
ar
X

iv
:0

71
0.

57
52

v1
  [

m
at

h.
D

G
] 

 3
0 

O
ct

 2
00

7

SOME CLASSIFICATIONS OF ∞-HARMONIC MAPS

BETWEEN RIEMANNIAN MANIFOLDS

ZE-PING WANG AND YE-LIN OU

Abstract

∞-Harmonic maps are a generalization of ∞-harmonic functions. They can

be viewed as the limiting cases of p-harmonic maps as p goes to infinity.

In this paper, we give complete classifications of linear and quadratic ∞-

harmonic maps from and into a sphere, quadratic ∞-harmonic maps between

Euclidean spaces. We describe all linear and quadratic ∞-harmonic maps

between Nil and Euclidean spaces, between Sol and Euclidean spaces. We also

study holomorphic ∞-harmonic maps between complex Euclidean spaces.

1. Introduction

In this paper, we work in the category of smooth objects so that all manifolds,

vector fields, and maps are assumed to be smooth unless there is an otherwise

statement.

The infinity Laplace equation

(1) ∆∞u :=
1

2
〈∇ u,∇ |∇u|2〉 =

m
∑

i,j=1

uijuiuj = 0,

where u : Ω ⊂ Rm −→ R, ui =
∂u
∂xi and uij = ∂2u

∂xi∂xj , was first discovered and

studied by G. Aronsson in his study of “optimal” Lipschitz extension of functions

in the late 1960s ([Ar1], [Ar2]).

To see why this nonlinear and highly degenerate elliptic PDE has been so

fascinating, we recall that the famous minimal surface equation can be written
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as

(1 + |∇u|2)∆u+
m
∑

i,j=1

uiujuij = 0,

from which we see that the ∞-Laplace equation can be obtained as harmonic

minimal surface equation meaning the equation for harmonic functions with

minimal graphs.

The solutions of the ∞-Laplace equation are called ∞-harmonic functions

which have the following interpretations:

Lemma 1.1. (see [Ou1]) Let u : (Mm, g) −→ R be a function. Then the following

conditions are equivalent:

(1) u is an ∞-harmonic function, i.e., ∆∞u = 0,

(2) u is horizontally homothetic;

(3) ∇u is perpendicular to ∇|∇u|2;

(4) Hessu(∇u,∇u) = 0;

(5) |∇u|2 is constant along any integral curve of ∇u.

Also, the ∞-Laplace equation can be viewed (see [Ar1]) as the formal limit, as

p→ ∞, of p-Laplace equation

∆p u := |∇ u|p−2

(

∆ u+
p− 2

|∇ u|2
∆∞ u

)

= 0.

Finally, the ∞-Laplace equation can be viewed as the Euler-Lagrange equation

of the L∞ variational problem of minimizing

E∞(u) = ess supΩ |d u|

among all Lipschitz continuous functions u with given boundary values on ∂Ω (see

[ACJ], [Ba], and [BEJ] and the references therein for more detailed background).

Recently, a great deal of research work has been done in the study of the ∞-

Laplace equation after the work of Crandall and Lions (see e.g. [CIL]) on the

theory of viscosity solutions for fully nonlinear problems. Many important results

have been achieved and published in, e.g., [ACJ], [BB], [Ba], [BLW1], [BLW2],

[BEJ], [Bh], [CE], [CEG], [CIL], [CY], [EG], [EY], [J], [JK], [JLM1], [JLM2],

[LM1], [LM2], [Ob].

On the other hand, the ∞-Laplace equation has been found to have some very

interesting applications in areas such as image processing (see e.g. [CMS], [Sa]),

mass transfer problems (see e.g. [EG]), and the study of shape metamorphism
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(see e.g. [CEPB]).

The generalization from harmonic functions to harmonic maps between Rie-

mannian manifolds was so fruitful that it has not only opened new fields of study

in differential geometry, analysis, and topology but also brought important ap-

plications to many branches in mathematics and theoretical physics. It would

be interesting to study maps between Riemannian manifolds that generalize ∞-

harmonic functions. This was initiated in [OTW] where the notion of∞-harmonic

maps between Riemannain manifolds was introduced as a natural generalization

of ∞-harmonic functions and as the limit case of p-harmonic maps as p→ ∞.

Definition 1.2. ([OTW]) A map ϕ : (M, g) −→ (N, h) between Riemannian

manifolds is called an ∞-harmonic map if the gradient of its energy density be-

longs to the kernel of its tangent map, i.e., ϕ is a solution of the PDEs

(2) τ∞(ϕ) :=
1

2
dϕ(grad |dϕ|2) = 0,

where |dϕ|2 = Tracegϕ
∗h is the energy density of ϕ.

A direct computation using local coordinates yields (see also [OTW])

Corollary 1.3. In local coordinates, a map ϕ : (M, g) −→ (N, h) with

ϕ(x) = (ϕ1(x), . . . , ϕn(x)) is ∞-harmonic if and only if

(3) g(gradϕα, grad |dϕ|2) = 0, α = 1, 2, ..., n.

Clearly, any ∞-harmonic function is an ∞-harmonic map by Definition 1.2. It

also follows from the definition that any map between Riemannian manifolds with

constant energy density, i.e., |dϕ|2 = Tracegϕ
∗h = constant is an ∞-harmonic

map. Thus, the following important and familiar families are all ∞-harmonic

maps:

• totally geodesic maps,

• isometric immersions,

• Riemannian submersions,

• eigenmaps between spheres.

Examples of ∞-harmonic maps with nonconstant energy density include the fol-

lowing classes:

• projections of multiply warped products (e.g., the projection of the gen-

eralized Kasner spacetimes),

• equator maps, and

• radial projections.
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We refer the readers to [OTW] for details of these and many other examples and

other results including methods of constructing ∞-harmonic maps into Euclidean

spaces and spheres, characterizations of ∞-harmonic immersions and submer-

sions, study of ∞-harmonic morphisms which can be characterized as horizon-

tally homothetic submersions, and the transformation ∞-Laplacians under the

the conformal change of metrics.

In this paper, we study the classification of ∞-harmonic maps between cer-

tain model spaces. We give complete classifications of linear and quadratic ∞-

harmonic maps from and into a sphere, quadratic ∞-harmonic maps between

Euclidean spaces. We describe all linear and quadratic ∞-harmonic maps be-

tween Nil and Euclidean spaces and between Sol and Euclidean spaces. We also

study holomorphic ∞-harmonic maps complex Euclidean spaces.

2. quadratic ∞-harmonic maps between Euclidean spaces

As we mentioned in Section 1 that any map with constant energy density

is ∞-harmonic. It follows that any affine map ϕ : Rm −→ Rn with ϕ(X) =

AX + b, where A is an n × m matrix and b ∈ Rn is a constant, is an ∞-

harmonic map because of its constant energy density. Note that there are also

globally defined ∞-harmonic maps between Euclidean spaces which are not affine

maps. For example, one can check that ϕ : R3 −→ R2 given by ϕ(x, y, z) =

(cosx+ cos y + cos z, sin x+ sin y + sin z) is a map with constant energy density

|dϕ|2 = Tracegϕ
∗h = 3 and hence an ∞-harmonic maps. In this section, we give

a complete classification of ∞-harmonic maps between Euclidean spaces defined

by quadratic polynomials. First, we prove the following lemma which will be used

frequently in this paper.

Lemma 2.1. Let Ai, i = 1, 2, . . . , n, be symmetric matrices of m × m. Then,

(
∑n

j=1
A2

j)Ai + Ai(
∑n

j=1
A2

j ) = 0 for all i = 1, 2 . . . , n if and only if Ai = 0 for

i = 1, 2 . . . , n

Proof. Suppose otherwise, i.e., one of Ai is not zero, without loss of generality,

we may assume A1 6= 0. Then rank(A1) = K with 1 ≤ K ≤ m. Without loss

of generality, we can choose a suitable orthogonal matrix T such that T−1A1T

takes the diagonal form

T−1A1T =











λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λm











(4)
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where λik 6= 0, k = 1, 2, . . . , K

Note that

T−1

n
∑

j=1

(A2
j)T =

n
∑

j=1

T−1(A2
j)T =

n
∑

j=1

(T−1AjT )
2(5)

with each (T−1AjT )
2 being symmetric matrix. It follows that

0 = T−10T = T−1

n
∑

j=1

(A2
jA1 + A1A

2
j )T(6)

=
n

∑

j=1

(T−1AjT )
2T−1A1T + T−1A1T (T

−1AjT )
2).

This is impossible because the i-th entry in the main diagonal of the matrix on

the right-hand side of Equation (6) takes the form

(7) 2λi(λ
2
i +

n
∑

j≥2

|(T−1AjT )
i|2),

where (T−1AjT )
i denotes the i-th row vector in (T−1AjT ), and we know that at

least one λi is not zero. The contradiction proves the Lemma. �

Theorem 2.2. Let ϕ : Rm −→ Rn be a quadratic map with ϕ(X) = (X tA1X, . . . , X
tAnX),

where X t = (x1, . . . , xm) ∈ Rm. Then, ϕ is an ∞-harmonic map if and only if ϕ

is a constant map.

Proof. A straightforward computation gives:

∇ϕi = 2X tAi,

|dϕ|2 = δαβϕα
iϕβ

jδij =

n
∑

i=1

g(∇ϕi,∇ϕi)

=

n
∑

i=1

〈2X tAi, 2X
tAi〉 = 4

n
∑

i=1

X tA2
iX, and

∇ |dϕ|2 = 8
n

∑

i=1

X tA2
i .

It follows from Corollary 1.3 that ϕ is ∞-harmonic if and only if

g(∇ϕi,∇ |dϕ|2) = 0, i = 1, 2, . . . , n,
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which is equivalent to

(8) X tAi(

n
∑

j=1

A2
j)X = 0, i = 1, 2, . . . , n.

As the coefficient matrix Ai(
∑n

j=1
A2

j ) of the quadratic form on the left-hand side

of (8) is not symmetric in general we can rewrite (8) as

(9) X t(Ai(
n

∑

j=1

A2
j ) + (

n
∑

j=1

A2
j)Ai)X = 0, i = 1, 2, . . . , n.

Since Ai(
∑n

j=1
A2

j ) + (
∑n

j=1
A2

j )Ai is a symmetric matrix of m ×m we conclude

that ϕ is ∞-harmonic if and only if

(10) Ai(
n

∑

j=1

A2
j) + (

n
∑

j=1

A2
j)Ai = 0, i = 1, 2, . . . , n.

It follows from this and Lemma 2.1 that Ai = 0 for i = 1, 2, . . . , n, and hence

ϕ(X) = 0, a constant map, from which we obtain the Theorem.

�

Theorem 2.3. Let ϕ : Rm −→ Rn, ϕ(X) = (X tA1X, . . . , X
tAnX) + (AX)t + b

be a polynomial map, where Ai is an m×m symmetric matrix for i = 1, 2, . . . , n,

A an n×m matrix, and b ∈ R
n . Then, ϕ is an ∞-harmonic map if and only if

ϕ is an affine map with ϕ(X) = (AX)t + b.

Proof. Let αi ∈ Rm, i = 1, 2, . . . , n, denote the i-th row vector of the matrix A.

Then,

(11) ∇ϕi = 2X tAi + αi, i = 1, 2, ..., n,

|dϕ|2 = gαβϕα
iϕβ

jδij

=
n
∑

i=1

g(∇ϕi,∇ϕi)

=
n
∑

i=1

〈2X tAi + αi, 2X
tAi + αi〉

= 4
n
∑

i=1

X tA2
iX +

n
∑

i=1

g〈αi, αi〉+ 4
n
∑

i=1

αiAiX,

and

(12) ∇ |dϕ|2 = 8
n
∑

i=1

X tA2
i + 4

n
∑

i=1

αiAi.
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Substituting (11) and (12) the ∞-harmonic map equation (3) we conclude that

ϕ is ∞-harmonic if and only if

(13)

0 = g(∇ϕi,∇ |dϕ|2)

= 〈2X tAi + αi, 8
n
∑

j=1

X tA2
j + 4

n
∑

j=1

αjAj〉

= 16
n
∑

j=1

X tAiA
2
jX + 8

n
∑

j=1

X tAiAj(αj)
t + 8

n
∑

j=1

(αiA
2
j )X + 4

n
∑

j=1

αiAj(αj)
t.

Since Equation (13) if true for arbitrary X , it is actually an identity of polynomial

in X . By comparing the coefficients of the leading terms of the polynomials of at

both sides we have that, if ϕ is ∞-harmonic, then

(14) 16X tAi

n
∑

j=1

A2
jX = 0, i = 1, 2, . . . , n,

which is the same as Equation (8). Now we can use Lemma 2.1 to conclude that

if ϕ is ∞-harmonic, then Ai = 0 for i = 1, 2, . . . , n and hence ϕ(X) = (AX)t + b

is an affine map. The converse statement clearly true because an affine map has

constant energy density. Therefore, we obtain the theorem. �

Remark 1. (A) It would be interesting to know if there is any ∞-harmonic maps

ϕ : Rm −→ Rn defined by homogeneous polynomials of degree greater than 2.

(B) We also remark that the situation for the ∞-harmonic maps between

semi-Euclidean spaces is quite different in that there are many examples of non-

constant ∞-harmonic maps between semi-Euclidean spaces defined by quadratic

polynomials, for example, let R2
1 denote the 2-dimensional semi-Euclidean space

with semi-Euclidean metric ds2 = −dx2 + dy2, then one can check that the qua-

dratic map ϕ : R2
1 −→ R2

1 defined by ϕ(x, y) = (12x2+12y2, 13x2+10xy+13y2) is

an map with energy density |dϕ|2 = Tracegϕ
∗h = (ϕ1

1)
2−(ϕ1

2)
2−(ϕ2

1)
2+(ϕ2

2)
2 = 0,

hence it is an ∞-harmonic map. For more examples and study of ∞-harmonic

maps between Semi-Euclidean spaces see [Zh].

3. Linear ∞-harmonic maps from and into a sphere

In this section, we first derive an equation for linear ∞-harmonic map between

conformally flat spaces. We then use it to give a complete classification of linear

∞-harmonic maps between a Euclidean space and a sphere.

Lemma 3.1. Let ϕ : (Rm, g = F−2δij) −→ (Rn, h = λ−2δαβ) with

ϕ(X) = AX =
(

A1X, · · · , AnX
)

,
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where Ai is the i-th row vector of A, be a linear map between conformally flat

spaces. Then, ϕ is ∞-harmonic if and only if A = 0, i.e., ϕ(X) = AX = 0 is a

constant map, or

(15) 〈Aα,∇(
F

λ ◦ ϕ
)〉 = 0, α = 1, 2, . . . , n.

where 〈, 〉 is the Euclidean inner product and ∇f denotes the gradient of f taken

with respect to the Euclidean metric on Rm.

Proof. It is easy to check that for the linear map ϕ : (Rm, g = F−2δij) −→

(Rn, h = λ−2δαβ) with ϕ(X) = AX = (A1X, · · · , AnX) we have:

|dϕ|2 = F 2δijϕα
iϕ

β
j(λ

−2δαβ) ◦ ϕ = (
F

λ ◦ ϕ
)2

n
∑

i=1

m
∑

j=1

a2ij = (
F

λ ◦ ϕ
)2|A|2.

By Corollary 1.3, ϕ is ∞-harmonic if and only if

g(gradϕα, grad |dϕ|2) = gijϕα
i (|dϕ|

2)j

= F 2δijϕα
i (|dϕ|

2)j = F 2〈Aα,∇(
F

λ ◦ ϕ
)2|A|2〉

=
2F 3|A|2

λ ◦ ϕ
〈Aα,∇(

F

λ ◦ ϕ
)〉 = 0, α = 1, 2, ..., n,

from which the Lemma follows. �

Let (Sn, gcan) be the n-dimensional sphere with the standard metric. It is well

known that we can identify (Sn \ {N}, gcan) with (Rn, λ−2δij), where λ = 1+|x|2

2
.

Using coordinate {xi} we can write the components of gU as:

ḡij = λ−2δij, ḡij = λ2δij.

As an application of Lemma 3.1 we give the following classification of ∞-

harmonic maps between spheres.

Theorem 3.2. A linear map ϕ : (Rm, F−2δij) ≡ (Sm\{N}, gcan) −→ (Rn, λ−2δij) ≡

(Sn\{N}, gcan) between two spheres with ϕ(X) = (A1X, · · · , AnX) is ∞-harmonic

if and only if A = 0, i.e., ϕ is a constant map, or, AtA = Im×m, i.e., ϕ is an

isometric immersion.

Proof. To prove the theorem, we applying Lemma 3.1 with F = 1+|X|2

2
and λ =

1+|Y |2

2
we conclude that ϕ is ∞-harmonic if and only if A = 0, ϕ(X) = AX = 0
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is a constant map, or

〈Aα,∇(
F

λ ◦ ϕ
)〉 =

1

(λ ◦ ϕ)2
〈Aα, (λ ◦ ϕ)∇F − F∇(λ ◦ ϕ)〉

=
1

(λ ◦ ϕ)2
〈Aα, (λ ◦ ϕ)∇[

1

2
(1 + |X|2)]− F∇[

1

2
(1 + |AX|2)]〉

=
1

2(λ ◦ ϕ)2
〈Aα, (1 + |AX|2)X − (1 + |X|2)∇(X tAtAX)〉

=
1

2(λ ◦ ϕ)2
〈Aα, (1 + |AX|2)X − (1 + |X|2)AtAX〉 = 0, α = 1, 2, . . . , n,

which is equivalent to

(16) (1 + |AX|2)AX − (1 + |X|2)AAtAX = 0,

for any X ∈ Rm. It follows that Equation (16) is an identity of polynomials. By

comparing coefficients we have

(17)

{

AX − AAtAX = 0

|AX|2AX − |X|2AAtAX = 0.

for anyX ∈ Rm. It is easy to see that Equation (17) implies that A = 0, or, AtA =

Im×m and |ϕ(X)|2 = |AX|2 = |X|2, from which we obtain the theorem. �

For linear maps between a Euclidean space and a sphere we have

Theorem 3.3. (1) A linear map ϕ : Rm −→ (Rn, λ−2δij) ≡ (Sn \{N}, gcan) from

a Euclidean space into a sphere with ϕ(X) = (A1X, · · · , AnX) is ∞-harmonic if

and only if A = 0, i.e., ϕ is a constant map.

(2) A linear map ϕ : (Rm, λ−2δij) ≡ (Sm \ {N}, gcan) −→ R
n from a sphere into

a Euclidean space with ϕ(X) = (A1X, · · · , AnX) is ∞-harmonic if and only if

A = 0, i.e., ϕ is a constant map.

Proof. To prove the first Statement, we applying Lemma 3.1 with F = 1 and λ =
1+|Y |2

2
we conclude that ϕ is ∞-harmonic if and only if A = 0, ϕ(X) = AX = 0

is a constant map, or

〈Aα,∇(
1

λ ◦ ϕ
)〉 = −

1

(λ ◦ ϕ)2
〈Aα,∇(λ ◦ ϕ)〉

= −
1

(λ ◦ ϕ)2
〈Aα,∇[

1

2
(1 + |AX|2)]〉

= −
1

2(λ ◦ ϕ)2
〈Aα,∇(X tAtAX)〉

= −
1

(λ ◦ ϕ)2
〈Aα, AtAX〉 = 0, α = 1, 2, . . . , n,
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which is equivalent to

(18) AAtAX = 0.

for any X ∈ Rm. By letting X = (Ai)t, i = 1, . . . , n in Equation (18) we con-

clude that ϕ is ∞-harmonic if and only if AAtAAt = 0. Note that AAtAAt =

(AAt)(AAt)t = 0 implies that Trace(AAt) =
n
∑

i=1

|Ai|2 = 0. It follows that |A| = 0,

i.e., ϕ is a constant map. This gives the first Statement of the theorem.

For the second Statement, we apply Lemma 3.1 with λ = 1 and F = 1+|X|2

2

to conclude that ϕ is ∞-harmonic if and only if A = 0, ϕ(X) = AX = 0 is a

constant map, or

〈Aα,∇F 〉 = 〈Aα, X〉 = 0(19)

for α = 1, 2, . . . , n and for all X ∈ Rm. It is easy to see that Equation (19) implies

that Aα = 0 for for α = 1, 2, . . . , n and hence A = 0, i.e., ϕ is a constant. This

completes the proof of the Theorem. �

4. Quadratic ∞-harmonic maps from and into a sphere

Again, we identify (Sn \ {N}, gcan) with (Rn, λ−2δij), where λ = 1+|X|2

2
.

Theorem 4.1. (1) A quadratic map ϕ : Rm −→ (Rn, λ−2δij) ≡ (Sn \ {N}, gcan)

into sphere with ϕ(X) = (X tA1X,X
tA2X, . . . , X

tAnX) is ∞-harmonic if and

only it is a constant map.

(2) A quadratic map from a sphere into a Euclidean space

ϕ : (Rm, λ−2δij) −→ Rn with ϕ(X) = (X tA1X,X
tA2X, . . . , X

tAnX) is ∞-

harmonic if and only it is a constant map.

Proof. For the Statement (1), we compute:

∇ϕα = 2X tAα,

|dϕ|2 = δαβϕα
iϕβ

jδij(λ ◦ ϕ)−2 = 4σ2
n
∑

j=1

X tA2
jX,

where σ = 1

λ◦ϕ
. A further computation gives

(20) ∇ |dϕ|2 = 8σ(X t
n
∑

j=1

A2
jX)∇σ + 8σ2X t

n
∑

j=1

A2
j .

The ∞-harmonic map equation for ϕ reads

(21) 0 = 16σ(X t
n
∑

j=1

A2
jX)〈X tAα,∇σ〉+ 16σ2X tAα

n
∑

j=1

A2
jX.
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A direct computation yields ∇σ = −2σ2(X tA1y1 +X tA2y2 + . . .+X tAnyn).

where yα = X tAαX and for α = 1, 2, . . . , n. Substituting this into Equation (21)

we have

(22)

0 = −32σ3(X t
n
∑

j=1

A2
jX)(X tAαA1Xy1 + . . .+X tAαAnXyn)

+16σ2X tAα

n
∑

j=1

A2
jX

which is equivalent to

(23)

0 = −32(X t
n
∑

j=1

A2
jX)(X tAαA1Xy1 + . . .+X tAαAnXyn)

+16

σ
X tAα

n
∑

j=1

A2
jX

i.e.,

(24) 0 = −P (X) + 8X tAα

n
∑

j=1

A2
jX

where P (X) denotes a polynomial in X of degree greater than 2. Noting that

the equation is an identity of polynomials we conclude that if ϕ is ∞-harmonic,

then

(25) X tAα

3
∑

j=1

A2
jX = 0, α = 1, 2, . . . , n,

which is exactly the Equation (8) and the same arguments used in the proof of

Theorem 2.2 apply to give the required results.

To prove the second statement, let ∇f = (f1, . . . , fm) denotes the Euclidean

gradient of function f . Then, a straightforward computation gives:

∇ϕα = 2X tAα,

|dϕ|2 = λ2δαβϕα
iϕβ

jδij = 4λ2
n
∑

j=1

X tA2
jX,

and

(26) ∇ |dϕ|2 = 8λ(X t
n
∑

j=1

A2
jX)X + 8λ2X t

n
∑

j=1

A2
j ,

where we have used the fact that ∇λ = X . It follows that ϕ is ∞-harmonic if

and only if

g(gradϕi, grad |dϕ|2) = 0, i = 1, 2, . . . , n,
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which is equivalent to

(27)

0 = gijϕα
i |dϕ|

2

j = λ2〈∇ϕα,∇ |dϕ|2〉

= λ2〈2X tAα, 8λ(X
t

n
∑

j=1

A2
jX)X + 8λ2X t

n
∑

j=1

A2
j〉

= 16λ3(X t
n
∑

j=1

A2
jX)X tAαX + 16λ4X tAα

n
∑

j=1

A2
jX

for all X ∈ Rm and for α = 1, 2, . . . , n. Note that Equation (27) is an identity

of polynomials since λ is also a polynomial. Comparing the coefficients of the

polynomials we conclude that ϕ is ∞-harmonic implies that X tAα

n
∑

j=1

A2
jX = 0

for α = 1, 2, . . . , n, which is exactly the Equation (8) and the same arguments

used in the proof of Theorem 2.2 apply to give the required results. �

Remark 2. It is well known that any eigenmap between spheres is of constant

energy density, so any eigenmap is ∞-harmonic. It would be interesting to know

if there is any ∞-harmonic maps between spheres which is not an eigenmap.

5. Linear ∞-harmonic maps from and into Nil space

In this section we will give a complete classification of linear ∞-harmonic maps

between Euclidean spaces and Nil space.

Theorem 5.1. Let (R3, gNil) denote Nil space, where the metric with respect to

the standard coordinates (x, y, z) in R3 is given by gNil = dx2+dy2+(dz−xdy)2.

Then

(1) A linear function f : (R3, gNil) −→ R, f(x, y, z) = Ax + By + Cz is an

∞-harmonic function if and only if A = 0 or C = 0.

(2) A linear map ϕ : (R3, gNil) −→ Rn (n ≥ 2) is ∞-harmonic if and only if

ϕ is a composition of the projection π1 : (R3, gNil) −→ R2, π1(x, y, z) =

(x, y) followed by a linear map R2 −→ Rn, or, ϕ is a composition of the

projection π2 : (R3, gNil) −→ R2, π2(x, y, z) = (y, z) followed by a linear

map R
2 −→ R

n.

Proof. For Statement (1), we note that it has been proved in [Ou1] that a linear

function f : (R3, gNil) −→ R, f(x, y, z) = Ax+By + Cz is an 1-harmonic if and

only if it is horizontally homothetic which is equivalent to f being ∞-harmonic. It

was further shown that this is equivalent to A = 0 or C = 0. To prove Statement

(2), one can easily compute the following components of Nil metric:

(28)

{

g11 = 1, g12 = g13 = 0, g22 = 1 + x2, g23 = −x, g33 = 1;

g11 = 1, g12 = g13 = 0, g22 = 1, g23 = x, g33 = 1 + x2.
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Let ϕ : (R3, gNil) −→ Rn (n ≥ 2) be a linear map with

(29) ϕ(X) =









a11 a12 a13
a21 a22 a23
. . . . . . . . .

an1 an2 an3













x

y

z



 .

A straightforward computation gives the energy density of ϕ as:

(30)

|dϕ|2 = gαβϕα
iϕβ

jδij

=
n
∑

i=1

(g11( ∂ϕ
i

∂x1

)2 + g22( ∂ϕ
i

∂x2

)2 + g33( ∂ϕ
i

∂x3

)2 + g23 ∂ϕi

∂x2

∂ϕi

∂x3

+ g32 ∂ϕi

∂x3

∂ϕi

∂x2

)

=
n
∑

i=1

a2i3x
2 + 2

n
∑

i=1

ai2ai3x+
3
∑

j=1

n
∑

i=1

a2ij ,

and

(31)

∂|dϕ|2

∂x1

= ∂|dϕ|2

∂x
= 2

n
∑

i=1

a2i3x+ 2
n
∑

i=1

ai2ai3,

∂|dϕ|2

∂x2

= ∂|dϕ|2

∂y
= 0,

∂|dϕ|2

∂x3

= ∂|dϕ|2

∂z
= 0.

It follows from Corollary 1.3 and (31) that ϕ is ∞-harmonic if and only if

(32)

g(∇ϕi,∇ |dϕ|2)

= gαβϕα
i|dϕ|2β

= g11 ∂ϕi

∂x1

∂|dϕ|2

∂x1

+ g22 ∂ϕ
i

∂x2

∂|dϕ|2

∂x2

+ g33 ∂ϕi

∂x3

∂|dϕ|2

∂x3

+ g23 ∂ϕ
i

∂x2

∂|dϕ|2

∂x3

+ g32 ∂ϕi

∂x3

∂|dϕ|2

∂x2

= 2ai1(
n
∑

i=1

a2i3x+
n
∑

i=1

ai2ai3) = 0, i = 1, 2, . . . , n.

Solving Equation (32) we have ai1 = 0, for i = 1, 2, . . . , n, or ai3 = 0, for i =

1, 2, . . . , n, from which we conclude that the linear map ϕ : (R3, gNil) −→ Rn (n ≥

2) defined by (29) is ∞-harmonic if and only if

(33) ϕ(X) =









0 a12 a13
0 a22 a23
. . . . . . . . .

0 an2 an3













x

y

z



 .

or

(34) ϕ(X) =









a11 a12 0

a21 a22 0

. . . . . . . . .

an1 an2 0













x

y

z



 .

Thus, we obtain the theorem. �
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Remark 3. (i) We remark that in both cases, the maximum possible rank of the

linear ∞-harmonic map ϕ is 2.

(ii) Using the energy density formula (30) we can check that in case of (33) the

linear ∞-harmonic map ϕ has non-constant energy density given by a quadratic

polynomial whilst in case of (34) the linear ∞-harmonic map ϕ has constant

energy density.

(iii) It follows from our Theorem that we can choose to have submersion

ϕ : (R3, gNil) −→ R2 with

(35) ϕ(X) =

(

0 a12 a13
0 a22 a23

)





x

y

z





so that ϕ has non-constant energy density. Clearly, ϕ cannot be a Riemannian

submersion because the energy density is not constant.

Theorem 5.2. A linear map ϕ : Rm −→ (R3, gNil) into Nil space is ∞-harmonic

if and only if ϕ is a composition of a linear map R
m −→ R

2 followed by the

inclusion map i1 : R2 −→ R3, i1(y, z) = (0, y, z), or, ϕ is a composition of a

linear map Rm −→ R2 followed by the inclusion map i2 : R2 −→ R3, i2(x, z) =

(x, 0, z).

Proof. Let ϕ : Rm −→ (R3, gNil) be a linear map with

(36) ϕ(X) =





a11 a12 . . . a1m
a21 a22 . . . a2m
a31 a32 . . . a3m















x1
x2
...

xm











.

We can check that the energy density of ϕ is given by:

(37)

|dϕ|2 = δijϕα
i ϕj

βgαβ ◦ ϕ

=
m
∑

j=1

(

3
∑

α=1

(∂ϕ
α

∂xj
)2gαα ◦ ϕ+ ∂ϕ2

∂xj

∂ϕ3

∂xj
g23 ◦ ϕ+ ∂ϕ3

∂xj

∂ϕ2

∂xj
g32 ◦ ϕ

)

=
m
∑

j=1

(

a21j + a22j(1 + x2) + a23j − a2ja3jx− a3ja2jx
)

=
m
∑

j=1

a22jx
2 − 2

m
∑

j=1

a2ja3jx+
2
∑

i=1

3
∑

j=1

a2ij ,

where x = a11x1 + a12x2 + . . . + a1mxm. Noting that the domain manifold is

Euclidean space we have

∇ϕi = (ai1, ai2, . . . , aim), i = 1, 2, 3,
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and

∇ |dϕ|2 =
∂ |dϕ|2

∂xi

∂

∂xi
= (2a11(

m
∑

j=1

a22jx−
m
∑

j=1

a2ja3j), . . . , 2a1m(
m
∑

j=1

a22jx−
m
∑

j=1

a2ja3j)).

By Corollary 1.3, the ∞-harmonic map equation for ϕ becomes

(38) 〈∇ϕi,∇ |dϕ|2〉 = 0, i = 1, 2, 3,

which is equivalent to

2ai1a11(
m
∑

j=1

a22jx−
m
∑

j=1

a2ja3j) + 2ai2a12(
∑m

j=1
a22jx−

m
∑

j=1

a2ja3j)

+ . . .+ 2aima1m(
m
∑

j=1

a22jx−
m
∑

j=1

a2ja3j)

= 2
m
∑

k=1

aika1k(
m
∑

j=1

a22jx−
m
∑

j=1

a2ja3j) = 0, i = 1, 2, 3,

or

(39)































2
m
∑

k=1

a21k(
m
∑

j=1

a22jx−
m
∑

j=1

a2ja3j) = 0;

2
m
∑

k=1

a1ka2k(
m
∑

j=1

a22jx−
m
∑

j=1

a2ja3j) = 0;

2
m
∑

k=1

a1ka3k(
m
∑

j=1

a22jx−
m
∑

j=1

a2ja3j) = 0.

Solving (39) we obtain

(40)



























2
m
∑

k=1

a21k = 0;

2
m
∑

k=1

a1ka2k = 0;

2
m
∑

k=1

a1ka3k = 0.

or

(41)

m
∑

j=1

a22jx−

m
∑

j=1

a2ja3j = 0.

From Equation (40) we have

(42) a1k = 0, for k = 1, 2, . . . , m.

Note that if a1k 6= 0, for some k = 1, 2, . . . , m, then x = a11x1 + a12x2 + . . . +

a1mxm : Rm −→ R is an onto map and it follows that Equation (41) is true for

any x as a polynomial in x. Therefore, we have

(43) a2k = 0, for k = 1, 2, . . . , m,
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from which we conclude that the linear map ϕ : (Rm −→ (R3, gNil) defined by

(36) is ∞-harmonic if and only if

(44) ϕ(X) =





0 0 . . . 0

a21 a22 . . . a2m
a31 a32 . . . a3m















x1
x2
...

xm











,

or

(45) ϕ(X) =





a11 a12 . . . a1m
0 0 . . . 0

a31 a32 . . . a3m















x1
x2
...

xm











,

Thus, we obtain the theorem. �

Remark 4. (i) We remark that in both cases, the maximum possible rank of the

linear ∞-harmonic map ϕ is 2.

(ii) Using the energy density formula (37) can check that in both cases of (44)

and (45), the linear ∞-harmonic map ϕ has constant energy density.

6. Linear ∞-harmonic maps from and into Sol space

In this section we give a complete classification of linear ∞-harmonic maps

between Euclidean spaces and Sol space.

Theorem 6.1. Let (R3, gSol) denote Sol space, where the metric with respect to

the standard coordinates (x, y, z) in R
3 is given by gSol = e2zdx2 + e−2zdy2+dz2.

Then

(1) A linear function f : (R3, gSol) −→ R, f(x, y, z) = Ax + By + Cz is an

∞-harmonic function if and only if C = 0 or A = B = 0.

(2) A linear map ϕ : (R3, gSol) −→ Rn (n ≥ 2) is ∞-harmonic if and only if

ϕ is a composition of the projection π1 : (R3, gSol) −→ R2, π1(x, y, z) =

(x, y) followed by a linear map R
2 −→ R

n, or, ϕ is a composition of the

projection π2 : (R3, gSol) −→ R2, π2(x, y, z) = (z) followed by a linear

map R −→ Rn.

Proof. The Statement (1) is proved in [Ou1]. To prove Statement (2), one can

easily compute the following components of Sol metric:

g11 = e2z, g22 = e−2z , g33 = 1, all other, gij = 0;(46)

g11 = e−2z, g22 = e2z , g33 = 1, all other, gij = 0.
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Let ϕ : (R3, gSol) −→ Rn (n ≥ 2) be a linear map with

(47) ϕ(X) =









a11 a12 a13
a21 a22 a23
. . . . . . . . .

an1 an2 an3













x

y

z



 .

A straightforward computation gives the energy density of ϕ as:

|dϕ|2 = gαβϕα
iϕβ

jδij

=
n
∑

i=1

g11( ∂ϕ
i

∂x1

)2 + g22( ∂ϕ
i

∂x2

)2 + g33( ∂ϕ
i

∂x3

)2

=
n
∑

i=1

a2i1e
−2z +

n
∑

i=1

a2i2e
2z +

n
∑

i=1

a2i3,

and

(48)

∂|dϕ|2

∂x1

= ∂|dϕ|2

∂x
= 0,

∂|dϕ|2

∂x2

= ∂|dϕ|2

∂y
= 0,

∂|dϕ|2

∂x3

= ∂|dϕ|2

∂z
= −2

n
∑

i=1

a2i1e
−2z + 2

n
∑

i=1

a2i2e
2z.

It follows from Corollary 1.3 and (48) that ϕ is ∞-harmonic if and only if

(49)

g(∇ϕi,∇ |dϕ|2)

= gαβϕα
i|dϕ|2β

= g11 ∂ϕ
i

∂x1

∂|dϕ|2

∂x1

+ g22 ∂ϕi

∂x2

∂|dϕ|2

∂x2

+ g33 ∂ϕ
i

∂x3

∂|dϕ|2

∂x3

= −2ai3(
n
∑

i=1

a2i1e
−2z −

n
∑

i=1

ai2e
2z) = 0, i = 1, 2, . . . , n.

Solving Equation (49) we have ai3 = 0, for i = 1, 2, . . . , n, or ai1 = ai2 = 0, for

i = 1, 2, . . . , n, from which we conclude that the linear map ϕ : (R3, gSol) −→

Rn (n ≥ 2) defined by (47) is ∞-harmonic if and only if

(50) ϕ(X) =









0 0 a13
0 0 a23
. . . . . . . . .

0 0 an3













x

y

z



 ,

or

(51) ϕ(X) =









a11 a12 0

a21 a22 0

. . . . . . . . .

an1 an2 0













x

y

z



 .
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Thus, we obtain the theorem. �

Remark 5. It follows from Theorem 6.1 that the maximum rank of the linear

∞-harmonic maps from Sol space into Euclidean space is 2. In case of (51) the

linear ∞-harmonic map has non-constant energy density.

Theorem 6.2. A linear map ϕ : Rm −→ (R3, gSol) is ∞-harmonic if and only

if it is a composition of a linear map Rm −→ R2 followed by the inclusion map

i1 : R
2 −→ R

3, i1(x, y) = (x, y, 0), or, ϕ is a composition of a linear map

Rm −→ R followed by an inclusion map i2 : R −→ R3, i2(z) = (0, 0, z).

Proof. For the linear map ϕ : Rm −→ (R3, gSol) with

(52) ϕ(X) =





a11 a12 . . . a1m
a21 a22 . . . a2m
a31 a32 . . . a3m















x1
x2
...

xm











,

we have:

∇ϕi = (ai1, ai2, . . . , aim), i = 1, 2, 3,

and the energy density

|dϕ|2 = δijϕα
i ϕj

βgαβ ◦ ϕ

=
m
∑

j=1

3
∑

α=1

(∂ϕ
α

∂xj
)2gαα ◦ ϕ

=
m
∑

j=1

a21je
2z +

m
∑

j=1

a22je
−2z +

m
∑

j=1

a23j ,

where z = a31x1+a32x2+ . . .+a3mxm. Since the domain manifold in a Euclidean

space, tt follows from Corollary 1.3 that the ∞-harmonic map equation for ϕ

becomes

(53) 〈∇ϕi,∇ |dϕ|2〉 = 0, i = 1, 2, 3,

which is equivalent to which is equivalent to

(54)

2ai1a31(
m
∑

j=1

a21je
2z −

m
∑

j=1

a22je
−2z) + 2ai2a32(

m
∑

j=1

a21je
2z −

m
∑

j=1

a22je
−2z)

+ . . .+ 2aima3m(
m
∑

j=1

a21je
2z −

m
∑

j=1

a22je
−2z)

= 2
m
∑

k=1

aika3k(
m
∑

j=1

a21je
2z −

m
∑

j=1

a22je
−2z) = 0, i = 1, 2, 3,
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or

(55)































2
m
∑

k=1

a1ka3k(
m
∑

j=1

a21je
2z −

m
∑

j=1

a22je
−2z) = 0

2
m
∑

k=1

a2ka3k(
m
∑

j=1

a21je
2z −

m
∑

j=1

a22je
−2z) = 0

2
m
∑

k=1

a23k(
m
∑

j=1

a21je
2z −

m
∑

j=1

a22je
−2z) = 0.

From this we have either

(56)



























2
m
∑

k=1

a1ka3k = 0;

2
m
∑

k=1

a2ka3k = 0;

2
m
∑

k=1

a23k = 0,

or

(57) (
m
∑

j=1

a21je
2z −

m
∑

j=1

a22je
−2z) = 0.

Solving Equation (56) we have

(58) a3k = 0, for k = 1, 2, . . . , m.

Solving Equation (57) we have

(59) a1k = a2k = 0, for k = 1, 2, . . . , m.

The Theorem follows from (58) and (59). �

Remark 6. It follows from Theorem 6.2 that the maximum rank of the linear

∞-harmonic maps from Euclidean space into Sol space is 2, and any linear ∞-

harmonic map into Sol space has constant energy density.

7. Quadratic ∞-harmonic maps into Sol and Nil spaces

Theorem 7.1. Let (R3, gSol) denote Sol space, where the metric with respect to

the standard coordinates (x, y, z) in R3 is given by gSol = e2zdx2 + e−2zdy2+dz2.

Then, a quadratic map ϕ : Rm −→ (R3, gSol) with ϕ(X) = (X tA1X,X
tA2X,X

tA3X)

is an ∞-harmonic map if and only if it is a constant map.

Proof. One can easily compute the following components of Sol metric:

h11 = e2z, h22 = e−2z , h33 = 1, all other hij = 0;

h11 = e−2z, h22 = e2z , h33 = 1, all other hij = 0.
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A straightforward computation gives:

∇ϕi = 2X tAi,

|dϕ|2 = δαβϕα
iϕβ

jhij ◦ ϕ = 〈∇ϕi,∇ϕj〉hij ◦ ϕ

= |∇ϕi|2 hii ◦ ϕ = (4X tA2
1X)e2z + (4X tA2

2X)e−2z + 4X tA2
3X,

where z = X tA3X .

Furthermore,
∇ |dϕ|2 = 8X tA2

1e
2z + 8X tA2

1Xe
2z∇z

+8X tA2
2e

−2z − 8X tA2
2Xe

−2z∇z

+8X tA2
3

= 8X tA2
1e

2z + (16X tA2
1Xe

2z)X tA2
3

+8X tA2
2e

−2z − (16X tA2
2Xe

−2z)X tA2
3

+8X tA2
3,

and

g(∇ϕi,∇ |dϕ|2)

= 〈2X tAi, 8X
tA2

1e
2z + (16X tA2

1Xe
2z)X tA2

3 + 8X tA2
2e

−2z − (16X tA2
2Xe

−2z)X tA2
3 + 8X tA2

3〉

= 16(X tAiA
2
1X + 2X tA2

1XX
tAiA3X)e2z

+16(X tAiA
2
2X − 2X tA2

2XX
tAiA3X)e−2z

+16X tAiA
2
3X.

It follows from the ∞-harmonic map equation (3) that ϕ is ∞-harmonic if and

only if

(60)

16(X tAiA
2
1X +X tA2

1XX
tAiA3X)e2z

+16(X tAiA
2
2X −X tA2

2XX
tAiA3X)e−2z

+16X tAiA
2
3X = 0, for allX ∈ Rm, and i = 1, 2, 3.

Note that Equation (60) is an identity of functions which are analytic. We can

substitute the Taylor expansions for e2X
tA3X and e−2XtA3X into (60) and compare

the coefficients of the second degree terms to get

16(X tAi

3
∑

j=1

A2
jX) = 0, i = 1, 2, 3.

From this we obtain

Ai(

3
∑

j=1

A2
j) + (

3
∑

j=1

A2
j)Ai = 0,

and Lemma 2.1 applies to complete the proof of the Theorem. �

Theorem 7.2. A quadratic map ϕ : Rm −→ (R3, gNil), ϕ(X) = (X tA1X,X
tA2X,X

tA3X)

into Nil space is ∞-harmonic if and only if it is a constant map.
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Proof. Using the components of Nil metric (28) with notations gij replaced by hij
one can easily check that:

∇ϕi = 2X tAi,

|dϕ|2 = δαβϕα
iϕβ

jhij ◦ ϕ

=
∑m

α=1
ϕα

iϕα
jhij

= (4X tA2
2X)x2 + 4

3
∑

j=1

X tA2
jX − 4(X tA2A3 + A3A2X)x,

where x = X tA1X , and

∇ |dϕ|2 = ∂|dϕ|2

∂xi

∂
∂xi

= (8X tA2
2)x

2 + (16X tA2
2X)(X tA1)x+ 8

3
∑

j=1

X tA2
j

−8(X tA2A3 +X tA3A2)x− 8(X tA2A3 + A3A2X)X tA1.

By Corollary 1.3, the ∞-harmonic map equation for ϕ reads

0 = 〈∇ϕi,∇ |dϕ|2〉

= 〈2X tAi, (8X
tA2

2)x
2 + (16X tA2

2X)(X tA1)x+ 8
3
∑

j=1

X tA2
j − 8(X tA2A3 +X tA3A2)x

−8(X t(A2A3 + A3A2X)X tA1〉

= 16X tAi

3
∑

j=1

A2
jX + P (X), i = 1, 2, 3.

where P (X) denotes a polynomial in X of degree greater than 2. Noting that

the equation is an identity of polynomials we conclude that if ϕ is ∞-harmonic,

then

(61) X tAi

3
∑

j=1

A2
jX = 0, i = 1, 2, 3,

which is the same as Equation (8) for n = 3 so the rest of the proof is exactly the

same as the part in the proof of Theorem 2.2. �

Example 1. We remark that there are many polynomial ∞-harmonic maps ϕ :

(R3, gNil) −→ Rm, for instance,

ϕ : (R3, gNil) −→ R
2

with ϕ(x, y, z) = (z−xy/2, 2z−xy) is an∞-harmonic map which has nonconstant

energy density |dϕ|2 = 5(1 + (x2 + y2)/4) (see [OTW] for details).
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8. Holomorphic ∞-harmonic maps

In this section, we study ∞-harmonicity of holomorphic maps Cm −→ Cn.

Let (z1, . . . , zm) ∈ C
m and (w1, . . . , wn) ∈ C

n with zj = xj − iyj j = 1, . . . , m

and wα = uα − ivα α = 1, . . . , n. Then, a map ϕ : Cm −→ Cn, ϕ(z1, . . . , zm) =

(ϕ1, . . . , ϕn) is associated to a map ϕ : R2m −→ R2n with ϕ(x1, . . . , xm, y1, . . . , ym) =

(u1, . . . , un, v1, . . . , vn). We write the map as ϕ(X + iY ) = φ(X, Y ) + iψ(X, Y ),

where X = (x1, . . . , xm), Y = (y1, . . . , ym) ∈ Rm and the maps φ(X, Y ) =

(u1(X, Y ), . . . , un(X, Y )) and ψ(X, Y ) = (v1(X, Y ), . . . , vn(X, Y )) are called the

real and imaginary parts of ϕ. We have

Theorem 8.1. A holomorphic map ϕ : Cm −→ Cn with ϕ(X,+iY ) = φ(X, Y )+

iψ(X, Y ) is ∞-harmonic if and only if its real and imaginary parts φ(X, Y ) and

ψ(X, Y ) are ∞-harmonic.

Proof. It is well known that ϕ : Cm −→ Cn is holomorphic if and only if

(62)
∂uα

∂xj
=
∂vα

∂yj
,

∂uα

∂yj
= −

∂vα

∂xj
; j = 1, 2, . . . , m, α = 1, 2, . . . , n.

We can easily check that

|∇uα|2 = |∇vα|2,

|dϕ|2 = δijϕα
i ϕ

β
j δαβ =

n
∑

α=1

|∇uα|2 + |∇vα|2 = 2
n

∑

α=1

|∇uα|2 = 2
n

∑

α=1

|∇vα|2,

∇ |dϕ|2 = 2
n

∑

α=1

∇|∇uα|2 = 2
n

∑

α=1

∇|∇vα|2

= 2∇|∇φ|2 = 2∇|∇ψ|2.

Substitute these into the ∞-harmonic map Equation (3) we obtain that ϕ is

∞-harmonic if and only if

(63)
2g(∇φα,∇|∇φ|2) = 0,

2g(∇ψα,∇|∇ψ|2) = 0, α = 1, 2, . . . , n,

which gives the Theorem. �
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Remark 7. Explicitly, the ∞-harmonic map equation can be written as:

(64)



















































2∆∞u1 + 〈∇u1,∇|∇u2|
2〉+ . . .+ 〈∇u1,∇|∇un|

2〉 = 0

〈∇u2,∇|∇u1|
2〉+ 2∆∞u2 + . . .+ 〈∇u2,∇|∇un|

2〉 = 0

. . . . . . . . . . . . . . . . . . . . . . . .

〈∇un,∇|∇u1|
2〉+ 〈∇un,∇|∇u2|

2〉+ . . .++2∆∞un = 0

2∆∞v1 + 〈∇v1,∇|∇v2|
2〉+ . . .+ 〈∇v1,∇|∇vn|

2〉 = 0

〈∇v2,∇|∇v1|
2〉+ 2∆∞v2 + . . .+ 〈∇v2,∇|∇vn|

2〉 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

〈∇vn,∇|∇v1|
2〉+ 〈∇vn,∇|∇v2|

2〉+ . . .+ 2∆∞vn = 0.

Theorem 8.2. Let ϕ : Cm −→ C be a nonconstant holomorphic map. Then, ϕ is

an ∞-harmonic map if and only if ϕ is a composition of an orthogonal projection

Cm −→ C followed by a homothety C −→ C, i.e., ϕ(z1, . . . , zm) = λzi+ z0, where

λ ∈ R, z0 ∈ C are constants.

Proof. Notice that a holomorphic map ϕ : Cm −→ C is automatically a hori-

zontally weakly conformal harmonic map (see e.g., [BW]). It follows from the

relationship among tension, p-tension, and ∞-tension fields of a map

(65) τp(ϕ) = |dϕ|p−2τ2(ϕ) + (p− 2)|dϕ|p−4τ∞(ϕ)

that if ϕ is also an ∞-harmonic map, then it must be p-harmonic for any p. In

this case ϕ is a p-harmonic morphism (being horizontally weakly conformal and

p-harmonic map) for any p. By a theorem in [BL], ϕ must be a horizontally

homothetic. Now the classification of horizontally homothetic maps between

Euclidean spaces [Ou1] applies to give the required results. �
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