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EXISTENCE OF KÄHLER-EINSTEIN METRICS AND

MULTIPLIER IDEAL SHEAVES ON DEL PEZZO SURFACES

GORDON HEIER

Abstract. We apply Nadel’s method of multiplier ideal sheaves to show that
every complex del Pezzo surface of degree at most six whose automorphism
group acts without fixed points has a Kähler-Einstein metric. In particular,
all del Pezzo surfaces of degree 4, 5, or 6 and certain special del Pezzo surfaces
of lower degree are shown to have a Kähler-Einstein metric. This result is not
new, but the proofs given in the present paper are less involved than earlier
ones by Siu, Tian and Tian-Yau.

1. Introduction

Let X be a compact complex manifold. It is said to be a Kähler-Einstein man-
ifold if there exists a Kähler form ω = i

2

∑

i,j gij̄dzi ∧ dz̄j such that ω and its Ricci
curvature form are proportional, ie

Ricci(ω) = −i∂∂̄ log det(gij̄) = λω

for some λ ∈ R. The hermitian metric
∑

i,j gij̄dzi⊗dz̄j corresponding to such an ω

is called a Kähler-Einstein metric. Since the anticanonical class c1(−KX) (which
is also referred to as the first Chern class c1(X)) is known to always contain the
form 1

2π Ricci(ω) by a result of Chern, Kähler-Einstein metrics can only exist on
manifolds with definite or vanishing anticanonical class.

In his ground-breaking work [Yau77, Yau78], Yau proved Calabi’s conjecture,
which says that on a compact Kähler manifold, for any given Kähler class, every
form representing 2πc1(X) can be obtained as the Ricci curvature form of a unique
Kähler form in the given Kähler class. As a corollary, on a Kähler manifold with
vanishing first Chern class, to every Kähler class there corresponds a unique Ricci
flat Kähler-Einstein metric.

On compact complex manifolds with negative anticanonical line bundle, the
existence of Kähler-Einstein metrics has been established independently by Aubin
[Aub76, Aub78] and Yau (op. cit.). In the case of positive anticanonical line bundle,
a Kähler-Einstein metric may or may not exist. Different obstructions have been
formulated by Matsushima [Mat57], Futaki [Fut83] and others (see [Bou97] for a
nice survey).

In the mid 1980’s, Siu [Siu88], Tian [Tia87] and Tian-Yau [TY87] provided suffi-
cient conditions for the existence of Kähler-Einstein metrics in the case of positive
anticanonical bundles, settling certain cases (see below). However, these results
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were not strong enough to completely clarify the question of existence of Kähler-
Einstein metrics on del Pezzo surfaces. Recall that del Pezzo surfaces are two-
dimensional compact complex manifolds with positive anticanonical line bundle.
The classification of del Pezzo surfaces tells us that they are isomorphic either to
P
1 × P

1, P2, or P2 blown up in r ∈ {1, . . . , 8} general points (see Section 2).

For P1 × P1 and P2, the existence of a Kähler-Einstein metric follows directly
from the fact that the Fubini-Study metric on P1 and P2 is Kähler-Einstein. For P2

blown up at one or two points, one can show that the so-called Futaki-invariant does
not vanish and therefore obstructs the existence of a Kähler-Einstein metric in these
cases (see [Tia00, Examples 3.10, 3.11] for a nice discussion). Alternatively, and
more in the spirit of this paper, it suffices to observe that the automorphism groups
are non-reductive Lie groups, which precludes the existence of Kähler-Einstein met-
rics according to Matsushima. For the unique del Pezzo surface coming from the
blow up of three points, the existence of a Kähler-Einstein metric was shown by
[Siu88] and, independently, by the combined efforts of [Tia87] and [TY87]. For the
unique del Pezzo surface coming from the blow up of four points, the existence of a
Kähler-Einstein metric was shown by [Tia87] and [TY87]. For the general case of
del Pezzo surfaces coming from the blow up of r ∈ {5, . . . , 8} points, Tian’s paper
[Tia90] finally gave a proof of the fact that they do carry Kähler-Einstein metrics.
However, the proof certainly is not short in length.

Remark 1.1. In the paper [TY87], the authors apparently overlooked the fact
that every del Pezzo surface coming from the blow up of five points in P2 can be
obtained as the intersection of quadrics in P4 of the form

4
∑

i=0

X2
i =

4
∑

i=0

aiX
2
i = 0,

where ai 6= aj for i 6= j. This fact follows eg from [GH94, p. 551] together with
the Normal Form Lemma for Simple Pencils of Quadrics [Har95, Lemma 22.42].
Therefore, the arguments in [TY87, pp. 188-189] actually settle the case r = 5
completely, and the below-mentioned dichotomy is already present in the work of
Tian and Yau.

A different approach to the problem of existence of Kähler-Einstein metrics was
taken by Nadel in his seminal paper [Nad90]. In that paper, Nadel introduces the
notion of a multiplier ideal subsheaf of the sheaf of holomorphic functions, partly
motivated by the successful use of a similar concept in Kohn’s paper [Koh79] on
boundary regularity for the complex Neumann problem on weakly pseudoconvex
domains of finite type. Nadel proves that the non-existence of certain multiplier
ideal sheaves is a sufficient condition for the existence of Kähler-Einstein metrics
on a given Fano manifold.

The purpose of this paper is to answer the following open question: To what
extent can the technique of multiplier ideal sheaves be used to prove the existence
of Kähler-Einstein metrics on del Pezzo surfaces? It turns out that there is not a
uniform answer to this question due to a dichotomy between the case of at most
five points blown up and the case of at least six points blown up. The precise main
theorem we (re-)prove is the following.

Main Theorem 1.2 ([Siu88], [Tia87], [TY87], [Tia90]). Let X be a del Pezzo
surface obtained by blowing up P2 in 3, 4, or 5 points. Then X carries a Kähler-
Einstein metric.
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Naturally, the reader may wonder what happens for six or more points blown up.
Due to the nature of our proof based on automorphism groups, we find it impossible
to prove the analogous statement for 6, 7, or 8 points using our method. However,
it turns out that there is a previous result of Nadel that addresses precisely the
case of 6, 7, or 8 points blown up:

Theorem 1.3 ([Nad91]). Let X be a del Pezzo surface obtained by blowing up P
2

in 6, 7, or 8 points. Let the automorphism group of X act without fixed points on
X. Then X carries a Kähler-Einstein metric.

Note that Nadel’s result is complementary to ours in the sense that it requires six
or more points in an essential way to work. For the sake of completeness, we briefly
reproduce Nadel’s proof of Theorem 1.3 in Section 7, filling in some minor missing
details in the proof of Proposition 7.3. The question regarding the applicability of
Theorem 1.3 (eg to the cubic Fermat hypersurface in P3) is discussed at the very
end of this paper.

Acknowledgement. The author would like to thank I. Dolgachev for helpful com-
ments concerning the automorphism groups of del Pezzo surfaces of degree at most
three.

2. Classification and basic properties of del Pezzo surfaces

Definition 2.1. A del Pezzo surface is a two-dimensional compact complex mani-
fold X whose anti-canonical line bundle −KX is ample. We call the self-intersection
number (−KX)2 = K2

X the degree of X . We will denote the degree also by dX .

We now gather some important facts about del Pezzo surfaces, resulting in the
standard classification (see [MH74, Dem80, Har77]).

Facts 2.2. For every del Pezzo surface X , the Picard group PicX satisfies

rankPicX + dX = 10.

In particular, dX ≤ 9.

If dX = 9, then X is isomorphic to P2.

If dX = 8, then X is isomorphic either to P1 × P1 or to P̃2, ie P2 blown up at
one point.

If 7 ≥ dX ≥ 1, then X is isomorphic to P2 blown up at r = 9− dX points which
have the following properties:

(i) no three points lie on a line,
(ii) no six points lie on a conic,
(iii) no seven points lie on a cubic such that the eighth is a double point of the

cubic.

Any set of r = 9 − dX points satisfying the above three properties will be said
to be in general position, and, conversely, the result of blowing up 1 ≤ r ≤ 8
points in general position in P

2 is a del Pezzo surface. For 1 ≤ r ≤ 4 general
points blown up, there is in each case a unique resulting del Pezzo surface. The
reason is that for any two sets of points P1, . . . , Pr and Q1, . . . , Qr (r ≤ 4), with
each set in general position, there is an element A ∈ Aut(P2) = PGL(3,C) with
A(Pi) = Qi (1 ≤ i ≤ r).
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For our understanding of del Pezzo surfaces, the following facts about the anti-
canonical line bundle are also very important.

Facts 2.3. Let 1 ≤ r ≤ 8. Let X be obtained by blowing up r general points. Let
Ei denote the exceptional (−1)-curves that are the pre-images of the r points. Let
π : X → P

2 denote the blow-up map. Then

KX = π∗KP2 +

r
∑

i=1

Ei.

This yields
dimH0(X,−KX) = 10− r.

For 1 ≤ r ≤ 6, the complete linear system | − KX | gives an embedding into
P9−r = PdX . For r = 7, it gives a double cover of P2. The complete linear system
| − 2KX | gives an embedding into P6. For r = 8, | −KX | has a unique base point,
|−2KX| gives a double cover of a singular quadric surface in P3, and |−3KX| gives
an embedding into P6.

Finally, it turns out that, on every del Pezzo surface of degree at most 7, the
number of (−1)-curves exceeds r. The reason is that, when blowing up two points
in P

2, the proper transform of the unique line through the two points becomes a
(−1)-curve as well. When blowing up five points, the unique conic through the
five points also becomes a (−1)-curve. It is easy to count these (−1)-curves: for
r = 1, . . . , 8, their numbers are 1, 3, 6, 10, 16, 27, 56, 240, respectively. Interestingly,
for r = 1, . . . , 6, under the map given by | −KX |, all (−1)-curves become lines in
projective space. Therefore, they are often referred to as lines on X .

Remark 2.4. It seems appropriate to remark that most facts about the automor-
phism groups of del Pezzo surfaces used below were already known in the 19th
century (see [Wim96]). The references to more modern treatments given through-
out the text are meant for the reader’s convenience, not to apportion credit.

3. Nadel’s method of multiplier ideal sheaves

The following is the standard definition of the multiplier ideal sheaf pertaining
to a plurisubharmonic function on a complex manifold.

Definition-Theorem 3.1 ([Nad90]). Let ϕ be a plurisubharmonic function on the
complex manifold X. Then the multiplier ideal sheaf I(ϕ) is the subsheaf of OX

defined by
I(ϕ)(U) = {f ∈ OX(U) : |f |2e−ϕ ∈ L1

loc
(U)}

for every open set U ⊆ X. It is a coherent subsheaf.

Multiplier ideal sheaves have turned out to be very useful in algebraic geometry,
mainly because of the following vanishing theorem. They are usually defined using
the notion of a singular hermitian metric on a line bundle, which in general is a
metric h that is given on a small open set U by h = e−ϕ, where ϕ is L1(U). If
ϕ is plurisubharmonic for every U , the multiplier ideal sheaf I(h) attached to h is
defined by I(h)(U) = I(ϕ)(U) if h = e−ϕ on U .

Theorem 3.2 (Nadel’s vanishing theorem). Let X be a compact complex Kähler
manifold. Let L be a line bundle on X equipped with a singular hermitian metric
such that the curvature current − i

2π∂∂̄ log h is positive definite in the sense of
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currents, ie there is a smooth positive definite (1, 1)-form ω and ε > 0 such that
− i

2π∂∂̄ log h ≥ εω. Then

Hq(X, (KX + L)⊗ I(h)) = 0 for all q ≥ 1.

It is well-known that the existence of a Kähler-Einstein metric is equivalent to
the solvability of a certain Monge-Ampère equation. If no Kähler-Einstein metric
exists, then the continuity method to solve the Monge-Ampère equation must fail.
The key idea of [Nad90] is to capture the failure in the form of an invariant non-
trivial multiplier ideal sheaf, as expressed in the following theorem (see also [DK01]
for a concise presentation of the details).

Theorem 3.3 (Nadel’s existence criterion for Kähler-Einstein metrics). Let X be
a Fano manifold, ie let −KX be positive. Assume that X does not have a Kähler-
Einstein metric. Then, for all compact G ⊆ Aut(X), the line bundle −KX possesses
a G-invariant singular hermitian metric h = h0e

−ϕ, with h0 a smooth G-invariant
metric of smooth positive definite curvature ω0 and ϕ ∈ L1

loc
(X) G-invariant, such

that

(i) the curvature current Θh of h satisfies

Θh = −
i

2π
∂∂̄ log h = ω0 +

i

2π
∂∂̄ϕ ≥ 0,

(ii) ∀γ ∈] n
n+1 , 1[: 0 6= I(γϕ) 6= OX .

The multiplier ideal sheaf I(γϕ) is also G-invariant. In particular, every element
of G maps the zero-set V (I(γϕ)) to itself.

Using the Nadel vanishing theorem, Nadel’s criterion yields the following corol-
laries.

Corollary 3.4. Let X,G, h0, ω0, ϕ, h,Θh, γ be as in Theorem 3.3 (Nadel’s crite-
rion). Then

Hq(X, I(γϕ)) = 0 ∀q ≥ 1.

Proof. The proof consists of applying Nadel’s vanishing theorem with L = −KX ,
hγ = h0e

−γϕ. In order to do that, we have to verify that the curvature satisfies the
assumption in Nadel’s vanishing theorem:

−
i

2π
∂∂̄ log hγ = −

i

2π
∂∂̄ log h0e

−γϕ

= −(1− γ)
i

2π
∂∂̄ log h0 − γ

i

2π
∂∂̄ log(h0e

ϕ)

≥ (1− γ)ω0 + γΘh

≥ (1− γ)ω0.

Now that we have established the required positivity, it can be concluded that

Hq(X, (KX −KX)⊗ I(γϕ)) = Hq(X, I(γϕ)) = 0 ∀q ≥ 1.

�

Corollary 3.5. Let X,G, h0, ω0, ϕ, h,Θh, γ be as in Theorem 3.3 (Nadel’s crite-
rion). Let Vγ = V (I(γϕ)) 6= ∅. Then

Hq(Vγ ,OVγ
) =

{

C if q = 0

0 if q ≥ 1.
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Proof. Since −KX is ample, it follows from Kodaira’s Vanishing Theorem that

Hq(X,KX −KX) = Hq(X,OX) = 0 ∀q ≥ 1.

Applying this together with Nadel’s Vanishing Theorem to the long exact sequence
of

0 → I(γϕ) → OX → OVγ
→ 0

yields the result. �

Corollary 3.5 tells us that if dimVγ = 0, then Vγ is an isolated point that is
a fixed point of G, ie the point constitutes its full orbit under the action of G.
Moreover, if dimVγ = 1, it follows that Vγ is a tree of smooth rational curves (see
[Nad90, Theorem 4.4]).

Now, here is how we will show the existence of a Kähler-Einstein metrics on the
del Pezzo surfaces under discussion.

First, we consider the case r ≤ 5.

The key observation in this case is that Theorem 3.3 can be reduced to Criterion
3.7 below, based on the following Theorem [Nad90, Theorem 4.5]. It is proven by
an induction argument.

Theorem 3.6. Let G ⊂ Aut(X) be a finite subgroup acting without fixed points on
Vγ . Then some irreducible component of Vγ is invariant under G. This component
is a smooth rational curve.

Theorem 3.6 allows us to formulate the following simple criterion for the existence
of Kähler-Einstein metrics on del Pezzo surfaces.

Criterion 3.7. Let X be a del Pezzo surface. Let G be a finite subgroup of Aut(X),
acting on X without fixed points. Let G act effectively on all G-invariant curves on
X. Let G be not isomorphic to any one of the following finite groups:

(i) the cyclic group: Zn(n ∈ N),
(ii) the dihedral group: D2n = Zn ⋊ Z2(n ∈ N),
(iii) the alternating group on four letters: A4,
(iv) the alternating group on five letters: A5,
(v) the symmetric group on four letters: S4.

Then X has a Kähler-Einstein metric.

Proof. Let us assume that there exists a one-dimensional G-invariant zero-set of
a multiplier ideal sheaf. Since G acts effectively on all G-invariant curves on X ,
in particular it will act effectively on the G-invariant smooth rational curve whose
existence is established in Theorem 3.6. However, the finite subgroups of Aut(P1)
are precisely the ones given in the above list (see [GB85, Chapter 2]), which yields
a contradiction.

Since G acts fixed point free, there also are no zero-dimensional zero-sets of
multiplier ideal sheaves. Now Theorem 3.3 (Nadel’s criterion) yields the existence
of a Kähler-Einstein metric. �

Secondly, we consider the case of 6 or more points.
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We need the following relative version of Corollary 3.5, whose proof commonly
is based on the Leray spectral sequence (see [Nad91], [Laz04]).

Corollary 3.8. In the situation of Theorem 3.3 (Nadel’s criterion), let π : X → Y
be a surjective morphism to a projective manifold. Then Riπ∗(I(γϕ)) = 0 for i ≥ 1.

Remark 3.9. Moreover, by Kodaira’s Vanishing Theorem, it is also true that
Riπ∗(OX) = 0 (i ≥ 1) and therefore finally Riπ∗(OVγ

) = 0 (i ≥ 1). However, we
won’t be needing these two properties in the cases we consider.

We will also need the following simple criterion for the connectedness of fibers
of morphisms.

Definition 3.10. A morphism between topological spaces is called connected if all
its fibers are connected.

Proposition 3.11. Let f : M → N be a proper morphism of complex manifolds.
If the morphism ON → f∗OM is surjective, then f is connected.

Based on Proposition 3.11, we now have

Theorem 3.12 ([Nad91, Theorem 3.1]). In the situation of Theorem 3.3 (Nadel’s
criterion), let f : X → Y be a connected morphism to a complex projective manifold
Y . Then (Vγ)y = f−1(y) ∩ Vγ is connected.

In Section 7, we will see that these statement yield Theorem 1.3.

4. The case of 3 points blown up

Let X be a del Pezzo surface obtained from blowing up three points. W.l.o.g.,
we assume these to be P1 = [1, 0, 0], P2 = [0, 1, 0], P3 = [0, 0, 1]. It is remarked in
the introduction to [Nad90] that this case can be handled easily based on the fact
that X is toric. While this is true, we would like to treat this case in line with the
(non-toric) cases r = 4, 5, using a finite group of automorphisms.

First, we determine the full automorphism group of X .

LetH be the subgroup of elements of PGL(3,C) that preserve the set {P1, P2, P3}:

H = {A ∈ PGL(3,C) : {A(P1), A(P2), A(P3)} = {P1, P2, P3}}.

The elements of H clearly extend to automorphisms of X .

Next, consider the standard quadratic Cremona transformation on P2:

Cr([X0, X1, X2]) = [X1X2, X0X2, X0X1].

Cr is a birational involution of P2 that is a morphism outside the set {P1, P2, P3}.
It lifts to an automorphism of X (see [Har77, Example V.4.2.3]). We will abuse
notation and denote the induced automorphism of X again by Cr.

It is a well-known fact (see eg [Koi88]) that

Aut(X) = H ⋊ {1,Cr} = H ⋊ Z2.

This identity can also be written as

Aut(X) = (C∗ × C
∗)⋊ (S3 × Z2),
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where S3 ⊂ PGL(3,C) is the subgroup of projectivities that act on P2 by permuting
the coordinates, ie for σ ∈ S3,

σ([X0, X1, X2] = [Xσ(0), Xσ(1), Xσ(2)]).

Moreover, C∗ × C∗ acts by multiplicitation on, say, the last two coordinates.

In order to obtain a finite subgroup of Aut(X) to use in Criterion 3.7, we note
that the Klein four-group Z2 × Z2 ⊂ C∗ × C∗ acts on X as follows:

(i, j)([X0, X1, X2]) = [X0, (−1)iX1, (−1)jX2].

Let
G = (Z2 × Z2)⋊ (S3 × Z2).

Lemma 4.1. The action of G is fixed point free.

Proof. The only fixed point of the action of S3 is [1, 1, 1]. However, this point is
not fixed under the action of (0, 1) ∈ Z2 × Z2. �

Remark 4.2. It is well-known that (Z2 × Z2)⋊ S3 = S4. From a group theoretic
point of view, the statement of Lemma 4.1 is implied by the fact that S4 admits
no complex two-dimensional faithful representations (on the tangent space of a
point fof X). The non-existence of such representations is a well-known fact in the
representation theory of finite groups (see [Dor71, p. 148]).

Lemma 4.3. The group G acts effectively on any G-invariant irreducible curve.

Proof. For any given element of G, it is easy to list the irreducible curves that are
left point-wise fixed by the given element (if any exist). However, none of these
curves are G-invariant. �

We finally observe that G is a group of order 48 which is clearly not isomorphic
to any of the groups listed in Criterion 3.7 as finite subgroups of Aut(P1). Thus,
Criterion 3.7 can be applied, and we have established the existence of a Kähler-
Einstein metric on X .

Remark 4.4. Note that the use of the automorphism induced by the quadratic
Cremona transformation is crucial. The group (Z2 × Z2) ⋊ S3 = S4 is a subgroup
of Aut(P1), and it cannot be used in applying Criterion 3.7.

5. The case of 4 points blown up

Let X be a del Pezzo surface obtained from blowing up four points. We may, and
do, assume these to be P1 = [1, 0, 0], P2 = [0, 1, 0], P3 = [0, 0, 1], P4 = [1, 1, 1]. It is
known that Aut(X) is the Weyl group of the root system of Dynkin type D5, which
is S5 (see [Koi88]). However, we would like to understand Aut(X) more concretely.

First all of, there is a subgroup S4 of projectivities in PGL(3) = Aut(P2) that
preserve the set {P1, P2, P3, P4}. These projectivities lift to X , and we can write
S4 ⊂ Aut(X).

In addition, there exists for every i = 1, . . . , 4 a quadratic Cremona transforma-
tion Cri that leaves Pi fixed and has the three remaining points as indeterminacy
locus. Note that such a Cri is only defined up to the action of the S3 ⊂ S4 con-
sisting of automorphisms fixing Pi. For our purposes, it does not matter which Cri
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we choose. All Cri extend to automorphisms of X . In light of this, we can write
Aut(X) set-theoretically as a disjoint union

Aut(X) = S4 ⊎

(

4
⊎

i=1

Cri ◦S4

)

.

Lemma 5.1. The action of Aut(X) is fixed point free.

Proof. The element of Aut(X) induced by




0 0 1
−1 0 1
0 −1 1





has precisely three fixed points on X , namely those points on X lying over

[1, 0, 1], [1, 1 + i, i], [1, 1− i,−i]

in P2. On the other hand, the fixed point set of the element of Aut(X) induced by
Cr4 consists of the three points lying over

[−1, 1, 1], [1, 1,−1], [1,−1, 1]

and the (−1)-curve over [1, 1, 1]. Since there is no point appearing in both fixed
point sets, the Lemma is proven. �

Remark 5.2. We already noted that S4 admits no complex two-dimensional faith-
ful representations. Since representations clearly remain faithful under restriction
to subgroups, S5 does not admit any such representations either. So Lemma 5.1
follows directly from representation theory, without any explicit computations.

Lemma 5.3. Aut(X) acts effectively on any Aut(X)-invariant irreducible curve.

Proof. For any given element of Aut(X), it is easy to list the irreducible curves
that are left point-wise fixed by the given element (if any exist). However, none of
these curves are Aut(X)-invariant. �

Lemmas 5.1 and 5.3 allow us to apply Criterion 3.7 to conclude the existence of
a Kähler-Einstein metric on X .

6. The case of 5 points blown up

Let X be a del Pezzo surface obtained by blowing up five points. We can find
an automorphism of P2 that takes the five points to P1 = [1, 0, 0], P2 = [0, 1, 0],
P3 = [0, 0, 1], P4 = [1, 1, 1], P5 = [a, b, c], with (a, b, c) ∈ (C∗ ×C

∗ ×C
∗)\{(1, 1, 1)}.

(The reason for a, b, c 6= 0 is that no three of these points lie on a line.)

The structure of Aut(X) is worked out in [Hos96]. It turns out that it is always
of the form

Aut(X) = Z
4
2 ⋊GP5

,

where GP5
is a subgroup of S5. The possibilities for GP5

are

(i) {id},
(ii) Z2,
(iii) Z4,
(iv) Z3 ⋊ Z2,
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(v) Z5 ⋊ Z2.

The elements of GP5
are lifts of those elements of PGL(3,C) that preserve the set

{P1, P2, P3, P4, P5}. For a generic point P5, we have GP5
= {id}.

For our purposes, it suffices to argue with elements of Z4
2 ⊆ Aut(X), regardless

of the nature of GP5
.

Lemma 6.1. The action of any subgroup of Aut(X) isomorphic to Z3
2 or Z4

2 is
fixed point free.

Proof. Instead of using explicit computations, we will argue purely with methods
from representation theory. Let H be a subgroup of Aut(X) isomorphic to either
Z3
2 or Z4

2. If H has a fixed point, then it has a faithful two-dimensional complex
representation on the tangent space of the fixed point.

Since H is abelian, by Schur’s Lemma, the only irreducible representations of
H are maps ρ : H → C∗ (see [FH91, p. 8]). Since every nontrivial element of
H has order two, the image of ρ is either {1} or {1,−1}. Therefore, the image
of H in GL(2,C) is isomorphic to either {1}, Z2, or Z2

2. We have obtained a
contradiction. �

Next, let us have a closer look at the elements of Z4
2 ⊆ Aut(X). The following

two birational involutions of P2 lift to elements of Aut(X).

We define Cr45 to be

Cr45([X0, X1, X2]) = [aX1X2, bX0X2, cX0X1].

This is a quadratic Cremona transformation that exchanges P4 and P5 and has
{P1, P2, P3} as indeterminacy locus.

Moreover, we let σ1 be the following cubic involution.

σ1([X0, X1, X2]) = [−aX1X2((c− b)X0 + (a− c)X1 + (b− a)X2),

X1(a(c− b)X1X2 + b(a− c)X0X2 + c(b− a)X0X1),

X2(a(c− b)X1X2 + b(a− c)X0X2 + c(b− a)X0X1)].

The explicit description of σ1 tells us that the analogue of Lemmas 4.3 and 5.3 is
not true in the case of five points blown up. Namely, it is easy to see that the strict
transform of the cubic curve C given by

b(a−c)X2
0X2+c(b−a)X2

0X1+a(a−c)X2
1X2+a(b−a)X1X

2
2+2a(c−b)X0X1X2 = 0

is precisely the set of points fixed point-wise by the lift of the above σ1. In addition,
the following Lemma tells us that C is invariant under every element of Z4

2.

Lemma 6.2. Let A be an abelian group acting on a set M . For g ∈ A, let

Mg = {x ∈ M : gx = x}.

Then Mg is invariant under every element of A.

Proof. For x ∈ Mg, we have

g(hx) = h(gx) = hx.

�
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However, there are several reasons why this observation does not impede our
proof.

Closer inspection ([Koi88], [Hos96]) shows that Z4
2 ⊆ Aut(X) contains the lifts

of ten quadratic Cremona involutions Crij (1 ≤ i < j ≤ 5) that exchange Pi, Pj and
have the remaining three points as indeterminacy locus. Again, we abuse notation
and denote the maps before and after the lift by the same symbols Crij .

Moreover, Z4
2 ⊆ Aut(X) contains the lifts of five cubic involutions σi (1 ≤ i ≤

5). By comparing the respective action on the set of the 16 (−1)-curves (which
determines any automorphism uniquely, see [Koi88] or [Hos96]), it is easily verified
that

Crij ◦Crkl = Crkl ◦Crij ,

Crij ◦Crjk = Crik .

Moreover, for i, j, k, l,m all distinct, we have

σm = Crij ◦Crkl .

In particular, we have

(1) σj = Cr1j ◦σ1 (2 ≤ j ≤ 5).

The Crij have precisely four fixed points each (both before and after the lifting).
Thus, the only Z4

2-invariant curves on which Z4
2 does not act effectively are the

lifts of the curves C pertaining to the cubic involutions. However, it is easy to see
that for all values a, b, c 6= 0, the curves C are smooth elliptic curves. Therefore,
there exist no smooth rational curves on X on which G acts ineffectively. We omit
the easy details of the above argument and instead argue without assuming any
knowledge regarding fixed loci of the σi, merely using the group structure of Z4

2.

Lemma 6.3. The group Z
3
2 acts effectively on any Z

4
2-invariant irreducible curve.

Proof. Let C be a Z4
2-invariant irreducible curve. Assume that g 6= id acts trivially

on C. Then g = σi for some 1 ≤ i ≤ 5, because the Cremona maps only have four
fixed points each. W.l.o.g., let i = 1.

Because of (1), none of the σj (2 ≤ j ≤ 5) act trivially on C. Thus the group

Z
4
2/{id, σ1} = Z

3
2

acts effectively on C. �

Lemmas 6.1 and 6.3 allow us to apply Criterion 3.7 to conclude the existence of
a Kähler-Einstein metric on X .

At this point, we have established

Main Theorem 1.2 ([Siu88], [Tia87], [TY87], [Tia90]). Let X be a del Pezzo
surface obtained by blowing up P2 in 3, 4, or 5 points. Then X carries a Kähler-
Einstein metric.
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7. The cases of 6,7, or 8 points

The following is a concise presentation of [Nad91, Section 4.1]. We have added
the missing details for the unspecified “careful choice” in the proof of [Nad91,
Proposition 4.1].

Lemma 7.1. Let E1, . . . , Er be any set of r pairwise disjoint (−1)-curves on a del
Pezzo surface X of degree 9 − r. Then blowing down E1, . . . , Er gives a birational
morphism X → P2.

Proof. The image is a del Pezzo surface of degree 9. According to the classification,
the only such del Pezzo surface is P2. �

Lemma 7.2. Let X be a del Pezzo surface of degree d ≤ 4. Let C be any irreducible
curve on X. Then there are mutually disjoint (−1)-curves Ẽ1, . . . , Ẽr (r = 9 − d)
whose blowing down gives π̃ : X → P2 with dim π̃(C) = 1 and deg π̃(C) ≥ 2.

Proof. Let E1, . . . , Er be the original exceptional curves for the blowing up π : X →
P2. If C happens to be one of them, say C = E1, then we can contract E12, E13, E23

instead of E1 = C,E2, E3, where Eij is the strict transform of the line through Pi

and Pj . Therefore, we can assume w.l.o.g. that C does not get contracted by π, ie
dimπ(C) = 1.

If π(C) is a line in P2 (we are done otherwise), then under any blowing down
map, at most two image points of exceptional curves can lie on π(C), because the
image points will be in general position. In any case, we can assume w.l.o.g. that
the image points of E3, E4, E5 are each not on π(C) (here we use r ≥ 5). Now let

Ẽ1 = E1, Ẽ2 = E2, Ẽ3 = E34, Ẽ4 = E35, Ẽ5 = E45.

If r ≥ 6, also let
Ẽ6 = E6, . . . , Ẽr = Er.

We have
π̃(E34), π̃(E35), π̃(E45) ∈ π̃(C).

This implies deg π̃(C) ≥ 2, because π̃(E34), π̃(E35), π̃(E45) are three points in
general position. �

Proposition 7.3. Let X be a del Pezzo surface of degree d ≤ 3. Then −KX does
not carry a singular hermitian metric h as in Theorem 3.3 (Nadel’s criterion) such
that dim V (I(h)) = 1.

Proof. We argue by contradiction. W.l.o.g, let C = V (I(h)) be an irreducible
curve. Let π : X → P2 be such that deg π(C) ≥ 2 (π exists by Lemma 7.2). For
1 ≤ i ≤ r = 9− d, let π(Ei) = Pi.

Case 1: deg π(C) = 2. Since r ≥ 6, there is 1 ≤ i ≤ r such that Pi 6∈ π(C).
W.l.o.g., let i = r. Note that π factors as

X
π1,...,r−1

−−−−−−→ P̃
2 πr−→ P

2.

The key point is that a general line through Pr intersects π(C) (precisely) twice in

P2\{Pr}. Let τ denote the fibration P̃2 → P1 whose fibers are lines through Pr.
Let f denote the composition

X
π1,...,r−1

−−−−−−→ P̃
2 τ
−→ P

1.
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Note that the sets Cy = f−1(y)∩C have cardinality at least two for general y ∈ P1,
which is impossible by Theorem 3.12.

Case 2: deg π(C) ≥ 3. If there exists an index 1 ≤ i ≤ r such that Pi 6∈ π(C),
then we can argue exactly as we did in the previous case. So let us assume that for
all 1 ≤ i ≤ r, Pi ∈ π(C).

In order to argue again with the connectedness of fibers, we need to find i0 such
that a general line through Pi0 intersects π(C) in at least two additional distinct
points. Let d = deg π(C). If multPi0

π(C) ≤ d − 2, then the i0 is obviously of
the kind we are looking for. We claim that such an i0 always exists. To argue by
contradiction, assume that for all 1 ≤ i ≤ r, we have multPi0

π(C) ≥ d− 1.

Choose a smooth cubic curve F through P1, . . . , Pr. Then the intersection num-
ber of F and π(C) is

F · π(C) = 3d.

It is a basic fact from intersection theory that

3d = F · π(C) ≥
∑

x∈F∩π(C)

multx F ·multx π(C) ≥
∑

x∈F∩π(C)

multx π(C) ≥ r(d− 1).

Consequently, r ≥ (r − 3)d. It is easy to check that for r ≥ 6, this implies d ≤ 2, a
contradiction. �

Theorem 1.3 ([Nad91]). Let X be a del Pezzo surface of degree no more than
three. If Aut(X) acts without fixed points on X, then X has a Kähler Einstein
metric.

Proof. Since there are no zero- or one-dimensional zero-sets of Aut(X)-invariant
multiplier ideal sheaves, the theorem follows from Theorem 3.3 (Nadel’s criterion).

�

To clarify the extent to which Theorem 1.3 can actually be applied to prove
the existence of Kähler-Einstein metrics on del Pezzo surfaces of degree no more
than three, we make the following remarks. An excellent reference with a lucid
exposition is [Dol07, Section 10].

Let X be a del Pezzo surface of degree one. The unique base point of the linear
system | − KX | is fixed by all automorphisms. Therefore, unfortunately, Aut(X)
acts with a fixed point regardless of the nature of X .

On a del Pezzo surface X of degree two, the linear system | −KX | gives a two-
sheeted cover of P2 branched along a smooth curve C of degree 4 in P2. This cover
defines an involutive automorphism of X called the Geiser involution, which lies
in the center of Aut(X). The corresponding quotient group G′ = Aut(X)/Z2 acts
effectively on C. If the action of Aut(X) on X has a fixed point, then so does
the action of G′ on C. At the fixed point, G′ has a faithful representation on the
one-dimensional tangent space to C, so G′ must be a cyclic group Zn. Therefore,
the action of Aut(X) has a fixed point only if Aut(X) is a cyclic central extension
of Zn by Z2. For a list of surfaces X for which this is not the case, see [Dol07,
Table 10.4].

For a generic del Pezzo surface X of degree three, Aut(X) is the trivial group
(see [Koi88]). However, since del Pezzo surfaces of degree 3 are precisely the smooth
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cubic hypersurfaces of P3, there are many non-generic X which have extra auto-
morphisms. The following paragraphs give a sufficient criterion for the action of
Aut(X) to be fixed point free.

Assume that x ∈ X is a fixed point of the action of Aut(X). Then the canonical
map GL(2,C) → PGL(2,C) induces a map Aut(X) → G′ = Aut(X)/Z(Aut(X)),
where Z(Aut(X)) denotes the center. The tangent plane to X at x intersects X
in a singular cubic plane curve C, and there are one, two or three lines through x
in the tangent plane that are tangent to C at x. Let T ⊂ P1 be the set of points
corresponding to these lines in the projectivized tangent plane at x. Note that T
is invariant under the action of G′ on P1.

If T = {p1}, then it follows from the classification of finite subgroups of PGL(2,C)
mentioned in Section 3 that G′ is a cyclic group Zn.

If T = {p1, p2}, then the classification yields that either G′ is a cyclic group Zn

or a dihedral group Zn ⋊ Z2.

If T = {p1, p2, p3}, then G′ ⊂ S3, ie one of the following holds: G′ = {id},
G′ = Z2, G

′ = Z3, or G
′ = Z3 ⋊ Z2 = S3.

We have just shown that if Aut(X) acts with a fixed point, then it is a central
extension of one the above G′ by a finite cyclic group. Pairing this knowledge with
[Dol07, Table 10.3], it is a simple task to determine which automorphism groups
act without fixed points and therefore carry a Kähler-Einstein metric based on
Theorem 1.3. Most notably, the list contains the two examples given by

Z3
0 + Z3

1 + Z3
2 + Z3

3 = 0

and

Z2
0Z1 + Z2

2Z0 + Z2
3Z2 + Z2

1Z3 = 0.

The automorphism groups are Z3
3 ⋊ S4 resp. S5. In both cases, the action clearly

is fixed point free.
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