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ON FINITE INDEX SUBGROUPS OF A UNIVERSAL GROUP

G. BRUMFIEL, H. HILDEN, M.T. LOZANO*, J.M. MONTESINOS–AMILIBIA*, E.
RAMIREZ–LOSADA, H. SHORT, D. TEJADA, D. TORO

Abstract. The orbifold group of the Borromean rings with singular angle 90
degrees, U , is a universal group, because every closed oriented 3–manifold M3

occurs as a quotient space M3 = H3/G, where G is a finite index subgroup
of U . Therefore, an interesting, but quite difficult problem, is to classify the
finite index subgroups of the universal group U . One of the purposes of this
paper is to begin this classification. In particular we analyze the classification
of the finite index subgroups of U that are generated by rotations.

1. Introduction

A finite covolume discrete group of isometries of hyperbolic 3–space, H3, is said
to be universal if every closed oriented 3–manifold M3 occurs as a quotient space
M3 = H3/G, where G is a finite index subgroup of the universal group. It was
originally shown in [4] that U , the orbifold group of the Borromean rings with
singular angle 90 degrees is universal. (See [2] for a simpler proof.)

Although there appear to be infinite families of universal groups, the group U
is the only one so far known that is associated to a tessellation of H3 by regular
hyperbolic polyhedra in that there is a tessellation of H3 by regular dodecahedra
with dihedral angles 90◦ any one of which is a fundamental domain for U .

An interesting, important, but quite difficult problem, is to classify the finite in-
dex subgroups of U . A theorem of Armstrong [1] shows that π1(M

3) ∼= G/TOR(G)
where TOR(G) is the subgroup of G generated by rotations. In particular M3 is
simply connected if and only if G is generated by rotations. One of the purposes of
this paper is to begin the classification of the finite index subgroups of U that are
generated by rotations. Our main result is Theorem 7.

Theorem 7 For any integer n there is an index n subgroup of U generated by
rotations.

In Theorem 8 we illustrate the essential differences between the cases n is odd
and n is even.

The organization of the paper is as follows: In Section 2 we define the group

U , a closely related Euclidean crystallographic group Û , and a homomorphism

ϕ : U −→ Û . In Section 3 we show there are tessellations of H3 by regular

dodecahedra and E3 by cubes and we exploit the homomorphism ϕ : U −→ Û
to define a branched covering space map p : H3 −→ E3 that respects the two
tesselations in the sense that the restriction of p to any one dodecahedron of the
tesselation of H3 is a homeomorphism onto a cube of the tesselation of E3. In
Section 4 we prove the rectangle theorem and we use it to classify the finite index

subgroups of Û that are generated by rotations. In the final section we use this
classification together with the homomorphism defined in Section 2 to prove the
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main theorem of the paper, Theorem 7, and some existence theorems about finite
index subgroups of U generated by rotations.

2. Definitions of U , Û and the homomorphism ϕ : U −→ Û

Let C0 be the cube in E3 with vertices (±1,±1,±1). We obtain a tessellation
of E3 by applying compositions of even integer translations in the x, y, and z
directions to C0. In this paper we do not consider any other tessellations of E3

and we refer to this tessellation as “the” tessellation of E3. The intersection of
C0 with the positive octant, together with the lines ã = (t, 0, 1), b̃ = (1, t, 0), and
c̃ = (0, 1, t); −∞ < t < ∞, is depicted in Figure 1.

a

b

c

z

y

x

Figure 1.

The group Û is the Euclidean crystallographic group generated by 180 degree

rotations a, b, and c with axes ã, b̃, and c̃, respectively. We see that Û preserves
the tessellation and contains the translations tx = b(cbc−1), ty = a(cac−1), tz =
a(bab−1), by distances of four, in the x, y, and z directions, respectively.

The cube C0 is easily seen to be a fundamental domain for Û , and the axes of

rotation in Û divide each face of each cube in the tessellation into two rectangles.

The quotient space E3/Û is topologically S3 as can be seen by identifying faces of

C0 using a, b, c and other rotations. The group Û is the orbifold group of S3 as
Euclidean orbifold with singular set the Borromean rings B and singular angle 180
degrees. This construction is due to Thurston. For more details see ([6], [2]). The
Borromean rings are depicted in Figure 2.

Figure 2. Borromean rings.

The induced map p : E3 − preimage B −→ (E3 − preimage B)/Û ≈ S3 −B is a
regular covering space map so by the theory of covering spaces

Û ∼= π1(S
3 −B)/p∗π1(E

3 − preimage B) .

This gives rise to a presentation for Û :

(1) Û = 〈a, b, c|a bcbc = bcbc a, b caca = caca b, c abab = abab c , a2, b2, c2 〉 .
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The presentation comes from the usual Wirtinger presentation of the group of the
Borromean rings with additional relations a2, b2, and c2 arising from p∗π1(E

3–

preimage B) which is normally generated by squares of meridians about axes â, b̂,
and ĉ.

There is a construction of S3 as hyperbolic orbifold (also due to Thurston)
with singular set the Borromean rings analogous to the previous construction. To
describe it we shall work in the Klein model for H3.

In the Klein model hyperbolic points are Euclidean points inside a ball of radius
R centered at the origin in E3 and hyperbolic lines and planes are the intersections
of Euclidean lines and planes with the interior of the ball of radius R. Let D0 be a
regular Euclidean dodecahedron that is symmetric with respect to reflection in the
xy, yz, and xz planes. The intersection of D0 with the positive octant is depicted
in Figure 3.

a

b

c

Figure 3.

If R is chosen correctly, (Details are in [5]), then D0 can be considered as a
regular hyperbolic dodecahedron with 90 degree dihedral angles. Each pentagonal
face contains one edge that lies in either the xy, xz, or yz plane. Reflection in this
plane, restricted to the pentagon, defines an identification in pairs on the pentagonal
faces of D0. As in the construction with the cube C0, the resulting topological space
is S3. A hyperbolic orbifold structure is thus induced on S3 with singular set the
Borromean rings, B, and singular angle 90 degrees. The Borromean rings are the
image, after identification of the pentagonal edges that lie in the xy, xz, and yz
planes.

There is a 4–fold regular branched cyclic covering q1 : X3 −→ S3 with branch
set the Borromean rings induced by the natural group homomorphisms

π1(S
3 −B) −→ H1(S

3 −B;Z) ∼= Z ⊕ Z ⊕ Z −→ Z mod4.

The hyperbolic orbifold structure on S3 with singular set the Borromean rings pulls
back to a hyperbolic manifold (not orbifold) structure on X3 as meridians are sent
to 1 in the above homomorphism.

The hyperbolic manifold X3 has a tessellation consisting of four dodecahedra
each of which is sent homeomorphically to D0 by the map p. The universal covering
space map q2 : H3 −→ X3 is used to pull back the tessellation ofX3 by dodecahedra
to a tessellation of H3 by dodecahedra. The composition of covering space maps
q1 ◦ q2 : H3 −→ S3 is a regular branched covering space map H3 −→ S3 induced by
the group of hyperbolic isometries U . That is to say there is a quotient branched
covering map H3 −→ H3/U ≈ S3 and an associated unbranched covering space
map p : H3 − axes of rotation = H3 − preimage B −→ H3 − preimage B/U ≈
S3−B. As in the Euclidean case this covering space map gives rise to a presentation
for U via covering space theory:

(2) U = 〈a, b, c|a bcbc = bcbc a, b caca = caca b, c abab = abab c , a4, b4, c4 〉
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As before the presentation comes from the usual Wirtinger presentation of the
group of the Borromean rings with additional relations a4, b4, c4 arising from
p∗π1(H

3 − preimageB) which is normally generated by fourth powers of meridians

about the axes ã, b̃ and c̃.

Examining the presentations for U and Û we see that they are the same except

for the relations a4, b4, and c4 in U and a2, b2, and c2 in Û . Nonetheless the map

a → a, b → b, and c → c, mapping generators of U to generators of Û , defines a

homomorphism ϕ : U −→ Û and an exact sequence.

(3) 1 −→ K −→ U
ϕ−→ Û −→ 1 .

In this exact sequence K is defined to be the kernel of homomorphism ϕ.
We say that a group of isometries of H3 or E3 is associated to a tessellation

of H3 or E3 by regular compact polyhedra if there is a tessellation of H3 or E3

by regular compact polyhedra any one of which is a fundamental domain for the

group. Thus the groups U and Û are associated to the tessellations ofH3 and E3 by
regular dodecahedra and cubes, respectively. This is not a common occurrence. For
example, of the regular polyhedra only cubes can tessellate E3. In the table below,
we have listed the cosines of the dihedral angles of the Euclidean regular polyhedra
and also the dihedral angles of the hyperbolic regular polyhedra with vertices on
the sphere at infinity. Tetrahedra, octahedra, dodecahedra and icosahedra cannot
tessellate E3 because their dihedral angles are not submultiples of 360◦ so they
don’t “fit around an edge”.

Polyhedral Type Euclidean dihedral angle Hyperbolic dihedral angle
vertices at ∞

Tetrahedron ArcCos[1/3] ≈ 70.5288◦ 60◦

Cube ArcCos[0]= 90◦ 60◦

Octahedron ArcCos[−1/3] ≈ 109.471◦ 90◦

Dodecahedron ArcCos[−1/
√
5] ≈ 116.565◦ 60◦

Icosahedron ArcCos[−
√
5/3] ≈ 138.19◦ 108◦

There are five regular Euclidean polyhedra but the corresponding hyperbolic
polyhedra occur in one parameter families. One can construct the family of hyper-
bolic cubes, for example, by starting with C0, the cube with vertices (±1,±1,±1),

in the Klein model with the sphere at infinity having Euclidean radius R =
√
3 and

let R increase from
√
3 to ∞. There is an isometry from the Klein model using the

Euclidean ball of radius R to the Poincaré model using the same Euclidean ball (as
Thurston has explained), that is the identity on the sphere at infinity. Since the
Poincaré model is conformal and Poincaré hyperbolic planes are Euclidean spheres
perpendicular to the sphere at infinity, the dihedral angle between two Poincaré
planes is the same as the Euclidean angle between the two circles in which the
Poincaré planes intersect the sphere at infinity. Thus the dihedral angle between
two Klein planes is the same as the angle between the two circles in which they
intersect the sphere at infinity. As R increases, in the case of the cube, for example,
from

√
3 to infinity, the dihedral angle increases from 60◦ to 90◦. There exists a

compact hyperbolic cube with dihedral angle θ if and only if 0 < cos θ < 1/2. Thus,
if it is possible to tessellate H3 with compact hyperbolic cubes they must have dihe-
dral angle 72 degrees as that is the only submultiple of 360◦ in the range of possible
dihedral angles. A glance at the table (4) indicates that it is impossible to tessellate
H3 with compact regular octahedra or tetrahedra and if it is possible to tessellate
H3 with icosahedra the dihedral angle must be 120 degrees. In the dodecahedral
case we have shown that there is a tessellation of H3 by regular compact hyperbolic
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dodecahedra with dihedral angle 90 degrees. If there were a different tessellation
by compact regular dodecahedra the dihedral angle would have to be 72◦.

All the above is part of standard 3–dimensional hyperbolic geometry and we

explain it mainly so as to highlight the singular nature of the groups U and Û and
the tessellations with which they are associated and as background for the following
conjecture.

Conjecture The group U is the only universal group associated to a tessellation
of H3 by regular hyperbolic polyhedra.

In the next section we study the groups U and Û and the tessellations to which
they are associated to produce a branched covering of E3 by H3.

3. H3 as a branched covering of E3

Let D0 and C0 be the regular dodecahedron and cube in the Klein model for H3

and in E3 respectively, as defined in the previous section. We know that D0 is a
fundamental domain for the group U and is also an element of the tessellation of
H3 by regular dodecahedra. For any other dodecahedronD in the tessellation there
is a unique element u of U such that u(D0) = D. Analogously, C0 is a fundamental

domain for the group Û and is part of the tessellation of E3 by cubes. For any other

cube C in the tessellation there is a unique element û of Û such that û(C0) = C.
Let α0 : D0 −→ C0 be a homeomorphism that is as nice as possible. Thus α0

should commute with reflections in the xy, xz, and yz planes and also with the
3–fold rotations about the axes {(t, t, t)} in the Klein model for H3 and in E3. The
cube C0 becomes a dodecahedron when each of its faces is split in half by an axis

of rotation of Û . Then α0, viewed as a map between dodecahedra takes vertices,
edges, and faces to vertices, edges, and faces, respectively.

Now we define a map p : H3 −→ E3. Let p = α0 on D0. Any other point A in
H3 belongs to a dodecahedron D of the tessellation. There is a unique u ∈ U such

that u(D0) = D. Let û = ϕ(u) where ϕ : U −→ Û is the homomorphism defined
in the previous section. Define the map p by p(A) = û ◦ α0 ◦ u−1(A). The map p
is well defined for points in the interior of dodecahedra in the tessellation but we
must show that p is well defined for the other points. Let A belong to the interior
of a pentagonal face P belonging to each of two adjacent dodecahedra D1 and D2.

Then there are unique elements u1 and u2 of U such that u1(D0) = D1 and

u2(D0) = D2. Then u−1
1 (D2) is a dodecahedron, call it D̂, that intersects D0

exactly in a pentagonal face P0. The pentagonal face P0 of D0 intersects exactly
one of the six axes of rotation, call it ax, that intersectD0 and this axis lies in the xy,
xz, or yz plane of the Klein model. There is a 90◦ rotation about ax, call if rot, that

sends D0 to D̂. Thus u1 ◦ rot(D0) = D2 which implies u1 ◦ rot = u2, which further

implies û1 ◦ r̂ot = û2 in group Û . Then û2 ◦ α0 ◦ u−1
2 = û2 ◦ α0 ◦ rot−1 ◦ u−1

1 =

û1 ◦ r̂ot ◦ α0 ◦ rot−1 ◦ u1 so that to show that the map p is well defined on the
interior of pentagon P it suffices to show that r̂ot ◦α0 ◦ rot−1 = α0 when restricted
to pentagonal face P0.

The homomorphism ϕ : U −→ Û takes a, b, and c to â, b̂, ĉ, respectively where

a, b, and c are 90◦ rotations about axes ã, b̃, and c̃, respectively of Figure 3 and â,

b̂, ĉ are 180◦ rotations about axes ã, b̃, and c̃, respectively of Figure 1. The rotation
rot is one of a, b, c, a−1, b−1, c−1, bab−1, cbc−1, aca−1, ba−1b−1, cb−1c−1, ac−1a−1.
The rotation rot, when restricted to pentagon P0 equals reflection in the xy, yz,
or xz plane depending on which plane axis rot lies in. Similarly, the rotation r̂ot

is one of â, b̂, ĉ, b̂âb̂−1, ĉ̂bĉ−1, âĉâ−1 and the rotation r̂ot when restricted to the
half square that is the image of P0 under α equals reflection in the xy, xz, or yz
plane depending on which plane axis r̂ot lies in. But α0 commutes with reflections
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in the xy, xz, or yz planes so that r̂ot ◦ α0 ◦ rot−1 = α0 and the map p is well
defined on the interiors of dodecahedra in the tessellation and on the interiors of
their pentagonal faces. That p is also well defined on edges and vertices of the
tessellating dodecahedra now follows by a continuity argument.

We summarize all this in a theorem.

Theorem 1. There exists a tessellation of H3 by regular hyperbolic dodecahedra
with 90◦ dihedral angle and a tessellation of E3 by cubes and a map p : H3 −→ E3

such that the following holds.
1. Any dodecahedron in the tessellation of H3 is a fundamental domain for the

universal group U .
2. Any cube in the tessellation of E3 is a fundamental domain for the Euclidean

crystallographic group Û .

3. The axes of rotation in Û divide each face of each cube in the tessellation of
E3 into two rectangles so that the cube may be viewed as a dodecahedron.

4. The restriction of p to any one dodecahedron is a homeomorphism of that
dodecahedron onto a cube in the tessellation of E3. When the cube is viewed as
a dodecahedron as in 3 above, the map p sends vertices, edges, and faces to ver-
tices edges and faces respectively. The map p also sends axes of rotation for U

homeomorphically, even isometrically, to axes of rotation for Û .
5. The map p is a branched covering space map with all branching of order two.

In effect, parts 1 through 4 of the theorem have already been proven in the
remarks preceding the statement of the theorem. To see that 5 is true, it is only
necessary to examine p near an axis of rotation for U . The branching is of order
two because four dodecahedra fit around every axis of rotation in U while only two

cubes fit around an axis of rotation of Û .
It is clear from the definition of the map p when restricted to a dodecahedron,

p = û ◦ α0 ◦ u−1, that the group of covering transformations is the kernel of the

homomorphism ϕ : U −→ Û . On the other hand p when restricted to (H3–axes

of rotation for U) is an unbranched covering of (E3 – axes of rotation for Û) so

that K = kerϕ : U −→ Û is isomorphic to π1(E
3 – axes of rotation for Û) modulo

p∗π1(H
3 – axes of rotation for U), by standard covering space theory.

As π1(E
3 – axes of rotation for Û) is a free group generated by meridians, one

meridian for each axis of rotation, and π1(H
3 – axes of rotation for U) is also

generated by meridians it follows that p∗π1(H
3 – axes of rotation) is normally

generated by squares of meridians, one for each axis of rotation in Û . We also
summarize all this in a theorem.

Theorem 2. The group of covering transformations for the branched covering

p : H3 −→ E3 is isomorphic to the group K that is the kernel of ϕ : U −→ Û .
The group K is naturally isomorphic to a countable free product of Z mod 2’s, one

generator for each axis of rotation in Û . In particular the group K is generated by
180 degree rotations.

As before, the proof of the theorem is in effect given by the remarks immediately
prior to the statement of the theorem.

Theorems 1 and 2 enable us to “label” each axis of rotation in U with an algebraic

integer in the field Q(
√
−3 ). Note that each axis of rotation for Û is a line of

parametric equation (t, even, odd) or (odd, t, even) or (even, odd, t), −∞ < t < ∞.
Any such axis intersects the plane x+y+z = 0 in a point (odd, odd, even) or (even,
odd, odd) or (odd, even, odd) as zero is even. One can verify that the intersection
of the tessellation by cubes of E3 with the plane x+y+z = 0 induces a tessellation
of the plane π : x + y + z = 0 by (regular) hexagons and (equilateral) triangles



ON FINITE INDEX SUBGROUPS OF A UNIVERSAL GROUP 7

and that cube C0 intersects the plane x + y + z = 0 in a hexagon with vertices
{(±1,∓1, 0), (±1, 0,∓1), (0,±1,∓1)}. Using a similarity of the plane x+ y+ z = 0

with center the origin and expansion ratio 1/
√
2 we can recoordinatize the plane

x+y+z = 0 by the complex numbers C so that the six vertices of this hexagon have

coordinates equal to the six roots of unity in C. Then every axis of rotation of Û
intersects the plane x+y+z = 0 in a point whose coordinate is an algebraic integer
in the field Q(

√
−3 ). We label each axis d of rotation of U with the coordinate of

p(d) ∩ π. Again we summarize these results in a theorem.

Theorem 3. In the branched covering p : H3 −→ E3 each axis of rotation for
U is labelled by an algebraic integer of the field Q(

√
−3 ). The group of covering

transformations K preserves labelling. For any two axes of rotation a and b of U
with the same label, there is an element k of K such that k(a) = b.

In the next section we classify the subgroups of finite index in Û that are gener-
ated by rotations.

4. Finite index subgroups of Û generated by rotations

The group Û is the crystallographic group I212121, number 24 of the Interna-
tional Tables of Crystallography [3] . In this section we describe two families of

subgroups of Û (defined in Section 2) generated by rotations. And we show that

any finite index subgroup of Û generated by rotations is equivalent (in a sense we
make precise) to exactly one member of one of the two families.

The axes of rotation of Û have parametric equations of form (t, even, odd), (odd,
t, even) or (even, odd, t); −∞ < t < ∞ according as to whether they are parallel
to the x, y, or z axes. The distance between axes lying in a plane parallel to the
xy, xz, or yz planes is an even integer.

Let (m,n, o) be a triple of positive integers where o is odd and m and n are
arbitrary. Let Box(G(m,n, o)) be the rectangular parallelepiped defined by the
following conditions.

a. The front and back faces of Box(G(m,n, o)) lie in the planes x = 2m+1 and
x = −2m+ 1, respectively.

b. The right and left faces of Box(G(m,n, o)) lie in the planes y = 2n and
y = −2n, respectively.

c. The top and bottom of Box(G(m,n, o)) lie in the planes z = o and z = 0,
respectively. Box(G(m,n, o)) together with certain axes of rotation is pictured in
Figure 4.

x

y

z

2n

2m
b1

a0 1a

0
b

o

Figure 4. Box(G(m,n, o).

Axes a0, a1, b0 and b1 have parametric equations (t,−2n, o), (t, 0, o), (−2m +

1, t, 0) and (1, t, 0), respectively. Then Ĝ(m,n, o) is defined to be the subgroup of
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Û generated by A0, A1, B0, and B1, the rotations in the axes a0, a1, b0, and b1,
respectively.

Observe that Ty = A1A0, Tx = B1B0, and Tz = (A0B1)
2 are translations by

4m, 4n, and 4o in the x y, and z directions, respectively. Another generating set

of Ĝ(m,n, o) is A1, B1, Tx, and Ty. Conjugating a translation Tx, Ty, or Tz by a
rotation A1, B1 either results in the translation itself or its inverse, so there are

commutation relations such as B1Tx = T−1
x B1. Thus any element of Ĝ(m,n, o)

has form T , A1T , B1T or A1B1T where T is a translation that is some product
of Tx, Ty, and Tz. With these observations we can see that Box(G(m,n, o)) is

a fundamental domain for the group Ĝ(m,n, o). The volume of Box(G(m,n, o))
equals 4m× 4n× o and the volume of cube C0, which is a fundamental domain for

Û equals 8. Thus dividing one by the other, the index of Ĝ(m,n, o) in Û equals

2mno, an even integer. The group Ĝ(m,n, o) is the crystallographic group P2221,
number 17 in the International Tables of Crystallography [3].

Let (p, q, r) be a triple of odd positive integers such that p ≦ q and p ≦ r and if
the three integers are not all different then p ≦ q ≦ r. Let Box(H(p, q, r)) be the
rectangular parallelepiped defined by the following conditions.

The front and back, left and right, top and bottom faces of Box(H(p, q, r)) lie
in the planes x = p, x = −p; y = q, y = −q; z = r, z = −r, respectively.
Box(H(p, q, r)) is pictured in Figure 5 along with axes of rotation a = (t, 0, r),
b = (p, t, 0), and c = (0, q, t).

a

b

c

Figure 5. Box(H(p, q, r)).

The group Ĥ(p, q, r) is defined to be the subgroup of Û generated by rotations A,
B, and C in axes a, b, and c, respectively. Observe that Tx = BCBC, Ty = CACA,
and Tz = ABAB are translations by 2p, 2q, and 2r in the x, y, and z directions,
respectively. Also note that conjugating Tx, Ty, or Tz by (A or B or C) results
in Tx or T−1

x , Ty or T−1
y , Tz or T−1

z , respectively. These observations imply that

any element of group Ĥ(p, q, r) equals exactly one of T , AT , BT or CT where
T is a product of Tx, Ty and Tz. As before, we can see that Box(H(p, q, r))

is a fundamental domain for group Ĥ(p, q, r). The group Ĥ(p, q, r) is again the
crystallographic group I212121, number 24 in [3].

The volume of Box(H(p, q, r)) equals 8pqr and volume C0 = 8 so, reasoning as

before, the index of Ĥ(p, q, r) in Û is pqr which is an odd integer.

We wish to define an equivalence relation on infinite index subgroups of Û . Let
D be the 120◦ rotation about the axis (t, t, t); −∞ < t < ∞, which is a main

diagonal of cube C0 and let Ŝ be the group generated by D and Û . As D has order

three and normalizes Û we see that [Ŝ : Û ] = 3. We define two subgroups of Û

to be equivalent if they are conjugate as subgroups of Ŝ. This equivalence relation

leads to the least messy classification of the finite index subgroups of Û generated
by rotations. We observe that rotation D cyclically permutes the x, y, and z axes
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but that there is no element of Ŝ that fixes one of these three axes while transposing
the other two.

The triple “distance between adjacent axes” parallel to the x, y, z axes, respec-

tively, defines an invariant on the groups Ĝ(m,n, o) and Ĥ(p, q, r). Thus triple

(Ĝ(m,n, o)) = (2n, 2m, none) and triple (Ĥ(p, q, r)) = (2r, 2p, 2q).

Conjugating a Ĝ or an Ĥ by an element of Ŝ at most changes a triple by cyclically

permuting it. Thus the fact that Ĝ contains no axes of rotation parallel to the z–axis

implies that if Ĝ(m,n, o) ∼ Ĝ(m̃, ñ, õ) then (m,n, o) = (m̃, ñ, õ) and the conditions

p ≦ q and p ≦ r, etc., imply that if Ĥ(p, q, r) = Ĥ(p̃, q̃ r̃) then (p, q, r) = (p̃, q̃, r̃).

Also as the index of a Ĝ in Û is even and the index of an Ĥ in Û is odd no G̃ can
be equivalent to an Ĥ . The rest of the classification consists of showing that any

finite index subgroup of Û generated by rotations is either equivalent to an Ĥ or a

Ĝ.
Suppose that Ĝ is a finite index subgroup of Û that is generated by rotations. If

Ĝ contained only rotations parallel to one of the three axes, it would leave planes

perpendicular to this axis invariant and thus have infinite index in Û . So Ĝ either
contains rotations about axes parallel to two of the three axes x, y, and z or it
contains rotations about axes parallel to all three. In the former case, we can

assume Ĝ contains rotations with axes parallel to the x and y axes but doesn’t
contain rotations with axes parallel to the z–axis by conjugating by an element of

Ŝ if need be. In either case let P be a plane parallel to the yz plane in which an

axis of Ĝ parallel to the y–axis lies. The set of axes of rotation of Ĝ parallel to the
x–axis intersects P in a set of points we call axis points.

Proposition 4. (The rectangle theorem) There is a tessellation of P by congruent
rectangles with sides parallel to the y and z axes such that the set of axis points
equals the set of vertices of the rectangles. Each rectangle is divided in half by an

axis of rotation for Ĝ parallel to the y–axis.

The proof of Proposition 4 rests on three facts.

1. If A is a rotation in Ĝ with axis ℓ and S ∈ Ĝ then SAS−1 is a rotation in Ĝ
with axis S(ℓ). In particular if X is an axis point and S(P) = P , then S(X) is an
axis point.

2. If A is a rotation in Ĝ with axis ℓ and T is a translation in Ĝ such that
T (P) = P and ℓ∩P = X then TA is also a rotation in Ĝ and axis (TA)∩P is the
midpoint of the line segment XT (X).

3. Group Ĝ contains translations in the x, y, and z directions. (Because Û does

and [Û : Ĝ ] < ∞.)

a
jk+1jka

j+1k
a

j+2k
a

z

y

Figure 6. The plane P .

Proof of Proposition 4. Let Ty and Tz be translations by minimal distance in the y

and z directions respectively, belonging to Ĝ. (Refer to Figure 6.) Let a00 be an axis
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point. Then by 1 and 2 above, a20 = Ty(a00) and a10 = midpoint a00a20 are axis
points as are a02 = Tz(a00), a01 = midpoint a00a02 and a11 = midpoint a01Ty(a01).
The set of vertices of the tessellation by rectangles referred to in Proposition 4
equals {T i

yT
j
z akℓ | i, j ∈ Z k, ℓ ∈ {0, 1}}.

Suppose ℓ is the axis of rotation of B and ℓ lies in plane P , is parallel to the y–axis
and intersects the rectangle R = {ajk, aj+1k, ajk+1, aj+1k+1}, where axis point ajk
corresponds to rotation Ajk, etc. Then ℓ cannot contain the vertices of R as axes of

rotation of distinct elements of Û don’t intersect. And ℓ must divide R exactly in

half for if ℓ lay closer to ajk than to aj+1k the element Ajk(BAjkB
−1) of Ĝ would be

a translation in the y–direction by a distance less than ajkajk+2 contradicting the
minimality in the choice of Ty. The set of translates of the axes ℓ and Ajk(ℓ) divide
every rectangle of the tessellation in half. We must show there are no axis points
in P not of the form ajk. Suppose x was such a point corresponding to rotation
X and lying in rectangle R = {ajk, ajk+1, aj+1k, aj+1k+1}. Then x cannot lie on
the sides of the rectangle. (For example, if x lay on ajkajk+1, XAykX

−1Ajk would
be a translation in the y direction by less than length ajkajk+2 contradicting the
minimality in the choice of Ty.) And x cannot lie on ℓ. As x belongs to the interior
of the rectangle and not on ℓ, X(BXB−1) is a translation in the y–direction by a
distance less than ajkajk+2 which is impossible. �

The next problem is to construct a fundamental domain for Ĝ. With this in mind

select a plane P parallel to the yz plane containing an axis ℓ in Ĝ that is parallel

to the y–axis. Recall that axes in Ĝ parallel to the x, y, or z axis have parametric
equations (t, even, odd), (odd, t, even) or (even, odd, t) respectively. Thus plane
P has equation x = O where O is odd. Define the rectangle R1 in P , as pictured
in Figure 7, bounded on one side by ℓ with parametric equation (O, t, e1) with e1
even and having the opposite two vertices be axis points for P with coordinates
(O,E, o1) and (O,E + 4n, o1) with o1 odd.

z

y

 =(O,t,e  )1

(O,E+4n,o  )
1

(O,E+2n,o  )
1

(O,E,o  )
1

R1

Figure 7.

There is a rectangle theorem analogous to Proposition 4 but with x substituted

for y. Let Q be the plane y = E which contains the x axis from Ĝ with equation
(t, E, o1). Then Q also is tesselated by rectangles and we define R2 to be the rec-
tangle pictured in Figure 8. Like R1, the rectangle R2 is not part of the tessellation
but is formed by gluing two half–rectangles from the tessellation. R2 is bounded
on one side by axis (t, E, o1) and the two vertices of R2 opposite the axis have
coordinates (O,E, e1) and (O + 4m,E, e1).

Let BOX be that parallelepiped whose projection on planes P and Q is rectan-
gles R1 and R2, respectively; i.e.,

BOX = {(x, y, z) | O ≦ x ≦ O + 4m,E ≦ y ≦ E + 4n, e1 ≦ z ≦ o1}.
So the dimensions of BOX are 4m× 4n × o where o = e1 − o1 is odd. We assert
BOX is a fundamental domain for Ĝ.



ON FINITE INDEX SUBGROUPS OF A UNIVERSAL GROUP 11

z

x

(t,E,o  )1

(O+4m,E,e  )
1

(O+2m,E,e  )
1(O,E,e  )1

R2

Figure 8.

There is a tessellation of E3 obtained by translating BOX around using trans-
lations by 4m, 4n, and o in the x, y, and z directions, respectively. One observes,

from the rectangle theorems, that the rotations in Ĝ, which generate Ĝ, leave this

tessellation invariant. Also Ĝ contains translations by 4m, 4n, and 4o in the x,
y, and z directions, respectively. Using these translations and the rotations which
split the faces of BOX we see that any point in E3 is equivalent to a point in BOX.
If two points in interior of BOX are equivalent then there is a non–trivial element

ĝ of Ĝ that leaves BOX invariant. By the Brouwer fixed point theorem, ĝ has a
fixed point in BOX and therefore must be a rotation whose axis intersects BOX.
Inspecting rectangles R1 and R2 we see that this is impossible. Thus BOX is a

fundamental domain for Ĝ.
We can conjugate Ĝ by an element û of Û and obtain an equivalent subgroup of

Û . This has the effect of replacing BOX by û(BOX). As Û contains translations
by 4 in the x, y, and z directions we may assume without loss of generality that

BOX = {(x, y, z) | Ô − 2m ≦ x ≦ Ô + 2m, Ê − 2n ≦ y ≦ Ê + 2n, ê1 ≦ z ≦ ô1}
where Ô = ±1, Ê = 0 or 2, ê1 = 0 or 2 and o = ô1− ê1. The rotations â, b̂, and ĉ of

Û are given by equations (x, y, z) −→ (x,−y,−z + 2), (x, y, z) −→ (−x + 2, ,−z),

(x, y, z) −→ (−x,−y + 2, z) respectively. So applying â, b̂, or ĉ if need be we can

assume Ô = 1, Ê = 0 and ê1 = 0. But then BOX = Box(G(m,n, o)) which implies

Ĝ = Ĝ(m,n, o). We have shown that any finite index subgroup of Û generated
by rotations that contains rotations with axes in only two of the three possible

directions is equivalent to a Ĝ(m,n, o).

Now suppose Ĝ contains rotations with axes parallel to the x, y, and z directions.
For each choice of an ordered pair from the set {x–axis, y–axis, z–axis} to play the
role of y–axis and z–axis in Proposition 4 we get a rectangle theorem. We don’t
formally state each of the six propositions but we use the results to get tessellations
of planes by rectangles in order to construct a parallelepiped, again called BOX ,

which will turn out to be a fundamental domain for Ĝ.
Let P (resp. Q , R) be a plane parallel to the xy (resp. xz, yz) plane containing

an axis ax = (t, even, odd) (resp. az =(even, odd,t), ay =(odd, t, even)) parallel to
the x (resp. z, y) axis. Then planes P ,Q , andR intersect in a pointX = (o1, o2, o3)
with all odd coordinates. (For example, plane P contains axis ax = (t,even, odd)
and P is parallel to the xy plane and so has equation z = odd.) No point with all

odd coordinates belongs to an axis of rotation in Û .
Consider the tessellation of plane P by rectangles. Planes P and Q intersect

in a line ℓ (see Figure 9) parallel to the x–axis and planes P and R intersect in

a line m parallel to the y–axis. As Q contains axes from Ĝ parallel to the z–axis
line ℓ contains z–axis points that are vertices of the tessellation by rectangles. We
already know that the axes in P parallel to the x–axis evenly divide the rectangles
but the line m which is parallel to the y–axis also evenly divides rectangles. To
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see this translate P in the z–direction to a plane P̃ that contains an axis from Ĝ
that is parallel to the y–axis. This translation, in the z–direction, takes vertices of

the tessellation of P by rectangles to vertices of the tessellation of P̃ by rectangles,

leaves plane R invariant and sends line m to an axis in Ĝ parallel to the y–axis

that evenly divides a rectangle in P̃ . Therefore m evenly divides a rectangle of the
tessellation of P .

The tessellations of planes Q and R by rectangles is also displayed in Figure 9.
Planes Q and R intersect in line n parallel to the z–axis.

y

z

x

y

x

z

p

q

r

R
1

R
2

R3

m

n

m

n

Figure 9.

The distance from point X = (o1, o2, o3) to the nearest axis in Ĝ parallel to the
x (resp. y, z) axis is q (resp. r, p) as displayed in Figure 9. That p, q, and r are

odd integers can be seen from the parameterizations of the axes in Û .
Then BOX is defined to be {(x, y, z) | o1 ≦ x ≦ o1 + 2p; o2 ≦ y ≦ o2 + 2q; o3 ≦

z ≦ o3 + 2r}. The projections of BOX on planes P , Q , R are the rectangles R1,

R2, R3 displayed in Figure 9. We assert that BOX is a fundamental domain for Ĝ.
Using translations by 4p, 4q, 4r in the x, y, and z directions, which are contained

in Ĝ together with rotations, giving rise to the vertices of the rectangles displayed
in Figure 9, we see that any point in E3 can be moved to a point in BOX . There is
a tessellation of E3 obtained by translating BOX around using translations of 2p,
2q, and 2r in the x, y, and z directions. From Figure 9 we see that the rotations

in Ĝ preserve this tessellation so that Ĝ preserves this tessellation. If two points
in the interior of BOX are equivalent, say g(m1) = m2, then g preserves BOX ,
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has a fixed point by the Brouwer Theorem and so must be a rotation in Ĝ which
is impossible.

Therefore BOX is a fundamental domain for Ĝ. As before we can conjugate by

an element of û of Û or Ŝ which has the effect of replacing Ĝ by an equivalent group
and BOX by the new fundamental domain û(BOX). Since the center of BOX has
all even coordinates (o1 + p, o2 + q, o3 + r) we can find an element û which is a

product of translations by 4 in the x, y, and z directions and rotations â and/or b̂
and/or ĉ such that û(BOX) is centered at the origin. Finally we can use the 120

degree rotation D in Ŝ to cyclically permute p, q, r so that p ≦ max{q, r} and
in the case where p, q, and r are not all different p ≦ q ≦ r. Thus the group to

which Ĝ is equivalent is Ĥ(p, q, r) which has û(BOX) as its fundamental domain.
We summarize all this as a theorem.

Theorem 5. 1. Let Ĝ be an even index subgroup of Û generated by rotations. Then

Ĝ is equivalent to a unique group in the family Ĝ(m,n, o) and
[
Û : Ĝ

]
= 2mno. Ĝ

contains axes of rotation in two of the three directions x, y, and z. The integers

2m (resp. 2n) represents the distance between adjacent axes of Ĝ(m,n, o) that lie
in a plane parallel to the xy plane and are parallel to the y–axis (resp. x axis). The

odd integer o represents this distance between axes of Ĝ that are not parallel but are
as close as possible.

2. Let Ĝ be an odd index subgroup of Û generated by rotations. Then Ĝ is

equivalent to a unique group in the family Ĥ(p, q, r) and
[
Û : Ĝ

]
= pqr. Group Ĝ

contains rotations with axes parallel to each of the three possible directions x, y,
and z.

For each pair of directions x and y, x and z, y and z there is a distance between
a pair of axes in these directions that are not parallel but are as close as possible
giving rise to a triple of integers. This triple of integers is p, q, and r, not necessarily
in that order.

In the next section, we begin the study of finite index subgroups of U that are
generated by rotations.

5. Finite index subgroups of U generated by rotations

Proposition 6. Let Ĝ be a finite index subgroup of Û generated by rotations and

let G = ϕ−1(Ĝ) be the full preimage of G under the homomorphism ϕ : U → Û
defined in Section 2. Then G is generated by rotations.

Proof. The homomorphism ϕ : G → Ĝ defined in Section 2 is surjective, and sends

90◦ rotations in U to 180◦ rotations in Û . By the classification of the Ĝ in Section

4, Ĝ is generated by 3 or 4 rotations. Let S be a set of 90◦ rotations in U that

is sent to a set of generators for Ĝ and let G1 be the subgroup of U generated by

S. Then ϕ−1(Ĝ) = G1K. Since K is generated by rotations (Theorem 2), so is
G1K. �

The main theorem now follows easily from Proposition 6.

Theorem 7. Given any positive integer n there is a subgroup G of U of index n
that is generated by rotations.

Proof. Let Ĝ be a subgroup of Û generated by rotations of index n in Û , which

exists by the classification of such subgroups of Section 4. And let G = ϕ−1(Ĝ).

Then G is generated by rotations by Proposition 6 and [U : G] = [Û : Ĝ] = n. �

Any axis of rotation ℓ in U is the image of the axis of rotation of one of the
generators a, b, c of U under the action of an element u of U . This follows from
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the fact that D0, a dodecahedral fundamental domain of U , intersects six axes of
rotation in U , those of a, b, c, c−1ac, a−1ba, and b−1cb, and if D is any dodecahe-
dron of the tessellation of H3 intersecting ℓ there is an element u1 of U such that
u1(D0) = D. Then u = u1x

−1 where x is one of a, b, c. Letting U act on the axes
of rotation, we get exactly three orbits. (At most three by the argument above and

at least three because ϕ : U −→ Û preserves orbits and there are three orbits in

Û , those parallel to the x, y and z axes.) Thus there are nine conjugacy classes of
rotations in U represented by a, a2, a3, b, b2, b3, c, c2, and c3. (This can also be
seen by computing U/[U,U ] ∼= Z4⊕Z4⊕Z4 from the presentation of U in Section 2.
For example a is sent to (1, 0, 0), etc.) Similarly there are three conjugacy classes

of rotations in Û represented by â, b̂, and ĉ.

Theorem 8. Let G be a subgroup of U of odd index and generated by rotations.
Then G contains a member of each of the nine conjugacy classes of rotations in U .

Proof. Let Ĝ = ϕ(G) where ϕ : U ⇀ Û is the homomorphism of Section 2 and K =

kerϕ. Then G ⊂ GK ⊂ U so that [U : G] = [U : GK][GK : G]. But ϕ : U −→ Û

induces ϕ : GK −→ Ĝ so that [U : GK] = [Û : Ĝ] and [U : G] = [Û : Ĝ] · [GK : G].

Since [U : G] is odd it follows that [Û : Ĝ] is odd and thus Ĝ contains a member

of each of the three conjugacy classes of rotations in Û from the classification in
Section 4.

We shall show that G contains a member of the conjugacy class of c. Let ĉ1 be

a rotation in Ĝ with axis parallel to the z–axis. Suppose ϕ(g) = ĉ1. Then g is

a product of rotations, g =
n∏

i=1

ri, as G is generated by rotations. If {r1, . . . , rn}

contains a rotation conjugate to c or c3 we are done. Suppose this is not the case.

Then ĉ1 =
n∏

i=1

r̂i where r̂i is either the identity or a rotation about an axis parallel

to the x or y axes. Each r̂i belongs to the group Ĝ(1, 1, 1) defined in Section 4 as

that group contains every rotation in Û about an axis parallel to the x or y axis.

Thus ĉ1 ∈ Ĝ(1, 1, 1) but this is impossible as Ĝ(1, 1, 1) contains no rotations with
axis parallel to the z–axis. Therefore G contains a member of the conjugacy class
of c.

The two conjugates DĜ(1, 1, 1)D−1 and D2Ĝ(1, 1, 1)D−2, where D is 120◦ rota-
tion about axis (t, t, t) introduced in Section 4, contain all rotations parallel to the
x and z axis and no rotation parallel to the y axis or all rotations parallel to the y
and z axes and no rotations parallel to the x axis. We can show that G contains
rotations in the conjugacy class of a and b by duplicating the argument for c by

replacing Ĝ(1, 1, 1) by DĜ(1, 1, 1)D−1 or D2Ĝ(1, 1, 1)D−2. �

If G is a finite index subgroup of U that is generated by rotations it is clear that

information about the precise placement of Ĝ in the classification of Section 4 im-
plies much about group G itself. There are other theorems analogous to Theorems
7 and 8, but clumsier to state or prove that we could present. We refrain from
doing so, so as not to lengthen this paper.

We close by posing a question. If G is a subgroup of U of index n, either
generated by rotations or not, it is clear that G has a fundamental domain that is
a union of n of the dodecahedra in the tessellation associated to U . Does G have a
fundamental domain that is convex and also the union of n dodecahedra?
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