
ar
X

iv
:0

71
0.

57
72

v1
  [

m
at

h.
SG

] 
 3

0 
O

ct
 2

00
7

Pre-Poisson submanifolds

by Alberto S. Cattaneo and Maro Zambon

Abstrat

In this note we onsider an arbitrary submanifold C of a Poisson manifold P

and ask whether it an be embedded oisotropially in some bigger submanifold

of P . We de�ne the lasses of submanifolds relevant to the question (oisotropi,

Poisson-Dira, pre-Poisson ones), present an answer to the above question and

onsider the orresponding piture at the level of Lie groupoids, making onrete

examples in whih P is the dual of a Lie algebra and C is an a�ne subspae.

1 Introdution

In this note we wish to give an analog in Poisson geometry to the following

statement in sympleti geometry. Reall that (P,Ω) is a sympleti manifold if Ω is

a losed, non-degenerate 2 form and that a submanifold Ĉ is alled oisotropi if the

sympleti orthogonal T ĈΩ
of T Ĉ is ontained in T Ĉ. The statement is: if i : C → P

is any submanifold of a sympleti manifold (P,Ω), then there exists some sympleti

submanifold P̃ ontaining C as a oisotropi submanifold i� i∗Ω has onstant rank.

The submanifold P̃ is obtained taking any omplement R ⊂ TP |C of TC + TCΩ

and �extending C along R�. Further there is a uniqueness statement �to �rst order�:

if P̃1 and P̃2 are as above, then there is a sympletomorphism of P �xing C whose

derivative at C maps T P̃1|C to T P̃2|C . This result follows using tehniques similar

to those used by Marle in [13℄, and relies on a tehnique known as �Moser's path

method�.

The above result should not be onfused with the theorem of Gotay [9℄ that

states the following: any presympleti manifold (i.e. a manifold endowed with a

onstant rank losed 2-form) an be embedded oisotropially in some sympleti

manifold, whih is moreover unique up to neighborhood equivalene. The di�erene

is that Gotay onsiders an abstrat presympleti manifold and looks for an abstrat

sympleti manifold in whih to embed; the problem above �xes a sympleti manifold

(P,Ω) and onsiders only submanifolds of P .
In this note we ask:

1) Given an arbitrary submanifold C of a Poisson manifold (P,Π), under what

onditions does there exist some submanifold P̃ ⊂ P suh that

a) P̃ has a Poisson struture indued from Π
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b) C is a oisotropi submanifold of P̃ ?

2) When the submanifold P̃ exists, is it unique up to neighborhood equivalene

(i.e. up to a Poisson di�eomorphism on a tubular neighborhood whih �xes

C)?

We will see in Setion 4 that a su�ient ondition is that C belongs to a partiular

lass of submanifolds alled pre-Poisson submanifolds. In that ase we also have

uniqueness: if P̃1 and P̃2 are as above, then there is a Poisson di�eomorphism of (a

tubular neighborhood of C in) P �xing C whih takes P̃1 to P̃2. When the Poisson

struture on P omes from a sympleti form Ω, the pre-Poisson submanifolds of P
are exatly the submanifolds for whih the pullbak of Ω has onstant rank; hene

we improve the �uniqueness to �rst order� result in the sympleti setting mentioned

above to uniqueness in a neighborhood of C.
Sine the above question is essentially about when an arbitrary submanifold an

be regarded as a oisotropi one, we want to motivate in Setion 2 why oisotropi

submanifolds are interesting at all. In Setion 3 we will desribe the submanifolds

of P whih inherit a Poisson struture; these are the �andidates� for P̃ as above.

Then in Setion 5 we will present a non-trivial example: we onsider as Poisson

manifold P the dual of a Lie algebra g, and as submanifold C either a translate of

the annihilator of a Lie subalgebra or the annihilator of some subspae of g. Finally in

Setion 6 we reall how to a Poisson manifold one an assoiate sympleti groupoids

and investigate what pre-Poisson submanifolds orrespond to at the groupoid level,

disussing again the example where P is the dual of a (�nite dimensional) Lie algebra.

All manifolds appearing in this note are assumed to be �nite dimensional.
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2 Coisotropi submanifolds

A manifold P is alled Poisson manifold if it is endowed with a bivetor �eld

Π ∈ Γ(Λ2TP ) satisfying [Π,Π] = 0, where [•, •] denotes the Shouten braket on

multivetor �elds. Let us denote by ♯ : T ∗P → TP the map given by ontration

with Π. The image of ♯ is a singular integrable distribution on P , whose leaves are

endowed with a sympleti struture that enodes the bivetor �eld Π. Hene one

an think of a Poisson manifold as a manifold with a singular foliation by sympleti

leaves.

Alternatively P is a Poisson manifold if there is a Lie braket {•, •} on the spae of
funtions satisfying the Leibniz identity

1 {f, g ·h} = {f, g}·h+g ·{f, h}. The Poisson

1

In this ase one says that (C∞(P ), {•, •}, ·) forms a Poisson algebra.
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braket {•, •} and the bivetor �eld Π determine eah other by the formula {f, g} =
Π(df, dg). In this note we will use both the geometri and algebrai haraterization

of Poisson manifolds.

Sympleti manifolds (P,Ω) are examples of Poisson manifolds: the map TP →
T ∗P given by ontrating with Ω is an isomorphism, and (the negative of) its inverse

is the sharp map of the Poisson bivetor �eld assoiated to Π. Conneted sympleti

manifolds are exatly the Poisson manifolds whose sympleti foliation onsists of

just one leaf.

A seond standard example, whih will be used in Setion 5, is the dual g∗ of a

Lie algebra g, as follows. A linear funtion v on g∗ an be regarded as an element

of g; one de�nes the Poisson braket on linear funtions as {v1, v2} := [v1, v2], and
the braket for arbitrary funtions is determined by this in virtue of the Leibniz rule.

Duals of Lie algebras are exatly the Poisson manifolds whose Poisson bivetor �eld

is linear. The sympleti foliation of g∗ is given by the orbits of the oadjoint ation;

the origin is a sympleti leaf, and unless g is an abelian Lie algebra the sympleti

foliation will be singular. We will disuss this example in more detail in Setion 5.

A submanifold C of a Poisson manifold P is alled oisotropi if ♯N∗C ⊂ TC.
Here N∗C (the onormal bundle of C) is de�ned as the annihilator of TC, and the

singular distribution ♯N∗C on C is alled the harateristi distribution. Notie that if

the Poisson struture of P omes from a sympleti form Ω then the subbundle ♯N∗C
is just the sympleti orthogonal of TC, so we are redued to the usual de�nition of

oisotropi submanifolds in the sympleti ase. If a submanifold C intersets the

sympleti leaves O of P leanly, then C is oisotropi i� eah intersetion C ∩ O
is a oisotropi submanifold of the sympleti manifold O. In algebrai terms we

have the following haraterization: a submanifold C is oisotropi i� IC : = {f ∈
C∞(P ) : f |C = 0} is a Poisson subalgebra of (C∞(P ), {•, •}, ·).

In the following we want to motivate the naturality and importane of oisotropi

submanifolds.

• Graphs of Poisson maps are oisotropi:

Proposition 2.1 (Cor. 2.2.3 of [15℄). Let Φ: (P1,Π1) → (P2,Π2) be a map

between Poisson manifolds. Φ is a Poisson map (i.e. Φ∗(Π1) = Π2) i� its

graph is a oisotropi submanifold of (P1 × P2,Π1 − Π2).

• Certain anonial quotients of oisotropi submanifolds are Poisson manifolds:

de�ne FC : = {f ∈ C∞(P ) : {f, IC} ⊂ IC}, the Poisson normalizer of IC . It is
a Poisson subalgebra of C∞(P ), and IC ⊂ FC is a Poisson ideal. Further notie

that FC onsists exatly of the funtions on P whose di�erentials annihilate

the harateristi distribution ♯N∗C. Hene we have the following statements

about the quotient of C by the harateristi distribution:
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Proposition 2.2. FC/IC inherits the struture of a Poisson algebra. Therefore

C : = C/♯N∗C, if smooth, inherits the struture of a Poisson manifold so that

C → C is a Poisson map.

Given any Poisson algebra A, one an ask whether it admits a deformation

quantization, i.e. if it is possible to deform the ommutative multipliation �in

diretion of the Poisson braket� to obtain an assoiative produt. Remarkable

work of Kontsevih [11℄ showed that this is always possible if A is the algebra of

funtions on a smooth Poisson manifold. The Poisson algebras FC/IC provide

natural and interesting instanes of Poisson algebras whih usually annot be

regarded as algebras of funtions on a smooth manifold; the problem of their

deformation quantization has been onsidered in [4, 5℄.

• Last, a oisotropi submanifold C gives rise to a Lie subalgebroid of the Lie

algebroid assoiated to P . Reall that a Lie algebroid is a vetor bundle E → P
with a Lie braket [•, •] on its spae of setions and a braket preserving bundle

map ρ : E → TP satisfying [e1, fe2] = ρ(e1)f · e2 + f [e1, e2]; standard examples

are tangent bundles and Lie algebras. Every Poisson manifold P indues the

struture of a Lie algebroid on its otangent bundle T ∗P : the braket is given
by [df, dg] = d{f, g} and the bundle map T ∗P → TP by −♯. We have

Proposition 2.3 (Cor. 3.1.5 of [15℄). If C ⊂ P is oisotropi then the onormal

bundle N∗C is a Lie subalgebroid of T ∗P .

3 Poisson-Dira and osympleti submanifolds

In virtue of the question asked in the introdution it is neessary to determine

whih submanifolds P̃ of a Poisson manifold (P,Π) inherit a Poisson struture. Notie
that, unlike sympleti forms, it is usually not possible to restrit a Poisson bivetor

�eld to a submanifold and obtain again a bivetor �eld. However it is possible to

view a Poisson bivetor �eld as a Dira struture [7℄, and Dira strutures restrit to

(usually not smooth) Dira strutures on submanifolds. This point of view led to the

de�nition below, whih we phrase without referene to Dira strutures.

We �rst make the following remark, in whih (O,Ω) denotes a sympleti leaf of

P and P̃ ⊂ P some submanifold: the linear subspae TpP̃ ∩ TpO of (TpO,Ωp) is a
sympleti subspae i� ♯N∗

p P̃∩TpP̃ = {0}. In this ase T P̃p is endowed with a bivetor

�eld Π̃p, obtained essentially by inverting the non-degenerate form Ωp|TpP̃∩TpO
. Now

we an make sense of the following de�nition (Cor. 11 of [8℄):

De�nition 3.1. A submanifold P̃ of P is alled Poisson-Dira submanifold if ♯N∗P̃∩
T P̃ = {0} and the indued bivetor �eld Π̃ on P̃ is a smooth.

In this ase the bivetor �eld is automatially integrable (Prop. 6 of [8℄), so

that (P̃ , Π̃) is a Poisson manifold. Equivalently (Def. 4 of [8℄) P̃ is a Poisson-Dira
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submanifold if it admits a Poisson struture for whih the sympleti leaves are

(onneted) intersetions with the sympleti leaves O of P and so that the former

are sympleti submanifolds of the leaves O. Notie that the inlusion P̃ → P is

usually not a Poisson map; it is i� P̃ is a Poisson submanifold, i.e. a smooth union

of sympleti leaves.

A submanifold P̃ satisfying T P̃ ⊕ ♯N∗P̃ = TP |P̃ is alled a osympleti submani-

fold. In this ase one an show that the indued bivetor �eld Π̃ on P̃ is automatially

smooth, hene osympleti submanifolds are Poisson-Dira submanifolds. The Pois-

son braket on a osympleti submanifold P̃ is omputed as follows: {f̃1, f̃2}P̃ is

the restrition to P̃ of {f1, f2}, where the fi are extensions of f̃i to P suh that

dfi|♯N∗P̃ = 0.
If the Poisson struture on P omes from a sympleti 2-form, then the Poisson-

Dira and osympleti submanifolds are just the sympleti submanifolds.

4 Coisotropi embeddings in Poisson-Dira subman-

ifolds

Now we determine under what onditions on a submanifold i : C → P there

exists a Poisson-Dira submanifold P̃ ⊂ P so that C is oisotropi in P̃ . We saw

in the introdution that, when the Poisson struture on P omes from a sympleti

form Ω, a su�ient and neessary ondition is that ker(i∗Ω), whih in terms of the

Poisson tensor is TC∩ ♯N∗C, has onstant rank. In the general Poisson ase however

TC ∩ ♯N∗C, even when it has onstant rank, might not be a smooth distribution on

C. In the sympleti ase ker(i∗Ω) has onstant rank i� TC + TCΩ
has onstant

rank, and it turns out that this is the right ondition to generalize to the Poisson

ase. This motivates

De�nition 4.1 (Def. 2.2 of [6℄). A submanifold C of a Poisson manifold (P,Π) is
alled pre-Poisson if the rank of TC + ♯N∗C is onstant along C.

Suh submanifolds were �rst onsidered in [1, 2℄. We have

Theorem 4.2. [Thm. 3.3 of [6℄℄ Let C be a pre-Poisson submanifold of a Poisson

manifold (P,Π). Then there exists a osympleti submanifold P̃ ontaining C suh

that C is oisotropi in P̃ .

Sketh of the proof. Beause of the rank ondition on C we an hoose a smooth

subbundle R of TP |C whih is a omplement to TC + ♯N∗C. By linear algebra,

at every point p of C, TpC ⊕ Rp is a osympleti subspae of TpP in whih TpC
sits oisotropially. Now we �thiken� C to a smooth submanifold P̃ of P satisfying

T P̃ |C = TC ⊕ R. One an show that in a neighborhood of C P̃ is a osympleti

submanifold, so shrinking P̃ if neessary we are done.
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Remark 4.3. The osympleti submanifold P̃ above is onstruted by taking any

omplement R ⊂ TP |C of TC + ♯N∗C and �extending C along R�.
There are submanifolds C whih are not pre-Poisson but still admit some Poisson-

Dira submanifold P̃ in whih they embed oisotropially. This happens for example

if C has trivial intersetion with the sympleti leaves of P (and the sympleti

foliation of P is not regular): in this ase P̃ := C is a Poisson-Dira submanifold, the

indued Poisson bivetor �eld being zero.

However, if we ask that the submanifold P̃ be not just Poisson-Dira but atually

osympleti, then C is neessarily a pre-Poisson submanifold, and P̃ is onstruted

as desribed above (Lemma 4.1 of [6℄).

The following are elementary examples of pre-Poisson submanifolds and of osym-

pleti submanifolds in whih they embed oisotropially. In setion 5 we will give

less trivial examples; see also Setion 5 of [6℄.

Example 4.4. When C is a oisotropi submanifold of P , the onstrution of Thm.

4.2 delivers P̃ = P (or more preisely, a tubular neighborhood of C in P ).

Example 4.5. When C is just a point x then the onstrution of Thm. 4.2 delivers

as P̃ any slie through x transversal to the sympleti leaf Ox.

Example 4.6. If C1 ⊂ P1 and C2 ⊂ P2 are pre-Poisson submanifolds of Poisson

manifolds, the artesian produt C1 × C2 ⊂ P1 × P2 also is, and if the onstrution

of Thm. 4.2 gives osympleti submanifolds P̃1 ⊂ P1 and P̃2 ⊂ P2, the same

onstrution applied to C1×C2 (upon suitable hoies of omplementary subbundles)

delivers the osympleti submanifold P̃1 × P̃2 of P1 × P2.

The following lemma will be useful in Setion 5:

Lemma 4.7. Let P1, P2 be Poisson manifolds and f : P1 → P2 be a submersive

Poisson morphism. If C ⊂ P2 is a pre-Poisson submanifold then f−1(C) is a pre-

Poisson submanifold of P1. Further, if P̃2 is a osympleti submanifold ontaining C
as a oisotropi submanifold, then f−1(P̃2) is a osympleti submanifold ontaining

f−1(C) as a oisotropi submanifold.

Proof. Let y ∈ C and x ∈ f−1(y). Sine

f∗(♯N
∗

x(f
−1(C))) = f∗(♯f

∗(N∗

yC)) = ♯N∗

yC

it follows that the restrition of f∗ to Tx(f
−1(C)) + ♯N∗

x(f
−1(C)) has image TyC +

♯N∗

yC, whose rank is independent of y ∈ C by assumption. Sine the kernel of

this restrition, being Tx(f
−1(y)), also has onstant rank, it follows that f−1(C) is

pre-Poisson.

Further it is lear that f∗ maps a omplement Rx of Tx(f
−1(C)) + ♯N∗

x(f
−1(C))

in TxP1 isomorphially onto a omplement Ry of TyC + ♯N∗

yC in TyP2, so that Rx +
Tx(f

−1(C)) is the pre-image of Ry +TyC under f∗. Using Remark 4.3 this proves the

seond assertion.
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The answer to the problem of uniqueness is given by

Theorem 4.8. [Thm. 4.4 of [6℄℄ Let C be a pre-Poisson submanifold (P,Π), and
P̃0, P̃1 osympleti submanifolds that ontain C as a oisotropi submanifold. Then,

shrinking P̃0 and P̃1 to a smaller tubular neighborhood of C if neessary, there is a

Poisson di�eomorphism Φ of P taking P̃0 to P̃1 and whih is the identity on C.

Sketh of proof. In a neighborhood U of P̃0 take a projetion π : U → P̃0. Applying

Thm. 4.2 one an onstrut a urve of osympleti submanifolds P̃t ontaining C
whih, at points of C, are all transverse to the �bers of π. Using the osympleti

submanifolds P̃t one an onstrut a hamiltonian time-dependent vetor �eld XHt

whose time-t �ow maps P̃0 to P̃t. Further XHt
vanishes on C, hene its time-1 �ow

is the identity on C.

5 Duals of Lie algebras

In this subsetion g will always denote a �nite dimensional Lie algebra. We saw

in Setion 2 that its dual g∗ is a Poisson manifold, whose Poisson braket on linear

funtions (whih an be identi�ed with elements of g) is given by {g1, g2} := [g1, g2].
In what follows we will need the notion of adjoint ation of G on g, whih is Adgv :=
d
dt
|0g · exp(tv) · g−1

. Its derivative at the identity gives the Lie algebra ation of g

on itself by adwv := d
dt
|0Adexp(tw)v = [w, v]. We will also onsider the (left) ations

Ad∗ and ad∗ on g∗ obtained by dualizing; the orbits of the oadjoint ation Ad∗ are
exatly the sympleti leaves of the Poisson manifold g∗.

It is known that if h is a Lie subalgebra of g, then its annihilator h◦ is a oisotropi

submanifold of g∗ (also see Prop. 5.1 below). We shall look at two generalizations:

the �rst onsiders a�ne subspaes obtained translating h◦; the seond is obtained by

weakening the ondition that h be a subalgebra.

Proposition 5.1. Let h be a Lie subalgebra of g and �x λ ∈ g∗. Then the a�ne

subspae C := h◦ + λ is always pre-Poisson, and it is oisotropi i� λ is a harater

of h (i.e. by de�nition λ ∈ [h, h]◦).

Proof. The restrition f : g∗ → h∗ is a Poisson map beause h is a Lie subalgebra.

Every point ν of h∗ is a pre-Poisson submanifold (see Ex. 4.5), hene by Lemma 4.7

its pre-image f−1(ν) (whih will be a translate of h◦) is pre-Poisson. Notie that by

Lemma 4.7 we also know that, for any slie S ⊂ h∗ transverse to the H-oadjoint orbit

through ν, f−1(S) is a osympleti submanifold ontaining oisotropially f−1(ν).
Further from the proof of Lemma 4.7 it is lear that f−1(ν) is oisotropi in g∗ i� {ν}
is oisotropi in h∗, i.e. if ν is a �xed-point of the H-oadjoint ation or equivalently

ν|[h,h] = 0.
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Example 5.2. Let g = sl(2,R). In a suitable basis the Lie algebra struture is

given by [e1, e2] = −e3, [e2, e3] = e1, [e3, e1] = e2. The sympleti leaves of g∗ are

given essentially by the onneted omponents of level sets of the Casimir funtion

ν2
1 +ν2

2 −ν2
3 (where νi is just ei viewed as a linear funtion on g∗), and they onsist of

a family of two-sheeted hyperboloids, the one

2 ν2
1 + ν2

2 − ν2
3 = 0 and a family of one-

sheeted hyperboloids [3℄. C := {(0, t, t) : t ∈ R} ⊂ g∗ is ontained in the one and is

learly a oisotropi submanifold; indeed it is the annihilator of the Lie subalgebra

h := span{e1, e2 − e3} of g. If we translate C by an element in the annihilator of

[h, h] = R(e2−e3) we obtain an a�ne line ontained in one of the hyperboloids, whih

hene is lagrangian there, therefore oisotropi in g∗. If we translate C by any other

λ ∈ g∗ we obtain a line that intersets transversely the hyperboloids, so at every

point of suh a line C ′
we have TC ′ + ♯N∗C ′ = Tg∗, showing that C ′

is pre-Poisson.

Before onsidering the ase when h is not a subalgebra of g we need the

Lemma 5.3. Let C ⊂ g∗ be an a�ne subspae obtained by translating the annihilator

of a linear subspae h ⊂ g. Then ♯N∗
xC = ad∗h(x) := {ad∗h(x) : h ∈ h} for all x ∈ C.

Proof. N∗

xC is given by the di�erentials at x of the funtions h ∈ h ⊂ C∞(g∗). Now
for any g ∈ g we have

〈♯dxh, g〉 = dxg(♯dxh) = {h, g}(x) = 〈[h, g], x〉 = 〈ad∗h(x), g〉,

i.e. ♯dxh = ad∗h(x).

Remark 5.4. An alternative proof of Prop. 5.1 an be given using Lemma 5.3.

Indeed any x ∈ C an be written uniquely as y + λ where y ∈ h◦. Notie that

ad∗h(y) ∈ h◦ for all h ∈ h, beause 〈ad∗h(y), h〉 = 〈y, [h, h]〉 vanishes sine h is a

subalgebra. Hene

TxC + ♯N∗

xC = h◦ + {ad∗h(y) + ad∗h(λ) : h ∈ h} = h◦ + ad∗h(λ),

whih is independent on the point x. From the �rst omputation above (applied to

λ instead of y) it is lear that ad∗h(λ) ∈ h◦ i� λ ∈ [h, h]◦.

Now we onsider the ase when h is just a linear subspae of g and h◦ ⊂ g∗ its dual.

Sine the Poisson tensor of g∗ vanishes at the origin we have T (h◦)+♯N∗(h◦) = T (h◦)
at the origin, so h◦ is pre-Poisson i� it is oisotropi (i.e. if h is a Lie subalgebra).

The open subset C of h on whih T (h◦) + ♯N∗(h◦) has maximal rank will be pre-

Poisson. Then, shrinking C if neessary, we an �nd a subspae R ⊂ g∗ (independent

of x ∈ C) with R⊕ (TxC + ♯N∗

xC) = g∗ for all x ∈ C. For example we an onstrut

suh an R at one point x̄ of C, and sine transversality is an open ondition, R will

be transverse to TC + ♯N∗C in a neighborhood of x̄ in C. By Thm. 4.2 an open

subset P̃ of the subspae p◦ := R ⊕ C (ontaining C) is osympleti. If we assume

that ♯N∗
y P̃ is independent of the point y ∈ P̃ we are in the situation of the following

proposition.

2

The one is the union of 3 leaves, one being the origin.
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Proposition 5.5. Let p be a linear subspae of g suh that an open subset P̃ ⊂ p◦

is osympleti and k◦ := ♯N∗

y P̃ is independent of y ∈ P̃ . Then k ⊕ p = g, k is a Lie

subalgebra of g and [k, p] ⊂ p. Hene, whenever [p, p] ⊂ k, (k, p) forms a symmetri

pair [10℄.

Proof. The fat that k ⊕ p = g follows from k◦ ⊕ p◦ = g∗, whih holds beause P̃ is

osympleti. Reall that given funtions f1, f2 on P̃ , the braket {f1, f2}P̃ is obtained

by extending the funtions in a onstant way along k◦ to obtain funtions f̂1, f̂2 on

g∗, taking their Poisson braket and restriting to P̃ . Further (see Cor. 2.11 of [16℄)

the di�erential of {f̂1, f̂2} at any point of P̃ kills k◦. So if the fi are restritions of

linear funtions on p◦ then f̂i will be linear funtions on g∗ orresponding to elements

of k, and {f̂1, f̂2}, whih is a linear funtion on g∗, will also orrespond to an element

of k. We dedue that k is a Lie subalgebra of g (and that the Poisson struture on P̃
indued from g∗ is the restrition of a linear Poisson struture on p◦).

To show [k, p] ⊂ p pik any k ∈ k, p ∈ p and y ∈ P̃ . Then 〈[k, p], y〉 =
−〈k, ad∗p(y)〉 = 〈k, ♯dyp〉 = 0, using Lemma 5.3 in the seond equality, beause

♯dyp ⊂ ♯N∗

y P̃ = k◦. This shows that [k, p] annihilates P̃ , hene it must annihilate its

span p◦.

Remark 5.6. The text preeding Prop. 5.5 and the proposition itself give a way to

start with a simple piee of data (a subspae of g) and, in favorable ases, obtain a

deomposition k⊕p = g where k is a Lie subalgebra and [k, p] ⊂ p. If g admits a non-

degenerate Ad-invariant bilinear form B, then the B-orthogonal p of any subalgebra

k satis�es [k, p] ⊂ p, beause for any k, k′ ∈ k and p ∈ p we have B([k, p], k′) =
−B(p, [k, k′]) = 0. If B is positive-de�nite (suh a B exists for example if the simply

onneted Lie group integrating g is ompat), then we learly also have k ⊕ p = g.

Hene for suh Lie algebras one obtains the kind of deomposition of Prop. 5.5 in a

muh easier way.

A onverse statement to Prop. 5.5 is given by

Proposition 5.7. Assume that k ⊕ p = g, [k, p] ⊂ p and there exists a point y ∈ p◦

at whih none of the fundamental vetor �elds

d
dt
|0Ad

∗

exp(tp)(y) vanish, where p ranges

over p \ {0}. Then there is an open subset P̃ ⊂ p◦ whih is osympleti and k◦ :=
♯N∗

x P̃ is independent of x ∈ P̃ . (Hene applying Prop. 5.5 it follows that k is a Lie

subalgebra of g).

Proof. For all x ∈ p◦ we have ♯N∗

x(p
◦) = ad∗p(x) ⊂ k◦, as an be seen using 〈ad∗p(x), k〉 =

〈x, [p, k]〉 = 0 for all p ∈ p (whih holds beause of [k, p] ⊂ p). The assumption on

the oadjoint ation at y means that the map p → g∗, p 7→ ad∗p(y) is injetive; by

ontinuity it is injetive also on an open subset P̃ ⊂ p◦, and by dimension ounting

we get ♯N∗

x(p
◦) = k◦ on P̃ .

Now we display an example for Prop. 5.5
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Example 5.8. Let g = gl(2,R). We identify g with g∗ via the non-degenerate

(inde�nite) inner produt (A,B) = Tr(A ·B). Sine it is Ad-invariant, the ation of

adX and ad∗X on g and g∗ are intertwined (up to sign).

Now take h = {( 0 b
c d ) : b, c, d ∈ R}, whih is not a subalgebra. Its annihilator is

identi�ed with the line C spanned by ( 1 0
0 0 ). Sine C is one-dimensional and the

Poisson struture on g∗ linear it is lear that ♯N∗
xC is independent of x ∈ C \ {0}

and C \ {0} is pre-Poisson. Using Lemma 5.3 we ompute ♯N∗

xC = {( 0 b
c 0 ) : b, c ∈ R},

so as omplement R to TxC + ♯N∗

xC we an take the line spanned by ( 0 0
0 1 ). Then

p◦ := R ⊕ C is given by the diagonal matries, and p ⊂ g is given by matries

with only zeros on the diagonal. For any ( a 0
0 d ) ∈ p◦ we ompute ♯N∗

( a 0
0 d )

p◦ using

Lemma 5.3 and obtain the set of matries with only zeros on the diagonal if a 6= d
and {0} otherwise. So the open set P̃ on whih p◦ is osympleti is a plane with a

line removed, and k◦ := ♯N∗

( a 0
0 d )

P̃ is independent of the footpoint ( a 0
0 d ) ∈ P̃ . k ⊂ g

oinides hene with the set of diagonal matries. As predited by Lemma 5.5 k is a

Lie subalgebra and [k, p] ⊂ p; one an hek easily that [p, p] ⊂ k too.

Sine k is abelian, the linear Poisson struture indued on P̃ is the zero Poisson

struture. This an be seen also looking at the expliit Poisson struture on g∗, whih

with respet to the oordinates given by the basis a = ( 1 0
0 0 ), b = ( 0 1

0 0 ), c = ( 0 0
1 0 ) and

d = ( 0 0
0 1 ) of g

∗
is

−b∂a ∧ ∂b + c∂a ∧ ∂c + (d− a)∂b ∧ ∂c − b∂b ∧ ∂d + c∂c ∧ ∂d.

Indeed at a point ( a 0
0 d ) of p

◦
the bivetor �eld redues to (d−a)∂b∧∂c. Finally remark

that if we had hosen R to be spanned by ( 0 0
1 1 ) instead we would have obtained as

♯N∗

( a b
0 b )

p◦ the span of

(

−b b
a−b b

)

and ( 0 b−a
0 0 ), whih obviously is not onstant on any

open subset of p◦

6 Subgroupoids assoiated to pre-Poisson submani-

folds

In Setion 2 we de�ned Lie algebroids and realled that for every Poisson manifold

P there is an assoiated Lie algebroid, namely the otangent bundle T ∗P .
In analogy to the fat that �nite dimensional Lie algebras integrate to Lie groups

(uniquely if required to be simply onneted), Lie algebroids - when integrable -

integrate to objets alled Lie groupoids. Reall that a Lie groupoid over P is given

by a manifold Γ endowed with surjetive submersions s,t (alled soure and target) to

the base manifold P , a smooth assoiative multipliation de�ned on elements g, h ∈ Γ
satisfying s(g) = t(h), an embedding of P into Γ as the spaes of �identities� and a

smooth inversion map Γ → Γ; see for example [14℄ for the preise de�nition. The

total spae of the Lie algebroid assoiated to the Lie groupoid Γ is ker(t∗|P ) ⊂ TΓ|P ,
with a braket on setions de�ned using left invariant vetor �elds on Γ and s∗|P
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as anhor. A Lie algebroid A is said to be integrable if there exists a Lie groupoid

whose assoiated Lie algebroid is isomorphi to A; in this ase there is a unique (up

to isomorphism) integrating Lie groupoid with simply onneted soure �bers.

The otangent bundle T ∗P of a Poisson manifold P arries more data then just a

Lie algebroid struture; when it is integrable, the orresponding Lie groupoid Γ is a-

tually a sympleti groupoid [12℄, i.e. [14℄ there is a sympleti form Ω on Γ suh that

the graph of the multipliation is a lagrangian submanifold of (Γ×Γ×Γ,Ω×Ω×(−Ω)).
Ω is uniquely determined (up to sympleti groupoid automorphism) by the require-

ment that t : Γ → P be a Poisson map; a anonial Lie algebroid isomorphism

between T ∗P and ker(t∗|P ) is then given by mapping du (for u a funtion on P ) to
the hamiltonian vetor �eld −Xs

∗u. For example, if P arries the zero Poisson stru-

ture, then the sympleti groupoid is T ∗P with the anonial sympleti struture

and �berwise addition as multipliation. We will desribe in Example 6.2 below the

sympleti groupoid of the dual of a Lie algebra.

In this Setion we want to investigate how a pre-Poisson submanifold C of a

Poisson manifold (P,Π) gives rise to subgroupoids of the soure simply onneted

sympleti groupoid Γ (assuming that T ∗P is an integrable Lie algebroid). By Prop.

3.6 of [6℄ N∗C ∩ ♯−1TC is a Lie subalgebroid of T ∗P . When ♯N∗C has onstant rank

there is another Lie subalgebroid assoiated to C, namely ♯−1TC = (♯N∗C)◦. We

want to desribe the subgroupoids

3

of Γ integrating N∗C ∩ ♯−1TC and ♯−1TC.

Proposition 6.1. [Prop. 7.2 of [6℄℄ Let C be a pre-Poisson submanifold of (P,Π).
Then the subgroupoid of (Γ,Ω) integrating N∗C ∩ ♯−1TC is an isotropi subgroupoid.

We exemplify Prop. 6.1 onsidering the dual of a Lie algebra g as a Poisson

manifold, as in Setion 5. The sympleti groupoid of g∗ (see Ex. 3.1 of [14℄) is

T ∗G with its anonial sympleti form, where G is the simply onneted Lie group

integrating g. To desribe the groupoid struture we identify T ∗G with g∗ × G
by (the otangent lift of) right translation. Then the target map g∗ × G → g∗

is t(ξ, g) = ξ and the soure map is s(ξ, g) = Ad∗g−1ξ, and the multipliation is

(ξ, g1) · (Ad
∗

g−1ξ, g2) = (ξ, g1g2).

Example 6.2. Let h be a Lie subalgebra of g and λ ∈ g∗. By Prop. 5.1 we know that

C := h◦ + λ is a pre-Poisson submanifold of g∗. We laim here that the subgroupoid

of g∗×G integrating the Lie subalgebroid N∗C∩♯−1TC is C×D, where the subgroup

D ⊂ G is the onneted omponent of the identity of {g ∈ H : (Ad∗gλ)|h = λ|h}. By
Prop. 6.1 we know that it is an isotropi subgroupoid.

To prove our laim, we �rst make the Lie subalgebroid more expliit: for all x ∈ C
using Remark 5.4 we have

N∗

xC ∩ ♯−1TxC = (h◦ + ad∗h(λ))
◦ = h ∩ {v ∈ g : (ad∗vλ)|h = 0} =: d,

3

Here, for any Lie subalgebroid A of T ∗P integrating to a soure simply onneted Lie groupoid

H , we take �subgroupoid� to mean the (usually just immersed) image of the (usually not injetive)

morphism H → Γ indued from the inlusion A → T ∗P .
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so that the Lie subalgebroid N∗C ∩ ♯−1TC ⊂ T ∗g∗ = g∗×g is just the produt C×d.

The anonial Lie algebroid isomorphism T ∗P ∼= ker(t∗|P ), du 7→ −Xs
∗u is just the

identity on g∗×g, as an be heked using the expliit formula for the sympleti form

on the groupoid g∗ ×G given in Ex. 3.1 of [14℄. Now notie that the Lie subalgebra

d integrates to the onneted subgroup D de�ned above. Using the de�nition of D
one heks that t and s map C ×D into C, and the fat that D is a subgroup allows

us to hek that C ×D is atually a Lie subgroupoid of g∗ ×G, proving our laim.

Now we onsider ♯−1TC and assume that it has onstant rank, or equivalently

that the harateristi distribution TC ∩ ♯N∗C have onstant rank

4

. Then ♯−1TC is

a Lie subalgebroid of T ∗P , and quoting part of Prop. 7.2 of [6℄:

Proposition 6.3. The subgroupoid of Γ integrating ♯−1TC is s
−1(C) ∩ t

−1(C), and
it is a presympleti submanifold of (Γ,Ω).

Remark 6.4. In this ase the foliation integrating the harateristi distribution of

s
−1(C) ∩ t

−1(C) (i.e. the kernel of the pullbak of Ω) is given by the orbits of the

ation by right and left multipliation of the soure-onneted isotropi subgroupoid

integrating N∗C ∩ ♯−1TC.

Example 6.5. Let C be a submanifold of g∗ suh that TxC ∩ TxO = {0} at every

point x where C intersets a oadjoint orbit O. Then C is pre-Poisson i� ♯−1TC
has onstant rank, whih in this ase just means that the oadjoint orbits that C
intersets all have the same dimension. By the above proposition the soure onneted

subgroupoid of g∗ ×G integrating ♯−1TC is {(x, g) : x ∈ C,Ad∗g−1(x) = x}, a bundle

of groups integrating a bundle of isotropy Lie algebras of the oadjoint ation. We

also have the following alternative desription for this bundle of Lie algebras, whih

sometimes is more onvenient for omputations: ♯−1TxC = (♯N∗
xC)◦ an be desribed

as N∗

xO, for O the oadjoint orbit through x.
If h is a Lie subalgebra of g and λ ∈ g∗, we know that C := h◦+λ is a pre-Poisson

submanifold of g∗, but generally ♯−1TC does not have onstant rank. A ase where

it has a onstant rank is the following. As in Example 5.2 onsider g = sl(2,R)
and the pre-Poisson submanifold C := {(0, t, t + 1) : t ∈ R}. As remarked there

C intersets transversely the sympleti leaves of g∗, whih are the level sets of the

Casimir funtion ν2
1+ν2

2−ν2
3 . At x = (0, t, t+1) we have N∗

xO = R(tdν2−(t+1)dν3),
whih in terms of the basis e1 = 1

2
( 0 1
1 0 ), e2 = 1

2
( 1 0
0 −1 ) and e3 = 1

2
( 0 1
−1 0 ) of sl(2,R)

used in Example 5.2 is R
(

t −(t+1)
t+1 −t

)

. As seen above, integrating these Lie algebras

to subgroups of G (the simply onneted Lie group integrating sl(2,R)) we obtain

the soure onneted subgroupoid of g∗ ×G integrating ♯−1TC.

4

Indeed more generally we have the following for any submanifold C of P : if any two of ♯−1TC,

♯N∗C+TC or TC∩ ♯N∗C have onstant rank, then the remaining one also has onstant rank. This

follows trivially from rk(♯N∗C + TC) = rk(♯N∗C) + dimC − rk(TC ∩ ♯N∗C).
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