies γw ⊂ V . If θ0,Z or θ1,Z would not exist, we
could find a geodesic γw ⊂ V , but starting in Z. �
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Lemma 4.6. Every geodesic intersects γ.

Given a point x ∈ M − γ and w ∈ SxM . Choose a path-connected compact
set C in SM such that SxM ⊂ C and π(C) ∩ γ = ∅. Apply lemma [4.5] to
Z = π(C). Choose a curve β in C from w ∈ SxM to q ∈ SxM where γq
intersects γ. Cover β with finitely many balls Bi (say n) such that for any two
vectors p, u ∈ Bi we have for a large M and all t

d(Φt(u),Φt(p)) < ν(θ0,Z − ǫ, θ1,Z + ǫ,M, b),

where b =
s(θ0,Z−ǫ,θ1,Z+ǫ,M)

4 and ǫ is small. By induction we conclude that if
γq(T0) ∈ γ, then γw([T0 − (n+ 1)b, T0 + (n+ 1)b]) intersects γ. �

Proof of the theorem: Since the lifted geodesic flow on the orientable dou-
ble cover N is equicontinuous, it suffices to show that the theorem holds for
orientable surfaces, otherwise we regard the orientable double cover N and con-
clude that N is a P-manifold. Apply the construction of F in section 3 to (M,g)
and γ. By theorem [4.3] and lemma [4.6] we have a periodic point in y ∈ A,
thus for some m it follows that F 2m is an orientation-preserving homeomor-
phism with three fixed points ({∞},{−∞}, y). From proposition [3.1] we know
that F 2m is recurrent, hence trival by theorem [2.7]. Lemma [4.6] implies that
every geodesic is closed. �

Note that distality of the geodesic flow does not imply that the manifold
is a P-manifold. Take the torus T n with the standard flat metric. The flow
is distal. Indeed, for an unit vector v ∈ R

n define the vector field Xv(x) = v.
Note that the solutions of these vectorfields are our lifted geodesices.
If inf{d(xt, yt)|t ∈ T} = 0 for x, y ∈ ST n then the lifted geodesics xt, yt are
solutions of the same vectorfield, but the projected flows on T n of these vec-
torfields are equicontinuous, since equicontinuity implies distality (see [1]) we
know that y = x. Note also that on surfaces of higher genus the geodesic flow
has positive entropy, but distal flows on compact metric spaces have always
zero entropy (see [5]), thus the only compact surfaces M that can admit distal
geodesic flows are S2, RP 2, T 2 and the Klein bottle and they do.

5 Flows On Manifolds Of Dimension 3

Definition 5.1. A global surface of section Σ for a C∞ flow Φ without sin-
gularities on a three dimensional manifold is a compact submanifold with the
following properties:

1. If Σ has a boundary then its boundary components are periodic orbits.

2. The interior of the surface (stated with
◦

Σ) is transversal to Φ.

3. The orbit through a point not lying on the boundary of Σ hits the interior
in forward and backward time.

4. Every orbit intersects Σ.

7



There is a natural compactification of
◦

Σ to a closed surface by collapsing
the boundary components to a point. We call this unique compactification the

compactification of
◦

Σ to a closed surface. If the flow is equicontinuous we can
do more:
The return map F :

◦

Σ→
◦

Σ can be extended to the compactification of
◦

Σ to
a closed surface by defining the collapsed boundary components to be fixed
points. This is well defined and can be proven as in the beginning of section 3.
We call this map in this section the extended poincaré section map.

Theorem 5.2. Let Φ be a C∞ equicontinuous flow without singularities on a
three dimensional manifold that admits a global surface of section Σ. Let X be

the compactification of
◦

Σ to a closed surface, then the following holds:

1. If X is homeomorphic to the torus or the Klein bottle and the extended
poincaré section map on X has at least one periodic point, then the flow
is pointwise periodic.

2. If X is homeomorphic to the sphere and the extended poincaré section
map on X has at least three periodic points, then the flow is pointwise
periodic.

3. If X is homeomorphic to the projective plane and the extended poincaré
section map on X has at least two periodic points, then the flow is point-
wise periodic.

4. If X is homeomorphic to a surface of negative Euler characteristic, then
the flow is pointwise periodic.

Proof: The proof is quite analogue to theorem [4.4], and so we only repeat
some ideas. Indeed, the proof of theorem [4.4] was actually of topological nature.
The following theorem is important:

Theorem 5.3. A recurrent homeomorphism of a compact surface with negative
Euler characteristic is periodic. If a recurrent homeomorphism on the torus, the
annulus or the Möbius strip or the Klein bottle has a periodic point, then the
homeomorphism is periodic.

Proof: See corollary [4.2] and remark [4.3] in [4]. �

Proof of the theorem: Let F :
◦

Σ→
◦

Σ denote our return map. If we show that
our extension is recurrent, then by theorem [5.3] and our assumptions we know
that F is periodic and every orbit of the flow is periodic, thus we only need to
show that F is recurrent.
If the section Σ is a surface with boundary, then

◦

Σ denotes the interior. Choose
a finite number (say j = 1, · · · , N) of connected, compact, orientable surfaces
Σj that are diffeomorphic to discs and such that

⋃
j Σj = Σ. Choose, for

every j, a sequence of connected, compact, orientable surfaces Kj,i such that

Kj,i ⊂
◦

Kj,i+1 and
⋃

i Kj,i is an open set. We construct Kj,i such that given any

compact set C ⊂
◦

Σ we have, for a large I, that C ⊂
⋃

j Kj,I . Moreover, we
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suppose
⋃

i,j Kj,i =
◦

Σ and
⋃

j Kj,i is connected.
For every Kj,i we can find a tubular neighbourhood Uj,i diffeomorphic Kj,i ×
(−1, 1) via a diffeomorphism τi,j. We say a point in τ−1

i,j (Kj,i×(−1, 0)) lies above

Kj,i and a point in τ−1
i,j (Kj,i× (0, 1)) lies below Kj,i. We set U∗,i,j := τi,j(Kj,i×

(−1, 0)) and U∗

i,j := τi,j(Kj,i× (0, 1)). We can suppose that U∗,i,j ⊂ U∗,i+1,j and
U∗

i,j ⊂ U∗

i+1,j. Since Φ is transversal to the section and without singularities,
we conclude that

⋃
j Kj,i is an orientable surface. Therefore we can define in

tubular neighbourhood of
⋃

j Kj,i what lies below and above.
Analogously we can define again for Kj,i and large M the constant

s(j, i,M) := inf{|t0−t1| | −M < t0 < t1 < M,Φt0(v) ∈ Σ,Φt1(v) ∈ Σ, v ∈ Kj,i}.

We can also define analogously the constant ν(j, i,M, r) > 0. Given v ∈
◦

Σ, then
for every integer n we define t(n, v) as the following:
t(n, v) is the unique element of R such that Φt(n,v)(v) = Fn(v) and t(0, v) = 0.

Moreover given v ∈
◦

Σ and t ≥ 0 we define:

P (v, t) := max{n ≥ 0 | t(n, v) ≤ t}.

The counterpart of lemma [3.4] will be the following:

Lemma 5.4. Fix vj ∈
⋂

i Kj,i. There exist sequences Ti → ∞, 0 < ζi → 0 and

0 < βi → 0 such that ΦTi
(v1) ∈

◦

Σ and for all j ∈ {1, · · ·N} we have:

1. ΦTi+ζi(v) ∈ U∗

i+1,j for all v ∈ Kj,i

2. π(ΦTi−ζi(v)) ∈ U∗,i+1,j for all v ∈ Kj,i

3. d(ΦTi+s(v), v) < βi for all v ∈ Kj,i and |s| < 2ζi

4. For every v ∈ Kj,i there exists an unique intersection point of
◦

Σ and
ΦTi+s(v) where s ranges over |s| < 4ζi

Proof: Analogous to lemma [3.4]. �

The proof is now easy. Set pj,i := P (vj , Ti + ζi). The functions

Gi : A → N

defined by Gi(v) = P (v, Ti+ζi) are constant onKj,I0 if i ≥ I0, but since
⋃

iKj,I0

is connected, we know that pj,i is independent from j, and so pj,i = pi. We
conclude d(F pi(v), v) = d(Φt(v,pi)(v), v) < βi, thus F is paracompact-recurrent

on
◦

Σ. Since the collapsed boundary components are fixed points, we conclude
from lemma [2.6] that F is recurrent on X. �

Corollary 5.5. If Φ is a C∞ equicontinuous flow without singularities on a
three dimensional manifold that admits a global surface of section Σ and has at
least three distinct periodic orbits, then the flow is pointwise periodic.
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6 Noncompact Manifolds

In this section, we regard noncompact manifolds, therefore two metrics that
generate the same topology may be non equivalent. We can prove some fact
about pointwise equicontinuous geodesic flows on noncompact surfaces if we
restrict to a canonical metric for geodesic flows. In our case this should be the
Sasaki metric.
Let M denote a surface (maybe non compact). d will always denote the induced
metric on M of the Riemannian metric and d̃ the induced metric on SM of
the Sasaki metric. Note that we have by construction of the Sasaki metric
d̃(v,w) ≥ d(π(v), π(w)).

Definition 6.1. A system (X,T ) is called pointwise equicontinuous (pointwise
regular) if for all ǫ > 0 and all x ∈ X there exists an δ(ǫ, x) > 0 such that for
all y with d(x, y) < δ(ǫ, x) we have d(xt, yt) < ǫ for all t ∈ T .

On compact metric spaces, pointwise equicontinuity implies equicontinuity,
but on noncompact metric spaces this is not true and pointwise equicontinuity is
not independent from the metric that generates the topology. Moreover, given
any compact set K of X, we can find an δ(ǫ, x) > 0 in the definition above that
is independent from x ∈ K.

Lemma 6.2. Let (Φ, SM, d̃) be a geodesic flow that is pointwise equicontinuous.
For all compact sets K there exists a number C(K) such that for all v,w ∈ K
and t ∈ R we have d(γv0(t), γw(t)) ≤ C(K).

Proof: Choose first an open and bounded set O that contains SM |K.
Choose for O a constant δ(ǫ) > 0 such that if for v,w ∈ SM |K we have
d(v,w) < δ(ǫ) then d(Φt(v),Φt(w)) < ǫ. Cover SM |K with N = N(ǫ,K) balls
of radius smaller than δ(ǫ) such that the union of these balls is connected and
lies in O. We conclude

d(γv(t), γw(t)) ≤ Nǫ := C(K)

for all v,w ∈ SM |K and t ∈ R. �

Proposition 6.3. If M is compact and the geodesic flow (Φ, SM) is equicon-
tinuous, then π1(M) is finite.

Proof: (Φ, SM) is equicontinuous with respect to the Sasaki metric and
therefore one can conclude that the lifted geodesic flow on the universal covering
M̃ is equicontinuous with respect to the lifted Sasaki metric (denoted with d̃).
Since M is compact, we conclude that for all r > 0 there exists a number Z(r)
such that for any point x of M the sphere SxM can be covered by Z(r) balls
of radius r (with respect to the metric d). Given any point x and assume M is
not compact. Choose v ∈ SxM such that γv : R+ → M is a ray and a sequence
ti → ∞. Set vi = − ˙γvi(ti). We have by the proof of the lemma above and the
existence of Z(r) for an ǫ > 0 d(γvi(ti), γ−vi(ti) = γv(2ti)) ≤ Z(δ(ǫ))ǫ, hence
2ti = d(x = γvi(ti), γv(2ti)) ≤ Z(δ(ǫ))ǫ, but ti grows. �
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Corollary 6.4. If M is noncompact and the geodesic flow (Φ, SM) is pointwise
equicontinuous with respect to the Sasaki metric, then the following holds:

1. There is no minimal geodesic (also called line) in M .

2. Diam(∂B(x, r)) := sup{d(x, y)|x, y ∈ ∂B(x, r)} is bounded by a constant
C(x) for all x. The constant C(x) can be chosen uniformly on compact
sets.

Proof: If γ is minimal, then for some constant C

2t = d(γ(t), γ(−t)) ≤ C,

and therefore γ is not minimal.
If Diam(∂B(x, r)) is not bounded, choose sequences ai and bi such that ai, bi ∈
∂B(x, ri) and d(ai, bi) → ∞ where ri → ∞. Choose for ai a sequence vi ∈ SxM
such that γvi : [0, d(x, ai)] is a minimal geodesic segement that starts in x and
ends in ai. W.l.o.g. we suppose that vi → v and, therefore γv is a ray and from
equicontinuity we conclude that d(γv(ri), ai) → 0. We repeat the construction
for bi to get a ray γw such that d(γw(ri), bi) → 0. The flow is equicontinuous
and therefore we have -by lemma [6.2]- d(γv(ri), γw(ri)) bounded and therefore
d(ai, bi) is bounded. It follows from the proof that C(x) can be chosen uniformly
on compact sets. �

Of course, one can conjecture that theorem [4.4] holds in higher dimensional
cases, but it seems that there are no tools to prove this conjecture. Corollary
[6.3] holds for P-manifolds (see theorem 7.37 in [3]) and using the Morse-Index
theorem, one can see that noncompact manifolds with strictly positive sectional
curvature have no line, thus there are some reasons to conjecture this.
We now discuss if there exists an equicontinuous (or even a pointwise equicontin-
uous) geodesic flow with respect to the Sasaki metric on a noncompact surface.
Here is a subresult:

Proposition 6.5. Let (M,g) be a Riemannian manifold of dimension 2 and
suppose that the geodesic flow (Φ, SM) is pointwise equicontinuous with respect
to the Sasaki metric, then M is homeomorphic to the plane.

Proof: Our proof is based on the following nice theorem

Theorem 6.6. Every surface is homeomorphic to a surface formed from a
sphere S by first removing a closed totally disconnected set X from S, then
removing the interiors of a finite or infinite sequence Di of non overlapping
closed discs in S − X and finally suitable identifying the boundaries of these
discs in pairs. It may be necessary to identify the boundary of one disc with
itself to produce a ”cross cap”. The sequence Di approaches X in the sense
that, for any open set U in S containing X, all but a finite number of the Di

are contained in U .

Proof: See [7]. �

d is the metric induced from the Riemannian metric. We first prove that M
has genus zero! Assume that M is not diffeomorphic to S2−X. Choose a curve
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β that is not contractible and lies on a ”handle” or a ”crosscap” such that we
can find a compact set O that contains β and is diffeomorphic to a closed disc
where a cylinder or a crosscap is glued in. Let [β] denote the free homotopy
class. If there is a sequence βi such that βi ∈ [β] and L(βi) → 0, then, since βi
always intersects O, we conclude that βi is contradictible for large i. Now let βi
be a sequence such that βi ∈ [β] and L(βi) → infc∈[β]L(c) > 0. Again we know
that βi always intersects O. If βi lies in a compact subset of M , then we know
that a subsequence converges to a closed geodesic, but it is clear that βi lies in
a compact subset K of M , since otherwise there is a point xi ∈ βi that tends
to infinity, hence L(βi) is not bounded. Hence we have found a closed geodesic
β. Since there exists a ray starting at a point of β, we conclude from lemma
[6.2] that the ray does not tend to infinity, thus we get a contradiction.
We prove now that X is just a simple point. We endow S2 with a metric d0 that
generates the standard topology of S2. Let −∞ and ∞ two different points of
X. Choose sequences ai and bi such that ai → −∞ and bi → ∞ with respect to
d0. We want to show that d(ai, bi) tends to infinity for a subsequence. Suppose
that d(ai, bi) is bounded. Let δi : [0, d(ai, bi)] → M be a minimal geodesic
segment from ai to bi. Let Ki denote the image of δi. Define

lim(Ki) := {y ∈ S2 | ∃xi ∈ Ki : d0(xi, y) → 0}.

It is easy to see that K := lim(Ki) is closed and connected.
Assume a point of M lies in K. Then w.l.o.g. a tangent vector vi of δi converges
to a vector v of SM . Since we suppose that d(ai, bi) is bounded by a constant
C, then γv will be a geodesic that meets −∞ and ∞ on the intervall [−2C, 2C],
since δi[0, C] converges to a segement of γv[−2C, 2C] with respect to d. Hence
K is a subset of X, but this means K is reduced to a point, thus d0(ai, bi) → 0
and therefore we have a contradiction to the fact that d(ai, bi) is bounded. Thus
given any sequence ai → −∞ and bi → ∞ then d1(ai, bi) tends to infinity for a
subsequence.
We now construct sequences ni → −∞ and mi → ∞ such that d(ni,mi) is
bounded and therefore we derive a contradiction to the fact that X contains
more than one point. Define

ω(v) := {y ∈ S2 | ∃ti → ∞ : d0(γv(ti), y) → 0}.

It is easy to see that ω(v) is closed and connected in S2. If, for a ray γv, the
set ω(v) is not subset of X, then there is a sequence ti → ∞ such that γ̇v(ti)
converges to a vector v∗ of SM and hence γv∗ will be a minimal geodesic, since
γv is a ray. This contradicts corollary [6.4] and therefore ω(v) is a subset of
X, hence for a ray γv, the set ω(v) is reduced to a point of X (X is totally
disconnected).
Take sequences ai → −∞ and bi → ∞. For choose ai a sequence vi ∈ SxM such
that γvi : [0, d(x, ai)] is a minimal geodesic segement that starts in x and ends
in ai. vi tends to a vector v. The curve γv will be a ray and therefore ω(v) will
be a point. We show that −∞ = ω(v). Note that d(ai, γv(ti)) → 0, since our
flow is equicontinuous in x. Suppose that d0(γv(ti), q) → 0 for a point q ∈ S2.
If q 6= −∞, then choose a minimal geodesic segment δi : [0, d(ai, γv(ti))] → M
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that starts in ai and ends in γv(ti). We denote the image of δi withKi. Again we
conclude as above, that lim(Ki) will be a connected subset of X, and therefore
q = −∞.
Therefore we get a ray γv that starts in x and converges to −∞. Repeating
this constructions will generate a ray γw that starts in x and converges to ∞.
From lemma [6.2] we know that d(ni := γv(i),mi := γw(i)) is bounded. �

We end this paper by showing that at least a pointwise equicontinuous
geodesic flow with respect to a metric d1 exists. The metric d1 is not equivalent
to the induced metric of the Sasaki metric of h (h will be defined later). Let g0 be
the standard metric on R

2, d0 the metric induced from g0 and identify R
2 with

C. Choose a diffeomorphism f : [0,∞) → [0,∞) such that f |[0, 12 ) = Id and
f(t) = exp(t) for r ≥ 1. Let F denote a diffeomorphism from R

>0×S1 to R
2−

{0} defined by F (r, φ) = (f(r), φ) where (r, φ) are the polar coordinates. The
pull-back of the metric g0 under F defines a new metric h on R

2 and its geodesic
flow is complete. Regard the metric d1 on SR2 defined by d1((x, v), (y,w)) =
‖x− y‖+ ‖v −w‖. We show that the geodesic flow of (R2, h) will be pointwise
equicontinuous with respect to d1.
Consider the coordinante system F : R2−{0} → R

2−{0}. Given a vector v at
a point x, we regard the geodesic gx,v(t) = x+ tv of the metric g0. Let us fix a
point x = a0 + ib0 and a vector v = a1 + ib1. Since our metric is invariant with
respect to revolutions, we can assume that a1 6= 0. For a small ǫ > 0 choose
a M > 0 and a δ(ǫ) > 0 such that d0(ġx,v(t), ḣy,w(t)) < ǫ for t ∈ [−M,M ]
and d((x, v), (y,w)) < δ(ǫ). If M is large and δ(ǫ) > 0 small enough, then the
geodesic hy,w(t) lies outside the compact set F ([0, 2],R) for t /∈ [−M,M ].
Note that |g(t)| = g(t) cos φ(t) + ig(t) sin φ(t) ,where
φ(t) = arctan( b0+tb1

a0+ta1
) and |g(t)|2 = (a0 + ta1)

2 + (b0 + tb1)
2 . Note that

F−1 = g∗x,v(t) := (f−1(|gx,v(t)|), arctan(
b0 + tb1
a0 + ta1

))

will be a geodesic of our manifold (R2, h).
We show that if ǫ > 0 is small enough, the distance d1(ġ

∗

x,v(t), ḣ
∗

y,w(t)) remains
arbitrary small for all t. A computation shows that for t /∈ [−M,M ] we have

ġ∗x,v(t) = (
a1(a0 + ta1) + b1(b0 + tb1)

|g(t)|2
,
b1(a0 + ta1) + a1(b0 + tb1)

(1 + ( b0+tb1
a0+ta1

)2)(a0 + ta1)2
).

Hence for a small ǫ > 0 and large M , we have ‖ġ∗x,v(t) − ḣ∗y,w(t)‖ small for
t /∈ [−M,M ]. Let hy,w(t) = y + tw = n0 + im0 + t(n1 + im1), then one can
compute that

‖hy,w(t)− gx,y(t)‖ ≤ ‖f−1(|g(t)|) − f−1(|h(t)|)‖

+‖ arctan(
b0 + tb1
a0 + ta1

)− arctan(
m0 + tm1

n0 + tn1
)‖.

In the same way we conclude that for a small ǫ > 0 and large M , we will have
the second term small for t /∈ [−M,M ]. A computation shows that

‖f−1(|g(t)|) − f−1(|h(t)|)‖ = ‖
1

2
ln(

a2
0
+b2

0

t2
+ 2(a0a1+b0b1)

t
+ a21 + b21

n2

0
+m2

0

t2
+ 2(n0n1+m0m1)

t
+ n2

1 +m2
1

)‖,
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but this term will be small for a small ǫ > 0, large M and t /∈ [−M,M ].
Therefore we know that the geodesic flow is equicontinuous with respect to the
metric d1. The metric is not equivalent to the induced metric of h, since the
Riemannian distance between two geodesics of different directions grows.
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