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TREES, LINEAR ORDERS AND GATEAUX SMOOTH NORMS

RICHARD J. SMITH

ABSTRACT. We introduce a linearly ordered set Z and use it to prove a neces-
sity condition for the existence of a Gateaux smooth norm on %o (T), where T
is a tree. This criterion is directly analogous to the corresponding equivalent
condition for Fréchet smooth norms. In addition, we prove that if p(Y) ad-
mits a Gateaux smooth lattice norm then it also admits a lattice norm with
strictly convex dual norm.

1. INTRODUCTION AND PRELIMINARIES

Among the most well-established geometrical properties of norms are smoothness
and strict convexity. A norm || - || on a Banach space X is called Gateauz smooth,
or just Gdteaux, if, given any x € X\{0}, there exists a functional in X*, denoted
by ||z||’, such that
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for all h € X. In addition, if the limit above is uniform for A in the unit sphere Sy,
then || - || is called Fréchet smooth, or simply Fréchet.
Turning now to properties of strict convexity, we say that || - || is strictly convex
if, given x,y € X satisfying ||z|| = ||z + y|| = ||y[|, we have z = y. Of the many
stronger cousins of strictly convex norms, we mention one. The norm || || is locally

uniformly rotund, or LUR, if, given a point € Sx and a sequence (x,) C Sx
satisfying ||z + z,|| = 2, we have ||z — z,|| — 0.

Renorming theory is a branch of functional analysis that seeks to determine
the extent to which a given Banach space can be endowed with equivalent norms
sporting certain geometrical properties, such as the ones above. In this paper, a
norm on a given Banach space is always assumed to be equivalent to the canonical
norm. We refer the reader to [I] for a comprehensive account of this field up to
1993, together with the more recent surveys [2] and [12].

In recent years, trees have assumed an important role in the field, both as a
source of counterexamples to existing questions and as a vehicle for exploring new
avenues of research; see, for example [4], [5] and [6]. We say that a partially ordered
set (T, <) is a tree if, given arbitrary t € T, the set of predecessors {s € T | s < t},
denoted by the interval (0,t], is well-ordered. The set of immediate successors of
t € T is denoted by tT. In this way, trees are a natural generalisation of ordinal
numbers. As well as (0,¢], we define the interval (s,t] = (0,¢]\(0, s] for s < ¢, the
wedge [t,00) = {u € T | t < u} and finally (¢,00) = [t,00)\{t}. We remark that
the symbols 0 and oo are, in this context, convenient notational devices and not
themselves elements of T.
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The scattered locally compact interval topology on T is the coarsest topology
for which all intervals (0,¢] are both open and closed. This topology agrees with
the standard interval topology of any ordinal €2, if we consider 2 as a tree. To
ensure that this topology is also Hausdorff, we restrict our attention to trees T
with the property that every non-empty, linearly ordered set in Y has at most one
minimal upper bound. With this topology in mind, we consider the Banach space
%o(Y) of continuous real-valued functions vanishing at infinity, and the dual space
of measures. We remark that as Y is scattered, the weak topology and the topology
of pointwise convergence agree on norm-bounded subsets of €(T).

Trees and linearly ordered sets enjoy close ties. For a comprehensive review of
these relationships, we refer the reader to [II]. Given partial orders P and @, we
say that the map p: P — @ is called increasing (respectively strictly increasing)
if p(s) < p(t) (respectively p(s) < p(t)) whenever s < t. Decreasing and strictly
decreasing functions are defined analogously. If there exists a strictly increasing
map from P to a linear order (), we say that P is Q-embeddable, or P < Q.
Evidently, in this context, < is a transitive relation on the class of partial orders.
In much of what follows, P will be a tree and @ a linear order. It is well known
that T < Q if and only if T is special, which means that Y can be written as a
countable union of antichains (cf. [I1, Theorem 9.1]). Special trees tend to have
very good properties; for example, the following result can be found in [9].

Theorem 1. Given a tree Y, the space 6o(T) admits a norm with LUR dual norm
if and only if Y is special.

We introduce a couple of combinatorial ideas used extensively in [6].

Definition 2. Given an increasing function p : T — R, we say that t € T is a
bad point for p if there exists a sequence of distinct points (u,) C tT, such that

plun) = p(t).

Bad points are so named because their presence often indicates that the given
%o(Y) space has negative renorming properties. An analogue of the next simple
result appears at the beginning of Section Bl

Proposition 1 ((Haydon)). The tree Y is special if and only if T < R and there
exists an increasing map p: Y — R that has no bad points.

We move on to the second combinatorial property taken from [6].

Definition 3. A subset E of a tree is said to be ever-branching if each element of
E has a pair of strict successors in F that are incomparable in the tree order.

It is easy to see that within every ever-branching subset can be found a dyadic
tree of height w; that is, a tree with a single minimal element, no limit elements,
and with the property that each element has exactly two immediate successors.

Many types of norm on %,(Y) can be characterised in terms of increasing real-
valued functions on Y, with further combinatorial properties that can be expressed
in terms of bad points and ever-branching subsets. Of particular interest to us is
the following result.

Theorem 4 ((Haydon [6])). Given a tree T, the space 65(Y) admits a Fréchet
norm if and only if there exists an increasing function p: Y — R that has no bad
points and is not constant on any ever-branching subset.
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In order to exhibit a tree that does not satisfy the statement of Theorem ] we
introduce a fundamental construction, due to Kurepa. Given a linear order X, we
define the Hausdorff tree

o¥ = {ACX| Ais well-ordered}.

We remark that some authors demand the additional requirement that elements
of o¥ are bounded above. One of the reasons why Kurepa’s construction is so
important in the theory of trees is summed up by the following theorem.

Theorem 5 ((Kurepa [7])). If ¥ is a linear order then ¥ £ X.

From Theorem[5] oQ is not special. On the other hand, if we take an enumeration
(gn) of the rationals and consider the map A — EqneA 27" we see that cQ < R.
It follows that, by Proposition [l every increasing, real-valued function defined on
0Q has a bad point.

Corollary 1 ((Haydon)). The space 65(cQ) admits no Fréchet norm.

While many types of norm are accounted for in [6], equivalent conditions for the
existence of norms on €,(T) with strictly convex dual, or Gateaux norms, cannot
be adequately expressed in terms of increasing real-valued functions. In all that
follows, wy denotes the first uncountable ordinal. The following linearly ordered set
is introduced in [9].

Definition 6. Let Y be the set of all strictly increasing, continuous, transfinite
sequences & = (x¢)e<p of real numbers, where 0 < 8 < wy. Order Y by declaring
that z < y if and only if either y strictly extends x, or if there is some ordinal a
such that x¢ = y¢ for £ < a and yo < 4.

Observe that Y is not ordered in the usual lexicographic way. Compared to the
real line, Y is large.

Proposition 2 ((Smith [9])). If 8 < w1 then Y? XY, where Y? is ordered lexico-
graphically.

As R < Y, we see that R® < Y for all 3 < w;. On the other hand, it can
be shown that Y contains no well-ordered or conversely well-ordered subsets. The
next theorem is the main result of [9].

Theorem 7 ((Smith [9])). Given a tree Y, the Banach space 6o(Y) admits a norm
with strictly convexr dual norm if and only if T Y.

Theorem [Mis a direct analogue of Theorem[Il In [9], it is shown that the spaces
%o(c(R?)), where R? is ordered lexicographically, admit norms with strictly convex
duals provided 8 < w1. On the other hand, by Theorem Bl %5(cY) does not admit
such a norm.

The order Y can also be used to give an improved sufficient condition for the
existence of Gateaux norms in the context of trees.

Theorem 8 ((Smith [8])). If there exists an increasing function p: Y — Y that
is not constant on any ever-branching subset then 6o (Y) admits a Gdteaux norm.

We end our review of the existing literature by presenting what was hitherto
the best known necessary condition for Gateaux norms in this context. Given a
tree T, the forcing topology on T takes as its basis the set of all wedges [t,c0),
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t € Y. A subset B C T is called Baire if it is a Baire space with respect to the
induced forcing topology; that is, any countable intersection of relatively dense,
open subsets of B is again dense. When referring to the Baire property, we will
only consider subsets that are perfect with respect to the forcing topology; in other
words those without isolated points or, equivalently, maximal elements. Arguably
the simplest example of such an object is the ordinal w;, though more interesting
ones that have no uncountable linearly ordered subsets can be found in [11l Lemma
9.12] (cf. [5]).

Theorems Ml and [ applied to a constant function on w; demonstrate that, by
itself, the Baire property cannot destroy Gateaux renormability. Instead, we have
the following result.

Theorem 9 ((Haydon [B])). If 60(Y) admits a Gateauz norm then Y contains no
ever-branching Baire subsets.

We turn now to the results of this paper. In order to properly express our
necessary condition for Gateaux renormability, we must introduce a second linearly
ordered set.

Definition 10. Let Z be the set of all increasing, continuous sequences x = (z¢)e<g
of real numbers, where 0 < § < wq, and such that z is strictly increasing on [0, 3).
The order of Z follows that of Y; < y if and only if either y strictly extends z, or
if there is some ordinal a such that z¢ = y¢ for £ < o and yo < zq.

The elements of Z that are not in ¥ are exactly those of the form x = (z¢)e<p1,
where (z¢)e<p € Y and xg = xg41. This order is a partial Dedekind completion of
Y. We also need a natural definition of bad points with respect to Z.

Definition 11. Given an increasing function p : T — Z, we say that t € T
is Z-bad for p if there exists a sequence of distinct points (u,) C t* such that
p(uy) = p(t) in the order topology of Z.

Using Z-bad points, we obtain a direct analogy to the necessity part of Theorem
[@ the following is the main result of this paper.

Theorem 12. If the space 6o(Y) admits a Gdteaur norm, then there exists an
increasing function p : ¥ — Z that has no Z-bad points and is not constant on
any ever-branching subset.

In some sense, Y is to Q what Z is to R, and these relationships correspond well
to those of Theorems [7] [0} M2] and Ml respectively.

The following corollary of Theorem [I2] generalises a result from [3], which states
that 65 ([0,w1)) does not admit any Gateaux lattice norm.

Corollary 2. If 6,(Y) admits a Gdteauz lattice norm then ¥ <Y and, conse-
quently, €o(T) admits a lattice norm with strictly convex dual.

We end Section 2] by proving the next proposition, which shows that Theorem
is a corollary of Theorem

Proposition 3. If p: T — Z is an increasing function that is not constant on
any ever-branching subset, then T does not admit any ever-branching Baire subsets.

The final section, devoted to examples, begins with a proof that Theorem [J] is
strictly implied by Theorem
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Proposition 4. The tree oY is Z-embeddable, but every increasing function p :
Y — Z has a Z-bad point. In particular, €y(cY") does not admit a Gdteauz norm.

Proposition Hl is analogous to Corollary 0l Section B ends with Example [13]
which shows that there is a gap between the conditions of Theorems [§] and
This, together with the analogies presented above and the author’s bias, prompts
the following problem.

Problem 1. If there exists an increasing function p : ¥ — Z that has no Z-
bad points and is not constant on any ever-branching subset, does €o(Y) admit a
Gateaur norm?

Recently, the author gave a purely topological formulation of Theorem [l Given
atree T, the space %p(T) admits a norm with strictly convex dual norm if and only
if T is a so-called Gruenhage space, with respect to its interval topology [10].

Problem 2. Is there an internal characterisation of trees Y, with the property that
%o(Y) admits a Gateaux norm?

Problem 2l may be restated in terms of Fréchet norms, Kadec norms and others.
This section closes with further problem, motivated by Corollary

Problem 3. If L is locally compact and 6o(L) admits a Gateauz lattice norm,
does 6o(L) admit a norm with strictly convex dual? Is this statement also true with
respect to a general Banach lattice?

2. NECESSITY CONDITIONS FOR GATEAUX RENORMABILITY

To help familiarise the reader with Z and Z-bad points, we begin by briefly
describing some forms of sequential convergence in Z. First observe that if x € Y,
y € Z and y > z is sufficiently close to = in the order topology of Z, then y must
be a strict extension of . On the other hand, if z € Z\Y then x has no strict
extensions in Z. The proof of the next lemma is a simple exercise in elementary
analysis and is omitted.

Lemma 1. Let x € Z and suppose (2™) C Z is a sequence satisfying x < z™. We
have the following rules for the convergence of (z") to x:

1. if ¢ = (w¢)e<p € Y then 2™ — z if and only if 2" strictly extends x for
large enough n, and zj, ; — oco.

If © = (z¢)¢<p+1 € Z\Y then since x has no strict extensions, there exists o, < 3
such that z¢ = xe for § < oy and 2y, < T, . In this case, we have:
2. if B=0or f=a+1 for some a, then 2" — z if and only if a, = B for
large enough n, and zj — xg;
3. if B is a limit ordinal, then z"™ — x if and only if a,, — 5.

We present a simple application of Lemma[l If 7 : T — Y is a strictly increas-
ing map then it could have Z-bad points. However, if we fix an order isomorphism
6 :R — (0,1) and define, for = (z¢)e<p € Y, O(x)¢ = 0(x¢) whenever { < j,
then by Lemmal[Il part (1), the strictly increasing Y-valued map © o7 has no Z-bad
points. Thus, some Z-bad points are easily removed by making simple adjustments.
More details of how Z operates can be found in Section

Now, for the rest of this section, we fix a norm || - || on %5(T). We continue by
introducing a concept that features in both [5] and [6]. Given ¢t € T, let C; be the
set of all f € €p(Y) such that f vanishes outside (0, ¢] and increasing on (0, ¢].
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Definition 13. If f € C; and § > 0, the increasing function u(f,d,-) is defined on
the wedge [t, 00) by

p(f,0,-) = inf{|[f+ (f(t) +0)Lu + @l | ¢ € (Y) and supp ¢ C (u,00)}

where 14 denotes the indicator function of the set A and supp ¢ is the support of
. We also define the abbreviation u(f,-) by p(f,u) = u(f,0,u) and the associated
function p, given by pu(t) = inf{||1¢ + @l | ¢ € Go(Y) and suppp C (¢,00)}.

Attainment of the infimum in the definition of these so-called u-functions has
important consequences for the renormability of %(T), and bad points and ever-
branching subsets come into play. The first consequence of the following lemma is
trivial, and the second and third are immediate generalisations of [0, Lemma 3.1]
and [6) Proposition 3.4] respectively.

Lemma 2 ((Haydon [6])). Supposet e Y, f € Cy and § > 0. Then:

(1) if |- is a lattice norm then || f 4 (f(t) + 6)L(,ull = p(f, 0,u) for all u = t;

(2) if u =t is a bad point for u(f,d,-) then ||f + (f(t) +0)Lull = p(f,d,u);

(3) if u(f,0,-) is constant on some ever-branching subset E C (u,00), where
u = t, then there exists ¢ € 6o(Y) with

suppy C {v € (u,00) | v K w for some w € E}

and p(f,0,u) = ||f + (f () + ) (Lag + #)|I-
We continue with an idea from [9].

Definition 14. A subset V C T is called a plateau if V has a least element Oy
and V' = J,cy [0v,t]. A partition &2 of T consisting solely of plateaux is called a
plateau partition.

Observe that if V' is a plateau then V\{Oy} is open. It follows that if we have a
plateau partition & and define the set of least elements H = {0y | V € 27}, then
H is closed in Y. Of course, H may be regarded as a tree in its own right, with its
own interval topology. Plateaux are stable under taking arbitrary intersections.

Proposition 5 ((Smith [9, Proposition 10])). Let Y be a tree and § a family of
plateauzr of T with non-empty intersection W. Then W is a plateaw and Oy =

SUDy g Oy.

The connection between increasing functions and plateaux is given by the next
proposition.

Proposition 6 ((Smith [9, Proposition 9])). Let p : T — X be an increasing
function into a linear order 3. Then the equivalence relation ~, given by s ~ t if
and only if there exists r < s,t such that p(s) = p(r) = p(t), defines the plateau
partition of Y, with respect to p. Moreover, the restriction of p to the set of least
elements H = {0y | V € P} is strictly increasing.

Proposition [6] applies equally well to decreasing functions. As the u-functions
from Definition [[3 are increasing on their respective domains, they may be analysed
using plateaux. Elements of the following technical lemma appear implicitly in the
proof of [6l Theorem 8.1].
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Lemma 3. Let ||-|| be Gateauz smooth and suppose that €||||co < ||-1] < I|]loo for

some € € (0,1). Moreover, suppose V is a plateau, f € Co, and p(f,-) is constant
on V. We define a function A on V\{Oy } by setting

A(t) = sup{d > 0| u(f,0,t) < pu(f,0v) + 5e0}.
We check that X is well-defined and satisfies the following properties:
(1) X is decreasing on V\{0vy };
(2) if A takes constant value v on the plateau W C V\{Oy } then u(f,v,-) takes
constant value p(f,0v) + %au on W;
(3) if & is the plateau partition of V\{0y } with respect to \, supplied by Propo-
sition[@, W € &, and fw € Cy,, is defined by

fw = f+(fO0v) +AX0w)) Loy 0w

then p(fw,-) takes constant value u(f,0v) + 3eA(0w) on W;
(4) if the infimum in the definition of u(f,t) is attained then A(t) > 0.

Proof. Fix t € V\{Oy} and, for § > 0, define F(6) = u(f,8,t) — u(f,0v) — 3ed.
Observe that F' is continuous and F'(0) = 0. Moreover, if supp ¢ is a subset of (¢, 00),
we estimate that |[f + (f(t) + 0)Loy 4 + @l = €0 —|[f + f(£)L(0y 4], whence F(9)
tends to oo as § does. As a result, A\(¢) is well-defined.

Now we can check the properties of \. We see that u(f, A(t),t) = p(f,0v) +
2e(t) for any t € V\{0v}. Therefore, if ¢ < u then, as u(f, A(u),-) is increasing,
we have

p(f, Mu), ) < p(f, Mu),u) = p(f,0v) + 5eA(u)
which shows that A(t) > A(u), giving us property (1).

The second property follows immediately and the third follows from the second.
To prove property (4), we let g = f + f(t)1(0, 4 + ¢ with suppp C (t,00), such
that ||g|| = w(f,t) = u(f,0v). Observe that as the infimum p(f,0y) is attained,

we have

i ||9+(51(0v,t]|| — gl >

/ _
lgll'(Xoy ) = 61_1>0+ 5 >0

and similarly for —1, 4, whence [|g]|'(1(0, ) = 0. Now it is evident that there
exists 6 > 0 satisfying

p(f6,t) < llg+ 0Ly gl < llgll+ 320 = u(f,0v) + 320
which means that A(t) > § > 0. O

While noting property (4) above, we stress that sometimes A does vanish, and
it is necessary to analyse what happens in this case.

Lemma 4. Suppose V, f, u(f,-), X and the partition & are as in Lemma [ If
A(t) =0 for somet € W € &, then:
(1) W =[0w,00)NV;
(2) W is finitely-branching, in other words, u™ NW is finite whenever u € W ;
(3) W contains no ever-branching subsets.

Proof. The first property follows because A > 0 and is decreasing. To prove prop-
erty (2), we suppose that u € V is such that «* NV is infinite. Then u is a bad point
for p(f,-) as u(f,v) = p(f,u) for infinitely many v € u™. Consequently, the infi-
mum in the definition of pu(f,u) is attained by part (2) of Lemma[2 and it follows
from Lemma Bl part (4) that A(u) > 0. As a result, u ¢ W. For property (3), it is
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enough to show that if w € V and F is an ever-branching subset of [u, c0) NV, then
A(u) > 0. Indeed, given such u and FE, by part (3) of Lemma[2 the infimum in the
definition of u(f,w) is attained. Therefore, by part (4) of Lemma 3 A(u) > 0. O

The proof of Theorem [I2 is similar to that of Theorem [7 in that it employs
monotone real-valued functions to recursively define a refining sequence of plateaux
partitions of the given tree. This sequence is used to define a Z-valued function or,
in the case of Theorem [ or Corollary 2l a Y-valued function. We will see that we
must make use of the elements in Z\Y precisely when our A-functions from Lemma
vanish.

of Theorem[IZ Let ||-|| be Gateaux smooth and suppose that &||-||oc < ||| < |I*]loo
for some ¢ € (0,1). We assemble, for each 8 < w1, a plateau partition &3, and for
each V € 3, a function f(g ) € Co, such that:

(1) u(fs,v),-) takes constant value pu(f(s,vy,0v) on V;

(2) w(fsv)0v) =1 < zellfis vl = 1)
Following this, we define a function 7 : T — Z and prove that it possesses a
number of properties. Our final function p will be a modification of .

We begin by constructing &2,. Recall the increasing function p from Definition
Let &, be its plateau partition, courtesy of Proposition[@ and define f(g ) =
10,0, for V € Zy. It follows that pu(f,v),-) takes constant value u(f(o,v),0v) =
1(0y) on V', and that

1(fov):00) =1 < |[1oull =1 < 0 = Se||fio,v)lloo — 1)

Now suppose &3 and the associated f(g ) have been built. Let V € &5. If
V = {0y} then set Py = {V} and fg41,v) = f(s,v). Otherwise, Lemma [3]
together with Proposition [6 furnishes us with the plateau partition of V\{0y}
associated with the A-function. We augment this with the single element {0y} to
give a plateau partition Py of V. Set Ppi1 = {Pv | V€ P} W € Py
then either W = {0y} or W C V\{Ov}. In the former case let fis41,w) = fis,v);
it is easy to see that f(g;1w) satisfies conditions (1) and (2) above. In the latter
case, let fig41,w) = fw, where fy is as in Lemmal[3]part (3). We observe condition
(1) is satisfied, again by Lemma [B] part (3). To see that condition (2) holds, note
that

1(fp+1,w), 0w) — 1(figv),0v) = 3eAO0w) = 5e(llfs1,w)lloo — [1F (8,1 ]oc)

and apply the inductive hypothesis.

We move on to the limit case. Suppose that 5 < w; is a limit ordinal and that
all has been constructed for a < 3. Given t € T, we let V! € 2, be such that
te Vi Set Zg={,cpVa | teT} FixsomeV € Ps. Let t = 0y, Vo =V,
to = Oy, and fo = f(a,v,). Then t = sup,_gta by Proposition[Bl What we would
like to do is define fgvy = f € %o(Y) to be the unique function supported on
(0,%], such that its restriction to (0,t,] is fo. This can indeed be done, provided
that (|| falloo)a<s is bounded. Observe that if g € C,, satisfies condition (2) above
then

ellglle =1 < ulg,u) =1 < 3e(llglle — 1)
giving [|g]lc < 2 — 1. Therefore (||falloc)a<s is bounded as required. Moreover,
since each f, € Cy,, we have f € C;. Now set g4 = fo + fa(ta)l(tmt]. Of course,
as f, is increasing on (0,t,] and vanishes elsewhere, we have ||galloc = ||falloo-
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Moreover, as p(fa, ) takes constant value u(fa,ts) on V,, by inductive hypothesis,
and (9o, u) = p(fo,w) whenever u € V-.C V,, it follows that 11(gq, -) takes constant
value p(fo,te) on V. The reader can verify that, as (ga)a<p converges in norm to
£, ((9as *))a<p converges uniformly to u(f,-) (cf. [0, Lemma 3.6]). As a result, f
satisfies conditions (1) and (2) above. This ends the recursion.

Now we define 7. Given ¢t € T, let Vj be as above. In addition, we let \j be
the A-function associated with Vlg and f(ﬁ,vg)a provided Vlg is not a singleton. Set
w(t)o = —u(t). If 8 >0, let w(t)g = M(f(ﬁ,vg)at) as long as Oy: <t for all a < 3
and . (t) > 0 whenever a4+ 1 < . Otherwise, we leave 7(t)s undefined.

We verify that m(¢) is an element of Z. Observe that if 7(¢)s is defined, then so
is 7(t)o whenever a < 8. If 0 < @ < 8 then 7(t)o < 0 < 7(t) and moreover

Tr(t)or‘rl = ,u(f(a-i-l,VOtHrl)’ t)
= ,u(f(oz,Vat)’ t)+ %E)\Zé (OVJ+1)

whence 7(t)q+1 > 7(t)o. In addition, if « +1 < 8 then 7(t)q+1 > 7(t)a by our
definition of 7. Now, if 8 is a limit ordinal and = (¢), is defined for all o« < S,
so is m(t)g. Moreover, by applying the uniform convergence of the p-functions
at limit stages of the partition construction, we see that 7(t)g = M(f(ﬁ,v;)i) =
lima<pg p(f(a,vt),t) = lima<p 7(t)o. This is enough to prove that 7(t) € Z.

We observe our first property of 7, namely that it is increasing. Let s, € T with
s < t. We set v to be the least ordinal such that 7(s)., and 7 (), are not both defined
and equal. If v = 0 then, as u is increasing, it follows that 7(s)g > 7(t)o, whence
m(s) < w(t). If v > 0 then, by continuity, v = 8 + 1 for some . By transfinite
induction, V? = V¢ for all @ < 8. Indeed, u(s) = —7(s)g = —m(t)o = u(t), so
V=V HVE=U=V}!and a < B, set \{, = A = \,. Remembering property
(2) of Lemma [B] we have

(1) %5)‘(3) = 7(8)ay1 = T(8)a = T(t)ar1 — T(t)a = %5A(t)

whence A(s) = A(t) and V¥, = V! ;. Limit stages of the induction follow by
taking intersections.

Now let Vi =V = Vlg, Ay == )‘tB and observe that Oy < s < t. There are
two cases to consider: either 7(¢)g41 is defined or it is not. First of all, we suppose
that m(t)g41 is defined and prove that m(s) < w(t) in this case. Indeed, if 7(s)g41
is not defined then we are done, as m(t) strictly extends m(s). On the other hand,
if m(s)a41 is defined then since 7(s)g+1 # 7(t)g4+1 and A is decreasing, it must be
that m(s)g+1 > w(t)g+1. Therefore w(s) < w(¢).

The other option is that 7(¢)g4+1 is undefined. In this case, since Oy < ¢, it must
be that AL (¢) = 0 for some a+1 < S+1, by the definition of 7. As 7(t)s is defined
then, again by the definition of 7, it follows that a+1 = 3. Let V¥ = U = V! and
A5, = X = \L. Then by Eqn. [l above, we have X' (s) = N (t) = 0, meaning 7(s)g+1
is not defined either. Consequently, 7(s) = ().

We have established that 7 is an increasing function. Now we show that it is
not constant on any ever-branching subset and, given ¢ € T, there are only finitely
many u € t* such that m(u) = 7(t). To prove this claim, consider ¢ € T and the
plateau W = {u € [t,00) | w(u) =7(t)}. If W is the singleton {¢} then there is
nothing to prove, so we suppose that there exists some v € W with ¢t < u. Let
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both 7(t) and m(u) be defined on [0, 3] and fix V' = V4. In just the same way
as above, we have that V! = V¥ whenever a < 3 and, in particular, VB“ =V.
Observe that, as a consequence, W C V. Moreover, just as above, as m(u)gy1 is
undefined and ng <t < u, we have § = a+ 1 for some a. It follows that if we set
VIi=U=V*and \l, = X = N\, then X (t) = N (u) = 0. Now we can appeal to
parts (2) and (3) of Lemma @l applied to U, fa,uy, #(f(a,v),-) and A’ to conclude
that V' is finitely-branching and contains no ever-branching subsets. As W C V|
we are done.

We finish our appraisal of © by showing that it does not admit certain types of Z-
bad points. First of all, if 7(¢) € Y then ¢ cannot be Z-bad for . Indeed, by Lemma
[Mpart (1) and the fact that the elements of ran 7 are uniformly bounded sequences,
the only way that ¢ can be Z-bad for 7 is if there are infinitely many u € ¢t* such
that m(u) = 7(t). Now suppose that 7(t) = (7(t)¢)e<p+1 € Z\Y, where S is a limit
ordinal. We prove that ¢ is not Z-bad for 7. We know already that 7(u) = m(t) for
only finitely many u € ¢+ so, for a contradiction, we must suppose that there is a
sequence of distinct points (u,,) C t* such that m(¢) < 7(u,,) and 7(u,) — 7(t). We
have that 7(t)s = m(t)s+1. Let V = Vj, where Vj is the unique element V' € P
containing ¢, and let f = f(3y). Observe that if A is the function from Lemma [3]
associated with f and V then, necessarily, A\(t) = 0. Indeed, by the definition of
m, we have $e\(t) = m(t)s41 — 7(t)s. By Lemma [l part (3), there exist ordinals
oy < B such that a, — 8, m(up)e = 7(t)e whenever £ < a, and 7(up)a, < 7(t)a,, -
By continuity and transfinite induction, o, = £, +1 for some ordinals &,, and Vgtn =
Vi, Set Vi, = Vﬁtn and fn = fie, . vi)- As an — B3, it follows that V =, V,, and
the functions f,, + fn(Ov;,)1(0y, ¢ converge in norm to f + f(0v )1, . Moreover
w(fn,un) = w(un)e, = m(t)e, — 7(t)sg = p(f,t). Now choose ¢, € 6(YT) to
satisfy supp pn C (un,00) and [[fn + fu(Ov,)L(ov, un) + @nll < p(fn,un) +27" =
p(fnst) + 27" As the u, are distinct, it follows that (fn. + fu(0Ov, )10y, u.) +
¢n) converges to f + f(0y)1l(g, 4 in the pointwise topology of %,(Y). As T is
scattered and this sequence is norm-bounded, it converges in the weak topology
too. Therefore ||f 4+ f(0v)1(o, 4!l = p(f,t). However, by part (4) of Lemma[3] the
attainment of the infimum forces A(¢) > 0, which is not the case. It follows that ¢
cannot be a Z-bad point for 7.

One case remains untreated. If w(t) = (7(¢t)¢)e<p+1 € Z\Y and S is not a limit
ordinal, it is possible that ¢ is Z-bad for 7. Fortunately, by making an adjustment
to m akin to that given after Lemma [Il we can remove Z-bad points of this kind.
Given x = (z¢)e<p € Z, define

220 ife=0
O(z)e = e +xe—1+ 1 if € is a successor ordinal
22¢ + 1 otherwise

for &£ < . It is easy to establish that ® takes values in Z and is strictly increasing.
Set p = ®om. As ® is strictly increasing, p is increasing and, if we consider
Proposition @] partitions T in exactly the same way as w. In particular, p is not
constant on any ever-branching subset of T. Again, as ® is strictly increasing, if
t is Z-bad for p then it is also Z-bad for w. Therefore, to prove that p has no
Z-bad points, we suppose that 7(t) = (7(t)¢)e<p+1 € Z\Y and B is not a limit
ordinal. We have that 7(t)s = 7(t)s+1 so, by the construction of 7, there exists an
ordinal « such that 8 = a + 1. Therefore, 7(t)o < 7(t)g and thus p(t)s < p(t)s+1,



TREES, LINEAR ORDERS AND GATEAUX SMOOTH NORMS 11

giving p(t) € Y. Again by appealing to Lemma [ part (1), if ¢ is Z-bad for p then
p(u) = p(t) for infinitely many u € ¢t*. However, that would force 7(u) = w(¢) for
infinitely many u € t*, and we have already established that this is impossible. [

of Corollary[@. If || -]| is a lattice norm then, by part (1) of Lemmal[2 the infima in
the definition of the u-functions are always attained. It follows that the A-functions
of Lemma [3] never vanish. Now, we prove that in this case, the map 7 defined in
the proof of Theorem [I2is Y-valued and strictly increasing. Indeed, if we return
to the point where we prove that 7(t) € Z, we see that, as the A-functions never
vanish, 7(t)o < m(t)a+1 whenever a +1 < 8. Consequently 7(t) € Y. To show
that 7 is strictly increasing, we let s < ¢ and return to the point in the proof where
7 is shown to be increasing, specifically, where v is defined. If v = 0 then we are
done. Otherwise, v = 8 + 1 for some . Since the A-functions never vanish, it
is impossible that 7(¢)g4+1 is undefined, therefore w(s) < m(t). This proves that
T < Y. The second statement of Corollary2lholds because the strictly convex dual
norm constructed in Theorem [7]is a lattice norm. (]

We finish the section with a proof of Proposition Bl It will help to introduce
a useful game-theoretic characterisation of Baire trees [5]. Players A and B take
turns to nominate elements of a tree T, beginning with ¢y played by B. In general,
A follows to, with to,41 = ton, and B responds with to,42 = to,+1. The game is
won by B if the sequence (t,,) has no upper bound in Y. The tree Y is Baire if and
only if B has no winning strategy in this so-called Y -game. Using this game, it is
possible to prove the following result.

Proposition 7 ((Haydon [5l Proposition 1.4])). If T is Baire and p: T — R is
increasing, then there exists t € T such that p is constant on the wedge [t,00).

One trivial consequence of Proposition[flis that if the increasing map p: T — R
is not constant on any ever-branching subset then Y contains no ever-branching
Baire subsets. Indeed, if E C Y were ever-branching and Baire then, by Proposition
[[ we could find ¢t € E such that p is constant on [t,00) N E, which is an ever-
branching subset of T. We observe that the same holds if we replace R with any
linear order ¥ satisfying the statement of Proposition [l Therefore, to establish
Proposition (3] it is enough to prove the following result.

Proposition 8. If Y is Baire and p : ¥ — Z is increasing, then there existst € T
such that p is constant on [t, 00).

Proof. The following order will be used in this and a subsequent proof. Define
Zy = {x=(za)a<p € Z | x C[0,1], zo = 0 and B is a limit whenever zg = 1}.

By considering the map ©, introduced after Lemma [l we observe that Z < Z
and, accordingly, we can assume that our increasing function p takes values in Zj.

We show that p is constant on some wedge of T by playing the T-game with a
particular strategy for B. Given u € T and an ordinal a, we call (a,u) a fized pair
if p(v)e is defined and equal to p(u)e whenever v € [u,o0) and € < a. If (o, u) is
fixed, v € [u,00) and & < «, then (&, v) is also fixed. Let B play arbitrary ¢ as the
first move and put ap = 0. Note that (0,¢o) is fixed. Now suppose that n > 1 and
that moves tg < t1 < ... X t2,—1 have been played alternately by B and A. We
choose the next move ¢y, played by B, together with a,, in the following manner.
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Let

rn = sup{p(u)q | u = tan—1 and (o, u) is a fixed pair}.
Let B choose fixed (o, ta,,) such that ta, = ton—1 and p(ten)a, > rn — 27 ™. This
strategy does not guarantee a win for B, so there exist moves (t2,,41) of A such
that (¢,) has an upper bound u € Y. If @ = supa,, we see that (o, u) is fixed.
This follows by continuity and the fact that (o, u) is fixed for all n.

If p(v)a+1 is not defined for any v = u then p takes constant value p(u) on [u, 00),
and we are done. Suppose instead that p(v),41 exists for some v = u. Because
(v, v) is fixed and p is increasing, the real-valued map p(-)a+1 must be decreasing
on [v,00). As the forcing-open set [v,00) is Baire, by Proposition [7] there exists
w = v such that p(-)at1 is constant on [w, o), and it follows that (o + 1,w) is a
fixed pair. We note that the inequalities

Th— 27" < p(t2n)an = p(w)ozn < p(w)a < p(w)a-l‘l < rp

hold for all n, and conclude that p(w)a+1 = p(w)s. Consequently, by the definition
of elements of Z, p takes constant value p(w) on [w, 00). (]

3. EXAMPLES

In this section, we prove Proposition M and present Example Before giving
the proof of Proposition 4] we make an observation about embeddability and Z-bad
points that is analogous to Proposition [l

Given a tree T, let T < Z and suppose that there is an increasing function
p: ¥ — Z with no Z-bad points. We claim that if this is the case then T Y.
In order to prove this claim, we introduce the following algebraic operation on Z.
Recall the order isomorphism 6 : R — (0, 1), fixed after Lemmal[ll For x = (z¢)e<a
and y = (ye)e<p of Z, define z - y for £ < max{«, 8} by

0~ (0(ze)0(ye)) if € < min{a, 5}
(x~y)§: Te ifa<é<p
Ye ifg<é<a

where 0(x¢)0(ye) is an ordinary real product. We leave the reader with the simple
task of verifying that - is a semigroup operation on Z that respects the order; in
other words, if x < y and v < v then z-u < y-v and, moreover, the third inequality
is strict if either of the first two are. Now, let the increasing function v : Y — Z
have no Z-bad points and suppose 7 : T — Z is strictly increasing. As - respects
order, it follows that the pointwise product m = v - 7 is strictly increasing and has
no Z-bad points. By Lemma [Il any element of Z can be approached from above
by a strictly decreasing sequence. Therefore, as ¢t € T is not a Z-bad point for m,
there exists 7*(¢t) € Z such that w(t) < 7*(¢t) < 7(u) whenever u € ¢t*. Finally,
since Y is dense in Z, we can pick p(t) € Y between 7 (t) and 7*(t); the resulting
function p is strictly increasing.

of Proposition [§] In the light of Theorem [}l and our observation above, all we need
to do is prove that ¢Y < Z. Recall the order Z; from the proof of Proposition
As Z % Zy, elements of oY can and are considered as subsets of Z;. Our proof
that oY < Z rests on the claim that Z; is Dedekind complete; that is, each subset
of A of Zy has a least upper bound, denoted by sup A.

For now, we assume that this claim holds and define a strictly increasing map
p:oY — Z. Given A € oY, treated as a subset of Zp, let p(A) =sup A if sup A €
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Zo\Y or if A has no greatest element, and let p(A) = (sup 4, 2) otherwise. Here,
(z,2) denotes the sequence obtained by extending x € ZoN'Y by a single element,
namely 2. Observe that if x € ZoNY, y € Zy and = < y then (x,2) < y because
every element of y is strictly less than 2. Let A, B € oY satisfy A < B. If sup A4 <
sup B then p(A) < supB < p(B). Alternatively, if sup A = sup B then B =
AU {sup A}; indeed, if x € B\ A then sup A < & < sup B = sup A. In particular,
B has greatest element sup A € Y, whereas A has no greatest element. Therefore
p(A) =sup A < (sup A, 2) = p(B). This proves that p is strictly increasing.

To finish, we define sup A for A C Z,. If A is empty then its least upper bound
is the one-element sequence (0). From now on, we assume that A is non-empty and
has no greatest element. Taking our cue from the proof of Proposition 8 given an
ordinal @ and = € A, we will call (o, x) a fized pair if z¢ and ye are both defined
and equal whenever y € A, x <y and £ < a. If (o, ) is fixed, y € A, z < y and
¢ < a, then (&, y) is also fixed. Now let 8 be minimal, subject to the condition that
there is no fixed pair (8,x). As A is non-empty and (0, z) is fixed whenever x € A,
it follows that 8 > 0. We define a sequence z = (2a)a<g. If @ < 3, let zo = zq,
where (o, x) is some fixed pair. By the nature of fixed pairs, this is well-defined. If
B is a limit, let z3 = sup, g 2a- Instead, if 3 = a+1 for some « then, as A has no
greatest element, there exists a fixed pair (o, ), such that x4 is defined. Let zg be
the infimum of all such xg. It is easy to verify that z € Zy; it can be that z3 =1,
but only if 5 is a limit ordinal. We omit the pedestrian task of proving that z is
the least upper bound of A. O

Our last task is to show that there is a tree ¥ satisfying the condition of Theorem
2 but not that of Theorem[8l Before doing so, we must make some remarks. Recall
the plateau partitions of Proposition [0l and note the following slightly reworded
version of a result from [g].

Proposition 9 ((Smith [8 Corollary 3])). Suppose that Y is a tree, ¥ a linear
order, and p : T — X an increasing function that is not constant on any ever-
branching subset of Y. Then there exists an increasing function m: T — ¥ X w,
such that the plateau partition &2 of Y with respect to w consists solely of linearly
ordered subsets.

Let T, ¥, m and £ be as in Proposition [@ and, moreover, let us suppose that Y
admits no uncountable linearly ordered subsets. In this case, each V' € & identifies
with a finite or countable ordinal and, therefore, there exists a strictly increasing
function 7y : V. — Q. It is apparent that the function 7 : T — ¥ X w x Q,
defined by 7(¢t) = (7(t), 7y, (t)), where V; is the unique element of & containing ¢,
is strictly increasing. As w x Q < Q, it follows that T < % x Q.

Example 15. Observe that Y has cardinality continuum ¢. If A € oY then AT
identifies with the set u(A) of all upper bounds of A and, thus, has cardinality ¢ if
u(A) is non-empty. Fix a well-order C of Y, and let ¥ = oY x ¢. We order ¥ by
declaring that (4, «) < (B, ) if and only if either A = Band a < 8, orif A < B
and « is no greater than the order type of {z € u(4) | x C min(B\A4, <)}, with
respect to .

With respect to this order, each element of ¥ has between one and two immediate
successors. Indeed, if (A4, ) € ¥ then (A, a + 1) is always an immediate successor.
If u(A) is non-empty then (AU{y},0) is also such a successor, where y € u(A) and
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{z € u(A) | x C y} has order type a.. The set oY x {0} is a natural copy of oY
inside ¥ that is closed with respect to the interval topology.

Now, by Proposition @l there exists a strictly increasing map = : ¢Y — Z.
Define p : ¥ — Z by p(4, a) = w(A). By Proposition [, the plateau partition of
U with respect to p consists exactly of the sets {(A,a) | o < ¢}, where 4 € oY.
Therefore, p is not constant on any ever-branching subset. Because the number of
immediate successors of any element of ¥ is at most two, p has no Z-bad points
either. Therefore ¥ satisfies the condition of Proposition 121

On the other hand, there exists no increasing Y-valued function on ¥ that is not
constant on any ever-branching subset. Indeed, if there were such a function, by
considering its restriction to oY x {0}, there would be a map 7 : Y — Y, also not
constant on any ever-branching subset. However, by following a similar argument
to that given after Proposition [7] being Z-embeddable, oY has no perfect Baire
subsets. In particular, oY does not contain a copy of wy. Therefore, by Proposition
and the remarks following Proposition [d, we would have Y <Y x Q < Y which,
by Theorem [, is impossible.

We recall Problem [Il and conjecture that %,(¥) admits a Gateaux norm. The
Gateaux norms presented in [8] are built by combining norms obtained from ex-
isting techniques, namely the Fréchet norms of Talagrand and Haydon, and norms
with strictly convex duals. In the author’s opinion, if Problem [l is to be resolved
positively, we require a method of constructing Géateaux norms on % (K) spaces
that unifies these techniques on a more fundamental level.
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