
A SCHOTTKY DECOMPOSITION THEOREM FOR
COMPLEX PROJECTIVE STRUCTURES

SHINPEI BABA

Abstract. Let S be a closed orientable surface of genus at least
two, and let C be an arbitrary (complex) projective structure on
S. We show that there is a decomposition of S into pairs of pants
and cylinders such that the restriction of C to each component has
an injective developing map and a discrete and faithful holonomy
representation. This decomposition implies that every projective
structure can be obtained by the construction of Gallo, Kapovich,
and Marden. Along the way, we show that there is an admissible
loop on (S,C), along which a grafting can be done.

1. Introduction

Let F be a connected orientable C1-smooth surface possibly with
boundary, and let F̃ denote the universal cover of F . A (complex)

projective structure C on F is a (Ĉ,PSL(2,C))-structure, where Ĉ =
C ∪ {∞} is the Riemann sphere. In other words, it is a maximal atlas

of F modeled on Ĉ with transition maps in PSL(2,C). The pair (F,C)
is called a projective surface. As usual, we will often conflate C and
(F,C).

There is an equivalent definition, which we will mostly use in this
paper: A projective structure is a pair (f, ρ), where f : F̃ → Ĉ is
a C1-smooth locally injective map and ρ : π1(F ) → PSL(2,C) is a
homomorphism, such that f is ρ-equivariant, i.e. f ◦ γ = ρ(γ) ◦ f for
all γ ∈ π1(F ). Then f is called the developing map and ρ the holonomy
(representation) of the projective structure. On the interior of F̃ , f
is a local homeomorphism, and the restriction of f to each boundary
component of F̃ is a C1-smooth curve.

A projective structure C = (f, ρ) is defined up to an isotopy of F
and the action of an element of PSL(2,C), i.e. the post-composition of
f with γ ∈ PSL(2,C) and the conjugation of ρ by γ. (See [Th2, 3.4],
[Ka2, 7.1].) The C1-smoothness is required to define a natural topology
on the space of all projective structures on F in the case that F is not
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2 SHINPEI BABA

closed (see [CEG, I.1.5]). In this paper, we always assume that surfaces
are connected and C1-smooth possibly with boundary (although we do
not consider the deformation space of projective structures).

Definition 1.1. A projective structure C = (f, ρ) on F is called ad-
missible if it suffices the following conditions:
(i) f is an embedding and
(ii) ρ is an isomorphism onto a quasifuchsian group (if F is closed) or
onto a Schottky group (if F is not closed).
Analogously, a simple loop l on the projective surface (F,C) is admis-

sible if l̃ embeds in Ĉ by f and ρ(γl) is loxodromic, where l̃ is a lift of
l to F̃ and γl is the homotopy class of l.

Remark: Condition (ii) is equivalent to saying that ρ is an isomorphism
onto a convex-cocompact subgroup of PSL(2,C).

A hyperbolic structure is a basic example of a projective structure,
since H2 ⊂ Ĉ and Isom+(H2) ∼= PSL(2,R) ⊂ PSL(2,C) in a compati-
ble way. Every hyperbolic structure on a closed orientable surface is an
admissible projective structure. However, in general, developing maps
are not necessarily injective and holonomy representations are not nec-
essarily discrete or faithful (c.f. (iii) and (iv) following Corollary 7.2 in
this section). Throughout this paper, let S denote a closed orientable
surface of genus at least 2 and let S̃ denote the universal cover of S.
(The orientability of S is not essential for the mains theorems of this
paper, if we consider two-dimensional Mobius structures instead of pro-
jective structures.) The following theorem yields a decomposition of an
arbitrary projective surface into admissible projective subsurfaces:

Theorem 7.1 Let C be a projective structure on S. Then there exists
a decomposition of S into cylinders and compact connected surfaces of
negative Euler characteristic, such that the restriction of C to each
cylinder is an integral flat structure and the restriction to each surface
of negative Euler characteristic is an admissible projective structure.

By a decomposition, we mean that the subsurfaces in this theorem are
the connected components of S minus some multiloop, disjoint union
of essential simple loops.

An integral flat structure is a basic projective (actually affine) struc-
ture on a cylinder, closely related to an operation called grafting (§3.2).
If there is an admissible loop on a projective surface, we can define a
grafting along this loop (see [Ka2], [Go2], [Br] for example). This oper-
ation gives another projective structure on the same surface, preserving
the orientation and the holonomy representation. If the admissible loop
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is circular (i.e. it corresponds to a simple circular arc on Ĉ via the de-
veloping map), then the integral flat structure is exactly the projective
structure that the grafting operation inserts to the projective structure
along the loop. An integral flat structure on an annulus can be easily
decomposed into integral flat structures that are admissible.

Theorem 7.1 immediately implies:

Corollary 7.2 Let C be an arbitrary projective structure on S. Then
there exists a decomposition of S into pairs of pants and cylinders
such that the restriction of C to each cylinder is an integral flat struc-
ture and the restriction to each pair of pants is an admissible structure.

This corollary gives the affirmative answer to a question raised by
Gallo, Kapovich, and Marden ([GKM, 12.1]). The authors of [GKM]
gave necessary and sufficient conditions for a representation ρ : π1(S)→
PSL(2,C) to be the holonomy representation of some projective struc-
ture on S. The conditions are: (iii) Im(ρ) is a non-elementary subgroup
of PSL(2,C) and (iv) ρ lifts to a representation from π1(S) to SL(2,C).
In order to prove the sufficiency of these conditions, given an arbitrary
representation ρ satisfying (iii) and (iv), they constructed a projective
structure on S with holonomy ρ in the following way: First, decompose
S into pairs of pants, {Pi}, such that ρ|π1(Pi) is an isomorphism onto
a rank-two Schottky group for each i. Second, construct an admissi-
ble projective structure on each Pi with the holonomy representation
ρ|π1(Pi). Last, glue these structures on the pairs of pants together by
inserting projective structures on cylinders between the correspond-
ing boundaries of Pi’s, and obtain a desired projective structure. They
asked whether every projective structure on S arises from such a Schot-
tky pants decomposition. More specifically, they asked if every projec-
tive structure contains an admissible loop, which is answered by:

Theorem 6.2 For every projective structure C on S, there exists an
admissible loop on (S,C).

A remark on Theorem 6.2: From our argument, it immediately fol-
lows that, on every projective surface (S,C), there are infinitely many
homotopy classes of admissible loops, unless (S,C) satisfies the follow-
ing condition (which almost always fails):

• Setting C = (τ, L) to be the expression of C in Thurston’s
coordinates (§3.8), L decomposes S into a disjoint union of
pairs of pants.
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The author believes that, on every (S,C) (even with this condition),
each simple loop sufficiently close to L, in PML(S) ∼= S6g−7, is homo-
topic to an admissible loop.

Note that Theorem 6.2 is weaker than Theorem 7.1, since the bound-
ary components of each subsurface in Theorem 7.1 are, in particular,
admissible loops. However, the proof of Theorem 6.2 contains the ba-
sic ideas for the proof of Theorem 7.1. Furthermore, Theorem 6.2
addresses the following question about grafting:

Question 1 ([GKM, §12]): Assume that two projective structures on S
have the same orientation and holonomy representation. Can one pro-
jective structure be transformed to the other by a sequence of graftings
and inverse-graftings?

The grafting and inverse-grafting operations generate an equivalence
relation among the projective structures with a given holonomy repre-
sentation. Question 1 asks if there are exactly two equivalence classes
represented by the orientations of the projective structures. Theo-
rem 6.2 implies that every equivalence class consists of infinitely many
projective structures. Ultimately, Question 1 aims to characterize the
collection of projective structures with the given holonomy represen-
tation; this characterization problem goes back, at least, to Hubbard’s
paper published in 1981 ([Hu]; see also [Ka1], [GKM]). In the spe-
cial case that the holonomy representation is an isomorphism onto a
quasifuchsian group, the characterization is given by Goldman, using
grafting, and the answer to Question 1 is affirmative ([Go1, Theorem
C]).

The holonomy map Hol : P (S) → V (S) is a projection given by
C = (f, ρ) 7→ ρ, where P (S) is the space of all projective structures
on S and V (S) is the representation variety of homomorphisms from
π1(S) to PSL(2,C). This map is not a covering map onto its image
([He]), which makes problems in this area difficult.

One may ask the above questions in the case of other (G,X)-structures
as well (c.f. [Go1, 1.10]). In particular, S. Choi gave a canonical decom-
position of real projective structures, i.e. (PGL(3,R),RP2)-structures,
analogous to the one given by Theorem 7.1 (see [Ch]).

An outline of the proofs: For a given projective surface (S,C),
there is a corresponding pair (τ, L) of a marked hyperbolic structure
τ on S and a measured geodesic lamination L = (λ, µ) on (S, τ) (see
Thurston’s coordinates in §3.8). A periodic leaf of λ corresponds to
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a continuous family of admissible loops on (S,C). For each irrational
minimal sublamination of λ, consider a standard sequence (li) of simple
geodesic loops on (S, τ) that approximates λ (§3.5). Then we will show
that li is admissible for all sufficiently large i. These admissible loops
yield Theorem 6.2. Taking a disjoint union of such admissible loops,
we construct a multi-loop on (S,C) that is a good approximation of
the entire lamination λ. We will show that the multi-loop on (S,C)
achieves the desired admissible decomposition described in Theorem
7.1.

Every measured lamination on H2 induces a continuous map from
H2 to H3, called a bending map (§3.6). Via the bending map, the

measured lamination corresponds to a projective structure on D̊2 (§3.8).
Our proofs are based on the fact that injective quasiisometric bending
maps correspond to admissible projective structures on D̊2 (§5). In
order to show that li is admissible, we take the total lift L̃ of L to H2

(§3.3) and a lift l̃i of li to H2. Consider the sublamination I(L̃, l̃i) of L̃

that consists of the leaves of L̃ intersecting l̃i, so that the structure on l̃i
embeds into the projective structure on D̊2 corresponding to I(L̃, l̃i). In

other words, L̃ and I(L̃, l̃i) coincide in a sufficiently small neighborhood

of l̃i, and therefore, I(L̃, l̃i) is sufficient to capture the structure on

l̃i. The transversal measure of I(L̃, l̃i) is uniformly small (Proposition

4.2). Then, accordingly, the bending map induced by I(L̃, l̃i) bends H2

inside H3 to a uniformly small degree, and therefore it is an injective
quasiisometric embedding (§5). Therefore I(L̃, l̃i) corresponds to an

admissible structure on D̊2. Since the structure on l̃i is embedded in
the admissible structure on D̊2, li is also admissible. Theorem 7.1 will
be proven based on the same idea.

Acknowledgments. The author would like to thank my advisor,
Misha Kapovich, for introducing me to complex projective structures
and supporting me with his comments and encouragements. He also
thanks the referee for valuable comments. The author was partially
supported by NSF grants.

2. Notation

xy: the geodesic segment connecting x and y, where x and y are points
in a metric space.
cl(X): the closure of X, where X is a subset of a topological space.

X̊: the interior of X.
Conv(Y ): the convex hull of Y , where Y is a subset of H3.
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Dr(x): the closed disk of radius r centered at x in a hyperbolic space.

3. Preliminaries

3.1. Measured Laminations. (For details, see [PH], [CEG], [CB],
[Ka2], [Th2].) Let F be a Riemannian surface with a constant curva-
ture, possibly with geodesic boundary. A geodesic lamination on F is
a collection of disjoint simple complete geodesics on F whose union is
a closed subset of F . Each geodesic of a geodesic lamination is called
a leaf. For a measured lamination λ on F , let |λ| ⊂ F denote the
union leaves of λ. If |λ| = F , then λ is called a foliation. A measured
lamination is a pair L = (λ, µ), where λ is a geodesic lamination, and µ
is a transversal measure of λ. Let a leaf of L refer to a leaf of λ and |L|
refer to |λ|. We always assume that λ is the support of µ, i.e. if l is a
leaf of L, then µ(s) > 0 for every geodesic segment s that transversally
intersects l. The weight of a leaf l of L is inf{µ(s)}, where s varies
over all geodesic segments that transversally intersect l, i.e. the atomic
transversal measure of l. We denote the weight of l by w(l). If l is an
isolated leaf of L, then w(l) = µ(s) for every geodesic segment s on F
that transversally intersects |L| exactly once at a point on l.

By convention, if a geodesic segment s is contained in a leaf of λ,
then µ(s) = 0. In addition, letting x, y be the end points of s, if x or
y is contained in a leaf with positive weight, then the weight does not
contribute to the value of µ(s), so that µ(s) = supµ(s′) where s′ varies
over all geodesic segments strictly contained in s, i.e. s′ ⊂ s \ {x, y}.

Recall that S is a closed orientable hyperbolic surface. A measured
lamination on S is minimal if it does not contain any proper sub-
lamination. Every measured lamination L on S uniquely decomposes
into a finite number of disjoint minimal laminations of the following
two types: a periodic leaf with positive weight (periodic minimal lam-
ination), and a measured lamination consisting of uncountably many
bi-infinite geodesics (irrational minimal lamination).

Let M = (ν, ω) be an irrational minimal sublamination of L. Then,
since each minimal sublamination of L forms a closed subset of S, |ν| is
also an open subset of |λ|. Here are other properties of M : Each leaf of
ν is a dense subset of |ν|. If s is a geodesic segment on S transversally
intersecting ν, then s ∩ |ν| is a Cantor set i.e., a closed, perfect subset
with empty interior ([PH, Corollary 1.7.6, 1.7.7]). Therefore, no leaf of
M has a positive weight.
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3.2. Flat Cylinders. For every θ ∈ (0, 2π) and distinct z1, z2 ∈ Ĉ, let

Rθ be the open region in Ĉ bounded by two simple circular arcs con-
necting z1 and z2 such that the inner angles at the vertices z1 and z2 are
equal to θ. Since Rθ is embedded in Ĉ, it is equipped with a canonical
projective structure (whose developing map is the identity map). We
call the structure a crescent of angle θ; its projective structure only
depends on the choice of θ.

Let α be a hyperbolic element of PSL(2,C) that fixes z1 and z2.
Then 〈α〉, the subgroup of PSL(2,C) generated by α, is an infinite cyclic
group acting on Rθ freely and property discontinuously. By quotienting
Rθ by 〈α〉, we obtain a projective structure on a cylinder. We call the
structure a flat structure of height θ; it only depends on θ and the
translation length of α. A flat structure of height θ on a cylinder forms
a projective surface, which we call a flat cylinder of height θ.

We shall define a crescent and a flat cylinder for arbitrary θ > 0,
generalizing those for 0 < θ < 2π. For arbitrary θ > 0, let Rθ =
(0, θ) × (0,∞) ⊂ R2. Define fθ : (0, θ) × (0,∞) → C by fθ(x, y) =
y cosx +

√
−1 y sinx (i.e. the polar coordinates). Then fθ defines a

projective structure on Rθ
∼= D̊2, which is a crescent of angle θ. For

a > 0, let Ta be an automorphism of R2 defined by Ta(x, y) = (x, ay).
Define a homomorphism ρ : 〈Ta〉 ∼= Z → PSL(2,C) by ρ(Ta)(z) = az
for all z. Then fθ is ρ-equivariant. Quotienting Rθ by the action of
〈Ta〉, we obtain a flat cylinder of height θ. A flat cylinder of height θ
is integral if θ is a multiple of 2π. The multiplier is called the degree of
the integral flat cylinder, so that, for all z ∈ C \ R≥0, the cardinality
of f−1θ (z) is equal to the degree. Clearly, an integral flat cylinder of
height n can be decomposed into n flat cylinders of height one, which
are admissible.

Let C = (fθ, ρid) be the crescent of angle θ > 0 given in the form
above, where ρid : π1(Rθ)→ PSL(2,C) is the trivial representation. For
each x ∈ (0, θ), fθ takes x × (0,∞) to a straight line on C connecting
0 and ∞. The collection of these lines, { {x} × (0,∞) | x ∈ (0, θ)},
forms a foliation λC on Rθ, which we call the canonical foliation on
C. We also can define the canonical transversal measure µC of λC by
µC(P1P2) = |x1−x2| for all P1 = (x1, y1), P2 = (x2, y2) ∈ Rθ. Note that
{x1} × (0,∞) and {x2} × (0,∞) bound a crescent of height µC(P1P2)
contained in C. Call (λC , µC) the canonical measured foliation on C.

For each y ∈ (0,∞), (0, θ)× {y} is orthogonal to (each leaf of) λC
in terms of the angles obtained by pulling back the conformal structure
on Ĉ via fθ. Besides, fθ takes (0, θ)×{y} to a (not necessarily simple)

circular arc on Ĉ. The collection of these orthogonal lines {(0, θ) ×
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{y} | y ∈ (0,∞)} forms a foliation on Rθ, which is dual to λC . By
identifying the points on each leaf of the dual foliation, Rθ projects
to a line. Since (λC , µC) and its dual foliation are invariant under the
action of 〈Ta〉, we obtain the canonical foliation and its dual foliation
on the flat cylinder C/〈Tα〉. Accordingly, the flat cylinder projects to
a circle by identifying the points on each leaf of the dual foliation.

Since fθ : (0, θ)×(0,∞)→ C continuously extends to {0, θ}×(0,∞),
we can compactify a flat cylinder of height θ to a projective structure
on a compact cylinder with boundary. By abusing the notation, we
call this compactified flat cylinder, also, a flat cylinder of angle θ. Ac-
cordingly, the universal cover of the compactified flat cylinder of angle
θ also is called a crescent of angle θ.

Figure 1.

3.3. Dual Tree. (For more details, see [MS], [Ka2].) Let S be a closed
hyperbolic surface and L = (λ, µ) be a measured lamination on S
without periodic leaves. Then no leaf of L has a positive weight. Let
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p : H2 → S be the covering map. The total lift of L is a measured lam-
ination L̃ = (λ̃, µ̃) on H2, where λ̃ consists of all the lifts of the leaves
of λ, and µ̃ is the pull back of µ, so that (H2, L̃) is locally isomorphic
to (S, L) via p. Then L̃ is a π1(S)-invariant measured lamination on
H2.

There is a unique R-tree dual to L̃ constructed in the following way (if
L contains periodic leaves, the construction is more complicated). The
transversal measure µ̃ defines a pseudo-metric dµ̃ on H2, by dµ̃(x, y) =

µ̃(xy) for all x, y ∈ H2. Since no leaf of L̃ has a positive weight,
dµ̃ : H2 × H2 → R≥0 is continuous. Define an equivalence relation on
H2 by x ∼ y if and only if µ̃(xy) = 0. There are only two types of

equivalence classes: the closure of a complementary region of |λ̃|, and

a leaf of λ̃ that is not a boundary geodesic of such a complementary
region. Let T be the quotient of H2 by the equivalence relation, and let
P : H2 → T be the quotient map. In particular, if a geodesic in H2 is
a leaf of L̃ or it is contained in the closure of a complementary region
of |λ̃|, then P takes this geodesic to a point in T . It turns out that T
is an R-tree equipped with a canonical metric dT induced by µ̃ (see [O,
§2.3]): For every x, y ∈ T , dT (x, y) = µ̃(x′y′), where x′, y′ ∈ H2 are
such that P(x′) = x and P(y′) = y. If a geodesic in H2 transversally
intersects L̃, then P takes this geodesic to a geodesic in T . Since the
action of π1(S) on H2 preserves L̃, it isometrically acts on T . Let l be

a closed geodesic on S transversally intersecting L, l̃ be a lift of l to
H2, and γl be the homotopy class of l in π1(S). Then P(l̃) is a geodesic

in T , and the action of γl on T isometrically translates along P(l̃) by
the distance µ(l).

3.4. Flow Boxes. Let (a, b) and (c, d) be open intervals in R, and let
Y be a closed subset of (c, d). Consider a geodesic lamination λ on
(a, b)× (c, d) ⊂ R2 that consists of the leaves (a, b)× {y} for all y ∈ Y
(i.e. we have Y -worth of horizontal leaves). Let µ be a transversal
measure for λ, and let L be the measured lamination (λ, µ). The pair
((a, b) × (c, d), L) is called a (Euclidean) flow box. Let s be a vertical
geodesic in (a, b)× (c, d), i.e. s = {x} × (c, d) for some x ∈ (a, b). The
height of the flow box is µ(s), which does not depend on the choice
of x. If L is a measured lamination on a hyperbolic quadrilateral Q,
and (Q,L) is isomorphic to a flow box, then we also call (Q,L) a
(hyperbolic) flow box.

For every point x on a leaf of L, there is a neighborhood of x that
is isomorphic to the a flow box ([Ka2, §11.6], [PH, §1.6]); then we
immediately obtain:
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Lemma 3.1. Let L = (λ, µ) be a measured geodesic lamination on
H2 without leaves of positive weight. Let s be a geodesic segment con-
tained in a leaf of L. For every ε > 0, there exists a neighborhood of s
isomorphic to a flow box of height less than ε.

Remark: Under the projection map from (H2, L) to its dual tree, the
flow box neighborhood of height less than ε projects to a geodesic
segment of length less than ε.

3.5. Approximating an Irrational Lamination. (For details, see
[CEG, I.4.2.15].) Let S be a closed (orientable) hyperbolic surface, and
L = (λ, µ) be an irrational minimal measured lamination on S. Then
there is a sequence (li) of simple closed geodesics, limiting to |L| in the
Chabauty topology, where each li is homotopic to a piecewise geodesic
loop ci of one of the following two types:

• ci is a union of a (long) geodesic segment ai contained in a leaf
of L and a (short) geodesic segment bi transversal to |L| (see
Figure 2 (i)).
• ci is a union of two (long) geodesic segments contained in a leaf

of L and two (short) geodesic segments transversal to |L|; we
let ai denote the union of these long geodesic segments, and bi
denote the union of these short geodesic segments. (See Figure
2 (ii).)

In both cases, we have limi→∞ length(ai)→∞ and limi→∞ length(bi)→
0. Then, since S is closed, limi→∞ µ(bi) = 0.

Figure 2.

Let m and n be geodesics on a complete hyperbolic surface. Assume
that m ∩ n 6= ∅, and pick p ∈ m ∩ n. We can “rotate” m to n about p
by a unique angle in (−π/2, π/2]. More precisely, we do the following:
Let p̃ be a lift of p to H2, and let m̃ and ñ be the lifts of m and n,
respectively, to H2 that intersect at p̃. Then, we can indeed rotate m̃
to ñ about p̃ by a unique angle in (−π/2, π/2]. Let ∠p(m,n) denote
this angle, and call it the angle between m and n at p.

Let ν be a geodesic lamination on the surface that intersects n.
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Definition 3.2. The angle between ν and n is

∠(ν, n) = sup{ |∠p(m,n)| | m ∈ ν and p ∈ m ∩ n } ∈ [0, π/2].

Lemma 3.3. lim
i→∞
∠(λ, li) = 0 and lim

i→∞
µ(li) = 0.

Proof. Choose xi ∈ |λ| ∩ li, and let mi be the leaf of λ that intersects
li at xi. Let θi = ∠xi(mi, li). Note that |λ| is a compact subset of S.
Therefore, by taking a subsequence if necessary, (xi, θi) converges to
(x, θ) ∈ |λ| × [−π/2, π/2]. Assume that lim

i→∞
∠(λ, li) 6= 0. Then there

exists a sequence (xi, θi) converging to (x, θ) with θ 6= 0. The sequence
(li) converges to a geodesic that intersects |λ| at x with angle θ. This
contradicts the convergence of (li) to |λ|.

Next, we prove that limi→∞ µ(li) = 0. Let ci = ai ∪ bi, which is
a simple loop on S. Observe that limi→∞ µ(ci) = 0, since µ(ai) ≡ 0
and limi→∞ µ(bi) = 0. Therefore, it suffices to show that µ(li) ≤ µ(ci).
The basic idea is that a geodesic loop realizes the minimal transversal
measure among all the loops in the same homotopy class. Let γi ∈
π1(S) be the homotopy class of li. Regarding li as a bi-infinite geodesic,

let l̃i be the lift of li, such that γi translates H2 along the geodesic l̃i
by length(li). Regarding li as a simple closed path, let l̄i be a lift of

li, such that that l̄i is contained in l̃i. Then γi identifies the ends of
l̄i. Recall that P is the projection from H2 to the R-tree T dual to
L̃ (§3.3). Then P(li) is a geodesic in T , and the action of γi on T
isometrically translates along P(li) by µ(li) = length(P(l̄i)). Similarly,
regarding ci as a simple closed path, let c̄i be a lift of ci to H2, such
that the ends of c̄i are identified by γi. Then P(c̄i) is a piecewise
geodesic path in T , and γi identifies the ends of P(c̄i). We also have
µ(ci) = length(P(c̄i)). The translation length of γi is equal to or less
than the distance between the ends of P(c̄i) since the translation length

of γi is inf{distT (x, γi(x)) | x ∈ T}. Since γi translates along P (l̃i), the
translation length is length(P(l̄i)). Hence, µ(li) ≤ µ(ci). �

3.6. Bending Maps. (For details, see [EM, II.1], [KT], [KP].) Let
L = (λ, µ) be a measured lamination on H2. Then L induces a bending
map βL = β : H2 → H3 by “bending H2 inside H3 along λ by angle
µ”. The bending map βL is continuous and unique up to the post-
composition with an element of PSL(2,C). In addition, βL is isometric
on each leaf of λ and on the closure of each complementary region of
|λ|.

Roughly speaking, if x, y (∈ H2) are sufficiently close to each other,
then the hyperbolic tangent planes of βL at x and y intersect at the ex-
ternal angle approximately equal to µ(xy) (with respect to the normal
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vector field of β; c.f. the hyperbolic tangent planes defined in §3.8).
Assume that l is an isolated leaf of λ and that Q and R are two ad-
jacent complementary regions of |λ| separated by l. Then βL(cl(Q))
and βL(cl(R)) are isometric copies of cl(Q) and cl(R) that intersect at
the external angle w(l). This property determines the bending map
βL if L consists of isolated leaves. For general L, there is a sequence
(Li) of measured laminations on H2 consisting of finitely many leaves,
that approximates L in Thurston’s topology. Then βL = limi→∞ βLi

uniformly on compacts.
Let M be the sublamination of L that consists of the leaves of L

with positive weight (note that |M | ⊂ H2 has zero Lebesgue measure).
Then, there is a unique tangent plane of βL at each point of H2 \
|M |, and the tangent plan changes continuously (see §3.8 and [KP]).
Therefore, the bending map βL is C1-smooth on H2 \ |M |.

3.7. Convex Hull Boundaries. (For details, see [EM, II.1.12 - 1.14].)

Let X be a simply connected (open) region in Ĉ. Then X can be

regarded as a projective structure on D̊2. Consider Conv(Ĉ \X), the

convex hull of Ĉ\X. It turns out that ∂Conv(Ĉ\X) is isometric to H2

with respect to the induced path metric on ∂Conv(Ĉ \X). There is a
unique measured lamination L on H2 such that L does not contain
leaves of weight more than π and its bending map βL realizes the
isometry from H2 to ∂Conv(Ĉ\X). Then, by the orthogonal projection
along geodesics in H3, X maps onto Im(βL).

3.8. Thurston’s Parameterization of Projective Structures. Let
P (S) be the space of all projective structures on S. Thurston gave a
parametrization of P (S) that reflects the geometry of projective struc-
tures in a combinatorial manner. This parametrization is useful for the
proof of the main theorems of this paper, since it involves a decompo-
sition of S̃ into f -injective regions, where f : S̃ → Ĉ is the developing
map of a projective structure.

Theorem 3.4 (Thurston). P (S) is naturally homeomorphic to the
product of the Teichimüller Space of S and the space of measured lam-
inations on S:

P (S) ' T (S)×ML(S) (' R6g−6 × R6g−6)(1)

(The proof is in [KT]. For the following discussion, see also [Ta].) Be-
low we discuss some properties of this homeomorphism. An element
in the left hand side of (1) is a pair (f, ρ), where f : S̃ → Ĉ and
ρ : π1(S) → PSL(2,C). Take a pair (τ, L) ∈ T (S) ×ML(S). Then
the total lift (H2, L̃) of (τ, L) induces a bending map β : H2 → H3.
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Furthermore, since the action of π1(S) preserves L̃, β induces a rep-
resentation ρL : π1(S) → PSL(2,C) such that β is ρL-equivariant. If
(f, ρ) and (τ, L) represent the same projective structure, then ρ = ρL.

Letting ρid : π1(D̊2)→ PSL(2,C) be the trivial representation, (f, ρid)

is a projective structure on D̊2, which is the universal cover of C. More-
over, (f, ρid) corresponds to the measured lamination (H2, L̃) through
the orthogonal projection and the bending map, which generalizes the
correspondence between a simply connected region in Ĉ and an injec-
tive bending map discussed in §3.7. Namely, in our current case, f and
β are not necessarily embeddings, and we need to divide the domain
of f and the domain of β so that their corresponding subdomains are
homeomorphic through the orthogonal projection.

We shall first discuss the same correspondence for projective struc-
tures on D̊2, which is more general than the above case. Namely, there
is a bijective correspondence between the projective structures on D̊2

(that are not conformally equivalent to the Euclidian plane) and the
measured laminations on H2 (up to the action of PSL(2,R)); see [KP,
Corollary 11.7]. For a measured lamination L = (λ, µ) on H2, let
C = C(L) = (f, ρid) denote the corresponding projective structure on

D̊2. We shall discuss the correspondence between C(L) and L. There

are a (topological) measured lamination L′ = (λ′, µ′) on (D̊2, C) and

the collapsing map κ : (D̊2, C, L′)→ (H2, L), which describe the subdi-
vision and the orthogonal projections. For each leaf l of L with positive
weight, κ−1(l) is a crescent of angle w(l) with the canonical foliation
(compare [Ka2, 11.12]). Conversely, each crescent of angle h in (S,C)
projects to a leaf of weight h via κ in the way discussed in §3.2. In
the complement of such crescents, κ is an isomorphism, i.e. a C1-
diffeomorphism that preserves the measured lamination. In summary,
L′ is topologically obtained from L by blowing up each leaf l with pos-
itive weight of L as above. (Note that there is no periodic leaves with
positive weight of L′.) The collapsing map κ is a continuous surjective
map that homeomorphically takes each leaf of L′ to a leaf of L and
each component of (D̊2, C) \ |L′| to a component of (H2, L) \ |L|. Fur-
thermore, this correspondence is bijective except the correspondence
between the leaves of the crescents and the leaves of positive weight.

A maximal ball of a projective structure C on D̊2 is a maximal open
subset of D̊2 that f homeomorphically takes to a round open disc
in Ĉ, where the maximality is defined with respect to the set inclu-
sion. If U is a maximal ball, then ∂f(U) is a round circle in Ĉ, and
Conv(∂f(U)) ⊂ H3 is a copy of H2 whose ideal boundary is ∂f(U).



14 SHINPEI BABA

Let HU = Conv(∂f(U)), and let ΨU : f(U) → HU be the orthogonal
projection along geodesics in H3.

Let R be the closure of a component of D̊2 \ |L′|, or a leaf of L′ that

does not bound a component of D̊2 \ |L′|. Then, R is contained in a
unique maximal ball U and R = RU is called the core of U . Conversely,
each maximal ball U contains a unique core. These cores of maximal
balls form a partition of D̊2. Let β : H2 → H3 be the bending map
induced by L. Then we have ΨU ◦ f = β ◦ κ on each core RU , which
describes the correspondence of f and β. Define Ψ : (D̊2, C) → H3 by
Ψ(x) = ΨU(x) when x ∈ RU . Then we have Ψ = β ◦ κ.

Let W be the union of leaves of L with positive weight. Recall that
β is C1-smooth except on W .

Definition 3.5. The hyperbolic tangent plane of Ψ at x is HU =
∂Conv(f(U)) ∼= H2 when x ∈ RU (see Figure 3).

This tangent plane is a support plane of β(Uκ(x)) at Ψ(x) where Uκ(x)
is a sufficiently small neighborhood of κ(x). Then this hyperbolic tan-
gent plane coincides with the standard hyperbolic tangent plane at
each point of S̃ \ κ̃−1(W ), which is the complement of the disjoint fo-
liated crescents. When x ∈ S̃ moves infinitesimally, the hyperbolic
tangent plane of Ψ at x rotates about β(lx) in H2 by the amount of the
transversal measure µ′, where lx is a leaf of L′ through x if it exists.
In particular, when x moves along a leaf or a moves in the closure of
a component of S̃ \ |L′|, then the hyperbolic tangent plane does not
change. Moreover, the hyperbolic tangent planes depend continuously
on x ∈ S̃ (see [KP, Theorem 6.2]).

Figure 3.

Let us return to the correspondence between a measured lamination
L on (S, τ) and a projective structure C = (f, ρ) on S. Since S̃ ∼= D̊2,
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we have the canonical lamination L̃′ on (S̃, C̃) and the collapsing map
κ̃ : (S̃, C̃, L̃′)→ (H2, L̃). By its construction, L̃′ is invariant under the
action of π1(S), and it induces a measured lamination L′ = L̃′/π1(S)
on S. In addition, κ̃ is ρ-equivariant, and it induces the collapsing
map κ : (S,C, L′) → (S, τ, L). Accordingly, for each periodic leaf l of
L, κ−1(l) is a flat cylinder of height w(l) with the canonical foliation.
Conversely, each foliated flat cylinder of height h in (S,C) projects
to a periodic leaf of weight h via κ. In the complement of such flat
cylinders, κ is an isomorphism.

Figure 4 illustrates the basic case when we have a measured lami-
nation consisting of a periodic leaf on a complete hyperbolic cylinder.
Near a periodic leaf of L on (S, τ), we locally have a similar diagram.

Figure 4.

3.8.1. The Intersection of a Lamination and a Convex Set in H2. Let
L = (λ, µ) be a measured lamination on H2.

Definition 3.6. Let X be a geodesic or a convex subset of H2 bounded
by geodesics. The intersection of L and X is a measured lamination
(λX , µX) on H2, where λX = cl{ l ∈ λ | l ∩ X 6= ∅} and µX is the
restriction of µ to λX . Denote the intersection by I(L,X).

Definition 3.7. Let X be a convex subset of H2 bounded by geodesics.
The restriction of L to X is a measured lamination (λ|X , µ|X) on X,
where λX = {l ∩X | l ∈ λ} and µ|X is defined by µ|X(s) = µ(s) for all
geodesic segments s in X. Denote the restriction by L|X .
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Definition 3.8. Let C1 be a projective structure on a surface F1, and
let F2 be a subsurface of F1. Then the restriction of C1 to F2 is the
restriction of the atlas of C1 to F2. Let R(C1, F2) denote the restriction
of C1 to F2. Conversely, if a projective structure C3 on a surface F3 is
isomorphic to the one obtained by restricting C1 to a subsurface of F1,
then we say that C3 embeds into C1.

Let C1 = (f1, ρ1) and assume, in addition, that the inclusion F2 ⊂ F1

is π1-injective. Then the above definition is equivalent to the following:
The restriction R(C1, F2) is the projective structure (f1|F̃2

, ρ1|π1(F2)),

where f1|F̃2
is the restriction of f1 to a lift F̃2 of F2 to the universal

cover of F1 and ρ1|π1(F2) is the restriction of ρ1 to π1(F2) acting on F̃2.
Let L be a measured lamination on H2, and let C(L) = (fL, ρid), the

projective structure on D̊2 corresponding to L (§3.8). Let X (⊂ H2)
be either a geodesic or a convex subset bounded by geodesics. Let
I = I(L,X), and let C(I) = (fI , ρid). We also let κL and κI : D̊2 → H2

be the collapsing maps for C(L) and C(I), respectively.

Lemma 3.9. There exists a homeomorphism φ : κ−1I (X) → κ−1L (X)
such that fI = fL ◦ φ on κ−1I (X). Moreover, C(I) embeds into C(L).

Proof. Consider the leaves of L and components of H2\|L| that intersect
X, and let X ′ be the union of these leaves and components. Then X ′ is
a convex subset of H2 containing X, and it is bounded by some leaves
of L. We also have I = I(L,X) = I(L,X ′). Therefore, it suffices
to prove the lemma for X ′. Let L′ and I ′ be the canonical measured
laminations on (D̊2, C(L)) and (D̊2, C(I)), respectively.

Since L|X′ = I|X′ , we can assume that βL = βI on X ′, where βL and
βI are the bending maps induced by L and I, respectively. Therefore,
βL = βI on cl(X ′) by the continuity of bending maps. Recall that
κ−1I (X ′) and κ−1L (X ′) are obtained from X ′ in the exactly same way,
namely by blowing up the periodic leaves of L|X′ = I|X′ . Therefore, we
have a canonical homeomorphism φ : cl(κ−1I (X ′)) → cl(κ−1L (X ′)) such
that φ isomorphically takes I ′|κ−1

I (X′) to L′|κ−1
L (X′) and κI = κL ◦ φ on

cl(κ−1I (X ′)). Furthermore, the hyperbolic tangent plane of βI ◦ κI at
x ∈ cl(κ−1I (X ′)) coincides with the hyperbolic tangent plane of βL ◦ κL
at φ(x). (See §3.8.) The maximal ball of CI whose core contains x
maps to a round open disk by fL, and the maximal ball of CL whose
core contains φ(x) maps to a round open disk by fI . The convex hull
boundaries of these open desks are the hyperbolic tangent planes of
βL◦κL at φ(x) and of βI ◦κI at x, and therefore, they must agree. Then

the round disks on Ĉ also coincide. Recall that fI(x) and βI ◦ κI(x)
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are connected by a geodesic in H3 orthogonal to the hyperbolic tangent
plane, and so are fL(φ(x)) and βL◦κL(φ(x)). Hence, fI(x) = fL(φ(x)).

Each component H of H2\X ′ is an open or closed half plane bounded
by a leaf l of L, and it does not contain leaves of I. Then κ−1L (H) is a

component of D̊2 \ κ−1L (X ′). This component is simply connected and
bounded by a leaf lL of L′ that maps to l via κL. Similarly, κ−1I (H) is a

component of D̊2 \ κ−1I (X ′). This component is simply connected and
bounded by a boundary curve lI of κ−1I (X ′). In addition, lI is a leaf of

I ′ or contained in a component of D̊2 \ |I ′|, and it is homeomorphic to
lL and l via φ and κI , respectively. The leaf lL is contained in a unique
maximal ball U of C(L), whose convex hull boundary is the hyperbolic
tangent plane of βL ◦ κL at each point in lL. Similarly, lI is contained
in a unique maximal ball V of C(I), whose convex hull boundary is
the hyperbolic tangent plane of βI ◦ κI at each point in lI . Thus these
hyperbolic tangent planes are the same planes in H3. Therefore, we can
identify V and U by a C1-diffeomorphism ψ : V → U such that fI =
fL ◦ ψ on V . Then ψ = φ on κ−1I (X ′) ∩ V . Therefore, the embedding

φ : κ−1I (X)→ κ−1L (X) ⊂ D̊2 extends to κ−1I (H), preserving fI = fL ◦φ.

The different components of D̊2 \κ−1I (X ′) map to different components

of D̊2 \ κ−1L (X ′) by the extension. Hence, since κ−1I (H2) = D̊2, we have
an embedding of C(I) into C(L). �

Assume that X has non-empty interior and no boundary geodesic
of X transversally intersects a leaf of L with positive weight. Then
cl(κ−1I (X)) and cl(κ−1L (X)) are C1-smooth subsurfaces of D̊2. Thus we
immediately obtain

Corollary 3.10. R(C(I), cl(κ−1I (X)) ) and R(C(L), cl(κ−1L (X)) ) are
isomorphic as projective structures.

3.9. A lemma on hyperbolic triangles. Let 4ABC be an arbi-
trary hyperbolic triangle. Set a = length(BC), b = length(CA),
c = length(AB), and α = ∠CAB. Then we have

Lemma 3.11. For every ε > 0, there exists S > 0, such that a >
1
2
(sin ε) (b+ c) for every hyperbolic triangle 4ABC with α > ε.

Proof. In addition, we let β = ∠ABC, and γ = ∠BCA.
First, suppose that α ≥ π/2. Then, since α + β + γ < π, we have

α > β and α > γ. By the Hyperbolic Sine Rule, we see that a > b and
a > c. Therefore a > 1

2
(b+ c) ≥ 1

2
(sin ε) (b+ c).
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Figure 5. A basic example for Lemma 3.9.

Next, suppose that 0 < α < π/2. If a ≤ b, since f(x) = sinhx
x

is a
strictly increasing function,

sinh a

a
<

sinh b

b
.

Then, using the Hyperbolic Sine Rule,

a >
sinh a

sinh b
· b =

sinα

sin β
· b ≥ (sinα) · b .

This inequality a > (sinα) ·b also holds when a > b. Similarly, we have
a > (sinα) · c . Since 0 < α < π/2, we have

a >
1

2
(sinα) (b+ c) >

1

2
(sin ε) (b+ c) .

�

4. The Intersection of a Lamination and Its
Approximating Loop

Let L = (λ, µ) be an irrational minimal lamination on a closed ori-
entable hyperbolic surface S, and (li) be the sequence of simple loops

on S that converges to |λ| constructed in §3.5. Let L̃ = (λ̃, µ̃) be the

total lift of L to H2, and let l̃i be a lift of li to H2. Let Li = (λi, µi)
be I(L̃, li) (see §3.8.1). Note that the dual tree of Li is isometric to R
(since l̃ intersects each leaf of Li in exactly one point).

Definition 4.1. Let M = (ν, ω) be a measured lamination on a hyper-
bolic surface F . Define the norm of M by

‖M‖ = sup{ω(s)},
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where s varies over all geodesic segments of length less than 1 on F .

Remark: This norm is also called “Thurston norm” or “roundness mea-
sure”.

We next prove that the transversal measure µi of short geodesic
segments is bounded by an arbitrary small number, provided that i is
large:

Proposition 4.2. lim
i→∞
‖Li‖ = 0.

The basic idea of the proof is that, when a geodesic segment s with
length(s) < 1 intersects a fixed measured lamination at an angle close
to zero, its transversal measure is also close to zero.

Let x be a point on a leaf l of λ̃. For θ ∈ (−π/2, π/2], let lx,θ be

the geodesic on S̃ intersecting l at x with ∠x(l, lx,θ) = θ (see §3.5). Set

I(L̃, lx,θ) = (λx,θ, µx,θ).

Lemma 4.3. For every ε > 0, there exists a constant θ0 > 0 (which de-

pends on S, L, ε) such that, if θ ∈ (−θ0, θ0) and x ∈ |λ̃|, then µx,θ(s) < ε
for all geodesic segments s in H2 with x ∈ s and length(s) < 1.

Proof. For an arbitrary y in |λ̃|, let l be the leaf of λ̃ through y. Then
consider D2(y), the closed hyperbolic disk of radius 2 centered at y. In
each component of H2 \ l, choose a geodesic gi (i = 1, 2) close to l

that does not transversally intersect a leaf of λ̃, i.e. gi is a leaf of λ̃ or
is in the complement of |λ̃|. Let R ⊂ H2 be the convex region bounded
by g1 and g2, which contains l. For every ε > 0, by applying Lemma
3.1 to l ∩ D2(y), we can assume that g1 and g2 are close enough to l,
so that the R ∩D2(y) is contained in a flow box of height less than ε.

Take a neighborhood U of y whose closure is contained in the interior
of R ∩ D1(y). Then there exists (small) θ0 > 0 such that, if x ∈ U
and θ ∈ (−θ0, θ0), then lx,θ ⊂ R (see Figure 6). Since R ∩ D2(y) is

contained in the flow box of height less than ε and R supports I(L̃, R),
for every geodesic segment s in D2(y), the transversal measure of s with
respect to I(L̃, R) is bounded by ε. Therefore, since I(L̃, lx,θ)|D2(y)

is a sublamination of I(L̃, R)|D2(y), µx,θ(s) < ε. If s is a geodesic
segment in H2 such that s∩U 6= ∅ and length(s) < 1, then s ⊂ D2(y).
Thus, µx,θ(s) < ε. This proves the lemma if x is in U , which is a

neighborhood of y. Since S is compact and L̃ is invariant under the
deck transformations, the lemma follows. �

Proof. (Proposition 4.2) Fix arbitrary ε > 0. It suffices to show that,
for sufficiently large i, if a geodesic segment s in H2 satisfies µi(s) ≥ ε,
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Figure 6. In the left picture, R ∩D2(y) is shaded.

then length(s) ≥ 1. By Lemma 4.3, there exists θ0 > 0, such that, if

x ∈ |λ̃| and θ ∈ (−θ0, θ0), then µx,θ(s) <
2
5
ε for every geodesic segment

s with x ∈ s and length(s) < 1. By Lemma 3.3, for sufficiently large

i, ∠(λ̃, l̃i) = ∠(λ, li) < θ0 and µ(li) < ε/2.
Consider the cyclic subgroup of PSL(2,R) generated by the trans-

lation along l̃i by length(li), which we can regard as π1(li)(⊂ π1(S))
acting on H2. Choose a leaf m ∈ λi, and consider the orbit of m un-
der the action of the cyclic group. This orbit forms a sublamination
ν of λi. The leaves of ν intersect l̃i at a constant angle less than θ0,
and the distance between their consecutive intersection points is equal
to length(li). Since µ(li) < ε/2 and the dual tree of Li is isometric
to R, if a geodesic segment s lies between two adjacent leaves of ν,
then µi(s) < ε/2. Therefore, if µi(s) ≥ ε, then s transversally in-
tersects |ν| at least three times. Let a1, a2, . . . , ap be the intersection
points lying on s in this order, and let A1, A2, . . . , Ap be the leaves of
ν through these points. Take q ∈ N such that 2q + 1 is the maxi-
mal odd integer not exceeding p. Let r be the subsegment of s with
end points a1 and a2q+1. (See Figure 7.) Then length(r) ≤ length(s)
and 2

5
µi(s) ≤ µi(r) ≤ µi(s). Let r′ be the geodesic segment that real-

izes the distance between A1 and A2q+1. Then r′ is orthogonal to A1

and A2q+1. In addition, r′ intersects l̃i transversally, since otherwise

l̃i, r
′, A1, A2q+1 bound a hyperbolic triangle whose interior angle sum is

π or a hyperbolic rectangle whose interior angle sum is 4π. Therefore,
the triangle bounded by l̃i, r

′, A1 is isometric to the triangle bounded
by l̃i, r

′, A2q+1. Thus Aq+1 ∩ l̃i is the middle point of r′. Note that

Aq+1 ∩ l̃i ∈ r′, l̃i intersects |ν| ⊂ |λ̃| at Aq+1 ∩ l̃i at an angle less
than θ0, and µi(γ

′) = µi(γ) ≥ 2
5
ε. Therefore, length(r′) ≥ 1. Hence,

1 ≤ length(r′) ≤ length(r) ≤ length(s). �
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Figure 7. A case that p = 4 and q = 1.

5. Injectivity of Bending Maps

In this section, let L = (λ, µ) be a measured lamination on H2 and
βL = β : H2 → H3 be the bending map induced by L. Recall that
‖L‖ = sup{ µ(s) }, where s varies over all geodesic segments on H2 of
length less than 1.

Theorem 5.1 (Epstein, Marden and Markovic; [EMM], Theorem 4.2.2).
There exists δ ∈ (0, π) such that, if ‖L‖ < δ, then the induced bending
map βL is a bilipschitz embedding; hence, it continuously extends to
∂H2 as an embedding whose image is a simple loop in ∂H3.

To prove the decomposition theorem (Theorem 7.1), we need a gen-
eralization of Theorem 5.1. However, if we do not require flat cylinders
in Theorem 7.1 to be integral, then Theorem 5.1 is sufficient. To state
the generalization, let us set up some notions. A leaf l of L is outermost,
if the other leaves of L lie only in one component of H2 \ l. Consider all
outermost leaves of L with positive weight. Then this set forms a sub-
lamination ∂λ of λ, and ∂λ consists of isolated leaves. Let ∂L be the
measured lamination on H2 obtained by assigning each leaf of ∂λ its
positive weight with respect to µ. Let L′ = (λ′, µ′) be a sublamination
of ∂L. We also let d(L′) = inf{distH2(l1, l2) | l1, l2 ∈ λ′, l1 6= l2} ≥ 0.
Let L \L′ = (cl(λ \ λ′), µ− µ′). Note that |L′| bounds a convex region
of H2 and that the convex region contains |L \ L′|.

Theorem 5.2. For every D > 0, there exists δ ∈ (0, π) with the fol-
lowing property: If a measured lamination L on H2 contains a sublam-
ination L′ such that
(i) L′ ⊂ ∂L,
(ii) ‖L \ L′‖ < δ,
(iii) d(L′) > D, and
(iv) every leaf of L′ has weight less than π/2,
then the induced bending map βL : H2 → H2 is a bilipschitz map.



22 SHINPEI BABA

Proof. Since dist(x, y) ≥ dist(βL(x), βL(y)) for all x, y ∈ H2, it suffices
to show that there exists S > 0 such that dist(βL(x), βL(y)) > S ·
dist(x, y) for all distinct x, y ∈ H2. Let p : [0, P ]→ H2 be the geodesic
segment connecting x to y, parametrized by arc length, where P =
dist(x, y). Let P0, P1, . . . , Pn denote the distinct points lying on p in
this listed order, such that P0 = x, Pn = y, and P1, P2, . . . Pn−1 are the
transversal intersection points of p and |L|. Let R be the closed convex
region bounded by L′. Note that βL = βL\L′ on R. Then, the following
lemma immediately follows from Assumption (ii) (see Lemma 4.4 and
the proof of Corollary 4.5 in [EMM]):

Lemma 5.3. For every ε > 0, there exists δ > 0 (depending only on
ε) such that

dist(βL(x), βL(y)) > (1− ε) dist(x, y) and

∠βL(x)βL(y)βL(Pn−1) < ε

for all distinct x, y ∈ R (see Figure 8).

Figure 8.

Discrete Case. First, we assume that L contains only isolated
leaves. Fix δ > 0, obtained by applying Lemma 5.3 to an arbitrarily
fixed ε < 1.

Case 1. Suppose that x, y ∈ R. Then, by Lemma 5.3, we have
dist(βL(x), βL(y)) > ε dist(x, y).

Case 2. (See Figure 9.) Suppose that x ∈ R and y ∈ H2 \ R. Then,
since x, Pn−1 ∈ R, by Lemma 5.3, we have dist(βL(x), βL(Pn−1)) >
(1 − ε) dist(x, Pn−1) and ∠βL(x)βL(Pn−1)βL(Pn−2) < ε. Since Pn−1
is contained in a leaf l of L′, by Assumption (iv) and the Triangle
Inequality, we have

∠βL(Pn−2)βL(Pn−1)βL(y) ≥ π − w(l) > π/2.

Therefore

∠βL(x)βL(Pn−1)βL(y) > π − (ε+ π/2) = π/2− ε .
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Thus, by Lemma 3.11, there exists S ′ > 0, which does not depend
on the choices of L, x, y (under the given conditions), such that

dist(βL(x), βL(y)) > S ′( dist(βL(x), βL(Pn−1)) + dist(βL(Pn−1), βL(y)) ).

Therefore dist(βL(x), βL(y)) > S ′(1− ε)dist(x, y).
Case 3. (See Figure 9.) Suppose that x, y ∈ H2 \ R. Since P1 ∈ R

and y ∈ H2 \R, by Case 2, there exists S ′ > 0, which does not depend
on the choices of L, x, y, such that

(2) dist(βL(P1), βL(y)) > S ′ dist(P1, y).

By an argument similar to that in Case 2, we have

dist(βL(P1), βL(Pn−1)) > (1− ε) dist(P1, Pn−1) > (1− ε)D
and βL(P1)βL(Pn−1)βL(y) > π/2 − ε. Therefore, by taking a smaller
ε > 0 if necessary, we can assume that ∠βL(y)βL(P1)βL(Pn−1) <
π/2 − 2ε. Thus, by Assumption (iv), we have ∠βL(x)βL(P1)βL(y) >
π − ((π/2 − 2ε) + π/2 + ε) > ε. Then, by applying Lemma 3.11 to
4βL(x)βL(P1)βL(y), we have S ′′ > 0 such that

dist(βL(x), βL(y)) > S ′′ [ dist(βL(x), βL(P1)) + dist(βL(P1), βL(y)) ].

Combining this inequality with (2), we obtain S > 0 such that
dist(βL(x), βL(y)) > S dist(x, y) for all distinct x, y ∈ H2 \R.

Case 2 Case 3

Figure 9.

General Case. Assume that L does not consist of isolated leaves.
Then there is a sequence of measured laminations on H2, (Li = (λi, µi)),
limiting to L in Thurston’s topology, such that each Li consists of
finitely many leaves, contains a sublamination L′i ⊂ ∂Li, and satisfies
Assumptions (i) and (iv). Let βLi

: H2 → H3 denote the bending map
induced by Li. Then (βLi

) converges to βL uniformly on compacts.
(See [EM, II.1.13] for the construction of (Li) and the convergence of
(βLi

).) By the Discrete Case, there exists S > 0, such that if x, y ∈ H2,
then

dist(βLi
(x), βLi

(y)) > S dist(x, y)
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for sufficiently large i = i(x, y). In addition, the convergence of (βLi
)

to βL implies that ( dist(βLi
(x), βLi

(y)) ) limits to dist(βL(x), βL(y)) as
i→∞. Then

dist(βL(x), βL(y)) ≥ S dist(x, y)

for all x, y ∈ H2. �

Assume that L satisfies the assumptions of Theorem 5.1 or Theorem
5.2. By these theorems, β = βL : H2 → H3 is an injective quasiiso-
metric embedding, and, hence, it extends continuously to a homeomor-
phism ∂β from ∂H2 onto a simple loop on ∂H3 ∼= Ĉ (see [Gh], [Gr]).

Therefore, Ĉ \ Im(∂β) consists of two simply connected regions.

Corollary 5.4. Under the assumption of Theorem 5.1 or Theorem 5.2,
the projective structure C(L) on D2 corresponding to L is admissible.

Proof. Since β is an injective continuous quasiisometric embedding,
Im(β) is a proper surface embedded in H3. Therefore, Im(β) separates
H3 into two components (the Jordan-Brouwer Separation Theorem).
Since Im(β) is locally convex, one of the components of H3 \ Im(β) is
convex (see [CEG, I.1.3]).

The concave component of H3 \Im(β) is cobounded by Im(β) and a

topological closed diskD contained in Ĉ. Then Im(β) = ∂Conv(Ĉ\D).
Since L does not contain leaves with weight ≥ π, L is the canonical
bending lamination on ∂Conv(Ĉ\D). Therefore, (H2, L) is Thurston’s

coordinates for the projective structure on D̊; Hence C(L) is admissible.
�

6. The Existence of Admissible Loops

Let S be a closed orientable surface of genus at least 2. Let C = (f, ρ)
be a projective structure on S. Express C in Thurston’s coordinates as
(τ, L), where τ is a marked hyperbolic structure on S and L = (λ, µ)
is a measured lamination on (S, τ). Let us recall other related notions

from §3: Let L̃ = (λ̃, µ̃) be the total lift of L to H2, and let βL̃ :

H2 → H3 be the bending map induced by L̃. Let κ : (S,C) → (S, τ)
be the collapsing map, and let κ̃ : (S̃, C̃) → (H2, L̃) be the lift of
κ to a map between the universal covers of (S,C) and (S, τ). Let
L′ = (λ′, µ′) be the canonical (topological) measured lamination on
(S,C) corresponding to L via κ (§3.8). Let L̃′ be the total lift of L′ to
(S̃, C̃).

Since L decomposes into minimal measured laminations, we can set

L = (P1

⊔
P2

⊔
. . .

⊔
Pm)

⊔
(M1

⊔
M2

⊔
. . .

⊔
Mn),
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where Ph, h = 1, . . . ,m, are the periodic minimal sublaminations of L
and Mj = (νj, ωj), j = 1, . . . , n, are the irrational minimal sublamina-
tions of L. Let ph = |Ph| denote the periodic leaf supporting Ph, and
let p denote the periodic part of |λ|,

p1
⊔

p2
⊔

. . .
⊔

pm.

Let M = (ν, ω) denote the irrational part of L,

M1

⊔
M2

⊔
. . .

⊔
Mn.

For each j ∈ {1, 2, . . . , n}, let (li,j)
∞
i=1 be the sequence of simple geodesic

loops on (S, τ) that approximates |νj|, constructed in §3.5. By Lemma
3.3, we have limi→∞ ωj(li,j) = 0. Since |νj| is an isolated subset of
|λ|, we can assume that li,j does not intersect |λ \ νj|. Therefore,
limi→∞ µ(li,j) = 0. Let li = li,1

⊔
. . .

⊔
li,n , so that limi→∞ li = |ν|.

Recall that, for each h, κ−1(ph) is a flat foliated cylinder of height
w(ph) in (S,C, L′), where w(ph) is the weight of ph. The foliation on
κ−1(ph) consists of admissible loops that are homeomorphic to ph via
κ (§3.8).

Recall also that κ is a C1-diffeomorphism on S \ κ−1(p). Therefore,
if l is an essential simple loop on (S, τ) disjoint from |λ|, then κ−1(l)
is an essential simple loop on (S,C) disjoint from |λ′|. We shall see
that κ−1(l) is also admissible. Let P be the component of (S, τ) \ |L|
containing l, and let l̃ and P̃ be the lifts of l and P , respectively.
We can assume that l̃ ⊂ P̃ and that π1(l) acts on l̃ freely and properly
discontinuously as an infinite cyclic subgroup of PSL(2,C) generated by
a hyperbolic element. Let γl be the homotopy class of l that generates
π1(l). Since l̃ is a quasigeodesic in H2 and βL̃ is an isometry on P̃ , βL̃(l̃)

is a quasigeodesic in H3. Then π1(l) acts on βL̃(l̃) freely and properly
discontinuously via ρ, and this action fixes the distinct end points of
βL̃(l̃) on Ĉ. Therefore, ρ(γl) is a loxodromic element of PSL(2,C). The

curve κ̃−1(l̃) is a lift of κ−1(l) to (S̃, C̃). Then κ̃−1(l̃) is contained in
κ̃−1(P̃ ), which is a component of (S̃, C̃) \ |L̃′|. Since cl(κ̃−1(P̃ )) is the

core of a maximal ball, κ̃−1(l̃) is contained in a maximal ball. Thus, f

is an embedding on κ̃−1(l̃). Hence, κ−1(l) is admissible.
We have µ(ph) = 0 and µ(l) = 0. For each i, j, let l′i,j = κ−1(li,j),

which is a simple loop on (S,C). The fact that limi→∞ µ(li,j) = 0
suggests the following proposition:

Proposition 6.1. For each j ∈ {1, 2, . . . , n}, l′i,j is admissible, pro-
vided that i is sufficiently large.
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Proof. Let l̃′i,j be a lift of li,j to H2. Consider the measured lamination

I(L̃, l̃′i,j). Since li,j is disjoint from |λ\νj|, I(L̃, l̃i,j) = I(M̃j, l̃
′
i,j), where

M̃j is the total lift of Mj. Choose δ > 0 as in Theorem 5.1. Applying

Proposition 4.2 with I(L̃, l̃′i,j) = I(M̃j, l̃
′
i,j), we have ‖I(L̃, l̃′i,j)‖ < δ for

all large i. By Theorem 5.1, for sufficiently large i, the bending map
βI(L̃,l̃′i,j)

induced by I(L̃, l̃′i,j) is an injective quasiisometric embedding,

and it continuously extends to an embedding of ∂H2.
Let γi,j be the homotopy class of li,j that acts on H2 as a hyperbolic

element of PSL(2,R) preserving l̃′i,j. The extension of βI(L̃,l̃′i,j) home-

omorphically takes the limit set of 〈γi,j〉 to the limit set of 〈ρ(γi,j)〉.
Thus ρ(γi,j) is loxodromic.

By Corollary 5.4, the projective structure C(I(L̃, l̃′i,j)) on D̊2 corre-

sponding to I(L̃, l̃′i,j) is admissible for sufficiently large i. Then the de-

veloping map fI of C(I(L̃, l̃′i,j)) is an embedding. By Lemma 3.9, there

exists a homeomorphism φ : κ−1I (l̃i,j) → κ−1(l̃i,j) such that fI = f ◦ φ
on κ−1I (l̃i,j), where κI : D̊2 → H2 is the collapsing map for C(I(L̃, l̃′i,j)).

Since fI is an embedding, f = fI ◦ φ−1 restricted to l̃′i,j is an embed-
ding. �

We thus obtain an admissible loop from every minimal sublamination
of L and every complementary region of |λ| that is not topologically
an open disk. Therefore,

Theorem 6.2. For every projective structure C on S, there exists an
admissible loop on (S,C).

Remark: Equivalently, we can state that every projective structure on
S admits a grafting operation (see [Go2] for the definition of a grafting
operation).

7. Admissible Decomposition

We carry over our notation from the previous section. We have
shown that lji and ph correspond to admissible loops on S through κ,
provided that i is sufficiently large. Their union

li
⊔

p = (li,1
⊔

. . .
⊔

li,n)
⊔

(p1
⊔

. . .
⊔

pm)

is a multi-loop on (S, τ). In this section, we show that li
⊔
p decomposes

(S,C) into admissible subsurfaces.

Theorem 7.1 (Admissible Decomposition). Let C be a projective struc-
ture on a closed orientable surface S of genus at least 2. Then there
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exists a decomposition of S into cylinders and compact subsurfaces of
negative Euler characteristic, such that the restriction of C to each
cylinder is an integral flat structure and the restriction to each subsur-
face of negative Euler characteristic is an admissible projective struc-
ture.

Note that every flat cylinder of height less than 2π is admissible.
Therefore, every integral flat cylinder can be further decomposed into
admissible flat cylinders, if we wish. Moreover, by further decompos-
ing each surface of negative Euler characteristic into pairs of pants, if
necessary, we immediately obtain:

Corollary 7.2. There exists a decomposition of S into pairs of pants
and cylinders such that the restriction of C to each cylinder is an in-
tegral flat structure and the restriction to each pair of pants is an ad-
missible structure.

Let l be a geodesic lamination on a complete hyperbolic surface F .
Let NT (l) denote the collection of all geodesic segments of length less
than one on F that do not transversally intersect any leaves of l. Then,
a geodesic segment s connecting x and y on F is an element of NT (l)
if and only if either s ⊂ |l| or (s \ {x, y}) ∩ |l| = ∅.

Lemma 7.3. For every ε > 0, there exists i0 ∈ N such that, if i > i0,
then ω(s) < ε for all s ∈ NT (li).

Proof. We claim that, for every x ∈ (S, τ), there exist a neighborhood
Ux of x and ix ∈ N such that, if i > ix, then ω(s) < ε for every
s ∈ NT (li) with s ∩ Ux 6= ∅. This would imply the Lemma, since S

is compact. Let M̃ = (ν̃, ω̃) and l̃i denote the total lifts of M and li
to H2, respectively. Choose a lift x̃ of x to H2. Through the covering
map from H2 to (S, τ), the above claim is equivalent to the following:
There exist a neighborhood Ux̃ of x̃ and ix̃ ∈ N such that, if i > ix̃,
then ω̃(s) < ε for every s ∈ NT (l̃i) such that s ∩ Ux̃ 6= ∅.

Case 0. Suppose first that x 6∈ |ν|; Then, x̃ 6∈ |ν̃|. Let P be the
component of H2\|ν̃| that contains x̃. Then P is an open convex region
bounded by some leaves of ν̃. Clearly, only finitely many such boundary
leaves intersect D2(x̃). Let m1,m2, . . . ,mk denote these intersecting
leaves. Let m′h = D2(x̃) ∩ mh for all h ∈ {1, 2, . . . , k}. (See Figure
10.) Recall that there is a projection P : H2 → T , where T is the
tree dual to M̃ (§3.3). By Lemma 3.1, for every ε > 0 and every
h ∈ {1, 2, . . . , k}, there exists a flow box neighborhood Vh of m′h that
projects to a geodesic segment of length less than ε/2 in T . Let sh
denote the geodesic segment P(Vh). Since mh is a boundary geodesic of
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P , the leaves of M̃ contained in P do not accumulate to mh. Therefore,
by the construction of Vh, we can assume that P(m′h) = P(mh) = P(P )
is an end point of sh. Therefore, ∪hVh projects to ∨hsh ⊂ T , the one
point union of sh that identifies the end points P(mh) of sh. Then
(∪hVh)∪ (P ∩D2(x̃)) also projects onto ∨hsh, and the diameter of ∨hsh
is less than ε.

Since the sequence (l̃i) approximates ν̃, each mh is approximated by

a sequence (nh,i)i such that nh,i is a leaf of l̃i. For the rest of Case 0, we
always assume that i is sufficiently large. For each i, let Pi be the open
convex region bounded by

⊔
h nh,i . Then (Pi) limits to P as i goes to

infinity. Hence, x̃ ∈ Pi ∩D2(x̃) ⊂ (∪hVh)∪ (P ∩D2(x̃)). Take an open
neighborhood Ux̃ of x̃ such that the closure of Ux̃ is contained in the
interior of P ∩ D1(x̃). Then Ux̃ is contained in Pi. Since ∂Pi ⊂ |l̃i|,
every s ∈ NT (l̃i) with s ∩ Ux̃ 6= ∅ is contained in cl(Pi) ∩ D̊2(x̃), and
therefore s is contained in (∪hVh) ∪ (P ∩D2(x̃)). Hence P(s) ⊂ ∨hsh
and ω̃(s) < ε.

Figure 10. Case 0.

Next, suppose x ∈ |ν|; then, x̃ ∈ |ν̃|. Let l ∈ ν̃ be the leaf containing
x̃, and let l′ = l ∩ D2(x̃). There are two ways that ν̃ can accumulate
to l:
Case 1. the leaves of ν̃ accumulate from only one side of l, or
Case 2. the leaves of ν̃ accumulate from both sides of l.
In both cases, by Lemma 3.1, there exists a flow box neighborhood V
of l′ with height less than ε/2.

In Case 1, l is a boundary geodesic of a component P ′ of H2\|ν̃|. Let
m1,m2, . . . ,mk be the boundary geodesics of P ′ that intersect D2(x̃).
We can assume that m1 = l. Then l bounds a half plane disjoint from
P ′, and the leaves of ν̃ contained in this half plane accumulate to l.
Consider a leaf m of ν̃ in this half plane, such that m∩D2(x) ⊂ V . Let
P be the open convex region in H2 bounded by m and m2,m3, . . . ,mh,
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which contains x̃. Then P(P ) is a geodesic segment of length less than
ε/2. Take an open neighborhood Ux̃ of x̃ such that the closure of Ux̃
is contained in the interior of P ∩D1(x̃). The same argument as Case
0 shows that Ux̃ satisfies the desired property. (See the left picture in
Figure 11.)

In Case 2, in each component of H2 \ l, consider a leaf mi, i = 1, 2,
of ν̃ close to l. Let P be the open convex region in H2 bounded by
m1 and m2, which contains l. By taking m1 and m2 sufficiently close
to l, we can assume that P ∩ D2(x̃) is contained in V . Take an open
neighborhood Ux̃ of x̃ such that the closure of Ux̃ is contained in the
interior of P ∩D1(x̃). Again, as in Case 0, we see that Ux̃ satisfies the
desired property. (See the right picture in Figure 11.) �

Figure 11. In each picture, P ∩D2(x̃) is shaded.

Let Q be a component of S \ li, and let Q̃ be a lift of Q to H2. Note
that, if we take a different lift Q̃, then I(M̃, Q̃) changes only by an
element of π1(S). In particular, ‖I(M̃, Q̃)‖ does not depend on the
choice of Q̃.

Proposition 7.4. For every ε > 0, there exists i0 ∈ N such that, if
i > i0, then ‖I(M̃, Q̃)‖ < ε for every component Q of S \ li.

Proof. For every Q, its lift Q̃ is an open convex region bounded by some
leaves of l̃i. Therefore, H2 \ Q̃ consists of closed half planes bounded
by these leaves. We can assume that Q̃ is π1(Q)-invariant. Let k
be the number of the boundary components of Q. The π1(Q)-action
permutes the complementary half planes, and this action on the half
planes has exactly k orbits. Let H1, H2, . . . , Hk be the representatives
of the orbits. Since l consists of n disjoint simple loops on S, k ≤ 2n.



30 SHINPEI BABA

Let H be a component of H2 \ Q̃. Note that ∂H is transversal to M̃ .
Then a leaf l of I(M̃, Q̃) intersects H if and only if l intersects ∂H.
Therefore, I(I(M̃, Q̃), H) = I(M̃, ∂H). By the covering map from H2

to (S, τ), ∂H covers some li,j. Recalling that l̃i,j is a lift of li,j to H2,

I(M̃, ∂H) ∼= I(M̃, l̃i,j). Since I(M̃, Q̃) and I(I(M̃, Q̃), H) coincide on
H,

‖I(M̃, Q̃)|H‖ = ‖I(I(M̃, Q̃), H)|H‖ ≤ ‖I(I(M̃, Q̃), H)‖ = ‖I(M̃, l̃i,j)‖.

Since Q̃ is convex, for every geodesic segment s in H2, Q̃ ∩ s is either
empty or a geodesic segment. In addition, s ∩ (H2 \ Q) consists of at
most 2 geodesic segments, each of which is contained in a component
of H2 \Q (see Figure 12). Therefore, by the definition of the norm,

‖I(M̃, Q̃)‖ ≤ ‖I(M̃, Q̃)|Q̃‖+ 2 max{‖I(M̃, Q̃)|Hj
‖ | j = 1, . . . ,m}

≤ ‖I(M̃, Q̃)|Q̃‖+ 2 max{‖I(M̃, l̃i,j)‖ | j = 1, . . . ,m}.(3)

By Lemma 7.3, for every ε > 0, there exists i0 ∈ N such that, if
i > i0, then ‖I(M̃, Q̃)|Q̃‖ < ε for every component Q of S \ li. By

Proposition 4.2, for every j, ‖I(M̃, l̃i,j)‖ → 0 as i → ∞. Therefore,
for every ε > 0, if i is sufficiently large, then (3) is bounded from above
by ε for every Q. �

Figure 12.

Proof. (Theorem 7.1) Recall that m is the number of the periodic leaves
of L. For each k ∈ {1, 2, . . . ,m}, let Ak = κ−1(pk) ⊂ (S,C), which is
a flat cylinder of height w(pk), and let A =

⊔m
k=1Ak. Since S \ A is

homeomorphic to S \ p by κ, κ−1(li,j) is a simple closed loop on (S,C)
for each sufficiently large i ∈ N and for each j ∈ {1, 2, . . . ,m}. Let l′i,j =

κ−1(li,j) and l′i =
⊔
j l
′
i,j. Then κ restricts to a homeomorphism from
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S \ (A
⊔
l′i) to S \ (p

⊔
li). In particular, the components of S \ (A

⊔
l′i)

and S\(p
⊔
li) correspond bijectively. Note that, since ph’s and li,j’s are

not pairwise homotopic (when i is fixed), each component of S\(A
⊔
l′i)

and S \ (p
⊔
li) is (the interior of) a compact surface with boundary of

negative Euler characteristic.
Let S ′i = S \ (A

⊔
l′i). First, we shall show that, when i is large,

every component R′ of S ′i is admissible. Let R = κ(R′), which is a
component of (S, τ) \ (li

⊔
p). Let R̃ and R̃′ be the corresponding lifts

of R and R′ to the universal covers, (S̃, C̃) and (H2, L̃), respectively,
so that κ̃(R̃′) = R̃. Choose δ > 0 that satisfies Theorem 5.1. Let
IR = I(M̃, R̃). Then, since R ∩ p = ∅, IR = I(L̃, R̃). Note that R
is contained in a component of S \ li. Therefore, by Proposition 7.4,
‖IR‖ < δ for every component R′ of S ′i , provided that i is sufficiently

large. Hence, by Corollary 5.4, the projective structure C(IR) on D̊2

is admissible. Since IR = I(L̃, R̃) and R̃ is a convex subset of H2

bounded by geodesics, by Lemma 3.9, C(IR) embeds into C(L̃). Each
boundary leaf of R does not transversally intersect a leaf of L with
positive weight and R is not a geodesic. Therefore, by Corollary 3.10,
R(C̃, R̃′) = R(C(IR), κ−1IR (R̃)) ⊂ C(IR), where κIR is the collapsing

map for C(IR). Since C(IR) is admissible, R(C̃, R̃′) is also admissible.
Through its action, π1(R) ∼= π1(R

′) is regarded as a Schottky group
in PSL(2,R). Let βIR : H2 → H3 be the bending map induced by IR.
Then, by Theorem 5.1, βIR is an injective quasiisometric embedding,

and it extends to an equivariant embedding of ∂H2 to Ĉ. In particular,
this extension takes the limit set of π1(R) to the limit set of ρ(π1(R))
homeomorphically and ρπ1(R)-equivariantly. Therefore, ρ|π1(R) is an
isomorphism onto a Schottky group in PSL(2,C). Hence, the restric-
tion of C to R′ is admissible.

We have given a desired decomposition of (S,C), except that the
flat cylinders Ak are not integral. In what follows, instead of cutting
out the whole Ak from S, we cut out a maximal integral flat cylinder
contained in Ak. Taking the union of the maximal integral flat cylinders
and l′i, we shall show that the complementary regions of the union are
admissible, which completes the decomposition.

For x ∈ R≥0, let [x] = max{n ∈ Z≥0 | 2πn ≤ x}. Besides, let

ak =
w(pk)− 2π[w(pk)]

2

for each k. Then 0 ≤ ak < π. (Remark : One might wonder why we
only have ak < π, instead of having ak < π/2 as in Assumption (iv)
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of Theorem 5.2. The following example illustrates a “hidden” π/2-
annulus, which fills in this difference. Assume that Γ is a Schottky
group in PSL(2,R). Let H be the convex hull, in H2, of the limit set
of Γ. Then H/Γ is a projective structure on a surface with boundary.
Then the projective structure H2/Γ can be obtained by the attachment
of a π/2-annulus to each boundary component of H/Γ.)

For each k ∈ {1, 2, . . . ,m}, we cut each Ak along two admissible
loops into three flat cylinders of heights ak, 2π[w(pk)], ak in this order.
The middle cylinder A′k is integral and the others are not. (See A1 in
Figure 13.) If w(ak) < 2π, then A′k degenerates to an admissible loop
in the middle of Ak (see A2 in Figure 13).

Let A′ =
⊔m
k=1A

′
k and S ′′i = S \ (l′i

⊔
A′). Each non-integral flat

cylinder obtained above shares exactly one boundary component with
a component of S ′i = S \ (l′i

⊔
A). Therefore, each component R′ of

S ′i is contained in a component P ′ of S ′′i . If a boundary circle l of
R′ maps to a periodic leaf pk via κ, then l bounds a flat cylinder of
height ak in P ′. If l maps to an approximating loop li,j by κ, then l is a
boundary component of P ′. Thus, each component P ′ of S ′′i is the union
of a component R′ of S ′i and the non-integral flat cylinders sharing a
boundary component with R′. In particular, R′ is a deformation retract
of P ′. Letting B1, B2, . . . , Br be these non-integral flat cylinders, set

P ′ = R′ ∪ (B1 ∪ . . . ∪Br)

(the shaded region in Figure 13). Then pb1 := κ(B1), pb2 := κ(B2),
. . . , pbr := κ(Br) are periodic leaves of L.

We have κ(R′) = κ(P ′) =: R. Let R̃′ ⊂ P̃ ′ be lifts of R′ and
P ′ to S̃, respectively. Then κ̃(R̃′) = κ̃(P̃ ′) =: R̃, which is a lift of
R to H2. Let λ∂ be the geodesic lamination on H2 consisting of the
boundary geodesics of R̃ that are lifts of periodic leaves of L. Let
θ = max{ak − π/2, 0 | k = 1, 2, . . . ,m}; then 0 ≤ θ < π/2. Assign the
weight θ to each leaf of λ∂, and obtain a measured lamination L∂ on
H2. Recall that IR = I(L̃, R̃) = I(M̃, R̃). Since there are no leaves of
L intersecting both R̃ and |L∂|, and L∂ consists of isolated leaves of L̃,
therefore, |L∂| and |IR| are disjoint. Then let LP = IR

⊔
L∂. Each leaf

l of L∂ is a boundary geodesic of R̃, and each leaf of IR intersects R̃
but does not intersect leaves of L∂. Therefore, each l is an outermost
leaf of LP .

We now apply Theorem 5.2 with L = LP and L′ = L∂. We just
have checked that L∂ ⊂ ∂L (Hypothesis (i) of Theorem 5.2). Every
leaf of L∂ has the weight θ < π/2 (Hypothesis (iv)). Since p1, . . . , pm
are disjoint simple loops on S and L∂ consists of lifts of these loops,
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Figure 13. In the left picture, the region P ′ is shaded.
In the right picture, the bold lines are the leaves of LP .

there exists D > 0 such that every pair of distinct leaves of L∂ has
a distance greater than D (Hypothesis (iii)). Apply Theorem 5.2 to
this D, and obtain δ, S, T > 0. Apply Proposition 7.4 with ε = δ,
and obtain i0 ∈ N. Let Q be the component of S \ li containing R.
Then I(L̃, R̃) = I(M̃, R̃) ⊂ I(M̃, Q̃), where Q̃ is a lift of Q to H2

(that contains R̃). Therefore, by the Proposition 7.4, if i > i0, then
‖IR‖ ≤ ‖I(M̃, Q̃)‖ < δ (Hypothesis (ii)). By Theorem 5.2, if i is
sufficiently large, βLP

is an injective (S, T )-quasiisometric embedding
for every component P of S ′′i .

By Corollary 5.4, the projective structure C(LP ) on D̊2 is admissi-
ble. Let κIR and κLP

be the collapsing maps associated with C(IR) and

C(LP ), respectively. Since IR = I(LP , R̃) = I(L, R̃), by Corollary 3.10,
we have R(C̃, R̃′) = R(C(IR), κ−1IR (R̃)) = R(C(LP ), κ−1LP

(R̃)). There-

fore, R(C̃, R̃′) is admissible.
For h ∈ {1, 2, . . . , r}, let p̃h be a lift of pbh to H2 that bounds R̃.

Let H be the component of H2 \ R̃ bounded by p̃h. Then, since R̃
is open, H is a closed half plane. Note that H is uniquely deter-
mined by the choice of h and the choice of the lift of pbh . Observe
that |LP | ∩ H = p̃h. Then R(C(LP ), κ−1LP

(H \ p̃h)) is a crescent of

angle π/2, and R(C(LP ), κ−1LP
(p̃h)) is a crescent of angle θ. Therefore,

R(C(LP ), κ−1LP
(H)) is a crescent of angle π/2+θ, and it is a component

of C(LP ) \ R(C(LP ), κ−1LP
(R̃)).

Each component of R(C̃, P̃ ′) \R(C̃, R̃′) is a lift B̃h of some Bh to S̃.
There is a lift p̃′h of ph separating B̃h and R̃′ in (S̃, C̃) (Figure 14). The

height of B̃h is ah ≤ π/2+θ. By the argument above, when R(C̃, R̃′) =
R(C(LP ), κ−1LP

(R̃)) is embedded in C(LP ), p̃′h bounds a component of
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C(LP ) \R(C̃, R̃′), which is a crescent of angle π/2 + θ. Therefore, this
embedding extends to the embedding of B̃h ∪ R(C̃, R̃′) to C(LP ) (see
Figure 14). Different components of R(C̃, P̃ ′) \ R(C̃, R̃) correspond
to different B̃h. Therefore, the embedding extends disjointly to all
components of R(C̃, P̃ ′) \ R(C̃, R̃) and we obtain an embedding of
R(C̃, P̃ ′) into C(LP ). By the construction, the embedding of R(C̃, R̃)
is π1(R

′)-equivariant. Since R(C̃, P̃ ′) embeds in C(LP ), and C(LP )
has an injective developing map, therefore R(C,P ′) has an injective
developing map.

Figure 14. R(C̃, R̃′) = R̃′ and B̃h in C(LP )

Since R′ is a deformation retract of P ′, π1(R
′) is equal to π1(P

′)
as subgroups of π1(S). In particular, ρ|π1(P ′) = ρ|π1(R′). We have
already seen that π1(R

′) is isomorphic to a purely loxodromic subgroup
of PSL(2,C) via ρ. Therefore, so is ρπ1(P ′) . Hence, the restriction of C
to P ′ is admissible. �
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