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CONVERGENCE OF THE KÄHLER-RICCI FLOW AND

MULTIPLIER IDEAL SHEAVES ON DEL PEZZO SURFACES

GORDON HEIER

Abstract. On certain del Pezzo surfaces with large automorphism groups, it
is shown that the solution to the Kähler-Ricci flow with a certain initial value
converges in C∞-norm exponentially fast to a Kähler-Einstein metric. The
proof is based on the method of multiplier ideal sheaves.

1. Introduction

Let X be an n-dimensional compact complex manifold with positive first Chern
class c1(X). Such manifolds are called Fano manifolds. The Kähler-Ricci flow on
X is defined by the equation

(1)
∂

∂t
gij̄ = −Rij̄ + gij̄ ,

where Rij̄ = −∂i∂j̄ log det gαβ̄ is the Ricci curvature tensor of the hermitian metric
∑

i,j gij̄dzi ⊗ dz̄j. If the class of the Kähler form ω̂ = i
2π

∑

i,j ĝij̄dzi ∧ dz̄j is c1(X),

then the Kähler-Ricci flow preserves the class of i
∑

i,j ĝij̄dzi ∧ dz̄j , so we can write

gij̄ = ĝij̄ + ∂i∂j̄φ,

for the solution to the Kähler-Ricci flow with initial condition

gij̄(0) = ĝij̄ .

Equation (1) can be reformulated to

(2)
∂

∂t
φ = log

det gαβ̄
det ĝαβ̄

+ φ− f̂ , φ(0) = c0 ∈ C,

where f̂ is the Ricci potential, ie for R̂ij̄ = −∂i∂j̄ log det ĝαβ̄ , we have R̂ij̄ − ĝij̄ =

∂i∂j̄ f̂ . It was proven in [Cao85] that the solution to (1) exists for all t > 0. The
present paper investigates the issue of convergence, based on the following Theorem
which first appeared [PSS06]. The version given below, which is stronger than the
one in [PSS06], is based on [PS07].

Theorem 1.1 ([PSS06, PS07]). Let X be a Fano manifold. Consider the Ricci
flow in the form of (2) with the initial value c0 specified by [PSS06, (2.10)]. The
following two statements are equivalent.

(i) There exists p > 1 such that

sup
t≥0

∫

X

e−pφω̂n <∞.
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(ii) The family of metrics gij̄(t) converges in C
∞-norm exponentially fast to a

Kähler-Einstein metric.

The preceding theorem will allow us to formulate the sufficient Criterion 1.6 for
the above statement (ii) to hold, in analogy to Nadel’s criterion for the existence
of Kähler-Einstein metrics (see [Nad90, DK01, Hei07]). It is well-known that some
Fano manifolds do not possess a Kähler-Einstein metric (eg P2 blown up in one or
two points, see Section 5), so we cannot expect (ii) to hold in general on a Fano
manifold. In this paper, we mention no necessary condition for (ii) other than the
existence of a Kähler-Einstein metric.

First, we quickly recall the basics of multiplier ideal sheaves. The following is the
standard definition of the multiplier ideal sheaf pertaining to a plurisubharmonic
function on a complex manifold.

Definition-Theorem 1.2 ([Nad90]). Let ϕ be a plurisubharmonic function on the
complex manifold X. Then the multiplier ideal sheaf I(ϕ) is the subsheaf of OX

defined by
I(ϕ)(U) = {f ∈ OX(U) : |f |2e−ϕ ∈ L1

loc
(U)}

for every open set U ⊆ X. It is a coherent subsheaf.

Multiplier ideal sheaves have turned out to be very useful in algebraic geometry,
mainly because of the following vanishing theorem. They are usually defined using
the notion of a singular hermitian metric on a line bundle, which in general is a
metric h that is given on a small open set U by h = e−ϕ, where ϕ is L1(U). If
ϕ is plurisubharmonic for every U , the multiplier ideal sheaf I(h) attached to h is
defined by I(h)(U) = I(ϕ)(U) if h = e−ϕ on U .

Theorem 1.3 (Nadel’s vanishing theorem). Let X be a compact complex Kähler
manifold. Let L be a line bundle on X equipped with a singular hermitian metric
such that the curvature current − i

2π∂∂̄ log h is positive definite in the sense of
currents, ie there is a smooth positive definite (1, 1)-form ω and ε > 0 such that
− i

2π∂∂̄ log h ≥ εω. Then

Hq(X, (KX + L)⊗ I(h)) = 0 for all q ≥ 1.

We now develop a Nadel-type criterion for Theorem 1.1 (ii) to hold true. If we
assume that Theorem 1.1 (ii) does not hold true, then, according to the theorem,
for all p > 1 there exists a sequence of times ti → ∞ with

lim
i→∞

∫

X

e−pφ(ti)ω̂n = ∞.

In fact, also

lim
i→∞

∫

X

e−p(φ(ti)−
1

V

R

X
φ(ti)ω̂

n)ω̂n = ∞,

where V =
∫

X
ω̂n. Let ψ be an L1 limit of the sequence φ(ti)−

1
V

∫

X
φ(ti)ω̂

n. By

semi-continuity, ||e−ψ||Lp(X) = ∞. If G ⊆ Aut(X) is a compact subgroup and ω̂ is
G-invariant, then we can assume ψ and I(−pψ) to be G-invariant as well.

We have

ω̂ +
i

2π
∂∂ψ ≥ 0.

Let ĥ be a smooth G-invariant hermitian metric for the anticanonical line bundle
−KX with 1

2πi∂∂ log ĥ = ω̂ ∈ c1(X). The singular G-invariant hermitian metric
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ĥ1+⌊p⌋ · e−pψ is a singular metric for −(1 + ⌊p⌋)KX with positive curvature in the
sense of currents:

−
i

2π
∂∂̄ log(ĥ1+⌊p⌋ · e−pψ) = −

i

2π
∂∂̄ log(ĥ1+⌊p⌋−p · ĥp · e−pψ)

≥ (1 + ⌊p⌋ − p)ω̂.

Note that for all p > 1, we have 1 + ⌊p⌋ − p > 0.

Letting p = 3
2 (or any other number in the interval ]1, 2[) yields the following.

Theorem 1.4 (Nadel-type criterion). Let X be a Fano manifold. Assume that
statement (ii) of Theorem 1.1 does not hold. Then the G-invariant singular her-

mitian metric h = ĥ2 · e−
3

2
ψ on the line bundle −2KX is such that

(i) the curvature of h is positive definite in the sense of currents,
(ii) 0 6= I(32ψ) 6= OX .

The multiplier ideal sheaf I(32ψ) is also G-invariant. In particular, every element

of G maps the zero-set V (I(32ψ)) to itself.

Note that we can apply Nadel’s vanishing theorem with h̃ = hhE = ĥ2 · e−
3

2
ψhE

and L = −2KX +E, where E is an arbitrary line bundle with semi-positive metric
hE , to obtain

(3) Hq(X, (KX + L)⊗ I(h)) = Hq(X, (−KX + E)⊗ I(32ψ)) = 0 for all q ≥ 1.

Definition 1.5. An ideal subsheaf I ⊆ OX is said to satisfy Property (Van) if for
every semi-positive line bundle E

Hq(X, (−KX + E)⊗ I) = 0 for all q ≥ 1.

The above discussion can be summed up in the following sufficient criterion.

Criterion 1.6. Let X be a Fano manifold. Let G be a compact subgroup of Aut(X).
Let there be no nontrivial G-invariant subsheaf I ⊆ OX which satisfies Property
(Van). Then statement (ii) of Theorem 1.1 holds true.

A criterion of this kind is the essence of Nadel’s technique, which can be ap-
plied under similar circumstances based on the continuity method for the Monge-
Ampère equation to show the existence of Kähler-Einstein metrics on certain Fano
manifolds [Nad90, DK01, Hei07]). However, it is easier to handle Kähler-Einstein
metrics instead of the Ricci flow with Nadel’s method, because one can work with
a G-invariant singular hermitian metric for −KX instead of −2KX, resulting in a
cohomology vanishing statement for a G-invariant multiplier ideal sheaf I of the
form

(4) Hq(X, (KX −KX)⊗ I) = Hq(X, I) = 0 ∀q ≥ 1.

Note that (4) yields more information on the zero-set of I than (3). In fact, the
information in (4) is strong enough to prove the existence of Kähler-Einstein metrics
on all del Pezzo surfaces of degree 4, 5, and 6 ([Hei07]). In the present paper, we will
show that the information in (3) can be used to establish statement (ii) of Theorem
1.1 for certain nongeneric del Pezzo surfaces with large automorphism group. In
particular, we will prove
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Main Theorem 1.7. Let X be one of the following del Pezzo surfaces.

(i) P2 blown up in four points in general position,
(ii) P2 blown up in five points in general position with Aut(X) = Z4

2⋊Z4,Z
4
2⋊

(Z3 ⋊ Z2), or Z
4
2 ⋊ (Z5 ⋊ Z2).

Then statement (ii) of Theorem 1.1 holds.

The method of proof also applies to certain del Pezzo surfaces of low degree, if
their automorphism group is large enough, such as in the case of the Fermat cubic
hypersurface in P3 (see the remarks in Section 5).

Remark 1.8. It is a result of Perelman that, given the existence of a Kähler-
Einstein metric, the Kähler-Ricci flow will converge to it in the sense of Cheeger-
Gromov. It should be noted that Theorem 1.7 does not assume the existence of
a Kähler-Einstein metric. In fact, it proves the existence as an obvious corollary
to the convergence statement (ii) of Theorem 1.1. Moreover, note again that the
convergence in (ii) of Theorem 1.1 is very strong, namely exponentially fast in the
C∞-norm.

Acknowledgement. The author would like to thank L. Ein for helpful comments
on an earlier version of this paper.

2. Classification and basic properties of del Pezzo surfaces

Definition 2.1. A del Pezzo surface is a two-dimensional compact complex mani-
fold X whose anti-canonical line bundle −KX is ample. We call the self-intersection
number (−KX)

2 = K2
X the degree of X . We will denote the degree also by dX .

We now gather some important facts about del Pezzo surfaces, resulting in the
standard classification (see [MH74, Dem80, Har77]).

Facts 2.2. For every del Pezzo surface X , the Picard group PicX satisfies

rankPicX + dX = 10.

In particular, dX ≤ 9.

If dX = 9, then X is isomorphic to P2.

If dX = 8, then X is isomorphic either to P1 × P1 or to P̃2, ie P2 blown up at
one point.

If 7 ≥ dX ≥ 1, then X is isomorphic to P2 blown up at r = 9− dX points which
have the following properties:

(i) no three points lie on a line,
(ii) no six points lie on a conic,
(iii) no seven points lie on a cubic such that the eighth is a double point of the

cubic.

Any set of r = 9 − dX points satisfying the above three properties will be said
to be in general position, and, conversely, the result of blowing up 1 ≤ r ≤ 8
points in general position in P2 is a del Pezzo surface.. For 1 ≤ r ≤ 4 general
points blown up, there is in each case a unique resulting del Pezzo surface. The
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reason is that for any two sets of points P1, . . . , Pr and Q1, . . . , Qr (r ≤ 4), with
each set in general position, there is an element A ∈ Aut(P2) = PGL(3,C) with
A(Pi) = Qi (1 ≤ i ≤ r).

For our understanding of del Pezzo surfaces, the following facts about the anti-
canonical line bundle are also very important.

Facts 2.3. Let 1 ≤ r ≤ 8. Let X be obtained by blowing up general points Pi,
i = 1, . . . , r. Let Ei denote the exceptional (−1)-curve that is the pre-image of Pi.
Let π : X → P2 denote the blow up map. Then

KX = π∗KP2 +
r
∑

i=1

Ei.

This yields

dimH0(X,−KX) = 10− r.

For 1 ≤ r ≤ 6, the complete linear system | − KX | gives an embedding into
P9−r = PdX . For r = 7, it gives a double cover of P2. The complete linear system
| − 2KX | gives an embedding into P6. For r = 8, | −KX | has a unique base point,
|−2KX| gives a double cover of a singular quadric surface in P3, and |−3KX| gives
an embedding into P6.

Finally, it turns out that, on every del Pezzo surface of degree at most 7, the
number of (−1)-curves exceeds r. The reason is that, when blowing up two points
in P

2, the proper transform of the unique line through the two points becomes a
(−1)-curve as well. When blowing up five points, the unique conic through the
five points also becomes a (−1)-curve. It is easy to count these (−1)-curves: for
r = 1, . . . , 8, their numbers are 1, 3, 6, 10, 16, 27, 56, 240, respectively. Interestingly,
for r = 1, . . . , 6, under the map given by | −KX |, all (−1)-curves become lines in
projective space. Therefore, they are often referred to as lines on X .

3. The case of 4 points blown up

Let X be a del Pezzo surface obtained from blowing up four points. We may,
and do, assume these to be P1 = [1, 0, 0], P2 = [0, 1, 0], P3 = [0, 0, 1], P4 = [1, 1, 1].
It is known that Aut(X) is the Weyl group of the root system of Dynkin type D5,
which is S5 (see [Koi88], also [Wim96]). However, we would like to understand
Aut(X) more concretely.

First all of, there is a subgroup S4 of projectivities in PGL(3) = Aut(P2) that
preserve the set {P1, P2, P3, P4}. These projectivities lift to X , and we can write
S4 ⊂ Aut(X).

In addition, there exists for every i = 1, . . . , 4 a quadratic Cremona transforma-
tion Cri that leaves Pi fixed and has the three remaining points as indeterminacy
locus. (Note that such a Cri is only defined up to the action of the S3 ⊂ S4 con-
sisting of automorphisms fixing Pi. For our purposes, it does not matter which Cri
we choose.) All Cri extend to automorphisms of X . In light of this, we can write
Aut(X) set-theoretically as a disjoint union

Aut(X) = S4 ⊎

(

4
⊎

i=1

Cri ◦S4

)

.
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In the following two Subsections, we will prove Theorem 1.7, part (i), by means
of Criterion 1.6.

3.1. Zero-dimensional multiplier ideal sheaves. Let I ⊆ OX be an Aut(X)-
invariant ideal sheaf satisfying Property (Van). In particular, for E being the trivial
line bundle,

(5) Hq(X, (−KX)⊗ I) = 0 for all q ≥ 1.

Let V = V (I). Let dimV = 0, ie V consists of a finite number of points. Consider
the short exact sequence

0 → I(−KX) → OX(−KX) → OV (−KX) → 0.

Taking the corresponding long exact sequence yields

0 → H0(X, I(−KX)) → H0(X,OX(−KX)) → H0(V,OV (−KX)) →

→ H1(X, I(−KX)).

From (5), we have H1(X, I(−KX)) = 0. Therefore, the map

H0(X,OX(−KX)) → H0(V,OV (−KX))

is surjective. We saw in Section 2 that dimH0(X,OX(−KX)) = 10 − 4 = 6.
Therefore, V consists of at most six points.

Proposition 3.1. There is no Aut(X)-invariant ideal sheaf I ⊆ OX satisfying
Property (Van) with dim V (I) = 0.

Proof. We assume that I exists and derive a contradiction. Since V = V (I) has at
most six points, the contradiction arises from the claim that all orbits of Aut(X)
have cardinality at least 8. In the sequel, we prove this claim.

If the cardinality of an orbit were seven or less, then it would in fact be six or
less, because the order of Aut(X) is even. The stabilizer subgroup of a point in an
orbit of cardinality six or less would be of order 120

6 = 20 or more. However, the
only subgroups of S5 of order 20 or more are S5, A5, S4, and the Frobenius group
Z5 ⋊ Z4, none of which has a faithful two-dimensional complex representation (on
the tangent space to any point in the orbit). See eg [Dor71, §26] for more details. �

3.2. One-dimensional multiplier ideal sheaves. Let I ⊆ OX be an Aut(X)-
invariant ideal sheaf satisfying Property (Van). Let V = V (I). Let dimx V = 1
for all x ∈ V . We assume that the scheme defined by I ⊆ OX has no embedded
components.

It follows from Property (Van) and eg [Nad91, Theorem 2.1] or [Laz04] that

Riπ∗(I(−KX)) = 0 for i > 0

and

Hi(P2, π∗(I(−KX))) = 0 for i > 0.

In particular,

H2(P2, π∗(I(−KX)) = 0.
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By the standard projection formula ([Ful98, p. 281]) we have (for some k1, . . . , k4 ∈
N)

π∗(I(−KX)) = π∗(π
∗(−KP2)⊗OX(−

4
∑

i=1

Ei)⊗ I)

= OP2(−KP2)⊗m
k1
P1

⊗ . . .⊗m
k4
P4

⊗ a,

where a is a locally principal ideal sheaf in OP2 whose zero-set consists of the images
of the non-exceptional components of V (I). Let a ∼= OP2(−d) with d ≥ 1. Then by
Serre duality:

0 = H2(P2, π∗(I(−KX)))

= H2(P2,OP2(−KP2)⊗m
k1
P1

⊗ . . .⊗m
k4
P4

⊗ a)

= H2(P2,OP2(−KP2)⊗ a)

= H2(P2,OP2(−KP2)⊗OP2(−d))

= H0(P2,OP2(2KP2)⊗OP2(d))

= H0(P2,OP2(d− 6)).

Note that this is the case if and only if d ≤ 5. From this information, we will now
extract information on V and show that in fact no such V can exist. First we record
two lemmas.

Lemma 3.2. Aut(X) acts effectively on any Aut(X)-invariant irreducible curve.

Proof. For any given element of Aut(X), it is easy to list the irreducible curves
that are left point-wise fixed by the given element (if any exist). However, none of
these curves are Aut(X)-invariant. �

Lemma 3.3 ([Har92, Excercise 20.18]). The number of singular points of an ir-
reducible plane curve of degree d is no more than its arithmetic genus, which is
ga =

1
2 (d− 1)(d− 2).

Proposition 3.4. There is no Aut(X)-invariant ideal sheaf I ⊆ OX satisfying
Property (Van) with dimx V (I) = 1 for all x ∈ V (I) and such that the scheme
defined by I ⊆ OX has no embedded components.

Proof. We assume that I exists and derive a contradiction. We can assume w.l.o.g.
that no (−1)-curve is contained in V = V (I), because as a consequence of the
Aut(X)-invariance, all ten (−1)-curves would otherwise be contained in V , and
π(V ) would have at least six irreducible one-dimensional components, in violation
of H0(P2,OP2(d− 6)) = 0.

Since all elements f of Aut(X) are induced by an automorphism or birational
map of P2 (again denoted by f), we note that for an irreducible curve D not
contained in the exceptional set of π, π(f(D)) = f(π(D)), where f(π(D)) is defined
to be the closure of f(π(D) ∩Dom(f)).

First, let us assume that V is irreducible.

If d = 1, 2, then V = P1. This is a contradiction, because S5 ⊂ Aut(X) acts
effectively on V by Lemma 3.2, but S5 6⊆ PGL(2,C) (see [GB85, Chapter 2]).

If d = 3, then ga = 1. Since Aut(X) acts on V with orbits of length at least 8,
V is smooth by Lemma 3.3. We saw in Lemma 3.2 that S5 acts effectively on all
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S5-invariant curves. However, it is not a subgroup of the automorphism group of
any elliptic curve, because it is well known (see [Mir95, p. 64]) that the possible
automorphism groups of an elliptic curve are

(6) Z2 ⋉C/Γ,Z4 ⋉C/Γ,Z6 ⋉C/Γ,

none of which can contain S5. We have obtained a contradiction.

If d = 4, then ga = 3. Again, V is smooth. As an abstract group, the 2-Sylow
subgroup of S5 is Z4 ⋊ Z2, which is given concretely eg by the subgroup

{id, (12), (34), (12)(34), (14)(23), (13)(24), (1324), (1423)} ⊂ S5.

The group Z4 ⋊ Z2 has cyclic 2-deficiency equal to 1, as defined in [Kul87, p.197],
and by [Kul87, Theorem 2.3] S5 does not act on V . A contradiction.

If d = 5, then ga = 6. Again, V is smooth, and another application of [Kul87,
Theorem 2.3] yields again a contradiction.

Next, we treat the case where the number of irreducible components of V is 2.

For d = 2, the two components of π(V ) are lines. If the two lines intersected
outside of {P1, P2, P3, P4}, then the components of V would intersect in precisely
one point as well. However, this is impossible, because the minimum orbit length
of the action of Aut(X) is 8. Therefore, the two lines must each go through the
same Pi. It is now obvious that they are not invariant under S4 ⊂ S5.

For d = 3, the components of π(V ) are a line and a conic. They must meet
in one (with multiplicity two) or two of the {P1, P2, P3, P4}. We again obtain a
contradiction.

For d = 4, there are two cases. First, the components of V could be a rational
curve and an elliptic curve. They each have to be invariant under S5, in which case
we obtained a contradiction earlier. Second, the components of π(V ) could be two
conics. Since the length of any orbit of the action of S5 is at least 8, these conics
must intersect precisely in the points P1 = [1, 0, 0], P2 = [0, 1, 0], P3 = [0, 0, 1],
P4 = [1, 1, 1], so that they get separated under the blowing up. Note that any conic
through these four points is of the form

a0X1X2 + a1X0X2 + (−a0 − a1)X0X1 = 0,

and any such conic is mapped to a line under Cr4, a contradiction.

For d = 5, the components of V are a rational curve and an elliptic curve or a
rational curve and a curve of genus 3. From the rational curve, which is preserved,
we get a contradiction.

Now we treat the case of three irreducible components.

For d = 3, the components of π(V ) are lines, meeting in at most three of the
points P1, P2, P3, P4. Thus they cannot be invariant under the S4 action.

For d = 4, the three components of π(V ) are two lines and one conic. All points
of intersection must be contained in {P1, P2, P3, P4}, but the multiplicity will not
be the same at all Pi, i = 1, . . . , 4. This is again impossible by the S4-symmetry.

For d = 5, π(V ) consists of either two lines and an elliptic curve or one line and
two conics. In either case, we can argue as we did above and obtain a contradiction.

Now for the case of four irreducible components.
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If d = 4, the components of π(V ) are lines. Their at most six points of intersec-
tion must be {P1, P2, P3, P4} (counted with multiplicity). However, the multiplicity
cannot be distributed symmetrically, and we get a contradiction from the action of
S4.

If d = 5, then the components of π(V ) are three lines and a conic. The eight
points of intersection (counted with multiplicity) must either be contained entirely
in {P1, P2, P3, P4} or disjoint from it. Containment is impossible because of the S4-
symmetry. Now, again by the S4-symmetry, all three lines must be disjoint from
{P1, P2, P3, P4}. As a consequence, the equations of the three lines are of the form

a0X0 + a1X1 + a2X2 = 0

with a0, a1, a2 6= 0. Under Cr4 such lines are mapped to conics of the form

a0X1X2 + a1X0X2 + a2X0X1 = 0,

which is a contradiction.

Finally, we treat the case of five components.

The only possibility is d = 5 and π(V ) consisting of five lines. Since lines that are
disjoint from {P1, P2, P3, P4} are mapped to conics by Cr4, all five lines must have
nonempty intersection with {P1, P2, P3, P4}. Clearly, one point must be contained
in two lines. By the S4-symmetry, all points must be contained in two lines. Arguing
again with the minimum orbit length of 8, we see that it is impossible for six or
less points of intersection to be outside {P1, P2, P3, P4}, so all ten are in this set.
However, it is impossible to distribute the ten points onto the four points with equal
multiplicity. Therefore, the S4-action gives our final contradiction. �

Propositions 3.1 and 3.4 prove Theorem 1.7, part (i). Notice that we can assume
w.l.o.g. that V has the same dimension at all its points. Also, the assumption of
nonexistence of embedded components in Proposition 3.4 is not a problem, since
such embedded components can be ruled out by an H0 computation similar to the
one leading to the proof of Proposition 3.1.

4. Five points blown up

Let X be a del Pezzo surface obtained by blowing up five points. We can find
an automorphism of P2 that takes the five points to P1 = [1, 0, 0], P2 = [0, 1, 0],
P3 = [0, 0, 1], P4 = [1, 1, 1], P5 = [a, b, c], with (a, b, c) ∈ (C∗ ×C∗ ×C∗)\{(1, 1, 1)}.
(The reason for a, b, c 6= 0 is that no three of these point lie on a line.)

The structure of Aut(X) is described eg in [Hos96] (see also [Wim96]). It turns
out that it is always of the form

Aut(X) = Z
4
2 ⋊GP5

,

where GP5
is a subgroup of S5 depending on the point P5. The possibilities for GP5

are

(i) {id},
(ii) Z2,
(iii) Z4,
(iv) Z3 ⋊ Z2,
(v) Z5 ⋊ Z2.
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The elements of GP5
are lifts of those elements of PGL(3,C) that map the set

{P1, P2, P3, P4, P5} to itself. For a generic point P5, we have GP5
= {id}. More

precisely:

Proposition 4.1. One has GP5
6= {id} if and only if P5 = [1, ξ, 1 + ξ] with ξ ∈

C\{0, 1,−1}. Moreover, GP5
= Z2 holds precisely when ξ2+1 6= 0 and ξ2±ξ±1 6= 0.

When GP5
6= {id}, [Bla06, Proposition 8.1.11] gives explicitly the elements of

GP5
⊂ PGL(3,C) and their action on the set {P1, P2, P3, P4, P5}. Based on Propo-

sition 4.1, it is clear that there is one element of PGL(3,C) that is contained in
GP5

whenever it is not the trivial group, namely

[X0, X1, X2] 7→ [X2 −X1, X2 −X0, X2].

Next, let us have a closer look at the elements of Z4
2 ⊆ Aut(X). The following

two birational involutions of P2 lift to elements of Aut(X).

We define Cr45 to be

Cr45([X0, X1, X2]) = [aX1X2, bX0X2, cX0X1].

This is a quadratic Cremona transformation that exchanges P4 and P5 and has
{P1, P2, P3} as indeterminacy locus. We abuse notation and refer both to the
birational involution and the corresponding element of Aut(X) with the symbol
Cr45.

Moreover, we let σ1 be the following cubic birational involution of P2.

σ1([X0, X1, X2]) = [−aX1X2((c− b)X0 + (a− c)X1 + (b− a)X2),

X1(a(c− b)X1X2 + b(a− c)X0X2 + c(b− a)X0X1),

X2(a(c− b)X1X2 + b(a− c)X0X2 + c(b− a)X0X1)].

We shall refer both to the birational involution and the corresponding element of
Aut(X) with the symbol σ1. It is easy to see that the strict transform of the cubic
curve C given by

b(a−c)X2
0X2+c(b−a)X

2
0X1+a(a−c)X

2
1X2+a(b−a)X1X

2
2+2a(c−b)X0X1X2 = 0

is precisely the set of points fixed point-wise by the lift of above σ1. In addition,
the following Lemma tells us that C is invariant under every element of Z4

2.

Lemma 4.2. Let A be an abelian group acting on a set M . For g ∈ A, let

Mg = {x ∈M : gx = x}.

Then Mg is invariant under every element of A.

Proof. For x ∈Mg, we have for any h ∈ A:

g(hx) = h(gx) = hx,

ie hx ∈Mg also. �

Closer inspection ([Wim96], [Koi88], [Hos96]) shows that Z4
2 ⊆ Aut(X) contains

the lifts of ten quadratic Cremona involutions Crij (1 ≤ i < j ≤ 5) that exchange
Pi, Pj and have the remaining three points as indeterminacy locus. Again, we abuse
notation and denote the maps before and after the lift by the same symbols Crij .

Moreover, Z4
2 ⊆ Aut(X) contains the lifts of five cubic involutions σi (1 ≤ i ≤ 5).

By comparing the respective action on the set of the sixteen (−1)-curves (which
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determines any automorphism uniquely, see [Koi88] or [Hos96]), it is easily verified
that

Crij ◦Crkl = Crkl ◦Crij ,

Crij ◦Crjk = Crik .

Moreover, for i, j, k, l,m all distinct, we have

σm = Crij ◦Crkl .

In particular, we have

(7) σj = Cr1j ◦σ1 (2 ≤ j ≤ 5).

The Crij have precisely four fixed points each (both before and after the lifting).
Thus, the only Z4

2-invariant curves on which Z4
2 does not act effectively are the

lifts of the curves C pertaining to the cubic involutions. However, for a, b, c 6= 0,
the curves C are smooth elliptic curves (easy exercise). Therefore, the group Z4

2 ⊂
Aut(X) acts effectively on any Aut(X)-invariant irreducible curve that is not an
elliptic curve.

In the following two Subsections, we will prove Theorem 1.7, part (ii), by means
of Criterion 1.6.

4.1. Zero-dimensional multiplier ideal sheaves. Let I ⊆ OX be an Aut(X)-
invariant ideal sheaf satisfying Property (Van). Let V = V (I). Let dimV = 0. We
saw in the previous section that the map

H0(X,OX(−KX)) → H0(V,OV (−KX))

is surjective. Since dimH0(X,OX(−KX)) = 10− 5 = 5, V consists of at most five
points.

Proposition 4.3. If GP5
= Z4,Z3 ⋊ Z2, or Z5 ⋊ Z2, then there is no Aut(X)-

invariant ideal sheaf I ⊆ OX satisfying Property (Van) with dim V (I) = 0.

Proof. We assume that I exists and derive a contradiction. Since V = V (I) has
at most five points, the statement follows from the claim that all orbits of Aut(X)
have cardinality at least 8. In the sequel, we prove this claim.

We first consider the action of Z4
2 ⊆ Aut(X) on X . There are no orbits of length

less than 4, which can be shown as follows: if we assume that there is such an orbit,
then the stabilizer subgroup (Z4

2)P of a point P in the orbit would be a subgroup
of order 8 or 16 in Z4

2. The only such groups are Z3
2 and Z4

2, but by Schur’s Lemma
these groups do not permit faithful two-dimensional complex representations (on
the tangent space to any point in the orbit), contradiction.

Now let P ∈ X be such that the cardinality of the orbit of P under Z4
2 is

#Z4
2P = 4. The list in [Bla06, Proposition 8.1.11] gives the action of GP5

on the
elements of the set {P1, P2, P3, P4, P5}. This data determines the action on the
sixteen (−1)-curves and therefore determines the automorphism uniquely.

When GP5
= Z4,Z3⋊Z2, or Z5⋊Z2, the claim is implied by #(Z4

2⋊GP5
)P ≤ 8.

A case by case analysis shows that if #(Z4
2 ⋊GP5

)P > 8, then

Z
3
2 ⊆ (Z4

2 ⋊GP5
)P ∩ Z

4
2,
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which yields a contradiction by Schur’s Lemma. Note that the strict inequality
#(Z4

2 ⋊ GP5
)P > 8 is necessary, because otherwise (Z4

2 ⋊ GP5
)P = Z2

2 ⋊ Z2 might
(and does) occur. �

4.2. One-dimensional multiplier ideal sheaves. In this subsection, we prove

Proposition 4.4. If GP5
= Z4,Z3 ⋊ Z2, or Z5 ⋊ Z2, then there is no Aut(X)-

invariant ideal sheaf I ⊆ OX satisfying Property (Van) with dimx V (I) = 1 for all
x ∈ V (I) and such that the scheme defined by I ⊆ OX has no embedded compo-
nents.

Proof. We assume that I exists and derive a contradiction. We can again assume
w.l.o.g. that no (−1)-curve is contained in V = V (I).

First, let us assume that V is irreducible.

If d = 1, 2, then V = P1. This is a contradiction, because Z4
2 ⊂ Aut(X) acts

effectively on V , but Z4
2 6⊆ PGL(2,C) (see [GB85, Chapter 2]).

If d = 3, then ga = 1. Since Aut(X) acts on V with orbits of length at least
8, V is smooth by Lemma 3.3. We know that Z3

2 ⋊ GP5
acts effectively on V .

However, it is not a subgroup of any of the groups listed in (6). We have obtained
a contradiction.

If d = 4, then ga = 3. Again, V is smooth. We can obtain a contradiction both
by Maclachlan’s theorem on abelian groups of automorphisms of Riemann surfaces
[Mac65, Theorem 4] and by the previously used [Kul87, Theorem 2.3], noting that
the cyclic 2-deficiency of Z4

2 is equal to 3.

If d = 5, then ga = 6. Again, V is smooth. [Kul87, Theorem 2.3] applies also in
this case, and we obtain a contradiction.

Next, we treat the case where the number of irreducible components is 2.

For d = 2, 3, the two components are smooth rational curves. If each component
(call them V1, V2) is invariant under Z4

2 ⊂ Aut(X), we have a contradiction as
before.

Let us assume that there is g ∈ Z4
2 ⊂ Aut(X) such that g(V1) = V2. Let

G1 = {g ∈ Z
4
2 : g(V1) = V1}

Then

Z
4
2 = G1 ⊎ gG1.

Therefore, the index of G1 in Z4
2 is two, and consequently G1 = Z3

2, which gives a
contradiction, since Z3

2 6⊆ PGL(2,C).

When d = 4, V may be the disjoint union of a smooth elliptic curve and a
rational curve or the disjoint union of two smooth rational curves. In either case,
this is impossible.

When d = 5, V may be the disjoint union of a smooth elliptic curve and a
smooth rational curve or the disjoint union of a smooth curve of genus 3 and a
smooth rational curve. In any case, this is impossible.

Next, let us assume that there are three irreducible components V1, V2, V3.
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When d = 3, 4, V is the union of three smooth rational curves. If the action
of Z4

2 ⊂ Aut(X) on the three components leaves one component invariant, then
Z4
2 ⊂ PGL(2,C), which is a contradiction.

If no component is invariant under Z4
2 ⊂ Aut(X), then there are g2, g3 ∈ Z4

2 such
that g2(V1) = V2, g3(V1) = V3. However, a brief computation reveals (g2 ·g3)

2(V1) ∈
V2, which means that the order of g2 · g3 cannot be 2. However, all nontrivial
elements of Z4

2 have order two, a contradiction.

When d = 5, one of the components might be a smooth elliptic curve, but in any
case one obtains a contradiction as before.

Finally, in the cases of 4 and 5 irreducible components, all components are
rational curves. If there are two components whose union is Z4

2 invariant, then we
obtain a contradiction as in the case of two irreducible componenets. If not, then
there exist g2, g3 ∈ Z4

2 and components V1, V2, V3 such that g2(V1) = V2, g3(V1) =
V3. Again, we obtain a contradiction. �

Propositions 4.3 and 4.4 prove Theorem 1.7, part (ii).

5. Comments on the cases of r 6= 4, 5

5.1. One or two points blown up. For P2 blown up at one or two points, one can
show that the so-called Calabi-Futaki invariant does not vanish (see eg [Tia00, Ex-
amples 3.10, 3.11] for details). The nonvanishing of this invariant is an obstruction
to the existence of a Kähler-Einstein metric. If gij̄(t) (t→ ∞) were to converge, it
would necessarily converge against a Kähler-Einstein metric. So the statement of
Theorem 1.1 (ii) cannot hold on P2 blown up at one or two points.

5.2. Three points blown up. In this paper, we do not make a statement about
this case, because both zero- and one-dimensional zero-sets of multiplier ideal
sheaves cannot be ruled out using Property (Van).

In the zero-dimensional case, the problem is that the surjectivity of the map

H0(X,OX(−KX)) → H0(V,OV (−KX))

limits the cardinality of the zero-set to 10 − 3 = 7. However, the six points of
intersection in the “hexagon” formed by the six (−1)-curves are clearly Aut(X)-
invariant, and we are unable to rule out that they are the Aut(X)-invariant zero-set
of a multiplier ideal sheaf satisfying (5).

Similarly, the union of the six (−1)-curves is clearly Aut(X)-invariant, and it is
not possible to rule out that it forms the zero-set of a multiplier ideal sheaf based
on Property (Van). Clearly, this case merits further investigation.

5.3. Six or more points blown up. For a generic del Pezzo surface X of degree
three, Aut(X) is unfortunately the trivial group (see [Koi88]). There are of course
non-generic X which have extra automorphisms, and a nice list of these can be
found in [Dol07, Table 10.3]. Recall that del Pezzo surfaces of degree three are
precisely the smooth cubic hypersurfaces of P3, and perhaps the most important
example is the Fermat cubic surface in P3 given by

Z3
0 + Z3

1 + Z3
2 + Z3

3 = 0.
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Its automorphism group is Z3
3 ⋊ S4, acting in the obvious way. The cardinality of

this group is 27 · 24 = 648. In this case, the same analysis as in Section 4 does
yield statement (ii) of Theorem 1.1. In fact, one can even do without the results
concerning the nature of the automorphism group for Riemann surfaces of genus
no more than 6, because according to the well-known Hurwitz bound, such an
automorphism group has cardinality at most 84(g− 1), which is less than 648. We
leave the details to the reader.

At the other end of the spectrum, on a del Pezzo surface X of degree one,
the unique base point of the linear system | −KX | is fixed by all automorphisms.
Therefore, unfortunately, Aut(X) acts with a fixed point regardless of the nature
of X , and we are unable to handle to this case.

On a del Pezzo surface X of degree two, the linear system | −KX | gives a two-
sheeted cover of P

2 branched along a smooth curve C of degree 4 in P
2. This

cover defines an involutive automorphism of X called the Geiser involution. On a
generic X , this is the only nontrivial automorphism, ie Aut(X) = Z2. However,
certain non-generic X do have extra automorphisms. A list of these X and their
automorphism groups, together with a lucid exposition of the topic, can be found
in [Dol07, Table 10.4]. We do not go into any details regarding this case.
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