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Abstract

Two-dimensional conformally parametrized surfaces immersed in the
su(N) algebra are investigated. The focus is on surfaces parametrized by
solutions of the equations for the CP

N−1 sigma model. The Lie-point
symmetries of the CP

N−1 model are computed for arbitrary N . The
Weierstrass formula for immersion is determined and an explicit formula
for a moving frame on a surface is constructed. This allows us to determine

the structural equations and geometrical properties of surfaces in R
N

2−1.
The fundamental forms, Gaussian and mean curvatures, Willmore func-
tional and topological charge of surfaces are given explicitly in terms of
any holomorphic solution of the CP

2 model. The approach is illustrated
through several examples, including surfaces immersed in low-dimensional
su(N) algebras.

Key words: Sigma models, Lie-point symmetries, moving frame of surfaces,
Weierstrass formula for immersion.
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1 Introduction

Group theoretical methods have proven to be very useful for studying surfaces
immersed in multi-dimensional spaces and for computing their main geometric
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characteristics [1, 2, 3, 4, 5]. It was shown in [6, 7, 8, 9] that the problem of
Weierstrass immersion of two-dimensional smooth surfaces in multi-dimensional
Euclidean spaces is related to the surfaces in Lie algebras associated with the
CPN−1 models. The main feature of this approach is that it allows one to re-
place the methods based on Dirac-type equations by a formalism connected with
completely integrable CPN−1 models. The task of finding an increasing num-
ber of surfaces is related to choosing a suitable Lie representation of the CPN−1

model. Group analysis makes it possible to construct algorithms proceeding
directly from the equations of the CPN−1 model and without referring to any
additional considerations. The techniques for constructing two-dimensional sur-
faces immersed in su(N) algebras, obtained from integrable models, are better
understood for low-dimensional CPN−1 models. In that case, the geometric fea-
tures of surfaces so obtained are interesting and the subject of ongoing study.
A review of recent developments related to integrable models can be found in
[10, 11, 12, 13].

Over the last century and a half, the Weierstrass formula for immersion
of surfaces in Lie groups, Lie algebras and homogeneous spaces has been used
extensively in various areas of mathematics, physics, chemistry and biology. We
now list some of the most important examples.

In mathematics, the topic is of central importance in the formulation of the
classical theory of surfaces. In particular, immersions are useful for studying
surfaces with techniques of completely integrable continuous and discrete sys-
tems, as well as for the development and application of numerical tools [14, 15].
A description of the monodromy of solutions of Painlevé equations is yet another
important application [16].

In physics, the concept has numerous applications in, e.g., two-dimensional
gravity [17], field and string theory [18, 19], statistical physics (e.g., growth
of crystals, surface waves, dynamics of vortex sheets, the two-body correlation
function of the two-dimensional Ising model [20]), fluid dynamics (e.g., motion
of boundaries between regions of differing densities and velocities [21]), plasma
physics (geometry of magnetic surfaces and constant pressure surfaces in various
fusion devices like tokomaks, stellarators, magnetic mirrors [22]).

In chemistry, descriptions of energy and momentum transport along a poly-
mer molecule constitute a significant area of application for the theory of immer-
sions [23, 24]. In biology, the theory is frequently used in the study of the model
for the Canham-Helfrich membrane and its continuous deformations [25, 26].

In general, the algebraic approach to the equations describing surface im-
mersion has been proven to be very fruitful from a computational point of view.
In addition, the geometric approach is of primary importance to the deriva-
tion and characterization of the governing equations for related phenomena in
physics and other applied sciences.

This paper follows-up on research in [6], where surfaces immersed in su(N +
1) algebras obtained via CPN models were investigated. We generalize the
results and also correct some formulae. To be precise, the new results presented
in this paper include the Lie-point symmetry algebra of the CPN−1 model for
arbitrary N . We also give new examples of surfaces immersed in the su(N)
algebra invariant under the scaling symmetries whose Gaussian curvature always
vanishes. We delve deeply into the geometrical aspects of surfaces in su(3)
obtained from the CP 2 model. For that case, we identify the moving frame and
the structural equations, as well as the Willmore functional and the topological
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charge. The main goal of this paper is to provide a comprehensive, self-contained
approach to the subject.

The paper is organized as follows. In Section 2, we briefly review some
basic notions and properties concerning the Euler-Lagrange equations associated
with the CPN−1 models. In Section 3, we discuss the Weierstrass formula for
immersion in connection with the CPN−1 model, derive the induced metric and
compute the scalar curvature. Section 4 is devoted to the Lie-point symmetries
of the equations of the CPN−1 model for arbitrary N . Section 5 covers the
analysis of the immersion of surfaces in the su(3) algebra arising from the CP 2

model. In Section 6 we investigate the Weierstrass aspects for immersion of
surfaces in the su(2) and su(3) algebras which are associated with the CP 1 and
CP 2 models, respectively. Section 7 deals with applications of the Weierstrass
formula for the immersion of surfaces in the su(2) and su(3) algebras, as well as
surfaces immersed in the su(N) algebra invariant under the scaling symmetries.

2 The Euler-Lagrange equations associated with

the CPN−1 sigma models

To keep the paper self-contained, we briefly review basic notions and properties
of the CPN−1 sigma models (see e.g., [10, 27, 28] and references therein). The
domain of definition for the sigma model is assumed to be an open, connected
and simply connected set Ω ⊂ C with the Euclidean metric

ds2 = dξdξ̄ = (dξ1)2 + (dξ2)2 , ξ = ξ1 + iξ2 , (1)

where ξ and ξ̄ are local coordinates in Ω. In the case of the CPN−1 models the
target space is a (N − 1)-dimensional complex projective space CPN−1, which
is defined as the set of all complex lines in CN . The manifold structure on it is
defined by an open covering

Uk = {[z] | z∈ C
N , zk 6= 0} , k = 1, . . . , N , (2)

where [z] = span{z} and the coordinate maps hk : Uk → CN−1 are defined by

hk(z) =

(
z1
zk
, . . . ,

zk−1

zk
,
zk+1

zk
, . . . ,

zN
zk

)
. (3)

We are interested in maps of the form [z] : Ω → CPN−1, which are stationary
points of the action functional

S =
1

4

∫

Ω

(Dµz)
†(Dµz)dξdξ̄ , z† · z = 1 . (4)

Here, Dµ and Dµ (µ = 1, 2) are the covariant derivatives acting on z : Ω → CN ,
defined by the formula

Dµz = ∂µz − (z† · ∂µz)z , (5)

where ∂µ = ∂ξµ . The action S does not depend on the choice of a representative
of the class [z]. As usual, the symbol † denotes Hermitian conjugation, whereas
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the Hermitian inner product of z = (z1, . . . , zN ) and w = (w1, . . . , wN ) in CN

is denoted by

< z,w >= z† · w =

N∑

j=1

z̄jwj . (6)

Introducing

z =
f

|f | , |f | = (f † · f) 1

2 , (7)

the action functional (4) can be expressed as

S =
1

4

∫

Ω

1

f † · f (∂f
†P ∂̄f + ∂̄f †P∂f)dξdξ̄ , (8)

where ∂ and ∂̄ denote the partial derivatives with respect to ξ and ξ̄, respectively,
i.e.,

∂ =
1

2

(
∂ξ1 − i∂ξ2

)
, ∂̄ =

1

2

(
∂ξ1 + i∂ξ2

)
. (9)

The N ×N matrix P is an orthogonal projector on the orthogonal complement
of the complex line in CN . Therefore,

P = IN − 1

f † · f f ⊗ f † , (10)

where IN is the N ×N identity matrix. Since P is an orthogonal projector it
has the properties

P † = P , P 2 = P . (11)

The map [z] is determined by a solution of the Euler-Lagrange equations
which are associated with the action (8). In the homogeneous coordinates f ,
the equations of motion take the form of a conservation law

∂K − ∂̄K† = 0 , (12)

where K and K† are N ×N matrices given by

K = [∂̄P, P ] = 1
f†·f

(
∂̄f ⊗ f † − f ⊗ ∂̄f †)+ f⊗f†

(f†·f)2
(
∂̄f † · f − f † · ∂̄f

)
,

(13)

K† = −[∂P, P ] = 1
f†·f

(
f ⊗ ∂f † − ∂f ⊗ f †)+ f⊗f†

(f†·f)2
(
∂f † · f − f † · ∂f

)
.

Using the projector, the Euler-Lagrange equations (12) can also be written
in the form of a conservation law

∂[∂̄P, P ] + ∂̄[∂P, P ] = 0 . (14)

Through explicit calculation one can verify that the complex-valued functions

J =
1

f † · f ∂f
†P∂f , J̄ =

1

f † · f ∂̄f
†P ∂̄f , (15)

satisfy
∂̄J = 0 , ∂J̄ = 0 , (16)
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for any solution f of the equations of motion (12).
Note that the action (4), as well as J and J̄ , are invariant under a global

U(N) transformation, i.e., f → uf , where u ∈ U(N). Due to this invariance,
without loss of generality, we can set one of the components of the vector field
f equal to 1. For instance, f1 = 1. Consequently, the CPN−1 model can be
expressed in one less variable through the relation

wi−1 =
fi
f1
, i = 2, . . . , N − 1 . (17)

3 The Weierstrass formula for immersion

For a given projector P satisfying the conservation law (14), we give the ana-
lytical description of a 2D smooth orientable surface F immersed in the su(N)
algebra. This is accomplished by constructing an exact su(N) matrix-valued
1-form dX for which its “potential,” which is a matrix-valued 0-form X , deter-
mines a surface immersed in the su(N) algebra. Once the 0-formX is calculated,
we can treat the components of X as the coordinates of a surface in su(N) and,
hence, we can compute an explicit formula for immersion. In what follows, we
shall refer to this as the generalized Weierstrass formula for immersion. Next, we
investigate some geometrical properties of the surface F in the su(N) algebra.

In order to construct and investigate surfaces in multi-dimensional spaces
by analytical methods it is convenient to identify the su(N) algebra with the
(N2 − 1)-dimensional Euclidean space through the relation

R
N2−1 ≃ su(N) . (18)

For the sake of uniformity, we use the following definition of scalar product on
su(N)

< A,B >= −1

2
tr(AB) , (19)

where A,B ∈ su(N).
Let us assume that the matrix K in (13) is constructed from a solution

P of the Euler-Lagrange equation (14) defined on some connected and simply
connected domain Ω ⊂ C. According to Poincaré’s lemma, there then exists a
closed matrix-valued 1-form,

dX = i(K†dξ +Kdξ̄) , (20)

which is also exact and takes its values in the su(N) algebra of skew-Hermitian
matrices. This means that X is a well-defined su(N) real-valued function on Ω
and

∂X = iK† , ∂̄X = iK . (21)

It follows from the closedness of the 1-form dX that the integral

i

∫

γ

(K†dξ +Kdξ̄) = X(ξ, ξ̄) , (22)

is locally independent of the path of integration. As a matter of fact, the integral
only depends on the end points of the curve γ in C.
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The integral (22) defines a mapping

X : Ω ∋ (ξ, ξ̄) → X(ξ, ξ̄) ∈ su(N) , (23)

which is called the generalized Weierstrass formula for immersion [6, 7].
As a consequence of (23), we can determine a surface F in su(N) from a

solution f of the Euler-Lagrange equation (12) defined on the domain Ω ⊂ C.
The complex tangent vectors to a surface F are given by (21) using (13).

For the components of the induced metric one gets

gξξ ≡ (∂X, ∂X) = −J , gξ̄ξ̄ ≡ (∂̄X, ∂̄X) = −J̄ ,
gξξ̄ = gξ̄ξ ≡ (∂X, ∂̄X) = q , (24)

where J and J̄ are holomorphic functions defined in (15) and the quantity q is
a positive real-valued function given by

q =
1

f † · f ∂̄f
†P∂f ≥ 0 . (25)

Thus, the first fundamental form of a surface F takes the form

I = −Jdξ2 + 2qdξdξ̄ − J̄dξ̄2 . (26)

Using the Schwartz inequality, it was shown in [6, 7] that this first fundamental
form (26) is positive definite.

The scalar curvature is given by

K =
1

2
√
g
∂̄

[
q√
g
∂ ln

(
−q

2

J

)]
, if J 6= 0 (27)

and
K = −q−1∂̄∂ ln q , if J = 0 , (28)

where
g = det(gij) = |J|2 − q2 , (29)

and the indices i and j stand for ξ and ξ̄, respectively.
Let us now discuss the existence of certain classes of surfaces in the su(N)

algebra when the CPN−1 equations are subjected to specific differential con-
straints (DCs). These constraints allow us to reduce the overdetermined system
to a system admitting first integrals. Doing so considerably simplifies the pro-
cess of solving the initial CPN−1 equations (12). Consequently, certain classes of
non-splitting solutions can be constructed and they provide us with an explicit,
simplified form of Weierstrass formula for immersion of a surface in su(N).

Proposition 1 If the complex-valued vector function

C ∋ ξ → f(ξ) ∈ C
N\{0} (30)

satisfies both the equations (12) for the CPN−1 model equations and the differ-
ential constraints

f † · ∂f − ∂f † · f = 0 , f † · ∂̄f − ∂̄f † · f = 0 , (31)
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then the generalized Weierstrass formula for immersion of a surface F in the
su(N) algebra has the form

X(ξ, ξ̄) = i

∫

γ

f ⊗ ∂f † − (∂f † · f)P̃
f † · f dξ +

∂̄f ⊗ f † − (f † · ∂̄f)P̃
f † · f dξ̄ , (32)

where P̃ = IN − P . The first fundamental form is given by

I = −J1dξ2 + 2

(
∂̄f † · ∂f
f † · f − (∂̄f † · f)(f † · ∂f)

(f † · f)2
)
dξdξ̄ − J̄1dξ̄

2 , (33)

where J1 and J̄1 are holomorphic functions,

J1 =
∂f † · ∂f
f † · f −

(
f † · ∂f
f † · f

)2

, J̄1 =
∂̄f † · ∂̄f
f † · f −

(
∂̄f † · f
f † · f

)2

, (34)

which satisfy
∂̄J1 = 0 , ∂J̄1 = 0 , (35)

whenever (12) and (31) hold.

Proof If we append the two DCs in (31) to the CPN−1 equations (12) then the
matrices K and K† in (13), become

K1 =
1

f † · f (∂̄f ⊗ f † − f ⊗ ∂̄f †) ,

K†
1 =

1

f † · f (f ⊗ ∂f † − ∂f ⊗ f †) . (36)

Hence, the Weierstrass formula for immersion takes the form

X(ξ, ξ̄) = i

∫

γ

(K†
1dξ +K1dξ̄)

= i

∫

γ

f ⊗ ∂f † − ∂f ⊗ f †

f † · f dξ +
∂̄f ⊗ f † − f ⊗ ∂̄f †

f † · f dξ̄ . (37)

On the other hand, from (12), we are able to deduce that the matrix K can be
decomposed as

K =M + L , (38)

where
M = (I − P )∂̄P , L = −∂̄P (I − P ) . (39)

It can be shown that the matrices M and L satisfy the same conservation laws
(12) as the matrix K, e.g.,

∂M = ∂̄M † , ∂L = ∂̄L† . (40)

Note that the two conservation laws in (40) are not independent since M and
L differ by a total divergence,

M = L+ ∂̄P . (41)
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Taking into account the overdetermined system composed of the conservation
laws (12) and DCs (31) for the function f , the matrices M and L become

M1 = −f ⊗ ∂̄f † − (f † · ∂̄f)P̃
f † · f , M †

1 = −∂f ⊗ f † − (∂f † · f)P̃
f † · f ,

L1 =
∂̄f ⊗ f † − (f † · ∂̄f)P̃

f † · f , L†
1 =

f ⊗ ∂f † − (∂f † · f)P̃
f † · f . (42)

As a consequence of the conservation laws (40) for the matrices M1 and L1, the
Weierstrass formula for immersion (22) takes the following simple form

X(ξ, ξ̄) = i

∫

γ

(M †
1dξ +M1dξ̄)

= −i
∫

γ

∂f ⊗ f † − (∂f † · f)P̃
f † · f dξ +

f ⊗ ∂̄f † − (f † · ∂̄f)P̃
f † · f dξ̄ ,(43)

or

X(ξ, ξ̄) = i

∫

γ

(L†
1dξ + L1dξ̄)

= i

∫

γ

f ⊗ ∂f † − (∂f † · f)P̃
f † · f dξ +

∂̄f ⊗ f † − (f † · ∂̄f)P̃
f † · f dξ̄ , (44)

respectively. As a consequence of (41), (43) and (44), it can be shown that

the two different Weierstrass data (L1, L
†
1) or (M1,M

†
1 ) correspond to different

parametrizations of the same surface F in the su(N) algebra.
In this case, the quantity J takes the simple form

J1 =
∂f † · ∂f
f † · f −

(
f † · ∂f
f † · f

)2

, J̄1 =
∂̄f † · ∂̄f
f † · f −

(
∂̄f † · f
f † · f

)2

. (45)

Using the conservation laws (12) and DCs (31) for the function f , we find that
J1 is a holomorphic function, e.g., ∂̄J1 = 0 whenever (12) and (31) hold. As a
consequence of (43), (44) and (45), the components of the induced metric are

gξξ = −J1 , gξ̄ξ̄ = −J̄1 , gξξ̄ =
∂̄f † · ∂f
f † · f − (∂̄f † · f)(f † · ∂f)

(f † · f)2 , (46)

which completes the proof. �

Note that the complex-valued vector function C ∋ ξ → f(ξ) ∈ C
N\{0}

is a holomorphic (∂̄f = 0) solution of the CPN−1 model (12) if and only if
the generalized Weierstrass formula for the immersion of a surface F has the
skew-Hermitian form

X(ξ, ξ̄) = −iP ∈ su(N) . (47)

If f is holomorphic, i.e., ∂̄f = 0, then by virtue of equations (39) and the
differential consequences of the identity (IN − P )P = 0, we obtain

M = 0 , ∂̄P P = 0 . (48)

Using the differential consequences for the projector P , we get

∂̄P P = 0 , P ∂P = 0 ,

∂̄P = P ∂̄P , ∂P = ∂PP . (49)
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Substituting (49) into (13), we obtain

K = −∂̄P , K† = −∂P . (50)

Hence, the Weierstrass formula for immersion (22) of F is expressed in terms
of the projector P and is a skew-Hermitian matrix given by (47). This result
coincides with the one obtained in [29].

The converse is also true. Indeed, if we assume that the Weierstrass formula
for immersion (22) of F is a projector P then the differential of X leads to
(50). Using the differential consequences of the relation P 2 = P , we obtain the
relations (49) which lead to M = 0. In view of equations (39), this implies that,
in the generic case, solutions of the CPN−1 model (12) must be holomorphic.

Also, note that in the case of the holomorphic solutions of the CPN−1 model,
the corresponding complex-valued function (15) vanishes, i.e.,

J =
1

f † · f ∂f
†P∂f = 0 . (51)

An analogous statement can be made for anti-holomorphic solutions (∂f =
0) of equation (12). For this case, we have

L = 0 , P ∂̄P = 0 , ∂P P = 0 . (52)

Hence, from (13), the matrices K and K† become

K = ∂̄P , K† = ∂P . (53)

Finally, one can see that the Weierstrass formula for immersion of F is the
skew-Hermitian form

X(ξ, ξ̄) = iP ∈ su(N) . (54)

4 The Lie-point symmetries of the CPN−1 sigma

models

In this section, we present the explicit formulae for the Lie-point symmetries
of the CPN−1 model (12) for arbitrary N . To do so, we first compute the
symmetries for the CP 1, CP 2 and CP 3 models. We then generalize the results to
the CPN−1 case by induction. For the computation of the Lie-point symmetries,
we search for the most general (point) transformations of the independent and
dependent variables which leave the solution set of (12) invariant. Locally, such
transformations are given by a vector field of the form [30]

~v = η1∂ + η2∂̄ +

N−1∑

j=1

Φ1
j∂wj +

N−1∑

j=1

Φ2
j∂w̄j , (55)

where η1, η2, Φ1
j and Φ2

j are functions of ξ, ξ̄ and the affine coordinates w1, w̄1,
. . ., wN−1, w̄N−1. According to the symmetry criterion [30], the second pro-
longation of ~v acting on (12) must vanish on the solution set of (12). This
requirement leads to the so-called determining equations, whose solution yields
the functions η1, η2, Φ1

j and Φ2
j .
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Generating the determining equations is entirely algorithmic. Reducing
and solving them can be done fully automatic with sophisticated software, or,
perhaps more reliably, by interactively adding information extracted from the
simplest determining equations before computing the full set. Many software
packages have been written to perform Lie symmetry computations. In-depth
reviews of such packages can be found in [31, 32, 33, 34].

For low dimensions, e.g., for N ≤ 4, we did the computations independently
with SYMMGRP.MAX and by hand. For the latter, we took advantage of the
discrete symmetries of the model. For the CPN−1 models with N ≥ 4, after
eliminating all single-term determining equations and their differential conse-
quences, we were left with several hundred of determining equations. Using
SYMMGRP.MAX interactively, these determining equations were further re-
duced and eventually completely solved.

We now discuss the Lie-point symmetries of the CPN−1 models for N = 2, 3,
and 4, separately.

The equations for the CP 1 model, expressed in terms of the homogeneous
coordinate w1 defined in (17), are given by

∂∂̄w1 −
2w̄1

A1
∂w1∂̄w1 = 0 , ∂∂̄w̄1 −

2w1

A1
∂w̄1∂̄w̄1 = 0 , (56)

where A1 = 1 + w1w̄1. The general solution of the determining equations asso-
ciated with vector field (55) is given by

η1 = η1(ξ) , η2 = η2(ξ̄) ,

Φ1
1 = α1w1

2 + β1w1 + γ1 ,

Φ2
1 = γ1w̄

2
1 − β1w̄1 + α1 , (57)

where η1 and η2 are arbitrary functions of ξ and ξ̄, respectively and α1, β1 and
γ1 are arbitrary constants. Thus, the corresponding symmetry algebra L1 is
spanned by five generators, namely

X1 = η1(ξ)∂ , X2 = η2(ξ̄)∂̄ ,

X3 = w1
2∂w1

+ ∂w̄1
,

X4 = w1∂w1
− w̄1∂w̄1

,

X5 = ∂w1
+ w̄ 2

1 ∂w̄1
. (58)

The algebra L1 can be decomposed as a direct sum of two infinite-dimensional
simple Lie algebras and the su(2) algebra generated by {X3, X4, X5}, i.e.,

L1 = {X1} ⊕ {X2} ⊕ su(2) . (59)

Likewise, in terms of homogeneous coordinates w1 and w2 in (17), the equa-
tions for the CP 2 model read

∂∂̄w1 −
2w̄1

A2
∂w1∂̄w1 −

w̄2

A2
(∂w1∂̄w2 + ∂̄w1∂w2) = 0 ,

∂∂̄w2 −
2w̄2

A2
∂w2∂̄w2 −

w̄1

A2
(∂w1∂̄w2 + ∂̄w1∂w2) = 0 ,

∂∂̄w̄1 −
2w1

A2
∂w̄1∂̄w̄1 −

w2

A2
(∂̄w̄1∂w̄2 + ∂w̄1∂̄w̄2) = 0 ,

∂∂̄w̄2 −
2w2

A2
∂w̄2∂̄w̄2 −

w1

A2
(∂̄w̄1∂w̄2 + ∂w̄1∂̄w̄2) = 0 , (60)
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where A2 = 1 + w1w̄1 + w2w̄2. Upon integration, the determining equations
yield

η1 = η1(ξ) , η2 = η2(ξ̄) ,

Φ1
1 = k1w1

2 + k2w1w2 + k4w1 + k5w2 + k6 ,

Φ1
2 = k2w2

2 + k1w1w2 + k3w2 + k7w1 + k8 ,

Φ2
1 = k6w̄

2
1 + k8w̄1w̄2 − k4w̄1 − k7w̄2 + k1 ,

Φ2
2 = k8w̄

2
2 + k6w̄1w̄2 − k3w̄2 − k5w̄1 + k2 , (61)

where ki (i = 1, . . . , 8) are arbitrary constants. The associated symmetry alge-
bra L2 of (60) is thus spanned by the following ten generators:

X1 = η1(ξ)∂ , X2 = η2(ξ̄)∂̄ ,

X3 = w1
2∂w1

+ w1w2∂w2
+ ∂w̄1

,

X4 = w1w2∂w1
+ w2

2∂w2
+ ∂w̄2

,

X5 = w2∂w2
− w̄2∂w̄2

,

X6 = w1∂w1
− w̄1∂w̄1

,

X7 = w2∂w1
− w̄1∂w̄2

,

X8 = ∂w1
+ w̄ 2

1 ∂w̄1
+ w̄1w̄2∂w̄2

,

X9 = w1∂w2
− w̄2∂w̄1

,

X10 = ∂w2
+ w̄1w̄2∂w̄1

+ w̄ 2
2 ∂w̄2

. (62)

As in the previous case, the symmetry algebra L2 can be decomposed as a direct
sum of two infinite-dimensional simple Lie algebras and the su(3) algebra.

In like fashion, in terms of w1, w2 and w3 in (17), the equations for the CP 3

model are

∂∂̄w1 −
2w̄1

A3
∂w1∂̄w1 −

w̄2

A3
(∂w1∂̄w2 + ∂̄w1∂w2)−

w̄3

A3
(∂w1∂̄w3 + ∂̄w1∂w3) = 0 ,

∂∂̄w2 −
2w̄2

A3
∂w2∂̄w2 −

w̄1

A3
(∂w1∂̄w2 + ∂̄w1∂w2)−

w̄3

A3
(∂w2∂̄w3 + ∂̄w2∂w3) = 0 ,

∂∂̄w3 −
2w̄3

A3
∂w3∂̄w3 −

w̄1

A3
(∂w1∂̄w3 + ∂̄w1∂w3)−

w̄2

A3
(∂w2∂̄w3 + ∂̄w2∂w3) = 0 ,

∂∂̄w̄1 −
2w1

A3
∂w̄1∂̄w̄1 −

w2

A3
(∂w̄1∂̄w̄2 + ∂̄w̄1∂w̄2)−

w3

A3
(∂w̄1∂̄w̄3 + ∂̄w̄1∂w̄3) = 0 ,

∂∂̄w̄2 −
2w2

A3
∂w̄2∂̄w̄2 −

w1

A3
(∂w̄1∂̄w̄2 + ∂̄w̄1∂w̄2)−

w3

A3
(∂w̄2∂̄w̄3 + ∂̄w̄2∂w̄3) = 0 ,

∂∂̄w̄3 −
2w3

A3
∂w̄3∂̄w̄3 −

w1

A3
(∂w̄1∂̄w̄3 + ∂̄w̄1∂w̄3)−

w2

A3
(∂w̄2∂̄w̄3 + ∂̄w̄2∂w̄3) = 0 ,

(63)

where A3 = 1+w1w̄1+w2w̄2+w3w̄3. After straightforward but long calculations
the determining equations yield

η1 = η1(ξ) , η2 = η2(ξ̄) ,

Φ1
1 = c1w1

2 + c2w1w2 + c3w1w3 + c7w1 + c10w2 + c11w3 + c4 ,

Φ1
2 = c2w2

2 + c1w1w2 + c3w2w3 + c13w1 + c8w2 + c12w3 + c5 ,

11



Φ1
3 = c3w3

2 + c1w1w3 + c2w2w3 + c14w1 + c15w2 + c9w3 + c6 ,

Φ2
1 = c4w̄

2
1 + c5w̄1w̄2 + c6w̄1w̄3 − c7w̄1 − c13w̄2 − c14w̄3 + c1 ,

Φ2
2 = c5w̄

2
2 + c4w̄1w̄2 + c6w̄2w̄3 − c10w̄1 − c8w̄2 − c15w̄3 + c2 ,

Φ2
3 = c6w̄

2
3 + c4w̄1w̄3 + c5w̄2w̄3 − c11w̄1 − c12w̄2 − c9w̄3 + c3 , (64)

where ci (i = 1, . . . , 15) are arbitrary constants. Hence, the generators corre-
sponding to the symmetry algebra L3 of (63) are given by

X1 = η1(ξ)∂ , X2 = η2(ξ̄)∂̄ ,

Si = wi∂wi − w̄i∂w̄i ,

Tij = wi∂wj − w̄j∂w̄i , i 6= j ,

Yi = w2
i ∂wi +

3∑

j 6=i

wiwj∂wj + ∂w̄i ,

Zi = w̄2
i ∂w̄i +

3∑

j 6=i

w̄iw̄j∂w̄j + ∂wi , (65)

where i, j = 1, 2, 3. From Si, Yi and Zi we get nine generators; from Tij we
obtain six generators. The symmetry algebra L3 can be written as a direct sum
of two infinite-dimensional simple Lie algebras and su(4). The results for the
low-dimensional cases reveal an emerging pattern: the symmetry algebra is a
direct sum of two infinite-dimensional Lie algebras and a finite-dimensional one.
Furthermore, the finite-dimensional part of the symmetry algebras for the CP 1,
CP 2 and CP 3 models are associated with the su(2), su(3) and su(4) algebras,
respectively.

We now turn to the CPN−1 model for arbitrary N . In homogeneous coor-
dinates wi, the equations are

∂∂̄wi −
2w̄i

AN−1
∂wi∂̄wi −

1

AN−1

N−1∑

j 6=i

w̄j(∂wi∂̄wj + ∂̄wi∂wj) = 0 ,

∂∂̄w̄i −
2wi

AN−1
∂w̄i∂̄w̄i −

1

AN−1

N−1∑

j 6=i

wj(∂w̄i∂̄w̄j + ∂̄w̄i∂w̄j) = 0 , (66)

where i = 1, 2, ..., N − 1 and AN−1 = 1 +
∑N−1

i wiw̄i.
By induction, it can be shown that the symmetry algebra LN−1 of (66) is

generated by

X1 = η1(ξ)∂ , X2 = η2(ξ̄)∂̄ ,

Si = wi∂wi − w̄i∂w̄i ,

Tij = wi∂wj − w̄j∂w̄i , i 6= j ,

Yi = w2
i ∂wi +

N−1∑

j 6=i

wiwj∂wj + ∂w̄i ,

Zi = w̄2
i ∂w̄i +

N−1∑

j 6=i

w̄iw̄j∂w̄j + ∂wi , (67)
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where i, j = 1, 2, ..., N − 1. Furthermore, it can be shown that the symmetry
algebra LN−1 is a direct sum of two infinite-dimensional Lie algebras and the
su(N) algebra, i.e.,

LN−1 = {X1} ⊕ {X2} ⊕ su(N) . (68)

Finally, we consider two limiting cases:

1. If wN−1 → 0 then the CPN−1 model reduces to the CPN−2 model. Also, if
all N−2 homogeneous coordinates vanish, then the CPN−1 model reduces
to the CP 1 model.

2. If wi → w√
N−1

for i = 1, . . . , N − 1, then the CPN−1 model reduces to the

CP 1 model.

Hence, in the CP 1 case, we have a significant simplification.

5 Immersion of surfaces into the su(3) algebra

arising from the CP
2 sigma model

In this section we explore the metric aspects of surfaces immersed in the su(3) al-
gebra associated with the CP 2 model. From the properties of the Hermitian ma-
trix ∂K we determine explicitly a moving frame on a conformally parametrized
surface F in R8. We also derive the corresponding Gauss-Weingarten equations
expressed in terms of any holomorphic solution of the CP 2 model. This in-
vestigation is a follow-up to earlier work [6, 7]. It allows us to communicate
our new insights into the subject, as well as to present additional geometric
characteristics of surfaces obtained from the model.

The assumption that the set {w1, w2} is a holomorphic solution of the equa-
tions for the CP 2 model implies that the quantity J in (15) vanishes. The
induced metric on F given in (26) is then conformal. In the CP 2 case, the 3× 3
projector matrix in (10) reads

P = I3 −
1

A2




1 w1 w2

w̄1 w1w̄1 w2w̄1

w̄2 w1w̄2 w2w̄2


 , (69)

where I3 is the 3 × 3 identity matrix. Assume that we are dealing with the
generic case. That is, where the projector P is a solution of the Euler-Lagrange
equations (60) such that the induced metric g has a non-vanishing determinant
in some neighbourhood of a regular point (ξ0, ξ̄0) ∈ Ω ⊂ C. Further assume
that a conformally parametrized surface F , given by (22) and associated with
the CP 2 model is described by a moving frame on F in R

8

~τ = (η1 = ∂X, η2 = ∂̄X, η3, . . . , η8)
T , (70)

where superscript T stands for transpose. Here, the vectors η1, . . . , η8 are iden-
tified with 3 × 3 skew-Hermitian matrices through the isomorphism (18). Fur-
thermore, assume that the vectors form an orthonormal set,

(ηj , ηk) = δjk , j, k = 1, . . . , 8 , (71)
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where δjk is the Kronecker delta. Due to the normalization of the su(3)-valued
function X on Ω, we can express the moving frame in (70) on F in terms
of the adjoint SU(3) representation. In the neighbourhood of a regular point
p = (ξ0, ξ̄0) ∈ C an orthonormal moving frame ~τ on F satisfies

η1 = ie
u
2 φ†y−φ ,

η2 = ie
u
2 φ†y+φ ,

ηj = φ†sjφ , j = 3, . . . , 8 , (72)

where u is a real-valued function of ξ and ξ̄. The function φ in (72) belongs to
SU(3) and can be decomposed into the product of three SU(2) factors, i.e.,

φ =




1 0 0
0 a1 b1
0 −b̄1 ā1







eiϕ cosα − sinα 0
sinα e−iϕ cosα 0
0 0 1







1 0 0
0 a2 b2
0 −b̄2 ā2


 ,

(73)
where ai, bi i = 1, 2 are complex-valued functions of ξ and ξ̄, subject to the
constraints |ai|2+ |bi|2 = 1 and α, ϕ are real-valued functions of ξ, ξ̄ ∈ C. Here,
the set {s1, . . . , s8} forms an orthonormal basis of the Lie algebra su(3) (e.g.,
the so-called Gell-Mann matrices [35]) given by

s1 =




0 0 0
0 0 −i
0 −i 0


 , s2 =




0 0 0
0 0 −1
0 1 0


 , s3 =




0 0 0
0 −i 0
0 0 i


 ,

s4 = 1√
3




−2i 0 0
0 i 0
0 0 i


 , s5 =




0 −1 0
1 0 0
0 0 0


 , s6 =




0 0 −1
0 0 0
1 0 0


 ,

s7 =




0 i 0
i 0 0
0 0 0


 , s8 =




0 0 i
0 0 0
i 0 0


 . (74)

These matrices satisfy the following trace condition

tr(si sj) = −2δij . (75)

We also introduced the following notation

y− =
i

2
(s1 − is2) =




0 0 0
0 0 0
0 1 0



 , y+ =
i

2
(s1 + is2) =




0 0 0
0 0 1
0 0 0



 .

(76)
As a direct consequence of the moving frame (72) we get

(φ†y−φ)
† = φ†y+φ . (77)

Note that, over the space R, the set {y−, y+} spans the same space as {s1, s2}.
Requiring that the parameterization of a surface F be conformal leads to

the following conditions:

gξξ = (∂X, ∂X) = −1

2
eutr(y−)

2 = 0 ,

gξ̄ξ̄ = (∂̄X, ∂̄X) = −1

2
eutr(y+)

2 = 0 ,

gξξ̄ = (∂X, ∂̄X) =
1

2
eutr(y−y+) =

1

2
eu , (78)
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and

(∂X, ηj) = −1

2
e
u
2 tr(y−sj) = 0 ,

(∂̄X, ηj) = −1

2
e
u
2 tr(y+sj) = 0 ,

(ηj , ηk) = −1

2
tr(sjsk) = δjk , (79)

where j, k = 3, . . . , 8. Thus, we have the following proposition.

Proposition 2 In the adjoint SU(3) representation, the moving frame (72)
of a conformally parametrized surface F is described in terms of holomorphic
solutions {w1, w2} of the CP 2 equations (60) by the formulae

η1 = − i
A2

2




δ β γ
w̄1δ w̄1β w̄1γ
w̄2δ w̄2β w̄2γ


 , η2 = − i

A2
2




δ̄ w1δ̄ w2δ̄
β̄ w1β̄ w2β̄
γ̄ w1γ̄ w2γ̄


 , (80)

and
u = ln(

ρ

A2
2 ) , (81)

where we define

δ = w̄1∂w1 + w̄2∂w2 ,

β = w1w̄2∂w2 − (1 + |w2|2)∂w1 ,

γ = w̄1w2∂w1 − (1 + |w1|2)∂w2 ,

ρ = |∂w1|2 + |∂w2|2 + |w2∂w1 − w1∂w2|2 . (82)

Proof Using the polar decomposition of the SU(3) group given by (73), and
calculating the products in the frame (72), yields

η1 = ie
u
2




−a1b1 sin2 α −b1 sinα ζ −b1 sinα µ
χ a1 sinα χ ζ χ µ
ν a1 sinα ν ζ ν µ



 ,

η2 = ie
u
2




−ā1b̄1 sin2 α χ̄ ā1 sinα ν̄ ā1 sinα
−b̄1 sinα ζ̄ χ̄ ζ̄ ν̄ ζ̄
−b̄1 sinα µ̄ χ̄ µ̄ ν̄ µ̄



 , (83)

where

χ = −a1b2 − ā2b1e
iϕ cosα , ζ = −b1b̄2 + a1a2e

−iϕ cosα ,

µ = ā2b1 + a1b2e
−iϕ cosα , ν = a1a2 − b1b̄2e

iϕ cosα . (84)

Comparing (80) with (83) we obtain an underdetermined system of eight equa-
tions for nine unknown functions ai, bi ∈ C, i = 1, 2 and α, ϕ, u ∈ R. This
system has a unique solution up to a U(1) transformation. In other words, the
phase eiϕ remains arbitrary.

A straightforward algebraic computation gives ai, bi and α in terms of the
fields w1 and w2 for the CP 2 model. Explicitly,

a1 =

√
δ κ

A2 sinα
e−u/4 , b1 =

√
δ/κ

A2 sinα
e−u/4 ,
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a2 = −e
iϕ∂̄w̄2(w2∂w1 − w1∂w2)

ρ sinα cosα
, b2 =

eiϕ∂̄w̄1(w2∂w1 − w1∂w2)

ρ sinα cosα
,

sin2 α =
|∂w1|2 + |∂w2|2

ρ
, cos2 α =

|w2∂w1 − w1∂w2|2
ρ

, (85)

with u as in (81) and

κ =
δ cosα

w2∂w1 − w1∂w2
e−iϕ . (86)

With the above, we can determine the moving frame (72) on F , expressed in
terms of the w1 and w2, in the required form (80). That ends the proof since
by direct computation one can check that the compatibility conditions, i.e.,
∂∂̄X = ∂̄∂X, for (72) are trivially satisfied. �

Remark: The explicit expressions for the complex normals η3, . . . , η8 to this
surface immersed in su(3) have been calculated. However, the resulting expres-
sions (in terms of w1 and w2) are rather involved. A specific example is given
in Appendix A.

The real-valued function u given by (85) represents the total energy [27] of
the CP 2 model defined over S2, since

u = 2 ln(|Dz|2 + |D̄z|2) , (87)

holds.
Using the components of the induced metric (26), we can write the nonzero

Christoffel symbols of the second kind as

Γ1
11 =

1

q
∂q , Γ2

22 =
1

q
∂̄q . (88)

In this case, q defined in (25), becomes

q =
|∂w1|2 + |∂w2|2 + |w1∂w2 − w2∂w1|2

2 (1 + |w1|2 + |w2|2)2
. (89)

Finally, taking into account (71), (78) and (79), the moving frame (70) on
F satisfies the following Gauss-Weingarten equations

∂2X =
∂q

q
∂X + Jjηj ,

∂∂̄X = Hjηj ,

∂ηj = −2
A2

2

ρ
(Hj∂X + Jj ∂̄X) + Sjkηk , (90)

and

∂̄2X =
∂̄q

q
∂̄X + J̄jηj ,

∂̄∂X = Hjηj ,

∂̄ηj = −2
A2

2

ρ
(J̄j∂X +Hj ∂̄X) + S̄jkηk , (91)

where

Jj = −1

2
tr(∂2X ηj) , Hj = −1

2
tr(∂∂̄X ηj) , (92)
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and
Sjk + Skj = 0 , S̄jk + S̄kj = 0 , j 6= k = 3, . . . , 8 . (93)

The Gauss-Codazzi-Ricci equations, which are the compatibility conditions
for (90) and (91), coincide with the equations of the CPN−1 model. However,
the explicit forms of the coefficients Hj and Jj depend locally on the chosen
orthonormal basis {η3, . . . , η8} of the space normal to the surface F at a given
point p = (ξ0, ξ̄0) ∈ X . Note that quantities Hj and Jj are not completely
arbitrary. Using (78) and the fact that J = 0, it becomes clear that the complex
tangent vectors have to satisfy the following differential constraints

(∂2X , ∂̄∂X) = 0 , (∂̄2X , ∂∂̄X) = 0 . (94)

For any holomorphic solution (wi, w̄i) i = 1, 2 of the CP 2 model, we com-
puted explicitly the form of the first and second fundamental forms, I and II,
and the mean curvature vector H of a conformally parametrized surface F at
some regular point p = (ξ0, ξ̄0) ∈ X. They are

I =
ρ

A2
2 dξdξ̄ ,

II =

(
∂2X − ∂q

q
∂X

)
dξ2 + 2∂∂̄Xdξdξ̄ +

(
∂̄2X − ∂̄q

q
∂̄X

)
dξ̄2 ,

H =
2

q
∂∂̄X , (95)

respectively. The second derivatives of the Weierstrass representation X can be
computed from (83).

One can also compute some of the global properties of surfaces associated
with the CP 2 sigma model, using the well-known formulae (see e.g., [36, 37]).
For instance, for any set of holomorphic solutions (wi, w̄i), i = 1, 2, of the CP 2

model, the Willmore functional assumes the form

W = −4i

∫

Ω

1

q
[∂P, ∂̄P ]2dξdξ̄ , (96)

whose values depend only on the fields and their derivatives on the boundary
∂Ω of the open set Ω.

Under the above assumptions and provided that the CP 2 model is defined
on the whole Riemannian sphere S2, the topological charge becomes

Q = − 1

8π

∫

S2

q dξdξ̄ . (97)

If the above integral exists, then it is an integer which globally characterizes the
surface.

6 The Weierstrass formula for immersion of sur-

faces in the su(2) and su(3) algebras

In this section we apply the general idea of Weierstrass representation of surfaces
given in Section 3 to two specific cases, namely, the CP 1 and CP 2 models.

17



For each case, we first find the concrete form of the generalized Weierstrass
representation of surfaces associated with these models and then we give the
corresponding Weierstrass data for the holomorphic solutions.

It is known [6, 7] that, with the projector P given by (10), one can compute
explicitly the formula for immersion (22) in terms of the complex fields wi of
the equations of motion of the model.

We start with the case N = 2. The orthogonal projector P and matrix K
are then given by

P = I2 −
1

A1

(
1 w1

w̄1 w1w̄1

)
, (98)

and

K =
1

A1
2

(
w̄1∂̄w1 − w1∂̄w̄1 −(∂̄w1 + w2

1 ∂̄w̄1)
(∂̄w̄1 + w̄2

1 ∂̄w1) w1∂̄w̄1 − w̄1∂̄w1

)
, (99)

where, as usual, w1 is the homogeneous coordinate defined by (17). Based on
the expression of the matrix K for the CP 1 model, the Weierstrass data follows
from (20). In order to obtain real-valued 1-forms we decompose dX given in
(20) into its real and imaginary parts,

dX = dX1 + idX2 . (100)

So,

dX1 =
i

2

[
(K† − K̄)dξ + (K −KT )dξ̄

]
,

dX2 =
1

2

[
(K† + K̄)dξ + (K +KT )dξ̄

]
. (101)

It is easily seen that dX1 is skew-symmetric and dX2 is symmetric. Realizing
that the 2D surface associated with the CP 1 model is immersed in the su(2)
algebra, the two real-valued 1-forms can also be expressed in terms of the Pauli
matrices. Since dX1 is skew-symmetric and dX2 is symmetric, the 1-forms can
be represented as

dX1 = idX2σ2 , dX2 = dX1σ1 + dX3σ3 , (102)

where σ1, σ2 and σ3 are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (103)

After substituting the matrix K from (99) into (101) and comparing the result
with (102), it is easy to see that the real-valued 1-forms dXi, i = 1, 2, 3, can be
expressed in terms of the solutions of the Euler-Lagrange equations of the CP 1

model. Indeed,

dX1 =
1

2A1
2

([
(1− w̄2

1)∂w1 − (1− w2
1)∂w̄1

]
dξ + c.c.

)
,

dX2 =
i

2A1
2

([
(1 + w2

1)∂w̄1 + (1 + w̄2
1)∂w1

]
dξ − c.c.

)
,

dX3 =
1

A1
2

([
w1∂w̄1 − w̄1∂w1

]
dξ + c.c.

)
, (104)
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where “c.c.” denotes the complex conjugate. In fact, these real-valued 1-forms
constitute the generalized Weierstrass formula for immersion for the CP 1 model.

Now, we further restrict ourselves to the holomorphic solutions of the CP 1

model. This restriction is necessary if the model is defined on S2 with a finite
action [27]. Using holomorphic solutions, dXi, i = 1, 2, 3, can be reduced into

dX1 =
1

2
∂

(
w1 + w̄1

A1

)
dξ + c.c. ,

dX2 =
i

2

[
∂

(
w1 − w̄1

A1

)
dξ − c.c.

]
,

dX3 = −∂
( |w1|2

A1

)
dξ + c.c. . (105)

Integration gives

X1 =
w1 + w̄1

2A1
, X2 = i

w1 − w̄1

2A1
, X3 = −|w1|2

A1
, (106)

where the constants of integration are set to zero.
It is well-known that the 2D surface associated with the holomorphic solu-

tions of the CP 1 model is the surface of a sphere [27]. Confirmation of that
result follows from (106). Indeed, upon elimination of w1 and w̄1, we obtain

X2
1 +X2

2 +

(
X3 +

1

2

)2

=
1

4
. (107)

So, all points of the 2D surface lie on the surface of a sphere of radius 1/2
centered at (0, 0,−1/2).

We now consider the case N = 3. The corresponding orthogonal projector
P is given in (69) and matrix K = −iη2 with η2 in (80). Since the 2D surface
associated with the CP 2 model is immersed in the su(3) algebra, the two real-
valued 1-forms, dX1 and dX2, obtained by decomposing dX = i(K†dξ +Kdξ̄)
into real and imaginary parts, can be expressed in terms of the orthonormal
basis of the Lie algebra su(3). Keeping in mind that dX1 is skew-symmetric
and dX2 is symmetric, the real-valued 1-forms are given by

dX1 = dX2s2 + dX5s5 + dX6s6 ,

dX2 = i
(
dX1s1 + dX3s3 + dX4s4 + dX7s7 + dX8s8

)
, (108)

where the Gell-Mann matrices si, i = 1, . . . , 8, are given in (74).
Using K = −iη2 and comparing (101) with (108), it follows that the real-

valued 1-forms dXi, i = 1, . . . , 8, can be expressed in terms of the solutions of
the Euler-Lagrange equations of the CP 2 model as

dX1 =
1

2A2
2

([
(w2

2 − w2
1)(w̄1∂w̄2 − w̄2∂w̄1)− (w̄2

2 − w̄2
1)(w1∂w2 − w2∂w1)

−w2∂w̄1 + w̄2∂w1 − w1∂w̄2 + w̄1∂w2

]
dξ + c.c.

)
,

dX2 =
i

2A2
2

([
(w2

1 + w2
2)(w̄2∂w̄1 − w̄1∂w̄2) + (w̄2

1 + w̄2
2)(w2∂w1 − w1∂w2)

+w2∂w̄1 + w̄2∂w1 − w1∂w̄2 − w̄1∂w2

]
dξ − c.c.

)
,
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dX3 =
1

2A2
2

([
w2∂w̄2 − w1∂w̄1 − w̄2∂w2 + w̄1∂w1

+2|w1|2(w2∂w̄2 − w̄2∂w2)− 2|w2|2(w1∂w̄1 − w̄1∂w1)
]
dξ + c.c.

)
,

dX4 =

√
3

2A2
2

([
w1∂w̄1 + w2∂w̄2 − w̄1∂w1 − w̄2∂w2

]
dξ + c.c.

)
,

dX5 = − i

2A2
2

([
(1 + w̄2

1 + |w2|2)∂w1 + (1 + w2
1 + |w2|2)∂w̄1

+(w2∂w̄2 − w̄2∂w2)(w1 − w̄1)
]
dξ − c.c.

)
,

dX6 = − i

2A2
2

([
(1 + w̄2

2 + |w1|2)∂w2 + (1 + w2
2 + |w1|2)∂w̄2

+(w1∂w̄1 − w̄1∂w1)(w2 − w̄2)
]
dξ − c.c.

)
,

dX7 =
1

2A2
2

([
(1− w2

1 + |w2|2)∂w̄1 − (1− w̄2
1 + |w2|2)∂w1

+(w̄2∂w2 − w2∂w̄2)(w1 + w̄1)
]
dξ + c.c.

)
,

dX8 =
1

2A2
2

([
(1− w2

2 + |w1|2)∂w̄2 − (1− w̄2
2 + |w1|2)∂w2

+(w̄1∂w1 − w1∂w̄1)(w2 + w̄2)
]
dξ + c.c.

)
. (109)

These eight real-valued 1-forms constitute the generalized Weierstrass formula
for immersion for the CP 2 model.

Remark: Note that the reflection transformations in independent or dependent
variables and their complex conjugates preserve the form of the CP 2 model.
So does the generalized SU(2) transformation. Indeed, if the complex-valued
functions u1 and u2 are solutions of the CP 2 model, then the complex-valued
functions w1 and w2 defined by the generalized SU(2) transformation,

w1 → a2u1 − b2u2 −
√
2 a b√

2(a b̄ u1 + ā b u2) + |a|2 − |b|2
,

w2 → −b̄2u1 + ā2u2 −
√
2 ā b̄√

2(a b̄ u1 + ā b u2) + |a|2 − |b|2
, (110)

for a, b ∈ C such that |a|2 + |b|2 = 1, are also solutions of the CP 2 model.
These transformations can be used to restrict the range of parameters ap-

pearing in the explicit form of solutions of the CP 2 model. They allow one to
simplify the Weierstrass representation.

Again, we restrict ourselves to the holomorphic solutions of the CP 2 model.
In that case, the eight real-valued 1-forms dXi, i = 1, . . . , 8, are

dX1 =
1

2
∂

(
w1w̄2 + w̄1w2

A2

)
dξ + c.c. ,

dX2 =
i

2

[
∂

(
w1w̄2 − w̄1w2

A2

)
dξ − c.c.

]
,

dX3 =
1

2
∂

( |w1|2 − |w2|2
A2

)
dξ + c.c. ,
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dX4 = −
√
3

2
∂

( |w1|2 + |w2|2
A2

)
dξ + c.c. ,

dX5 = − i

2

[
∂

(
w1 − w̄1

A2

)
dξ − c.c.

]
,

dX6 = − i

2

[
∂

(
w2 − w̄2

A2

)
dξ − c.c.

]
,

dX7 = −1

2
∂

(
w1 + w̄1

A2

)
dξ + c.c. ,

dX8 = −1

2
∂

(
w2 + w̄2

A2

)
dξ + c.c. . (111)

Ignoring integration constants, after integration we obtain

X1 =
w1w̄2 + w̄1w2

2A2
, X2 = i

w1w̄2 − w̄1w2

2A2
, X3 =

|w1|2 − |w2|2
2A2

,

X4 = −
√
3
|w1|2 + |w2|2

2A2
, X5 = −iw1 − w̄1

2A2
, X6 = −iw2 − w̄2

2A2
,

X7 = −w1 + w̄1

2A2
, X8 = −w2 + w̄2

2A2
, (112)

which determines the coordinates of the radius vector ~X = (X1, . . . , X8) of a
two-dimensional surface in R

8.
Note that in the limiting cases wi → w/

√
2, i = 1, 2, or w1 → 0, or w2 →

0, the generalized Weierstrass formula (109) for immersion of the CP 2 model
reduces (after straightforward manipulations) to the generalized Weierstrass
formula (104) for immersion of the CP 1 model. Consequently, the coordinates

of radius vector ~X in (112) for the holomorphic solutions of the CP 2 model

then reduce to the coordinates of ~X in (106) for the holomorphic solutions of
the CP 1 model.

When dealing with the 2D surface associated with the holomorphic solutions
of the CP 2 model, all points lie on the affine sphere,

4X2
1 + 4X2

2 + 4X2
3 +

2√
3
X4 +X2

5 +X2
6 +X2

7 +X2
8 = 0 . (113)

It is straightforward to show that the coordinates of the radius vector (112)
satisfy (113).

7 Examples of surfaces associated with the CP
N−1

sigma models

Using elementary examples, we will illustrate the concept of constructing sur-
faces associated with the CPN−1 model.

7.1 Examples of holomorphic solutions of the CP 2 sigma

model

From the form of the CP 2 model, it is readily seen that the holomorphic func-
tions are solutions of the CP 2 model. We now concentrate on the following class
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of holomorphic solutions of the CP 2 model:

w1 = a1ξ
m , w2 = a2ξ

n , (114)

where a1 and a2 are complex constants and m and n are real constants. For
holomorphic solutions J = 0 and the induced metric is conformal. Using the
solutions in (114), that metric is given by

I =
|a1|2|ξ|2m(m2 + |a2|2(m− n)2|ξ|2n) + |a2|2n2|ξ|2n

|ξ|2(1 + |a1|2|ξ|2m + |a2|2|ξ|2n)2
dξdξ̄ . (115)

The Gaussian curvature K is computed from (28). After simplification,

K = 4− 2|a1|2|a2|2m2n2(m− n)2|ξ|2(m+n)(1 + |a1|2|ξ|2m + |a2|2|ξ|2n)3(
|a1|2|ξ|2m(m2 + |a2|2(m− n)2|ξ|2n) + |a2|2n2|ξ|2n

)3 . (116)

In general, K is not constant. However, K is constant for certain values of a1,
a2, m and n. For example, if the second term in (116) vanishes or equals to a
constant, then the surfaces associated with the holomorphic solutions (114) of
the CP 2 model will have constant Gaussian curvature. This happens when

(i) a1 = 0, a2 = 0, m = 0, n = 0 and m = n or a combination thereof. For
these choices the second term in (116) vanishes; or

(ii) n = 2m and |a1|2 = ±2|a2| simultaneously. The second term in (116) then
reduces to a constant.

Not surprisingly, constant Gaussian curvature occurs when a1 = 0 or a2 = 0
because the CP 2 model then reduces to the CP 1 model. Hence, the surfaces
must have constant Gaussian curvature.

We now consider a case of constant Gaussian curvature surfaces associated
with specific holomorphic solutions (114) of the CP 2 model. For simplicity, we
take

w1 = ξ , w2 =
1

2
ξ2 . (117)

The first fundamental form and the Gaussian curvature then are

I =
4

(2 + |ξ|2)2 dξdξ̄ ,

K = 2 . (118)

Upon substitution of (117) into (112), the coordinates of the radius vector ~X
become

X1 =
|ξ|2(ξ + ξ̄)

(2 + |ξ|2)2 , X2 = i
|ξ|2(ξ̄ − ξ)

(2 + |ξ|2)2 , X3 =
|ξ|2(4− |ξ|2)
2 (2 + |ξ|2)2 ,

X4 = −
√
3

2

(
1− 4

(2 + |ξ|2)2
)
, X5 = −i 2(ξ − ξ̄)

(2 + |ξ|2)2 , (119)

X6 = −i (ξ
2 − ξ̄2)

(2 + |ξ|2)2 , X7 = − 2(ξ + ξ̄)

(2 + |ξ|2)2 , X8 = − (ξ2 + ξ̄2)

(2 + |ξ|2)2 .

Of course, the above coordinates satisfy the relation (113). Hence, the surface
associated with the specific solutions (117) of the CP 2 model is an affine sphere.
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7.2 Mixed solutions of the CP 2 sigma model

In this subsection we analyze the mixed solutions of the CP 2 model and give
the first fundamental form, Gaussian curvature and the Weierstrass data for a
specific example. It is well-known [27] that if the CP 2 model is defined over S2

and the finiteness of the action (8) is required, then the solutions of the CP 2

model split into three cases: holomorphic solutions, anti-holomorphic solutions
and mixed ones. Among these, the mixed solutions can be constructed either
from the holomorphic or anti-holomorphic solutions according to the following
procedure [6, 27].

Consider three arbitrary holomorphic functions gi = gi(ξ), i = 1, 2, 3, and
define the Wronskian

Gij = gi∂gj − gj∂gi , i = 1, 2, 3 , (120)

based on any pair. It can be verified that the functions

fi =
3∑

k 6=i

ḡkGki , i = 1, 2, 3 , (121)

are solutions of the CP 2 model. The mixed solutions are associated with the
ratios

w1 =
f1
f3
, w2 =

f2
f3
. (122)

Likewise, mixed solutions can be obtained from anti-holomorphic solutions
by using ∂̄ instead of ∂.

We now continue with the holomorphic functions

g1 = 1 , g2 = sech(ξ) , g3 = tanh(ξ) . (123)

Using the above procedure, the mixed solutions of the CP 2 model are

w1 = tanh(
ξ − ξ̄

2
) , w2 = − tanh(ξ) + tanh(ξ̄)

sech(ξ) + sech(ξ̄)
, (124)

which are of soliton-type. These fields satisfy the equations of the CP 2 model.
J = 0 for this case, as can be readily verified. Hence, the induced metric is
conformal and given by

I =
2

1 + cosh(ξ + ξ̄)
dξdξ̄ . (125)

Note that holomorphicity of the solutions of the CPN−1 model implies that
J = 0. The converse is false as seen from the above example (124).

The Gaussian curvature is computed from the formula given in (28) (since
J = 0) and found to be

K = 1 . (126)

After substituting the solutions (124) into (109) for the CP 2 model, the Weier-
strass representation becomes

dX1 = − sinh(ξ̄)

1 + cosh(ξ + ξ̄)
dξ + c.c. , dX6 = i

[
cosh(ξ̄)

1 + cosh(ξ + ξ̄)
dξ − c.c.

]
,

dX7 = − 1

1 + cosh(ξ + ξ̄)
dξ + c.c. , (127)
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and
dX2 = 0 , dX3 = 0 , dX4 = 0 , dX5 = 0 , dX8 = 0 . (128)

Integrating (127), we obtain the coordinates of the radius vector ~X :

X1 = sech

(
ξ + ξ̄

2

)
cosh

(
ξ − ξ̄

2

)
,

X6 = i sech

(
ξ + ξ̄

2

)
sinh

(
ξ − ξ̄

2

)
,

X7 = − tanh

(
ξ + ξ̄

2

)
, (129)

They satisfy X2
1 + X2

6 + X2
7 = 1. Hence, the constant Gaussian curvature

surface associated with the soliton-like solutions (124) of the CP 2 model is
really immersed in R3 which, in turn, corresponds to the immersion of the CP 2

model into the CP 1 model.

7.3 Examples of surfaces in the su(N) algebra

We briefly discuss the non-splitting solutions (wi, w̄i), i = 1, . . . , N − 1 of the
CPN−1 model invariant under the scaling symmetries {Si} as given in (67). To
do so, we subject system (66) to N − 1 algebraic constraints

wiw̄i = Di ∈ R , i = 1, . . . , N − 1 . (130)

If, for simplicity, we choose Di = 1, then the simplest solutions of this type are

wi =
Fi(ξ)

F̄i(ξ̄)
, i = 1, . . . , N − 1 , (131)

where Fi and F̄i are arbitrary complex-valued functions of one complex variable
each. Substituting (131) into (66), we obtain a class of non-splitting solutions
of the CPN−1 model which depend on one arbitrary complex-valued function
of one variable ξ and its conjugate. Indeed,

w1 =
F1(ξ)

F̄1(ξ̄)
, wj+1 =

cj
c̄j

F1(ξ)
eiψ

F̄1(ξ̄)e
−iψ , j = 1, . . . , N − 2 , (132)

where cj , c̄j are complex constants and

ψ = ±π
3
+ 2πm , m ∈ Z . (133)

For brevity, from now on we suppress the subscript 1 and also the arguments
of the functions F and F̄ . For this class of non-splitting solutions, the induced
metric gij has the following components

gξξ = −N − 3

N2

(F ′)2

F 2
, gξ̄ξ̄ = −N − 3

N2

(F̄ ′)2

F̄ 2
, gξξ̄ =

2N − 3

N2

|F ′|2
|F |2 , (134)

where prime denotes differentiation with respect to the argument. The deter-
minant of the induced metric then is

g = −3(N − 2)

N3

|F ′|4
|F |4 . (135)
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Two interesting examples occur when N = 2 or N = 3. For N = 2, the
determinant of the induced metric vanishes. Hence, the associated surface for
the CP 1 model, subject to the DCs in (130), reduces to a curve in R

3. For
N = 3, the diagonal components of the induced metric vanish (since J = 0).
Hence, we have a conformal metric for the CP 2 model subject to the DCs in
(130).

From (27) and (28) it is straightforward to show that the Gaussian curvature
vanishes for the associated surfaces of the CPN−1 model (N ≥ 3), subject to
the DCs (130). Thus, we conclude that for N ≥ 3 the surfaces associated with
solutions of the CPN−1 model, which are invariant under dilations, always have
zero Gaussian curvature, i.e.,

K = 0 . (136)

Finally, let us give the coordinates of the radius vector ~X for the non-splitting
solutions of the CP 2 model. After substituting the non-splitting solutions (132)
of the CP 2 model into the Weierstrass representation (109) and subsequent

integration, the coordinates of the radius vector ~X in R8 are

X1 =
i

6
√
3 |c|2

|F |−2eiψ (c̄2F − c2F̄ |F |2i
√
3) ,

X2 = − 1

6
√
3 |c|2

|F |−2eiψ (c̄2F + c2F̄ |F |2i
√
3) ,

X3 =
1

6

(
(1− i

√
3)lnF + (1 + i

√
3)lnF̄

)
,

X4 = −1

6

(
(i +

√
3)lnF + (−i +

√
3)lnF̄

)
,

X5 = −F 2 + F̄ 2

6
√
3 |F |2

,

X6 =
1

6
√
3 |c|2

|F |−2eiψ (c̄2F̄ + c2F |F |2i
√
3) ,

X7 =
i(F 2 − F̄ 2)

6
√
3 |F |2

,

X8 =
i

6
√
3 |c|2

|F |−2eiψ (c̄2F̄ − c2F |F |2i
√
3) , (137)

where ψ is given in (133) and c is a complex constant. The corresponding first
fundamental form is immediately obtained from (134) for N = 3 and given as

I =
2

3

|F ′|2
|F |2 dξ dξ̄ . (138)

Note that the components of the radius vector ~X in (137) satisfy the following
relations

X2
1 +X2

2 = X2
5 +X2

7 = X2
6 +X2

8 =
1

27
. (139)

Eliminating the functions F and F̄ in (137) we obtain

X1 =
i

6
√
3 |c|2

e−(v+v̄)eiψ (c̄2ev − c2ev̄ei
√
3(v+v̄)) ,
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X2 = − 1

6
√
3 |c|2

e−(v+v̄)eiψ (c̄2ev + c2ev̄ei
√
3(v+v̄)) ,

X5 = − 1

3
√
3
cos

(
3

2
(
√
3X3 +X4)

)
,

X6 =
1

6
√
3 |c|2

e−(v+v̄)eiψ (c̄2ev̄ + c2evei
√
3(v+v̄)) ,

X7 = − 1

3
√
3
sin

(
3

2
(
√
3X3 +X4)

)
,

X8 =
i

6
√
3 |c|2

e−(v+v̄)eiψ (c̄2ev̄ − c2evei
√
3(v+v̄)) , (140)

where ψ is given in (133) and v = 3
4 (1 + i

√
3)(X3 + iX4). The surface is

parametrized in terms of X3 and X4. Now, the corresponding first fundamental
form becomes

I =
3

2
(dX2

3 + dX2
4 ) . (141)

Note that this is just the real form of (138) when ξ1 = X3 and ξ2 = X4.

8 Summary and concluding remarks

The objective of this paper was to revise and expand on theoretical results in
[6] concerning surfaces related to the CPN−1 sigma model. In addition, we
gave a comprehensive summary of geometric properties and corrected mistakes
in [6]. For example, Proposition 4 in [6] concerning the structural equations
for the CP 2 model (where only the holomorphic solutions were assumed), has
been restated as Proposition 2. In doing so, we covered in greater detail the
geometrical aspects of surfaces immersed in the su(N) algebra. Furthermore,
we have derived the formulae in terms of explicit functions in the CPN−1 model,
which makes the results in [6] more transparent and useful.

We also computed the Lie-point symmetries of the CPN−1 model equations
for arbitrary N . The resulting symmetry algebra is decomposed as a direct
sum of two infinite-dimensional simple Lie algebras and the su(N) algebra.
Using the Lie-point symmetries, the method of symmetry reduction can now be
applied to find solutions which are invariant under subgroups of SU(N) with
generic orbits of codimension one. In [38], this analysis was carried out for
N = 2. The obtained invariant solutions are complicated expressions in terms
of elliptic functions. As was shown in [38], for some cases the reduced ordinary
differential equations (ODEs) can be transformed into the standard form of
the P3 Painlevé transcendent. Matters get worse when N ≥ 3. Although the
reduction can still be carried out, the resulting ODEs are coupled and do not
appear to be separable. One can prove the existence of solutions but ‘how to
find them’ remains an open problem.

For the CP 2 model, we characterized the immersion of surfaces in the su(3)
algebra. Explicit formulae were found for the moving frame, the structural
equations (Gauss-Weingarten and Gauss-Codazzi), the first and second funda-
mental forms, the Gaussian, the mean curvatures, the Willmore functional and
the topological charge. These quantities are expressed in terms of holomor-
phic fields of the CP 2 model. The theoretical concepts have been illustrated
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with various examples. We also have shown that non-degenerate affine surfaces
in R8 associated with the CP 2 model are affine spheres. Finally, we discussed
dilation-invariant solutions of the CPN−1 model, holomorphic immersion of sur-
faces associated with CP 2 models, and mixed soliton-type solutions of the CP 2

model and its corresponding surfaces.
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Appendix A

In this Appendix we give the explicit form of the vector normals,

ηj = φ†sjφ , j = 3, . . . , 8 ,

to the surface immersed in the su(3) algebra. The general expressions are too
complicated to be useful. Instead, we consider the case of a 2D surface associ-
ated with the CP 2 model with solution (117).

We present the normals in the equivalent matrix form.
The first normal is

η3 = φ†s3φ = iη3ij ,

where

η311 =
4(|ξ|2 − 1)

Γ2
2 , η312 =

2ξ
(
4 + |ξ|2Γ1

)

Γ1Γ2
2 , η313 =

2ξ2Γ5

Γ1Γ2
2 ,

η321 =
2ξ̄
(
4 + |ξ|2Γ1

)

Γ1Γ2
2 , η322 =

4 + |ξ|4
(
5 + |ξ|2Γ2

)

Γ1
2Γ2

2 ,

η323 = −4ξ(|ξ|2 − 1)

Γ1
2Γ2

2 , η331 =
2ξ̄2Γ5

Γ1Γ2
2 ,

η332 = −4ξ̄(|ξ|2 − 1)

Γ1
2Γ2

2 , η333 =
|ξ|2

(
4− |ξ|2Γ3

2
)

Γ1
2Γ2

2 , (142)

with Γj (j = 1, . . . , 5) defined as

Γj = j + |ξ|2 , j = 1, . . . , 5 . (143)

The second normal is

η4 = φ†s4φ = iη4ij ,

where

η411 =
2
(
2 + |ξ|2(2− |ξ|2)

)
√
3 Γ2

2
, η412 =

2
√
3 |ξ|2ξ
Γ2

2 ,

η413 = −2
√
3 ξ2

Γ2
2 , η421 =

2
√
3 |ξ|2ξ̄
Γ2

2 ,

η422 =
4+ |ξ|2(|ξ|2 − 8)√

3 Γ2
2

, η423 =
4
√
3 ξ

Γ2
2 ,

η431 = −2
√
3 ξ̄2

Γ2
2 , η432 =

4
√
3 ξ̄

Γ2
2 ,

η433 =
|ξ|2Γ4 − 8√

3 Γ2
2

. (144)

The next one is

η5 = φ†s5φ = ie−
3iϕ
2 η5ij ,
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where

η511 =
2|ξ|(e3iϕξ2 − ξ̄2)

Γ2
2 , η512 = −

√
ξ
(
4e3iϕξ2Γ1 + ξ̄2(2 + |ξ|2Γ1)

)
√
ξ̄ Γ1Γ2

2
,

η513 =
2ξ(3/2)(2e3iϕξΓ1 − ξ̄3)

ξ̄(3/2) Γ1Γ2
2 , η521 =

√
ξ̄
(
4ξ̄2Γ1 + e3iϕξ2(2 + |ξ|2Γ1

)
√
ξ Γ1Γ2

2 ,

η522 = −2(e3iϕξ2 − ξ̄2)(2 + |ξ|2Γ1)

|ξ|Γ1Γ2
2 , η523 =

2
√
ξ
(
2ξ̄3 + e3iϕξ(2 + |ξ|2Γ1)

)

ξ̄(3/2)Γ1Γ2
2 ,

η531 =
2ξ̄(3/2)

(
e3iϕξ3 − 2ξ̄Γ1

)

ξ(3/2)Γ1Γ2
2 , η532 = −2

√
ξ̄
(
2e3iϕξ3 + ξ̄(2 + |ξ|2Γ1)

)

ξ(3/2)Γ1Γ2
2 ,

η533 =
4(e3iϕξ2 − ξ̄2)

|ξ|Γ1Γ2
2 . (145)

Normal η6 is given by

η6 = φ†s6φ = ie−
3iϕ
2 η6ij ,

where

η611 = −2|ξ|
(
e3iϕξ − ξ̄

)

Γ2
2 , η612 =

2ξ(3/2)
(
2e3iϕΓ1 − ξ̄2

)
√
ξ̄ Γ1Γ2

2
,

η613 = −ξ
(3/2)

(
4e3iϕΓ1 + |ξ|2ξ̄2Γ3

)

ξ̄(3/2)Γ1Γ2
2 , η621 = −2ξ̄(3/2)

(
2− e3iϕξ2 + 2|ξ|2

)
√
ξ Γ1Γ2

2 ,

η622 = −4|ξ|
(
e3iϕξ − ξ̄

)

Γ1Γ2
2 , η623 =

2ξ(3/2)
(
2e3iϕ + ξ̄2Γ3

)
√
ξ̄ Γ1Γ2

2
,

η631 =
ξ̄(3/2)

(
4 + 4|ξ|2 + e3iϕ|ξ|2ξ2Γ3

)

ξ(3/2)Γ1Γ2
2 , η632 = −2ξ̄(3/2)

(
2 + e3iϕξ2Γ3

)
√
ξ Γ1Γ2

2 ,

η633 =
2|ξ|

(
e3iϕξ − ξ̄

)
Γ3

Γ1Γ2
2 . (146)

Normal η7 is given by

η7 = φ†s7φ = e−
3iϕ
2 η7ij ,

where

η711 = −2|ξ|
(
e3iϕξ2 + ξ̄2

)

Γ2
2 , η712 =

√
ξ
(
4e3iϕξ2Γ1 − ξ̄2(2 + |ξ|2Γ1)

)
√
ξ̄ Γ1Γ2

2
,

η713 = −2ξ(3/2)
(
ξ̄3 + 2e3iϕξΓ1

)

ξ̄(3/2)Γ1Γ2
2 , η721 =

√
ξ̄
(
4ξ̄2Γ1 − e3iϕξ2(2 + |ξ|2Γ1)

)
√
ξ Γ1Γ2

2 ,

η722 =
2
(
e3iϕξ2 + ξ̄2

)(
2 + |ξ|2Γ1

)

|ξ|Γ1Γ2
2 , η723 =

2
√
ξ
(
2ξ̄3 − e3iϕξ(2 + |ξ|2Γ1)

)

ξ̄(3/2)Γ1Γ2
2 ,

η731 = −2ξ̄(3/2)
(
e3iϕξ3 + 2ξ̄Γ1

)

ξ(3/2)Γ1Γ2
2 , η732 =

2
√
ξ̄
(
2e3iϕξ3 − ξ̄(2 + |ξ|2Γ1)

)

ξ(3/2)Γ1Γ2
2 ,

η733 = −4
(
e3iϕξ2 + ξ̄2

)

|ξ|Γ1Γ2
2 . (147)
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The last normal is given by

η8 = φ†s8φ = e−
3iϕ
2 η8ij ,

where

η811 =
2|ξ|

(
e3iϕξ + ξ̄

)

Γ2
2 , η812 = −2ξ(3/2)

(
ξ̄2 + 2e3iϕΓ1

)
√
ξ̄ Γ1Γ2

2
,

η813 =
ξ(3/2)

(
4e3iϕΓ1 − |ξ|2ξ̄2Γ3

)

ξ̄(3/2)Γ1Γ2
2 , η821 = −2ξ̄(3/2)

(
2 + e3iϕξ2 + 2|ξ|2

)
√
ξ Γ1Γ2

2 ,

η822 =
4|ξ|

(
e3iϕξ + ξ̄

)

Γ1Γ2
2 , η823 = −2ξ(3/2)

(
2e3iϕ − ξ̄2Γ3

)
√
ξ̄ Γ1Γ2

2
,

η831 =
ξ̄(3/2)

(
4 + 4|ξ|2 − e3iϕ|ξ|2ξ2Γ3

)

ξ(3/2)Γ1Γ2
2 , η832 =

2ξ̄(3/2)
(
e3iϕξ2Γ3 − 2

)
√
ξ Γ1Γ2

2 ,

η833 = −2|ξ|
(
e3iϕξ + ξ̄

)
Γ3

Γ1Γ2
2 . (148)
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