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RICCI YANG-MILLS FLOW ON SURFACES

JEFFREY STREETS

Abstract. We study the behaviour of the Ricci Yang-Mills flow for U(1)
bundles on surfaces. We show that existence for the flow reduces to a bound
on the isoperimetric constant. In the presence of such a bound, we show that
on S2, if the bundle is nontrivial, the flow exists for all time. For higher genus
surfaces the flow always exists for all time. The volume normalized flow always
exists for all time and converges to a constant scalar curvature metric with the
bundle curvature F parallel. Finally, in an appendix we classify all gradient
solitons of this flow on surfaces.

1. Introduction

Fix (Mn, g) a Riemannian manifold. Suppose L → M is the total space of a
U(1)-bundle over M , and A is a connection on this bundle with curvature F . This
F is a purely imaginary two-form on M which represents the first Chern class of
the line bundle associated to L. In what follows we will often not refer to the total
space of the bundle and focus attention on M, g and A, and furthermore identify
F with a real valued two-form. We say that a family (M, g(t), A(t)) is a solution
to Ricci Yang-Mills flow (RYM-flow) if

∂

∂t
gij = − 2Rcij +g

klFikFjl

∂

∂t
A = − d∗F.

(1)

This equation was studied in [9] in the hope that by introducing connections A
where the curvature F has special properties then the flow would have behaviour
simpler than that of the Ricci flow. Moreover, this system arises naturally in physics
as the renormalization group flow for a certain nonlinear sigma model. Also, a
recent paper of Lebrun [8] shows an interesting connection between solutions to
the static equation, known as the Einstein-Maxwell equation, to the existence of
extremal Kähler metrics in dimension 4. Finally, we mention that this equation has
generated interest as a tool for better understanding magnetic flows on surfaces [7].
By examining homogeneous solutions, the following conjecture is plausible:

Conjecture 1. Let (M2n, g) be a Riemannian manifold. Let L → M be the total
space of a U(1) bundle over M . Given A a connection on L satisfying

[F∧n] 6= 0
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then the solution to the Ricci Yang-Mills flow with initial condition (g,A) exists for
all time.

We mention a related conjecture for odd-dimensional manifolds in the conclusion.
In this paper we examine this conjecture in the case n = 1. We show that the
regularity of the flow can be reduced to showing a bound on the Sobolev constant
of the manifold. Recall that the Sobolev constant of a Riemannian surface (M2, g)
is the smallest constant CS such that the inequality

(
∫

M

∣

∣f − f
∣

∣

2
dVg

)
1

2

≤ CS

∫

M

|∇f |(2)

holds for any function f ∈ C1(M), where f is the average value of f . It is known
that this constant is equivalent to other Sobolev constants, and moreover is equiv-
alent to the isoperimetric ratio [2].

Theorem 2. Let g be a Riemannian metric on an oriented surface M , and let
L → M denote the total space of a U(1)-bundle over M with connection A. Let
(g(t), A(t)) be the solution to RYM flow with this condition. If the solution goes
singular at time T <∞, then either

lim
t→T

Vol(g(t)) = 0

or

lim
t→T

CS(g(t)) = ∞.

If (g(t), A(t)) is the solution to volume-normalized RYM flow and it goes singular
at time T <∞, then

lim
t→T

CS(g(t)) = ∞.

In other words, in the presence of volume and Sobolev constant bounds the solution
to RYM flow on a surface is nonsingular.

We of course expect the isoperimetric constant to stay bounded along the flow. In
fact, such a bound for the Ricci flow on S2 was shown by Hamilton [6]. Such a bound
for solutions to RYM flow is as yet unclear. We are moreover able to completely
describe the limiting behaviour of infinite-time solutions with no hypotheses. The
overall situation is described in the main theorem below.

Main Theorem. Suppose solutions to RYM flow satisfy a Sobolev constant bound.
In other words, given (M2, g, A) a solution to RYM flow on [0, T ], one has CS(g(t)) <
C(T ) for all t ≤ T . Let g be a Riemannian metric on an oriented surface M , and
let L→M denote the total space of a U(1)-bundle over M with connection A.

(1) If M ∼= S2 and [F ] 6= 0, the solution to RYM flow with initial condition
(g,A) exists for all time. If the volume stays finite at infinity, the solution
converges to the round metric with F parallel. Moreover, the volume nor-
malized flow exists for all time and converges to the round metric with F
parallel.

(2) If M ∼= S2 and [F ] = 0, the solution to volume normalized RYM flow with
initial condition (g,A) exists for all time and converges to the round metric
with F ≡ 0.
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(3) If χ(M) ≤ 0, the solution to RYM flow with initial condition (g,A) exists
for all time and the volume-normalized flow exists for all time and converges
to a constant curvature metric with F parallel.

In fact, all of the convergence statements for flows existing for all time hold with-
out the Sobolev constant bound hypothesis. Notice that two important questions
are left unresolved. In particular, we do not know if the unnormalized equation on
S2 with [F ] 6= 0 has a volume bound and hence converges at infinity. Also, it would
be interesting to know the complete behaviour on S2 when [F ] = 0. We conjecture
that the solution goes singular in finite time, converging to a round point with
F ≡ 0. Since understanding gradient solitons may play a role in resolving these
issues, we provide a classification.

Proposition 3. If g is a gradient soliton on a closed surface Σ2 then g has constant
curvature and F is parallel.

The proof of long time existence in the presence of the Sobolev constant bound
generalizes the corresponding proof for Ricci flow found by Struwe [11]. We first
reduce to a flow on a conformal factor u and a connection A, and indeed we show
that a certain energy functional generalizing the Liouville energy for the confor-
mal factor to include the Yang-Mills coupling is monotonically decreasing along a
solution to RYM flow. Using this and a further a priori integral estimate we are
able to bound the H2 norms of u and A, and thus prove long time existence. The
Moser-Trudinger inequality plays a key role in the proof as well. Given the long
time existence, we are able to show that the Calabi energy remains bounded, and
thus apply the compactness result of Xiuxiong Chen [3] to show convergence at
infinity. We note that Andrea Young has independently obtained stability results
for the Ricci Yang-Mills flow on a surface [13].

In section 2 we rewrite the RYM flow equation on a surface in terms of a con-
formal factor and introduce the volume normalized equation. Section 3 contains
certain a-priori integral estimates, section 4 completes the proof of Theorem 2, and
section 5 has the proofs of convergence, completing the proof of the Main Theorem.
Section 6 is a concluding discussion, and section 7 is an appendix containing the
classification of Ricci Yang-Mills solitons on surfaces.

The author would like to thank Gang Tian for helpful discussions and for sug-
gesting the approach of [11]. Thanks also go to Dan Jane for several stimulating
conversations. Finally, the author would like to thank an anonymous referee for a
very thorough reading of and many valuable comments on an earlier version of this
manuscript.

2. Reduction to Conformal Flow

In this section we show that the metric component of the Ricci Yang-Mills flow
on a surface is a conformal flow. We already know that on a surface Rc = 1

2Rg.

On a surface the term gklFikFjl is a scalar multiple of the metric as well.

Lemma 4. Given (M2, g) a Riemannian surface and F ∈
∧2 T ∗M , gklFikFjl =

1
2 |F |

2
g gij.
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Proof. Fix a point x ∈ M and choose normal coordinates for g at x. In these
coordinates we have F (x) = λ(x)dx1 ∧ dx2. Clearly then

gklFikFjl(x) =

(

λ2 0
0 λ2

)

= λ2(x)g(x).

Since the left and right hand sides are both tensors it follows that there exists a
function λ(x) so that gklFikFjl = λ2(x)gij . Taking the trace of this equation gives

λ2(x) = 1
2 |F |

2
g. �

Using this lemma the RYM-flow on a surface becomes the system of equations

∂

∂t
g = −Rg +

1

2
|F |

2
g g

∂

∂t
A = − d∗F

(3)

Furthermore, if g = eug0 where g0 is a fixed metric of constant curvature R0 and
unit volume, then we can write

R = e−u (R0 −∆u)

where ∆ is with respect to the metric g0. Thus we can write the RYM-flow as the
system

∂

∂t
u = e−u

(

∆u−R0 +
1

2
e−u |F |

2

)

∂

∂t
A = − d∗F

(4)

where in this equation the norm |F |
2
is taken with respect to g0. Note that since

A is a connection on a U(1) bundle F may be thought of as just a usual (closed)
2-form on M2. Thus we derive the evolution equation

∂

∂t
F =

∂

∂t
(dA)

= − dd∗gF

= ∆d,gF

= ∆gF

(5)

where ∆d,g is the Laplace-Beltrami operator of g. Note that the curvature term
in the Böchner formula for n-forms always vanishes on n-manifolds [12], thus the
last line follows where ∆g is the rough Laplacian of g. We take the time here to
mention an important convention in this paper. Any metric which is used without
further decoration will be the fixed background metric. Any time we use the time-
dependent metric g(t) we will decorate the quantity with a g.

We will also need a certain volume-normalized system. Note that
∫

M

RgdVg −
1

2

∫

M

|F |
2
g dVg = R0 −

1

2

∫

M

e−u |F |
2
dV

Thus consider

∂

∂t
u = e−u∆u+ R0(1− e−u) +

1

2

(

e−2u |F |
2
−

∫

M e−u |F |
2
dV

∫

M eudV

)

∂

∂t
A = − d∗F

(6)
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The volume of g(t) remains constant under this evolution equation. Note that this
system does not differ from the unnormalized equation by a rescaling in space and
time. This is a consequence of the fact that ∂

∂tg does not have homogeneous scaling.

In particular, the term 1
2 |F |

2
g g has inverse scaling with respct to the metric while

Rgg has neutral scaling with the metric. Also, F still obeys (5) with respect to this
time dependent metric.

3. Integral Estimates

In this section we will prove a-priori integral estimates for the RYM-flow on a
surface. First we define a functional which is monotonic for solutions to RYM-flow

F(u,A) :=

∫

M

(

|du|
2
+ e−u |F |

2
)

dV + 2R0

∫

M

udV(7)

where the norms and volume form are those of the background metric g0.

Proposition 5. Given (M2, u(t), A(t)) a solution to (4) we have

d

dt
F(u(t), A(t)) = − 2

∫

M

eu |ut|
2 dV − 2

∫

M

|∇gF |2g dVg(8)

Proof. First we compute

d

dt

∫

M

|du|
2
dV = 2

∫

M

〈

d

(

e−u
(

∆u−R0 +
1

2
e−u |F |

2

))

, du

〉

dV

= −

∫

M

(

2e−u(∆u)2 − 2R0e
−u∆u + e−2u |F |

2
∆u
)

dV

= 2R0

∫

M

e−u |du|
2
dV − 2

∫

M

e−u(∆u)2dV −

∫

M

e−2u |F |
2
∆udV

Next we use the equation
∫

M
e−u |F |2 dV =

∫

M
|F |2g dVg and compute using (3) and

(5)

d

dt

∫

M

|F |2g dVg = − 2

∫

M

|∇gF |2g dVg +

∫

M

(

Rg −
1

2
|F |2g

)

|F |2g dVg

= − 2

∫

M

|∇gF |2g dVg −

∫

M

e−2u (∆u−R0) |F |
2 dV

−
1

2

∫

M

e−3u |F |
4
dV

Next we have

2R0
d

dt

∫

M

udV = 2R0

∫

M

e−u∆u−R0e
−u +

1

2
e−2u |F |

2
dV

= 2R0

∫

M

e−u |du|
2
−R0e

−u +
1

2
e−2u |F |

2
dV.
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Combining these calculations gives

d

dt
F(u(t), A(t))

= 4R0

∫

M

e−u |du|
2
dV − 2

∫

M

|∇gF |
2
g dVg − 2R2

0

∫

M

e−udV

+ 2R0

∫

M

e−2u |F |
2
dV − 2

∫

M

e−u(∆u)2dV

− 2

∫

M

e−2u |F |
2
∆udV −

1

2

∫

M

e−3u |F |
4
dV

= − 2

∫

M

eu
∣

∣

∣

∣

e−u∆u− e−uR0 +
1

2
e−2u |F |

2

∣

∣

∣

∣

2

dV − 2

∫

M

|∇gF |
2
g dVg

= − 2

∫

M

eu |ut|
2
dV − 2

∫

M

|∇gF |
2
g dVg

as required. �

Proposition 6. Given (M2, u(t), A(t)) a solution to (6) we have

d

dt
F(u(t), A(t)) = − 2

∫

M

eu |ut|
2 dV − 2

∫

M

|∇gF |2g dVg(9)

Proof. Adding a constant to u clearly does not affect the evolution of
∫

M |du|
2
dV .

Next in computing the evolution of
∫

M e−u |F |
2
dV we pick up

(

1

2

∫

M

e−u |F |2 dV −R0

)
∫

M

e−u |F |2 dV.

Thus from the previous proposition we compute

d

dt
F(u(t), F (t)) = − 2

∫

M

eu
∣

∣

∣

∣

e−u∆u− e−uR0 +
1

2
e−2u |F |

2

∣

∣

∣

∣

2

dV

− 2

∫

M

|∇gF |
2
g dVg + 2R2

0 − 2R0

∫

M

e−u |F |
2
dV

+
1

2

(
∫

M

e−u |F |
2
dV

)2

= − 2

∫

M

eu |ut|
2 − 2

∫

M

|∇gF |2g dVg

�

Corollary 7. Given (M2, u(t), A(t)) a solution to (4) or (6) we have

F(u(t), A(t)) ≤ F(u(0), A(0))

Proof. This follows from the above lemmas. �

Lemma 8. Let (S2, g(t), A(t)) be a solution to the Ricci Yang-Mills flow on S2

satisfying [F ] 6= 0. Then there exists a constant C = C(g0, |[F ]|) so that the in-
equality

Vol(g(t)) ≥ C(10)

holds for all time that the flow exists.



RICCI YANG-MILLS FLOW ON SURFACES 7

Proof. First note that on a Riemannian surface (M, g), any F ∈
∧2

T ∗M satisfies
F = ± |F | dV . This implies the inequality

0 < |[F ]|

=

∣

∣

∣

∣

∫

M

F

∣

∣

∣

∣

≤

∫

M

|F |g dVg

≤

(
∫

M

|F |
2
g dVg

)
1

2

Vol(g)
1

2 .

Using this and the Gauss-Bonnet Theorem we compute the evolution equation

d

dt
Vol(g(t)) = −

∫

M

RdV +
1

2

∫

M

|F |
2
dV

≥ − 4π +
|[F ]|

2

2Vol(g(t))
.

If Vol(g(t)) ≤ [F ]2

8π then ∂
∂t Vol(g(t)) ≥ 0 and the result follows. �

Lemma 9. Given (M2, g(t), A(t)) a solution to (4) there exists a constant C > 0
depending on (g(0), A(0)) so that the inequality

Vol(g(t)) ≤ V ol(g(0)) + Ct(11)

holds for any t > 0.

Proof. Using Proposition 5 we estimate

d

dt
Vol(g(t)) =

d

dt

∫

M

dVg

=

∫

M

(

−R+
1

2
|F |2g

)

dVg

= − 2πχ(M) +
1

2

∫

M

|F |2g dVg.

However, using the fact that F is bounded and the Liouville energy is bounded
below in any conformal class we see

∫

M

|F |
2
g dVg = F(u(t), A(t))−

∫

M

(

|du|
2
+ 2R0u

)

dV

≤ F(u(0), A(0)) + C.

Therefore

d

dt
Vol(g(t)) ≤ C

and the result follows. �

Lemma 10. Given (M2, g(t), A(t)) a solution to (4) or (6), on any finite time
interval [0, T ] there exists a constant C depending only on (u(0), A(0)) and T so
that

||∇u||L2 ≤ C,

∫

M

e−u |F |
2
dV ≤ C
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Proof. In the case R0 ≤ 0 using Jensen’s inequality and the volume bound we easily
conclude that

∫

M

u ≤ log

∫

M

(eudV ) ≤ C.

Thus we have an a-priori lower-bound for F and the result follows. For the case
R0 > 0 we must modify our flow by an explicit Möbius transformation as in [11].
Specifically we solve for φ(t) a family of conformal diffeomorphisms of the sphere
such that h(t) = φ(t)∗g(t) = ev(t)g0 satisfies

∫

M

xdVh = 0

for all time, where x is the position vector in R
3. Note that these diffeomorphisms

are certainly different from those obtained for fixing the conformal gauge of Ricci
flow. Since F is diffeomorphism invariant it follows from Proposition 6 (in the vol-
ume normalized case) that F is uniformly bounded for the diffeomorphism-modified
flow and thus in particular

∫

M

|dv|
2
dV + 2R0

∫

M

vdV < C.

Then using Aubin’s result [1] and the volume bound we conclude

||v||2H1 ≤ C

One now easily gets an C1 bound on the diffeomorphism parameter φ as in [11]
Lemma 6.2 which gives the requisite bounds. �

Lemma 11. Given (M2, g(t), A(t)) a solution to (4) or (6), on any finite time
interval [0, T ] for any k we have

sup
0≤t<T

∫

M

ek|u|dV <∞(12)

Proof. Since the volume is bounded on any finite time interval by Lemma 9 and
||∇u||L2 is bounded on a finite time interval by Lemma 10, the result follows from
the Moser-Trudinger inequality . �

4. Long Time Existence

In this section we will use the integral estimates of the previous section and the
assumed bound on the Sobolev constant to get an H2 bound for both u and A.
These bounds prove Theorem 2 and the existence statements of the Main Theo-
rem. In the next section we will use the gradient property to get the convergence
statements of the Main Theorem. We point out that a general short-time existence
theorem for RYM flow was shown in [9] using the DeTurck gauge fixing procedure
for both the Ricci flow and the Yang Mills flow together. Our bounds will apply to
any flow whose volume is bounded over any finite time interval. In particular these
estimates work to show long time existence for the volume normalized flow, and
the unnormalized flow in the cases when χ(M) ≤ 0 and when χ(M) > 0, [F ] 6= 0
by Lemma 8. We will explicitly work with the unnormalized flow.

We will make use of the multiplicative Sobolev inequality

||f ||
2
L4 ≤ C ||f ||L2 ||f ||H1 ≤ C ||f ||

2
H1 .(13)
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The constant of this inequality is equivalent to the Sobolev constant as we have
defined it using Hölder’s inequality. Also we use an inequality of Calderón-Zygmund
type:

∫

M

∣

∣∇2f
∣

∣

2
dV ≤ C

∫

M

|∆f |
2
dV.(14)

We will have occasion to write certain terms using the metric g for notational
convenience, and we will mostly apply the Sobolev inequality with respect to the
fixed background metric. There is one term which requires the use of the Sobolev
inequality for g, and we treat it explicitly. Also, we will make repeated use of
Lemmas 10 and 11.

We start with a preliminary observation. Since F(u(t), A(t)) is continuous, non-
increasing and bounded below, given ǫ > 0 there is a τ > 0 so that given any
0 ≤ t0 < t1 ≤ T such that t1 − t0 < τ we have

F(u(t0), A(t0))−F(u(t1), A(t1) ≤ ǫ(15)

In particular for such times one has the estimate

∫ t1

t0

∫

M

|∇gF |
2
g dVg ≤

∫ t1

t0

∂

∂t
F(u(t), A(t)) ≤ ǫ(16)

which follows from Proposition 5. Consider the calculation

d

dt

∫

M

eu |∇gF |
2
g dVg = 2

∫

M

eu 〈∇g
i∆gF,∇

g
iF 〉g dVg −

∫

M

(eu)t |∇
gF |

2
g dVg

= 2

∫

M

eu
〈

∇g
j∇

g
j∇

g
iF +

(

Rg + F ∗2
)

∗ ∇gF +∇ut ∗ F,∇
g
i F
〉

g
dVg

−

∫

M

(eu)t |∇
gF |

2
g dVg

= − 2

∫

M

eu |∇g∇gF |
2
g dVg +

∫

M

eu∇u ∗ ∇g∇gF ∗ ∇gF

+

∫

M

eu
(

Rg + F ∗2
)

∗ ∇gF ∗ ∇gFdVg +

∫

M

eu∇ut ∗ F ∗ ∇gF

−

∫

M

(eu)t |∇
gF |2g dVg

≤ −

∫

M

eu |∇g∇gF |
2
g dVg

+ C

∫

M

(

eu |∇u|
2
g +∆u+ |R0|+ eu |F |

2
g

)

|∇gF |
2
g dVg

+ C

∫

M

eu |∇ut|g |F |g |∇
gF |g dVg .

In the second line we commuted derivatives and in the third line integrated by
parts. First we estimate

C |R0|

∫ t1

t0

∫

M

|∇gF |
2
g dVgdt ≤ C(17)
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by (16). Now we estimate

∫

M

eu |∇u|2g |∇
gF |2g dVg =

∫

M

eu |∇u|2 |∇gF |2g dV

≤ ||∇u||
2
L4

∣

∣

∣

∣

∣

∣
e

u
2 |∇gF |g

∣

∣

∣

∣

∣

∣

2

L4

≤ C ||∇u||L2 ||∇u||H1

∣

∣

∣

∣

∣

∣
e

u
2 |∇gF |g

∣

∣

∣

∣

∣

∣

L2

∣

∣

∣

∣

∣

∣
e

u
2 |∇gF |g

∣

∣

∣

∣

∣

∣

H1

≤ C sup
t1≤t<t2

||u||H2

∣

∣

∣

∣

∣

∣
e

u
2 |∇gF |g

∣

∣

∣

∣

∣

∣

L2

∣

∣

∣

∣

∣

∣
e

u
2 |∇gF |g

∣

∣

∣

∣

∣

∣

H1

Which implies

∫ t1

t0

∫

M

eu |∇u|2g |∇
gF |2g dVg

≤ C sup
t0≤t<t1

||u||H2

(
∫ t1

t0

∫

M

|∇gF |2g dVg

)

1

2

·

(
∫ t1

t0

∫

M

∣

∣

∣
∇e

u
2 |∇gF |g

∣

∣

∣

2

dV

)

1

2

≤ Cǫ sup
t0≤t<t1

||u||
2
H2 + Cǫ

∫ t1

t0

∫

M

eu
(

|∇g∇gF |
2
g + |∇u|

2
g |∇

gF |
2
g

)

dVg

≤ Cǫ sup
t0≤t<t1

||u||
2
H2 + Cǫ

∫ t1

t0

∫

M

eu |∇g∇gF |
2
g dVg .

(18)

Analogously to the above estimate we get

∫

M

eu |F |2g |∇
gF |2g dVg ≤

(
∫

M

e2u |F |4g dV

)
1

2

(
∫

M

e2u |∇gF |4g dV

)
1

2

≤ C
∣

∣

∣

∣

∣

∣
e

u
2 |F |g

∣

∣

∣

∣

∣

∣

L2

∣

∣

∣

∣

∣

∣
e

u
2 |F |g

∣

∣

∣

∣

∣

∣

H1

∣

∣

∣

∣

∣

∣
e

u
2 |∇gF |g

∣

∣

∣

∣

∣

∣

L2

∣

∣

∣

∣

∣

∣
e

u
2 |∇gF |g

∣

∣

∣

∣

∣

∣

H1

≤ C
∣

∣

∣

∣

∣

∣
e

u
2 |F |g

∣

∣

∣

∣

∣

∣

H1

∣

∣

∣

∣

∣

∣
e

u
2 |∇gF |g

∣

∣

∣

∣

∣

∣

L2

∣

∣

∣

∣

∣

∣
e

u
2 |∇gF |g

∣

∣

∣

∣

∣

∣

H1

Integrating this in time and arguing as in (18) yields

∫ t1

t0

∫

M

eu |F |2g |∇
gF |2g dVg

≤ Cǫ sup
t0≤t<t1

∫

M

eu |∇gF |
2
g dVg + Cǫ

∫ t1

t0

∫

M

eu |∇g∇gF |
2
g dVg.

(19)

Also we have the estimate

∫ t1

t0

∫

M

|∇gF |2g∆udVg ≤

∫ t1

t0

||∆u||L2

∣

∣

∣

∣

∣

∣
e

u
2 |∇gF |g

∣

∣

∣

∣

∣

∣

2

L4

≤ Cǫ sup
t0≤t<t1

||u||
2
H2 + Cǫ

∫ t1

t0

∫

M

eu |∇g∇gF |
2
g dVg.
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Turning to the final term, we see
∫ t1

t0

∫

M

eu |∇ut|g |F |g |∇
gF |g dVgdt

=

∫ t1

t0

∫

M

e−u |∇ut| |F | |∇
gF | dV

≤

∫ t1

t0

(
∫

M

eu |∇ut|
2
dV dt

)
1

2

(
∫

M

e−3u |F |
2
|∇gF |

2
dV

)
1

2

dt

≤ Cǫ

∫ t1

t0

∫

M

eu |∇ut|
2
dV dt+

∫ t1

t0

∫

M

eu |F |
2
g |∇

gF |
2
g dVgdt

≤ Cǫ

∫ t1

t0

∫

M

eu |∇ut|
2
dV dt+ Cǫ

∫ t1

t0

∫

M

eu |∇g∇gF |
2
g dVgdt.

where in the last line we applied (19). Combining these estimates gives
∫ t1

t0

∫

M

eu |∇g∇gF |
2
g dVg + sup

t0≤t<t1

∫

M

eu |∇gF |
2
g dVg

≤ Cǫ sup
t0≤t<t1

||u||
2
H2 + C

∫

M

eu |∇gF |
2
g dVg(t0) + C

(20)

Now we turn to estimating u. Our bounds here are directly adopted from section
6 of [11]. First we have

∂

∂t
eu −∆u = −R0 +

1

2
e−u |F |2

Multiplying this equation by −∆ut and integrating gives
∫

M

eu |∇ut|
2 dV +

1

2

∂

∂t

∫

M

|∆u|2 dV

≤
1

2

∫

M

eu |∇ut|
2 dV + C

∫

M

eu |∇u|2 |ut|
2 dV −

∫

M

e−u |F |2 ∆utdV

Integrating in time and using the estimate

||u||2L2 ≤ C

∫

M

e2|u|dV ≤ C(T ),

which follows from Jensen’s inequality and Lemma 11, we conclude

I :=

∫ t1

t0

∫

M

eu |∇ut|
2
dV dt+ sup

t0≤t<t1

||u||
2
H2

≤ C

∫ t1

t0

∫

M

eu |∇u|
2
(

|ut|
2
+ 1
)

dV dt

−

∫ t1

t0

∫

M

e−u |F |2 ∆utdV dt+ ||u(t0)||H2 + C.

(21)

Since eu is bounded in L2 we deduce from the Sobolev inequality
∫

M

eu |∇u|
2
dV ≤ C ||∇u||

2
L4 ≤ C(T ) ||u||

2
H2 ≤ C(T ) sup

t0≤t<t1

||u||
2
H2(22)
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Similarly, using the Sobolev inequality (13) and the a-priori bound on ||∇u||L2 we
are able to bound

∫

M

eu |∇u|
2
|ut|

2
dV = 4

∫

M

|∇u|
2 ∣
∣

(

e
u
2

)

t

∣

∣

2
dV

≤ C ||∇u||
2
L4

∣

∣

∣

∣

(

e
u
2

)

t

∣

∣

∣

∣

2

L4

≤ C ||∇u||L2 ||∇u||H1

∣

∣

∣

∣

(

e
u
2

)

t

∣

∣

∣

∣

L2

∣

∣

∣

∣

(

e
u
2

)

t

∣

∣

∣

∣

H1

≤ C
∣

∣

∣

∣

(

e
u
2

)

t

∣

∣

∣

∣

L2

∣

∣

∣

∣

(

e
u
2

)

t

∣

∣

∣

∣

H1
sup

t0≤t<t1

||u||H2

(23)

We need to estimate the time integral of the first two terms in the above expression.
First of all it is clear that

∫ t1

t0

∣

∣

∣

∣

(

e
u
2

)

t

∣

∣

∣

∣

2

H1
dt ≤ C

∫ t1

t0

∫

M

eu
(

|∇ut|
2
+ |∇u|

2
|ut|

2
+ |ut|

2
)

dV dt(24)

To estimate the other integral, we use (8) to compute

∣

∣

∣

∣

(

e
u
2

)

t

∣

∣

∣

∣

2

L2
=

∫

M

eu |ut|
2
dV

= −
d

dt
F(u(t), A(t)) −

∫

M

|∇gF |
2
g dVg

≤ −
d

dt
F(u(t), A(t)).

Thus we can conclude

∫ t1

t0

∣

∣

∣

∣

(

e
u
2

)

t

∣

∣

∣

∣

2

L2
dt ≤ F(u(t0), A(t0))−F(u(t1), A(t1))(25)

Thus integrating (23) in time, applying Hölder’s inequality and using (24) and (25)
gives

II :=

∫ t1

t0

∫

M

eu |∇u|
2
|ut|

2
dV dt

≤ C (F(u(t0), A(t0))−F(u(t1), A(t1)) + t1 − t0)
1/2

(I + II + C)

Now, recall from (15) that we can choose t1 − t0 small enough that

C (F(u(t0), A(t0))−F(u(t1), A(t1)) + t1 − t0)
1/2 ≤ ǫ ≤

1

2

which implies

II ≤ 2ǫI + C

Thus from (21) and (22) we conclude

I ≤ C (t1 − t0 + ǫ) I + C ||u(t0)||
2
H2 −

∫ t1

t0

∫

M

e−u |F |
2
∆utdV dt+ C(T )(26)
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We now turn to the last term in this expression. First of all by integration by
parts and the Cauchy-Schwarz inequality we have

∫ t1

t0

∫

M

e−u |F |2 ∆utdV dt ≤ ǫ

∫ t1

t0

∫

M

eu |∇ut|
2 dV dt

+ C

∫ t1

t0

∫

M

(

eu |∇u|
2
|F |

4
g + e2u |∇gF |

2
g |F |

2
g

)

dV dt.

(27)

We have already bounded the last term in the above inequality. The first term in
the second line above is the one which finally requires the bound on the Sobolev
constant of g. We start with an application of Hölder’s inequality and the Sobolev
inequality with respect to g0.

∫

M

eu |∇u|
2
|F |

4
g dV ≤ ||∇u||

2
L4

∣

∣

∣

∣

∣

∣
e

u
2 |F |

2
g

∣

∣

∣

∣

∣

∣

2

L4

≤ C ||∇u||L2 ||∇u||H1

∣

∣

∣

∣

∣

∣
e

u
2 |F |

2
g

∣

∣

∣

∣

∣

∣

L2

∣

∣

∣

∣

∣

∣
e

u
2 |F |

2
g

∣

∣

∣

∣

∣

∣

H1

≤ C sup
t0≤t<t1

||u||H2

∣

∣

∣

∣

∣

∣
e

u
2 |F |

2
g

∣

∣

∣

∣

∣

∣

L2

∣

∣

∣

∣

∣

∣
e

u
2 |F |

2
g

∣

∣

∣

∣

∣

∣

H1

.

(28)

Now we note

∣

∣

∣

∣

∣

∣
e

u
2 |F |

2
g

∣

∣

∣

∣

∣

∣

L2

=

(
∫

M

eu |F |
4
g dV

)

=
∣

∣

∣

∣

∣

∣
|F |g

∣

∣

∣

∣

∣

∣

2

L4(g)

≤ CS(g)
∣

∣

∣

∣

∣

∣
|F |g

∣

∣

∣

∣

∣

∣

L2(g)

∣

∣

∣

∣

∣

∣
|F |g

∣

∣

∣

∣

∣

∣

H1(g)

≤ C

(
∫

M

|∇gF |
2
g dVg

)
1

2

= C
∣

∣

∣

∣

∣

∣
e

u
2 |∇gF |g

∣

∣

∣

∣

∣

∣

L2

.

Plugging this into (28) yields

∫

M

eu |∇u|2 |F |4g dV ≤ C sup
t0≤t<t1

||u||H2

∣

∣

∣

∣

∣

∣
e

u
2 |∇gF |g

∣

∣

∣

∣

∣

∣

L2

∣

∣

∣

∣

∣

∣
e

u
2 |F |2g

∣

∣

∣

∣

∣

∣

H1

.(29)

Integrating this in time and arguing as in line (18) yields

∫ t1

t0

∫

M

eu |∇u|
2
|F |

4
g dV dt

≤ Cǫ sup
t0≤t<t1

||u||
2
H2 + Cǫ

∫ t1

t0

∫

M

[

eu |∇u|
2
|F |

4
g + e2u |∇gF |

2
g |F |

2
g

]

dV dt

≤ Cǫ sup
t0≤t<t1

||u||
2
H2 + Cǫ sup

t0≤t<t1

∫

M

eu |∇gF |
2
g dVg + Cǫ

∫ t1

t0

∫

M

eu |∇g∇gF |
2
g dVg.
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where in the last line we rearranged terms and applied (19). Thus plugging this
into (27), applying (19) again and plugging the result into (26) gives

I ≤ C (t1 − t0 + ǫ) I + C ||u(t0)||
2
H2

+ Cǫ

(

sup
t0≤t<t1

∫

M

eu |∇gF |
2
g dVg +

∫ t1

t0

∫

M

eu |∇g∇gF |
2
g dVg

)

+ C(T ).
(30)

Combining this with (20) and choosing ǫ small with respect to universal constants
gives

sup
t0≤t<t1

(

||u||
2
H2 +

∫

M

eu |∇gF |
2
g dVg

)

≤ C

(

||u(t0)||H2 +

∫

M

eu |∇gF |
2
g dVg(t0)

)

+ C(T ).

Thus we can cover [0, T ] by finitely many intervals of length τ to yield an H2

bound for u and an H1-type bound for F on any finite time interval. It is easy to
see that we now also have a bound on ||F ||H1 . Now we may choose a sequence of
times tn → T and choose divergence-free gauges for the connections A(tn). Our H1

bound for F then yields an H2 bound for A and so we can conclude that both A and

u have uniform C
1

2 bound up to time T . Using this and the form of the evolution
equations we can apply parabolic Schauder estimates at this point to conclude C∞

convergence at t = T . This completes the proof of Theorem 2 and the existence
statements of the Main Theorem.

5. Convergence Results

We will apply the concentration-compactness result of Chen [3] to show conver-
gence of the volume-normalized flow. Again we note that we do not require the
isoperimetric constant bound here, these statements hold for any long-time solution
of RYM flow on a surface with bounded volume. The statement we use is taken
from [11].

Theorem 12. ([11] Theorem 3.1). Let gn = eung0 be a family of smooth conformal
metrics on a surface M with unit volume and bounded Calabi energy. Then either
the sequence {un} is bounded in H2(M, g0) or there exist points {x1, . . . xL} ∈ M
and a subsequence {un} such that for any ρ > 0 and any i we have

lim inf
n→∞

∫

Bρ(xi)

|Kn| dVgn ≥ 2π

where Kn is the Gauss curvature of gn. Moreover, there holds

2πL ≤ lim sup
n→∞

(Ca(gn) + C0)
1

2 <∞

and either un → −∞ and n → ∞ locally uniformly on M/{x1, . . . xL} or {un} is
locally bounded in H2(M, g0) away from {x1, . . . xL}.

First consider the case χ(M) ≤ 0. In this case the energy F is bounded below.
Thus, as a consequence of Proposition 6 we have that

lim inf
t→∞

d

dt
F(g(t), F (t)) = 0
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Thus choose a sequence of times {tn}, tn → ∞ so that

lim
n→∞

d

dt
F(g(tn), F (tn)) = 0

It is clear from (9) that for this sequence we further have

lim
n→∞

∫

M

|∇gnF |2gn dVgn = 0(31)

Our goal is to show that the Calabi energy is bounded. To do that we expand the
inner product in (9). We note that intuitively since

∫

M
|∇gF |2g dVg is very small,

one expects that |F |
2
is roughly parallel, so that the inner product should split.

We carry out estimates to that effect. First note

−
1

2

d

dt
F(g(t), A(t))

=

∫

M

e−u (∆u)
2
dV − 2R0

∫

M

e−u∆udV +

∫

M

e−2u∆u |F |
2
dV

−R0

∫

M

e−2u |F |
2
dV +R0

∫

M

e−u |F |
2
dV

+
1

4

∫

M

e−3u |F |
4
dV −

1

4

(
∫

M

e−u |F |
2

)2

≤ ǫ

(32)

Also we clearly have

−2R0

∫

M

e−u∆udV = − 2R0

∫

M

e−u |du|
2
dV

≥ 0

Combining these facts, and using the uniform bound on
∫

M
e−u |F |

2
dV yields

∫

M

e−u (∆u)
2
dV +

∫

M

e−2u∆u |F |
2
dV +

1

4

∫

M

e−3u |F |
4
dV ≤ C(33)

We now show that the middle term here must be small which gives us the desired
bound on the Calabi energy. In the two estimates below we will use the notation
g to refer to a metric in the sequence g(tn) to simplify notation. Fix a small ǫ > 0

and choose a large n so that
∫

M |∇gF |
2
g dVg < ǫ. At this time we can estimate

∫

M

e−2u |F |
2
∆udV =

∫

M

|F |
2
g∆gudVg

= −

∫

M

〈

∇g |F |
2
g ,∇u

〉

g
dVg

≤ C

∫

M

|∇gF |g |F |g |∇u|g dVg

= C

∫

M

(

e
u
2 |∇gF |g

)(

e−
3u
4 |F |

)

(

e−
u
4 |∇u|

)

dV

≤ C

(
∫

M

|∇gF |
2
g dVg

)1/2(∫

M

e−3u |F |
4
dV

)1/4(∫

M

e−u |∇u|
4
dV

)1/4
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Now we estimate using the Calderón-Zygmund inequality
(
∫

M

e−u |∇u|
4
dV

)1/4

≤ C

(
∫

M

|∇u|
8
dV

)1/8

≤ C ||∇u||
H

8/5
1

≤ C
∣

∣

∣

∣∇2u
∣

∣

∣

∣

L8/5

≤ C ||∆u||L8/5

= C

(
∫

M

e
4

5
u
(

e−
4

5
u |∆u|

8/5
dV
)

)5/8

≤ C

(
∫

M

e−u |∆u|
2
dV

)
1

2

Plugging this into the above calculation gives
∫

M

e−2u |F |
2
∆udV ≤ Cǫ

(

1 +

∫

M

e−3u |F |
4
dV +

∫

M

e−u |∆u|
2
dV

)

where C is a universal constant. Thus plugging this back into (33) we can conclude
that for ǫ small enough we have a uniform bound on

∫

M

e−u (∆u)
2
dV.

This implies that the Calabi energy, given by

Ca(g) :=

∫

M

∣

∣Kg −Kg

∣

∣

2
dVg =

∫

M

e−u |∆u|
2
dV − C0

is bounded at these times. Using the bound on ||eu||L2 we have

∫

Bρ(x)

∣

∣Kg(tn)

∣

∣ dVgtn ≤ (Ca(gtn) + C0)
1

2

(

∫

Bρ(x)

eudVg0

)
1

2

≤ C

(

∫

Bρ(x)

dV0

)
1

2

.

This bound rules out the bubbling possibility of Theorem 12, and so we conclude
a uniform H2 bound on u for this sequence. Also we have an H1 bound for F as
in the previous section so we can take a convergent subsequence, which is in fact
smoothly converging to a limit (u∞, A∞). By (31) we know that F is covariant

constant. Thus |F |
2
=
∫

M |F |
2
g dVg and so the limiting metric has constant scalar

curvature. This shows that a subsequence converges as required, but using the
nonincreasing property of F , it is clear that in fact the whole flow itself must be
converging to this metric.

For the case χ(M) > 0 we consider the gauge-fixed flow introduced in Lemma 10.
Here again the energy F is bounded below so we can argue as above to show that
the Calabi energy for the gauge-fixed flow is bounded for a subsequence approaching
infinity. Two terms are bounded differently. In particular we have

2R0

∫

M

e−u∆udV ≤ C + ǫ

∫

M

e−u (∆u)
2
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and also

R0

∫

M

e−2u |F |
2
≤ C + ǫ

∫

M

e−3u |F |
4
dV.

Once the Calabi energy is bounded we argue as above using Theorem 12 to show
that a subsequence of the gauge-fixed flow converges. Since the diffeomorphism
parameter is defined in terms of the varying metric and we now have uniform
control and convergence of this metric, these diffeomorphisms also converge thus
the solution (g(t), A(t)) also converges. Since F is parallel in the limit it follows
that the limiting metric must have constant scalar curvature.

It is clear that if one assumes a uniform upper bound on volume for a solution
to unnormalized RYM flow on S2 with [F ] 6= 0, then using Proposition 5, the
arguments we have given above apply to allow us to conclude convergence to the
round metric with F parallel. This completes the proof of the main theorem.

6. Conclusions

Our description of RYM flow in S2 is encouraging, showing that a purely topo-
logical condition changes the qualitative behaviour of this equation. We have to
remember however that the Ricci flow on S2 always encounters a global, type I
singularity. Indeed, an easy argument akin to lemma 8 could show a lower volume
bound for any type I singularity when [F∧n] 6= 0. This rules out such global singu-
larities, but says nothing yet about local singularities, which are of course the main
problem for Ricci flow in higher dimensions.

We can also make the following conjecture for odd-dimensional manifolds related
to Conjecture 1:

Conjecture 13. Let (M2n+1, g) be a Riemannian manifold and L → M the total
space of a U(1) bundle with connection A satisfying [F∧n] 6= 0. Then the solution
to RYM-flow exists for all time.

It may be possible to use the detailed description of Ricci flows on three-manifolds
to attack this problem, in particular consider the case of M3 = S2 × S1. An argu-
ment like Lemma 8 can show that the minimal volume of an immersed S2 represent-
ing the nonzero homology class can never drop to zero. Thus one does not expect
a neckpinch singularity. However, at this point, even showing no local collapsing
around a singularity is quite difficult, as Perelman’s proofs do not generalize in an
obvious way. Thus the structure of singularities is still poorly understood.

Besides the lack of a bound on the isoperimetric constant, there are other ques-
tions our main theorem leaves unanswered. In particular, one would like to prove
that the volume of the unnormalized equation stays bounded on S2 when [F ] 6= 0.
Also, it is likely the case that when [F ] = 0 the flow encounters a singularity in
finite time which converges to a round point with F ≡ 0. Since resolving these
questions may likely make use of the gradient property of Ricci Yang-Mills flow, we
have included the classification of Ricci Yang-Mills solitons in dimension 2.

It would also be interesting to know if the flow converges exponentially. This is
likely true and would follow from a modification of the argument in [11]. Finally,
it would be interesting to see if an a-priori estimate on the gradient of u may be
obtained similarly to the Alexandrov reflection. Here the presence of the Yang-Mills
term in the evolution of u makes the usual proof break down.
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7. Appendix: Gradient Solitons on Surfaces

In this section we classify all solitons on surfaces. We note that the proof of
the corresponding result for Ricci flow using the Kazdan-Warner identity does not
work, but we can easily adapt the proof of Chen, Lu, and Tian ([4], [5]).

Definition 14. Given (M, g) a Riemannian manifold and L → M an S1 bundle
over M with connection A, we say that (g,A) is a gradient RYM soliton if

Rc−
1

2
η +∇2f + λg = 0(34)

d∗F = ∇f F(35)

Proposition 15. Ricci Yang-Mills flow is the gradient flow of the lowest eigenvalue
of the Schroedinger operator

−4∆+R−
1

4
|F |

2
.(36)

Moreover, this eigenvalue is constant in time if and only if the solution is a gradient
Ricci Yang-Mills soliton.

Proof. The proof of this proposition is adapted directly from the corresponding
proof for the Ricci flow. It can be found in [9], and was discovered independently
by Andrea Young [13]. A discussion of this and other gradient properties of RYM
flow will appear in a subsequent paper [10]. �

Lemma 16. ([4] Lemma 1) Let (Σ, g) be a two dimensional complete Riemannian
manifold with non trivial Killing vector field X. If X vanishes at O ∈ Σ then (Σ, g)
is rotationally symmetric

Proposition 17. If g is a gradient soliton on a closed surface Σ2 then g has
constant curvature and F is parallel.

Proof. The gradient soliton equations on a surface are
(

R−
1

2
|F |

2

)

gij = cgij +∇i∇jf

d∗F = ∇f F

(37)

for some constant c ∈ R. As in the case of Ricci solitons we have that ∇f is a con-
formal vector field. If J is the complex structure on TΣ defined by counterclockwise
rotation then J(∇f) is a Killing vector field, which vanishes at some point since Σ
is closed. Thus by lemma 16 g is rotationally symmetric. In particular we have

g = dr2 + φ(r)2dθ2, 0 ≤ r ≤ A <∞, 0 ≤ θ ≤ 2π

The gradient soliton equation now implies that F is rotationally symmetric also. In

particular we set F = ψ(r)dr ∧ dθ and in particular 1
2 |F |

2
= ψ2

φ2 . Now the metric

component of the gradient soliton equation becomes the pair of equations

−
φ′′

φ
= c+

ψ2

φ2
+ f ′′, −

φ′′

φ
= c+

ψ2

φ2
+
φ′f ′

φ
(38)

Combining these two equations gives f ′′ = φ′

f ′
φ. We can integrate this to give

f ′ = aφ for a constant a. Thus

−
φ′′

φ
= c+ ψ + aφ′(39)
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Next, the Yang-Mills component of the gradient soliton equation becomes the pair
of equations

φ′ψ

φ
= 0, ψ′ = ψf ′(40)

So, multiplying (39) by φφ′, using that φ′ψ = 0 and integrating over [0, A] gives

−c
(φ′)2

2

∣

∣

∣

∣

A

0

=
φ2

2

∣

∣

∣

∣

A

0

+ a

∫ A

0

φ(φ′)2dr

Since the metric is smooth we have φ(0) = φ(A) = 0 and φ′(0) = −φ′(A) = 1
so that a = 0. Thus f is constant. By (40) we see that ψ′ = 0, so that F is
parallel. �
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