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Kähler Ricci Flow on Fano Surfaces (I)

Xiuxiong Chen∗, Bing Wang

Abstract

We show the properties of the blowup limits of Kähler Ricci flow solutions on Fano
surfaces if Riemannian curvature is unbounded. As an application, on every toric Fano
surface, we prove that Kähler Ricci flow converges to a Kähler Ricci soliton metric if
the initial metric has toric symmetry. Therefore we give a new Ricci flow proof of
existence of Kähler Ricci soliton metrics on toric surfaces.

1 Introduction

This is the first part of our study of Kähler Ricci flow on Fano surfaces. In this note,
we study the convergence of Kähler Ricci flow on Fano surfaces if Riemannian curvature
is uniformly bounded and we discuss the methods to obtain the Riemannian curvature
bound.

In [Ha1], Hamilton defined Ricci flow and applied it to prove that every simply con-
nected 3-manifold with positive Ricci curvature metric admits a constant curvature metric,
hence it is diffeomorphic to S3. From then on, Ricci flow became a powerful tool to search
Einstein metrics on manifolds. If the underlying manifold is a Kähler manifold whose
first Chern class has definite sign, then the normalized Ricci flow is called the Kähler
Ricci flow. It was proved by Cao [Cao85], who followed Yau’s fundamental estimates,
that Kähler Ricci flow always exists globally. If the first Chern class of the underlying
manifold is negative or null, Cao showed that Kähler Ricci flow will converge to a Kähler
Einstein (KE) metric. If the first Chern class of the underlying manifold is positive,
then the convergence is much harder and still not clearly now. The first breakthrough
in this direction is the work of [CT1] and [CT2]. There Chen and Tian showed that the
Kähler Ricci flow converges to a KE metric if the initial metric has positive bisectional
curvature. Around 2002, Perelman made some fundamental estimates along Kähler Ricci
flow, he showed that scalar curvatures, diameters and normalized Ricci potentials are all
uniformly bounded along every Kähler Ricci flow. Together with his no-local-collapsing
theorem, these estimates give us a lot of information. After Perelman’s fundamental es-
timates, there are numerous works concerning the convergence of Kähler Ricci flow. Due
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to the limited knowledge of authors, we’ll not give a complete list of all the contributors.

In this note, we only consider the convergence of Kähler Ricci flow on Fano surfaces.
If we assume Riemannian curvature is uniformly bounded along the flow, then we can
show that this flow converges to a Kähler Ricci soliton (KRS) metric in the same complex
structure.

Theorem 1. Suppose {(M,g(t)), 0 ≤ t < ∞} is a Kähler Ricci flow solution on a Fano
surface M , J is the complex structure compatible with (M,g(t)). If Riemannian curva-
ture is uniformly bounded along this flow, then for every sequence ti → ∞, there is a
subsequence of times tik and diffeomorphisms Φik :M →M such that

Φ∗

ik
g(tik)

C∞

−→ h, (Φik)
−1
∗ ◦ J ◦ (Φik)∗

C∞

−→ J.

under a fixed gauge. Here h is a Kähler metric compatible with complex structure J and
(M,h) is a Kähler Ricci soliton metric, i.e., there exists a smooth function f on M such
that

Rich − h = L∇fh.

In general dimension Kähler Ricci flow, even if Riemannian curvature is uniformly

bounded, we can only obtain (Φik)
−1
∗ ◦ J ◦ (Φik)∗

C∞

−→ J̃ for some complex structure J̃
compatible with h. J̃ may be different from J . The reason that we can obtain the same
J here is that we are dealing with Fano surfaces now. The classification of Fano surfaces
gives us a lot of information about the limit complex structures.

In order to set up a uniform Riemannian curvature bound, we observe that there
are actually some topological and geometric obstructions for Riemannian curvature to be
unbounded along the flow. Because if the Riemannian curvature is not uniformly bounded,
we can blowup the flow at maximal Riemannian curvature points. We denote such blowup
limits as “deepest bubbles” and find that they satisfy strong topological and geometric
conditions.

Theorem 2. Suppose {(M,g(t)), 0 ≤ t < ∞} is a Kähler Ricci flow solution on a Fano
surface M . If Riemannian curvature is not uniformly bounded, then every deepest bubble
X∞ is a finite quotient of a hyper Kähler ALE manifold. Moreover, X∞ doesn’t contain
any compact divisor.

Part of this theorem was obtained independently in [RZZ].

On one hand, X∞ has particular topology and geometry. On the other hand, all the
topology and geometry of X∞ come out from the underlying manifolds. Therefore, on
a Fano surface with simple topology and geometry, it’s plausible that the Riemannian
curvature is uniformly bounded. Actually, we can prove the following theorem.
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Theorem 3. Suppose {(M,g(t)), 0 ≤ t < ∞} is a Kähler Ricci flow solution on a toric
Fano surface. If the initial metric is toric symmetric, then the Riemannian curvature is
uniformly bounded along this flow.

This result is not new. In [Zhu], Zhu showed that staring from any toric symmet-
ric metric, Kähler Ricci flow will converge to a KRS metric on every toric manifold. He
used complex Monge-Ampere equation theory and reduce the convergence of Kähler Ricci
flow to the control of C0-norm of Ricci potential functions on M . Using the toric condi-
tion, he is able to obtain the required C0-estimates. Since Theorem 3 only concerns toric
Fano surfaces, it’s not surprising that our proof is simpler and more geometric. In fact,
toric Fano surfaces with toric symmetric metrics admit almost the simplest topology and
geometry one can imagine for Fano surfaces. Because of this simplicity, the formation of
deepest bubbles is prevent, therefore the Riemannian curvature must be bounded along
the flow. This ruling-out-bubble idea originates from [CLW]. However, in [CLW], explicit
energy bounds are calculated to exclude deepest bubbles. This calculation is avoided in
our cases and we can exclude deepest bubbles directly by topological and geometric ob-
structions.

As the combination of Theorem 1 and Theorem 3, we know every toric Fano surface ad-
mits a KRS metric. Recall that a KRS metric becomes a KE metric if and only if the Futaki
invariant of the underlying manifold vanishes. By the classification of Fano surfaces, every

toric Fano surface must be one of the following types: CP
1 × CP

1,CP2,CP2#kCP
2
(1 ≤

k ≤ 3). Only CP
2#CP

2
and CP

2#2CP
2
have nonvanishing Futaki invariants. Therefore,

we have

Corollary 1. There exist nontrivial KRS metrics on CP
2#CP

2
and CP

2#2CP
2
. There

exist KE metrics on CP
1 ×CP

1, CP2 and CP
2#3CP

2
.

This result is well known although our proof is new. The existence of KRS on CP
2#CP

2

was first proved by Koiso ([Ko]). The existence of KE metric on CP
2#3CP

2
was first

proved by Tian and Yau([TY]). For a general toric manifold, the existence of KRS metric
was proved by X. Wang and Zhu ([WZ]).

The organization of this note is as follows: In section 2, we setup the basic notations.
Then we prove Theorem 1, Theorem 2 and Theorem 3 in section 3, section 4 and section
5 respectively.

Acknowledgments: The first named author wants to thank S. K. Donaldson, G. Tian
for discussions in related topics. The second author wants to thank G. Tian, J. Cheeger,
J. Lott, K. Grove, B. Chow for their interest in this work.
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2 Setup of notations

Let (M,g, J) be an n-dimensional compact complex manifold with Riemannian metric g,
ω be the form compatible with g and J . (M,g, J) is Kähler if and only if ∇J ≡ 0. This
holds if and only if ω is a positive closed (1, 1)-form. We’ll only study Kähler manifold in
this note. In local complex coordinates {z1, · · · , zn}, the metric form ω is of the form

ω =
√
−1

n
∑

i,j=1

gijd z
i ∧ d zj > 0,

where {gij} is a positive definite Hermitian matrix function. The Kähler condition requires
that ω is a closed positive (1,1)-form. Given a Kähler metric ω, the curvature tensor is

Rijkl = −
∂2gij

∂zk∂zl
+

n
∑

p,q=1

gpq
∂giq
∂zk

∂gpj

∂zl
, ∀ i, j, k, l = 1, 2, · · · n.

The Ricci curvature form is

Ric(ω) =
√
−1

n
∑

i,j=1

Rij(ω)d z
i ∧ d zj = −

√
−1∂∂ log det(gkl).

It is a real, closed (1,1)-form. Recall that [ω] is called a canonical Kähler class if this Ricci
form is cohomologous to ω, , i.e., [Ric] = [ω].

Now we assume that the first Chern class c1(M) is positive. The normalized Ricci flow
equation(c.f. [Cao85]) in the canonical class of M is

∂gij
∂t

= gij −Rij, ∀ i, j = 1, 2, · · · , n. (1)

It follows that on the level of Kähler potentials, the flow becomes

∂ϕ

∂t
= log

ωϕ
n

ωn
+ ϕ− hω, (2)

where hω is defined by

Ric(ω)− ω =
√
−1∂∂hω, and

∫

X

(ehω − 1)ωn = 0.

Along Kähler Ricci Flow , the evolution equations of curvatures are listed in Table 1.

One shall note that the Laplacian operator appears in the above formulae is the
Laplacian-Beltrami operator on functions. As usual, the flow equation (1) or (2) is re-
ferred as the Kähler Ricci flow on M . It is proved by Cao [Cao85], who followed Yau’s
celebrated work [Yau78], that the Kähler Ricci flow exists globally for any smooth initial
Kähler metric.

In his unpublished work, Perelman obtained some deep estimates along Kähler Ricci
flow on Fano manifolds. The detailed proof can be found in Sesum and Tian’s note (au-
thor?) [ST].
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∂

∂t
Rijkl=△Rijkl +RijpqRqpkl −RipkqRpjql +RilpqRqpkj +Rijkl

−1
2

(

RipRpjkl +RpjRipkl +RkpRijpl +RplRijkp

)

.

∂

∂t
Rij̄ =△Rij̄ +Rij̄pq̄Rqp̄ −Rip̄Rpj̄.

∂

∂t
R =△R+Rij̄Rjī −R.

Table 1: Curvature evolution equations along Kähler Ricci Flow

Proposition 2.1 (Perelman, c.f. [ST]). Suppose {(Mn, g(t)), 0 ≤ t <∞} is a Kähler Ricci
flow solution. There are two positive constants D,κ depending only on this flow such that
the following two estimates hold.

1. Let Rgt be the scalar curvature under metric gt, hωϕ(t)
be the Ricci potential of form

ωϕ(t) satisfying
1
V

∫

M
e
hωϕ(t)ωn

ϕ(t) = 1. Then we have

‖Rgt‖C0 + diamgt M + ‖hωϕ(t)
‖
C0

+ ‖∇hωϕ(t)
‖
C0

< D.

2.
Vol(Bgt(x, r))

r2n
> κ for every r ∈ (0, 1), (x, t) ∈M × [0,∞).

These fundamental estimates will be used essentially in our arguments.

3 Convergence of Kähler Ricci flow on Fano Surfaces if Rie-

mannian Curvature is Uniformly Bounded

In this section, we will prove Theorem 1.

Proof. Since the Riemannian curvature is uniformly bounded, diameter is uniformly bounded.
By the compactness theorem of Ricci flow, we know that for every sequence of times
ti → ∞, there is a subsequence tik → ∞ such that

{(M,g(t + tik)),−tik < t ≤ 0} −→ {(M̂ , ĝ(t)),−∞ < t ≤ 0}

in Cheeger-Gromov sense. In particular, (M,g(tik )) converges to (M̂, ĝ(0)) in Cheeger-
Gromov sense, i.e., there are diffeomorphisms ϕik : M̂ →M such that

ϕ∗

ik
(g(tik ))

C∞

−→ ĝ(0).

For the simplicity of notations, we will rewrite this as ϕ∗
i (g(ti))

C∞

−→ ĝ. Note that on
M̂ , complex structure Ji = (ϕi)

−1
∗ ◦ J ◦ (ϕi)∗ is compatible with ϕ∗

i g(ti) and it satisfies

5



∇ϕ∗

i g(ti)
Ji ≡ 0. Taking limit, we have Ji → Ĵ and ∇ĝĴ ≡ 0. This means that (M̂, ĝ, Ĵ)

is a Kähler manifold. By the monotonicity of Perelman’s µ-functional, we can argue that
(M̂, ĝ) is a KRS as Natasa Sesum did in [Se]. On a KRS, Ricĝ − ĝ = L∇f ĝ for some

smooth function f . Clearly, [R̂ij̄ ] = [ĝij̄ ] > 0 and it implies that

2πc1(M̂)2 = Volĝ(M̂ ) = lim
i→∞

Volg(ti)(M) = 2πc21(M).

It follows that (M̂, ĝ) is a Fano surface satisfying c21(M̂) = c21(M) and M̂ is diffeomorphic
to M .

By classification of Fano surfaces, every Fano surface M must satisfy 1 ≤ c21(M) ≤ 9.
Now we discuss cases by the values of c21(M).

1. 9 ≥ c21(M) = c21(M̂) ≥ 5. In this case, M is diffeomorphic to one of CP1 × CP
1,

CP
2 or CP

2#kCP
2
(1 ≤ k ≤ 4). By classification of Fano surfaces, under each

of such diffeomorphic structure, there is only one complex structure such that M
becomes Fano. Let ψ be a diffeomorphism map ψ : M → M̂ . Then both (M,J)
and (M, (ψ)−1

∗ ◦ Ĵ ◦ψ∗) are Fano manifolds with 9 ≥ c21(M) ≥ 5. Therefore, we have
J = (ψ)−1

∗ ◦ Ĵ ◦ ψ∗. Recall that we have

ϕ∗

i (g(ti))
C∞

−→ ĝ, (ϕi)
−1
∗ ◦ J ◦ (ϕi)∗

C∞

−→ Ĵ .

It follows that

(ϕi ◦ ψ)∗(g(ti)) C∞

−→ h = ψ∗ĝ, (ϕi ◦ ψ)−1
∗ ◦ J ◦ (ϕi ◦ ψ) C∞

−→ J = (ψ)−1
∗ ◦ Ĵ ◦ (ψ)∗.

Let Ψi = ϕi ◦ψ, h = ψ∗ĝ, we finish the proof of Theorem 1 whenever 9 ≥ c21(M) ≥ 5.

2. 4 ≥ c21(M) = c21(M̂ ) ≥ 1. In this case, M is diffeomorphic to one of CP2#kCP
2
(5 ≤

k ≤ 8). Under each of such diffeomorphic structure, there are a lot of complex
structures J̃ such that every (M, J̃) is a Fano surface. Therefore it is possible that
J 6= (ψ)−1

∗ ◦ Ĵ ◦ (ψ)∗ and the previous argument fails. However, in this case, M̂
doesn’t admit any holomorphic vector fields. This forces the KRS metric on M̂ to
be a KE metric. Moreover, the first eigenvalue of (M̂ , ĝ) is strictly greater than 1
(c.f. Lemma6.3 of [CT1]). Note that first eigenvalues converge as the Riemannian
manifolds converge in Cheeeger-Gromov sense, a contradiction argument shows that
the first eigenvalue of (M,g(t)) is strictly greater than 1, i.e., there is a positive
constant δ such that

λ1(−△g(t)) ≥ 1 + δ, ∀ t ∈ [0,∞).

Then using the first part of the proof of Proposition 10.2 of [CT1], we are able to
prove that

1

V

∫

M

(ϕ̇− c(t))2ω2
ϕ < Cαe

−αt

6



where c(t) = 1
V

∫

M
ϕ̇ω2

ϕ, α is some positive number. As Riemannian curvature is
uniformly bounded, we have a uniform Sobolev constant along this flow. As in [CT1],
a parabolic Moser iteration then implies that ϕ̇ is exponentially decaying, i.e.,

ϕ̇ ≤ C1e
−αt.

The right hand side is an integrable function on [0,∞). It follows that ϕ is uniformly
bounded along the flow. By virtue of Yau’s estimate, we can show that all higher
derivatives of ϕ are uniformly bounded in a fixed gauge. In particular, for every
ti → ∞, we have subsequence tik such that

ω +
√
−1ϕαβ̄(tik) → ω +

√
−1ϕαβ̄(t∞)

for some smooth function ϕ(t∞) and (M,ω+
√
−1ϕαβ̄(t∞)) is a KE metric. This ar-

gument is standard. Readers are referred to [CT1], [CT2], [PSSW1], [PSSW2], [CW]
for more details.

Let Ψi ≡ id, h = ĝ. We prove Theorem 1 whenever 4 ≥ c21(M) ≥ 1.

4 Properties of Deepest Bubbles

In this section, we discuss the behavior of Kähler Ricci flow on Fano surfaces at maximal
curvature points whenever the Riemannian curvature is not uniformly bounded along the
flow. As a corollary, we prove Theorem 2.

Let {(M,g(t)), 0 ≤ t <∞} be a Kähler Ricci flow solution on a Fano surface M . If the
Riemannian curvature is not uniformly bounded, then there is a sequence of points (xi, ti)
satisfying Qi = |Rm|g(ti)(xi) → ∞ and

|Rm|g(t)(x) ≤ Qi, ∀ (x, t) ∈M × [0, ti].

After rescaling, we have

|Rm|gi(t)(x) ≤ 1, ∀ (x, t) ∈M × [−Qiti, 0],

where gi(t) = Qig(Q
−1
i t+ ti). Shi’s estimate( [Shi1], [Shi2]) along Ricci flow implies that

all the derivatives of Riemannian curvature are uniformly bounded. Therefore, we have
the convergence

{(M,xi, gi(t)),−∞ < t ≤ 0} C∞

→ {(X,x∞, g∞(t)),−∞ < t ≤ 0}.

Here C∞ means that this convergence is in the Cheeger-Gromov sense. In particular, we

have (M,xi, gi(0))
C∞

→ (X,x∞, g∞(0)).

7



Every gi(t) satisfies the following conditions

∂gi
∂t

= Q−1
i gi(t)−Ricgi(t), sup

M×[−Qiti,0]
|Rgi(t)(x)| ≤ CQ−1

i .

So the limit flow {(X,x∞, g∞(t)),−∞ < t ≤ 0} satisfies the equations

∂g∞
∂t

= −Ricg∞(t), Rg∞(t) ≡ 0.

It is an unnormalized Ricci flow solution, so the scalar curvature satisfies the equation
△R = 1

2△R+ |Ric|2. It forces that the limit solution is Ricci flat.

As every manifold (M,gi(0)) is a Kähler manifold with complex structure J satisfying
∇gi(0)J = 0, there is a limit complex structure J∞ such that ∇g∞(0)J∞ = 0. Therefore,
(X, g∞(0), J∞) is a Ricci flat Kähler manifold.

For simplicity of notation, we denote g∞ as g∞(0).

Definition 4.1. We call such a limit (X, g∞, J∞) as a deepest bubble.

Since Riemannian curvature’s L2 norm is a rescaling invariant, we have
∫

X

|Rm|2g∞dµg∞ ≤ lim sup
i→∞

∫

M

|Rm|2gi(0)dµgi(0)

= lim sup
i→∞

(

∫

M

|R|2gi(0)dµgi(0) + C(M))

= lim sup
i→∞

(

∫

M

|R|2g(ti)dµg(ti) + C(M))

≤ C0.

In the last step, we use Perelman’s estimate that scalar curvature is uniformly bounded.
From the noncollapsing property of this flow (Proposition 2.1), the limit manifold (X, g∞)
must be κ-noncollapsing on all scales, i.e.,

Vol(B(p, r))

r4
≥ κ > 0, ∀ p ∈ X, r > 0.

As Ricci curvature is bounded, this inequality implies that (X, g∞) has uniform Sobolev
constant. Therefore (X, g∞) is a Ricci flat manifold with bounded energy and uniform
Sobolev constant. Such a manifold must be an an Asymptotically Locally Euclidean (ALE)
space. The detailed proof can be found in either [An89] or [BKN], [Tian90]. So we have
the following property.

Proposition 4.1. Every deepest bubble is a Kähler, Ricci flat Asymptotically Locally
Euclidean (ALE) space.

Moreover, the fundamental group of every deepest bubble must be finite.

Proposition 4.2. If Y 4 is a non flat ALE space with flat Ricci curvature, then π1(Y ) is
finite.

8



This is proved in [Ant]. For the simplicity of readers, we write down a simple proof
here.

Proof. Fix p ∈ Y and let π : Ỹ → Y be the universal covering map.

We argue by contradiction. Suppose π1(Y ) is a infinite group, then we can find a
sequence of points p0, p1, p2, p3, · · · ∈ π−1(p). Let γi be the shortest geodesic connecting
p0 and pi, qi be the center point of γi, vi be the tangent direction represented by γi in
TqiỸ .

Since Y is an ALE space, there is a constant R > 0 such that Y is diffeomor-
phic to B(p,R). Therefore, every loop π(γi) can be smoothly deformed into a loop in
B(p,R). Consequently the shortest distance property of γi assures that π(γi) must lo-
cate in B(p, 2mR). As B(p, 2mR) is a compact space, we may assume that (π(qi), π∗(vi))
converges to a point (q, v) ∈ TX. Remember q ∈ B(p, 2mR) and v is a unit vector in TqY .

Let (x, u) ∈ T Ỹ such that (π(x), π∗(u)) = (q, v). Then there is deck transformation
σi ∈ π1(Y ) such that (σi(qi), (σi)∗(vi)) → (x, u). σi(γi) is clearly a shortest geodesic
connecting σi(p0) and σi(pi) and σi(qi) is the center of σi(γi). Now there are only two
possibilities.

case1. lim sup
i→∞

|γi| = |σi(γi)| = ∞

In this case, by taking subsequence if necessary, we can assume that σi(γi) tends to a
line passing through q0. As Ỹ has flat Ricci curvature, it splits a line. So Ỹ = N3 × R.
N3 must be Ricci flat and therefore Riemannian flat. This implies Ỹ and Y are flat.
According to the assumption of Y , this is impossible.

case2. |γi| < C uniformly.

Since all pi’s locate in B(p0, C) ⊂ Ỹ which is a compact set. Therefore for every small
ǫ > 0, there exists i, j such that d(pi, pj) < ǫ. It follows that Y contains a geodesic lasso
passing through p and its length is less than ǫ no matter how small ǫ is. Of course this
will not happen on a smooth manifold Y .

Since both cases will not happen, our assumption must be wrong. Therefore π1(Y ) is
finite.

Let X̃
π→ X be the universal covering. Then (X̃, g̃, J̃) is a Kähler Ricci flat manifold,

where g̃ = π∗(g∞), G̃ = π∗◦J◦(π∗)−1. So its holonomy group is SU(2) = Sp(1). Therefore,
X̃ has a hyper-Kähler structure by Berger’s classification. Since π1(X) is finite, we have

∫

X̃

|Rm|2g̃dµg̃ = |π1(X)|
∫

X

|Rm|2g∞dµg∞ <∞.

It follows that X̃ is an ALE space as we argued before. This means that X̃ is a hyper-
Kähler ALE space. However, all these hyper Kähler ALE spaces has been classified by
Kroheimer in [Kr89].

9



Proposition 4.3 (Kroheimer). Let Γ be a finite subgroup of SU(2) and π : M → C
2/Γ

be the minimal resolution of the quotient space C
2/Γ as a complex variety. Suppose that

three cohomology classes αI , αJ , αK ∈ H2(M ;R) satisfy the non-degeneracy condition for
each Σ ∈ H2(M ;Z) with σ · σ = −2, there exists A ∈ {I, J,K} with αA(Σ) 6= 0.

Then there exists an ALE Riemannian metric g on M of order 4 together with a
hyper Kähler structure (I, J,K) for which the cohomology class of the Kähler form [ωA]
determined by the complex structure A is given by αA for all A ∈ I, J,K. Conversely
every hyper Kähler ALE 4-manifold of order 4 can be obtained as above.

As a corollary of this property, we know X̃ must be diffeomorphic to a minimal reso-
lution of C2/Γ for some finite group Γ ⊂ SU(2).

Now let’s consider the property of X by its submanifolds. On the deepest bubble
(X, g∞, J∞), let ω∞ be the metric form determined by g∞ and J∞.

Proposition 4.4. For every closed 2-dimensional submanifold C of X, we have

∫

C

ω∞ = 0.

In particular, (X, g∞, J∞) doesn’t contain any compact holomorphic curve.

Proof. Fix a closed 2-dimensional submanifold C ⊂ X. By the smooth convergence prop-
erty, we know there is a sequence of closed 2-dimensional smooth manifolds Ci ⊂M such
that

(Ci, gi(0)|Ci
)
C∞

→ (C, g∞|C);

(Ci, ωi(0)|Ci
)
C∞

→ (C,ω∞|C). (3)

Therefore,

Areag∞(C) = lim
i→∞

Areagi(0)(Ci).

Use Wirtinger’s inequality, we get

|
∫

Ci

ωi(0)| = |
∫

Ci

cosαdµgi(0)|

≤
∫

Ci

| cosα|dµgi(0)

≤
∫

Ci

dµgi(0) = Areagi(0)(Ci)

where α is the Kähler angle. Consequently, for large i, the following inequality hold

|
∫

Ci

ωi(0)| ≤ 2Areag∞(C).

10



On the other hand, we know [ωi(0)] = Qic1(M), this tells us that

∫

Ci

ωi(0) = Qi

∫

Ci

c1(M) = Qiai (4)

where we denote ai =
∫

Ci
c1(M) ∈ Z. So we have inequality

Qi|ai| ≤ 2Areag∞C

or

|ai| ≤
2Areag∞C

Qi
.

Note that Areag∞C is a fixed number and Qi → ∞, so |ai| → 0. However, ai are
integers. This forces that for large i, ai ≡ 0. Now we go back to equality (4) and see for
large i, we have

∫

Ci

ωi ≡ 0.

Using smooth convergence property, equation (3) yields

∫

C

ω∞ = lim
i→∞

∫

Ci

ωi(0) = 0. (5)

Remark 4.1. The reason for no compact divisors in X is that Ricci flow evolves metric
forms continuously, so it cannot change the class which is discrete. This should be some
common phenomenon in geometric flow. For example, in [Sj], Jeff Streets proved that on
a nontrivial bundle, the base manifold of a blowup limit along a renormalization group
flow must be noncompact.

Combining the previous propositions, we can conclude this section by Theorem 2.

5 Bound Riemannian Curvature of Flow on Toric Fano Sur-

faces

This section is devoted to the proof of Theorem 3.

Lemma 5.1. If (X, g∞, J∞) is a bubble coming out of a Kähler Ricci Flow solution with
toric symmetric metrics, then (X, g∞, J∞) is also a toric surface. Moreover, X is simply
connected, b2(X) > 0 and H2(X) is generated by holomorphically embedded CP1’s in X.

11



Proof. According to the construction of X, we have the following convergence in Cheeger-
Gromov sense

(M,xi, gi(0))
C∞

−→ (X,x∞, g∞).

Since the toric symmetry property will be preserved under Kähler Ricci Flow , we see that
every metric gi(0) = Qig(ti) is a toric symmetric metric. Using exactly the statement
of Proposition 16 of [CLW], we know that X is a toric surface with nontrivial H2(X).
Moreover, H2(X) are generated by holomorphic CP

1’s in X. Actually, according to this
proof, there is a Morse function defined on X. Furthermore, every critical point of X has
even indices. Therefore X is homotopic to a CW -complex with only cells of even dimen-
sion. Consequently, X must be simply connected by considering the Euler characteristic
number of X.

Now we are able to prove Theorem 3.

Proof. We only need to show Riemannian curvature is uniformly bounded. If Riemannian
curvature is not bounded, then we can blowup a toric deepest bubble X. According to
Proposition 4.4, it doesn’t contain any compact divisor. On the other hand, Lemma 5.1
implies that X must contain a CP

1 as a compact divisor. Contradiction!

Remark 5.1. If M ∼ CP
2 or CP

2#CP
2
, Theorem 3 can be proved in a different way.

Suppose Riemannian curvature is unbounded. Then we can obtain a bubble (X, g∞, J∞)
which is simply connected. Therefore itself is a hyper Kähler ALE space. By Kroheimer’s
classification (Proposition 4.3), X must contain a compact smooth 2-dimensional sub-
manifold C whose self intersection number is −2. By the smooth convergence property,
we can get a sequence of closed smooth 2-dimensional smooth manifolds Ci ⊂ M such

that (Ci, gi(0)|Ci
)

C∞

−→ (C, h|C ). In particular Ci is diffeomorphic to C and a small tubu-
lar neighborhood of Ci is diffeomorphic to a small tubular neighborhood of C. Therefore,
[Ci] · [Ci] = [C] · [C] = −2. Note that [Ci] ∈ H2(M,Z). However, H2(CP

2,Z) and

H2(CP
2#CP

2
,Z) doesn’t contain any element of self intersection number −2. So we ob-

tain a contradiction!

Remark 5.2. Theorem 3 needs the condition that initial metric g(0) is toric symmetric.
Natasa Sesum conjectured that the toric symmetry condition is not necessary. In our proof,
the symmetry is only a technical condition, we believe that it can be dropped. Actually, we
believe that starting from any metric in canonical class, Kähler Ricci flow will evolve the
metrics into a KRS on every toric manifold. It will be discussed in a subsequent paper.
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