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Abstract

We introduce a very natural class of potential submanifolds in pseudo-Euclidean spaces (each N-
dimensional potential submanifold is a special flat torsionless submanifold in a 2N-dimensional pseudo-
Euclidean space) and prove that each N-dimensional Frobenius manifold can be locally represented as
an N-dimensional potential submanifold. We show that all potential submanifolds bear natural special
structures of Frobenius algebras on their tangent spaces. These special Frobenius structures are generated
by the corresponding flat first fundamental form and the set of the second fundamental forms of the
submanifolds (in fact, the structural constants are given by the set of the Weingarten operators of the
submanifolds). We prove that the associativity equations of two-dimensional topological quantum field
theories are very natural reductions of the fundamental nonlinear equations of the theory of submanifolds
in pseudo-Euclidean spaces and define locally the class of potential submanifolds. The problem of explicit
realization of an arbitrary concrete Frobenius manifold as a potential submanifold in a pseudo-Euclidean
space is reduced to solving a linear system of second-order partial differential equations. For concrete
Frobenius manifolds, this realization problem can be solved explicitly in elementary and special functions.
Moreover, we consider a nonlinear system, which is a natural generalization of the associativity equations,
namely, the system describing all flat torsionless submanifolds in pseudo-Euclidean spaces, and prove
that this system is integrable by the inverse scattering method. We prove that each flat torsionless
submanifold in a pseudo-Euclidean space gives a nonlocal Hamiltonian operator of hydrodynamic type
with flat metric, a special pencil of compatible Poisson structures, a recursion operator, infinite sets of
integrals of hydrodynamic type in involution and a natural class of integrable hierarchies, which are all
directly associated with this flat torsionless submanifold. In particular, using our construction of the
reduction to the associativity equations, we obtain that each Frobenius manifold (in point of fact, each
solution of the associativity equations) gives a natural nonlocal Hamiltonian operator of hydrodynamic
type with flat metric, a natural pencil of compatible Poisson structures (local and nonlocal), a natural
recursion operator, natural infinite sets of integrals of hydrodynamic type in involution and a natural
class of integrable hierarchies, which are all directly associated with this Frobenius manifold.
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1 Introduction

We prove that the associativity equations of two-dimensional topological quantum field theories (the Witten—

Dijkgraaf-Verlinde-Verlinde equations, see [1]-[4]) for a function (a potential) ® = ®(u?,. .., u"),
N
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where 1™ is an arbitrary constant nondegenerate symmetric matrix, 7% = 7%, n¥ = const, det(n¥) # 0,
are very natural reductions of the fundamental nonlinear equations of the theory of submanifolds in pseudo-
Euclidean spaces (namely, the Gauss equations, the Codazzi equations and the Ricci equations) and give
locally a very natural class of potential submanifolds in pseudo-Euclidean spaces. Each N-dimensional
potential submanifold is a special flat torsionless submanifold in a 2/N-dimensional pseudo-Euclidean space.
All potential submanifolds in pseudo-Euclidean spaces bear natural special structures of Frobenius algebras
on their tangent spaces. These special Frobenius structures are generated by the corresponding flat first
fundamental form and the set of the second fundamental forms of the submanifolds (in fact, the structural
constants are given by the set of the Weingarten operators of the submanifolds).

We recall that the associativity equations (II]) are consistent and integrable by the inverse scattering
method, they possess a rich set of nontrivial solutions, and each solution ®(u',...,u") of the associativity
equations (I.I]) gives N-parameter deformations of special Frobenius algebras (some special commutative
associative algebras equipped with nondegenerate invariant symmetric bilinear forms) (see [I]). Indeed,

consider algebras A(u) in an N-dimensional vector space with the basis ej,...,ex and the multiplication
(see [11)
foRg
_ .k k _ .k
eioe; =ci(uler, cj(u)=n Sm (1.2)
For all values of the parameters u = (ul,...,uV) the algebras A(u) are commutative, e; o e; = e, o e;, and
the associativity condition
(e;o0ej)oer =e€;0(ejoe) (1.3)

in the algebras A(u) is equivalent to equations (II)). The matrix 7;; inverse to the matrix n, ni*n,; = 6},
defines a nondegenerate invariant symmetric bilinear form on the algebras A(u),

<€i7€j> = Nij, <6i o €j,6k> = <€i,6j o 6k>- (1-4)

Recall that locally the tangent space at every point of any Frobenius manifold (see [I]) possesses the structure
of Frobenius algebra ([L2)—(T4), which is determined by a solution of the associativity equations (II]) and
smoothly depends on the point. We prove that each N-dimensional Frobenius manifold can be locally
represented as an N-dimensional potential flat torsionless submanifold in a 2 N-dimensional pseudo-Euclidean
space. The problem of explicit realization of an arbitrary concrete N-dimensional Frobenius manifold as an
N-dimensional potential flat torsionless submanifold in a 2/N-dimensional pseudo-Euclidean space is reduced
to solving a linear system of second-order partial differential equations. For concrete Frobenius manifolds,
this realization problem can be solved explicitly in elementary and special functions. We shall give many
explicit important examples of these realizations in a separate paper.

Moreover, we consider a nonlinear system, which is a natural generalization of the associativity equations
(1), namely, the system describing all flat torsionless submanifolds in pseudo-Euclidean spaces, and prove
that this system is integrable by the inverse scattering method. We also prove that each flat torsionless
submanifold in a pseudo-Euclidean space gives a natural nonlocal Hamiltonian operator of hydrodynamic
type with flat metric, a natural special pencil of compatible Poisson structures, a natural recursion oper-
ator, natural infinite sets of integrals of hydrodynamic type in involution and a natural class of integrable



hierarchies, which are all directly associated with this flat torsionless submanifold. In particular, using our
construction of the reduction to the associativity equations, we obtain that each Frobenius manifold (in point
of fact, each solution of the associativity equations (II])) gives a natural nonlocal Hamiltonian operator of
hydrodynamic type with flat metric, a natural special pencil of compatible Poisson structures (local and
nonlocal), a natural recursion operator, natural infinite sets of integrals of hydrodynamic type in involution
and a natural class of integrable hierarchies, which are all directly associated with this Frobenius manifold.

2 Frobenius algebras, Frobenius manifolds and associativity
equations

2.1 Frobenius and symmetric algebras

Recall the notion of Frobenius algebra over a field K (in this paper we consider Frobenius algebras only over
R or C). First of all, we must note that there are various conventional definitions of Frobenius algebras. In
particular, sometimes in mathematical literature a finite dimensional algebra A (with multiplication o) over
a field K is called Frobenius if it is equipped with a linear functional

0:A—-K (2.1)

such that if f(a o b) = 0 for all @ € A, then b = 0. In this case, Kerf contains no nontrivial ideals. It is
also obvious that the bilinear form f(a,b) = 6(a o b) is nondegenerate for every such linear functional in any
finite dimensional algebra. If algebra is associative, then we have

flaob,e)=6((aob)oc)=0(ao(boc)) = f(a,boc) (2.2)
for all a, b, c € A (invariance or associativity of bilinear form).

Definition 2.1 A bilinear form f: A x A — K in an algebra A is called invariant (or associative) if
flaob,c)= f(a,boc) (2.3)
for all a,b,c € A.
Consider the following conventional general definition of Frobenius algebra.

Definition 2.2 A finite dimensional algebra A over a field K is called Frobenius if it is equipped with a
nondegenerate invariant bilinear form.

Generally speaking, even associativity of algebra is not assumed here (we note that often some of the
following additional conditions are included in definition of Frobenius algebras: symmetry of invariant bilinear
form, presence of a unit in algebra, associativity of algebra, and commutativity of algebra).

Consider an arbitrary Frobenius algebra (A, f), an arbitrary element w € A and the corresponding
linear functional 6,,(a) = f(a,w) in A. Then we have 6,,(a 0o b) = f(aob,w) = f(a,bo w). Therefore, if
Op(aod) = f(a,bow) =0 for all @ € A, then bow = 0. If w is an element of algebra A such that bow =0
implies b = 0, then 0,,(a) is a linear functional of type (ZI)) and Ker 6,, contains no ideals. For example, if
algebra contains a unit e, then the unit e gives a linear functional of type (1), 6.(a) = f(a,e), and Ker6,
contains no ideals. Moreover, for any algebra with a unit e, any invariant bilinear form f is completely
generated by the linear functional 0.(a) = f(a,e), since f(a,b) = f(a,boe) = f(aob,e) =0.(aob).



Example 2.1 Matrix algebra M, (K).
Consider the algebra M, (K) of n x n matrices over a field K, the linear functional (trace of matrices)

0(a) = Tr(a), a € M,(K),

and the bilinear form f(a,b) = 6(ab). The bilinear form is invariant, since the matrix algebra is associative.
It is easy to prove that the bilinear form is nondegenerate, and (M, (K), f) is a noncommutative associative
Frobenius algebra with a unit over K. Note that the bilinear form f(a,b) = 6(ab) is symmetric, §(ab) = 0(ba).
Recall that a finite dimensional associative algebra with a unit over a field K is called symmetric if it is
equipped with a symmetric nondegenerate associative bilinear form (see [22]). Therefore, (M, (K), f) is a
symmetric algebra.

Example 2.2 Group algebra KG.
Let G be a finite group. Consider the group algebra KG over a field K,

KGz{a|a:Zagg, a, € K}
geG

KG is an associative algebra with a unit over K. Let e be the unit of the group G. Consider the linear
functional
0(a) = ae(a), a= Z ag(a)g € KG, a4(a) €K,
geG

and the bilinear form f(a,b) = 6(ab). The bilinear form is invariant, since the group algebra is associative.
It is easy to prove that the bilinear form is nondegenerate. Indeed, we have

flg7"a) =0(g " a) = ag(a)

for all g € G. Therefore, if f(g,a) = 6(ga) =0 for all g € G, then oy(a) =0 for all g € G, i.e., a = 0. Hence
the bilinear form f is nondegenerate, and (KG, f) is a noncommutative associative Frobenius algebra with
a unit over K (it is commutative only for Abelian groups). Note that the bilinear form f(a,b) = 6(ab) is
symmetric for any group G, 6(ab) = 6(ba). Therefore, (KG, f) is a symmetric algebra.

2.2 Frobenius manifolds

Consider an N-dimensional pseudo-Riemannian manifold M with a metric ¢ and a structure of Frobenius
algebra, (T,M,o,g), TuM x T,M > T,M, on each tangent space T, M at any point v € M smoothly
depending on the point such that the metric g is the corresponding nondegenerate invariant symmetric
bilinear form on each tangent space T,,M, g(X oY, Z) = g(X,Y o Z), where X,Y and Z are arbitrary vector
fields on M.

This class of pseudo-Riemannian manifolds equipped with Frobenius structures could be naturally called
Frobenius, but in this paper we shall consider well-known and generally accepted Dubrovin’s definition
of Frobenius manifolds [I], which is motivated by two-dimensional topological quantum field theories and
quantum cohomology and imposes very severe additional constraints on Frobenius structures of Frobenius
manifolds.

Definition 2.3 (Dubrovin [I])

An N-dimensional pseudo-Riemannian manifold M with a metric g and a structure of Frobenius algebra
(TuM,o,9), T,M x T, M > T, M, on each tangent space T,,M at any point u € M smoothly depending on
the point is called Frobenius if



(1) the metric g is a nondegenerate invariant symmetric bilinear form on each tangent space T, M,
g(X oY, Z)=g(X,Y 0 Z), (2.4)
(2) the Frobenius algebra is commutative,
XoY=YoX (2.5)

for all vector fields X and Y on M,
(3) the Frobenius algebra is associative,

(XoY)oZ=Xo0(YoZ) (2.6)

for all vector fields X,Y and Z on M,

(4) the metric g is flat,

(5) A(X,Y,Z) = g(X oY, Z) is a symmetric tensor on M (it is obvious that, by virtue of (1) and (2), we
have g(X oY, Z) =g(X, Y0 Z)=g(Y 0 Z,X)=qg(Y,Z0X)=g(Z o X, Y)=g(Z,X0Y)=9g(Z,Y 0 X) =
9(ZoY, X)=g(X,ZoY)=¢g(X0Z)Y)=g(Y,X0Z) = g(YoX,Z)) such that the tensor (Vi A)(X,Y, Z) is
symmetric with respect to all vector fields X,Y, Z and W on M (V is the covariant differentiation generated
by the Levi-Civita connection of the metric g),

(6) the Frobenius algebra possesses a unit, and the unit vector field U, for which X oU = U o X = X for
each vector field X on M, is covariantly constant, i.e.,

VU =0, (2.7)

where V is the covariant differentiation generated by the Levi-Civita connection of the metric g,
(7) the manifold M is equipped with a vector field E (Euler vector field) such that

VVE =0, (2.8)
Le(XoY)—(LpX)oY —Xo(LpgY)=XoY, (2.9)
Lpg(X,Y)—g(LpX,)Y) - g(X,LgY) =K g(X,Y), (2.10)
LU = —U, (2.11)

where K is an arbitrary fixed constant, Lg is the Lie derivative along the Euler vector field, and V is the
covariant differentiation generated by the Levi-Civita connection of the metric g.

A beautiful theory of these very special Frobenius structures and Frobenius manifolds and many impor-
tant examples were constructed by Dubrovin in connection with two-dimensional topological quantum field
theories and quantum cohomology [I]. No doubt that these very special Frobenius structures and Frobenius
manifolds should be called Dubrovin’s. A lot of very important examples of Frobenius manifolds arises in
the theory of Gromov—Witten invariants, the quantum cohomology, the singularity theory, the enumerative
geometry, the topological field theories and the modern differential geometry, mathematical and theoretical
physics.

In this paper we describe a very natural special class of submanifolds in pseudo-Euclidean spaces bearing
natural Frobenius structures satisfying the conditions (1)—(5), namely, the class of potential submanifolds.
Moreover, we show that each manifold satisfying the conditions (1)—(5) can be locally realized as a potential
submanifold in a pseudo-Euclidean space [B]-[7]. For any concrete Frobenius structure satisfying the con-
ditions (1)—(5) and for any given Frobenius manifold, the corresponding realization problem is reduced to
solving a system of linear second-order partial differential equations.



2.3 Associativity equations

Consider an arbitrary manifold satisfying the conditions (1)—(5). Let u = (u!,...,u’V) be arbitrary flat
coordinates of the flat metric g. In flat local coordinates, the metric g(u) is a constant nondegenerate
symmetric matrix 7, ni; = 1;i, det(ni;) # 0, n;j = const, g(X,Y) = 1;; X (w) Y7 (u).

In these flat local coordinates, for structural functions cé . (u) of the Frobenius structure on the manifold,

XoY =W, W' u)=cj(u)X? (u)Y*(u),
and for the symmetric tensor A;;x(u), we have
A(X,Y, Z) = A (W) X (@)Y (u) 28 (u) = g(X 0 Y, Z) =
= g(W. Z) = i, W' () Z7 (u) = i (w) X" ()Y (w) Z7 (u).
Therefore,
Aiji(u) = nsecy; (u). (2.12)

According to (5) (VA )(u) is a symmetric tensor, i.e., in the flat local coordinates we also have

8Aijk . aAijl

oul  OuF

Hence there locally exist functions B;;(u) such that

OuFr

We can consider that the matrix B;;(u) is symmetric, B;;(u) = Bj;(u). Indeed, if

Aiji (u)

dBi;

Aiji(u) = R
then - -
ouk  Ouk

for any k, since the tensor A;j;(u) is symmetric. Hence, Eij (u) Eﬂ(u) + Cyj, where Cj; = const,

Cij = —Cji. ThLIS7 if we take Bij (u) = Bij (u) — (1/2)0137 then Bij (u) = Bji (u) and

Ajji(u) = %
Since the tensor A;;x(u) is symmetric, we have also
0B;; OB
ouk oud
Hence there locally exist functions F;(u) such that
Bij(u) = gf;l
Since the matrix B;;(u) is symmetric, we have
OF;  OF)
oul  Qut’



Hence there locally exist a function (a potential) ®(u) such that

0P
Fi(u) = —.
(W) = 55
Thus,
0B;; 0%F; fAL)
Aijk(u) = kJ = - 5 = - - PR
ou ou’ Ou OuduI u
From (2.I2) for the structural functions ¢}, (u) we have
7 is @S 63(1)
where the matrix 1/ is inverse to the matrix n;;, n%ns; = 5;
For any values of the parameters u = (ul,...,uY), the structural functions (ZI3) give a commutative
Frobenius algebra
D 00; = ck(u)d o 000 ) (2.14)
I * T S ouiow
equipped with a symmetric invariant nondegenerate bilinear form
(01, 05) = mij (2.15)

for any constant nondegenerate symmetric matrix n;; and for any function ®(u), but, generally speaking,
this algebra is not associative. All the conditions (1)—(5) except the associativity condition (3) are obviously
satisfied for all these N-parameter deformations of nonassociative Frobenius algebras.

The associativity condition (3) is equivalent to a nontrivial overdetermined system of nonlinear partial
differential equations for the potential ®(u),

XN:ZN: T S = XN:XN: A —— (2.16)
i duidwout | duldumaur Pt duioum Ik Juldw dur’ :

which is well known as the associativity equations of two-dimensional topological quantum field theories (the
Witten—Dijkgraaf—Verlinde—Verlinde or the WDVV equations, see [I]-[4]); it is consistent, integrable by the
inverse scattering method and possesses a rich set of nontrivial solutions (see [1]).

It is obvious that each solution ®(u?,...,u’") of the associativity equations (2.I6) gives N-parameter
deformations of commutative associative Frobenius algebras ([2.14]) equipped with nondegenerate invariant
symmetric bilinear forms (ZT5]). These Frobenius structures satisfy to all the conditions (1)—(5).

Further in this paper we show that the associativity equations (ZI0) are very natural reductions of
the fundamental nonlinear equations of the theory of submanifolds in pseudo-Euclidean spaces and give a
natural class of potential flat torsionless submanifolds [5]-[7]. All potential flat torsionless submanifolds in
pseudo-Euclidean spaces bear natural structures of Frobenius algebras (2.14)), (2.15) on their tangent spaces.
These Frobenius structures are generated by the corresponding flat first fundamental form and the set of the
second fundamental forms of the submanifolds.

3 Gauss, Codazzi, and Ricci equations and Bonnet theorem in
the theory of submanifolds in Euclidean spaces

3.1 Submanifolds in Euclidean spaces

Let us consider an arbitrary smooth N-dimensional submanifold M¥ in an (N + L)-dimensional Euclidean
space ENTL MN < EN*L and introduce the standard classical notation. Let the submanifold M” be



1

given locally by a smooth vector function r(u', 1

..,uV) of N independent variables (u!,...,u") (some in-
dependent parameters on the submanifold), r(u,...,u™) = (21 (u?, ..., uY), ..., 2N L (ut, ... ulY)), where
(2%, ..., 2N*+1L) are Cartesian coordinates in the Euclidean space EN L, (21,..., 2N+tE) € ENFL (ul, ... ulY)
are local coordinates (parameters) on M¥ rank (92!/0u’) = N (here 1 <i < N+ L, 1 < j < N). Then
Or/out =r,:i, 1 <i< N, are tangent vectors at any point u = (u',...,u’Y) on M. Let N,, be the normal
space of the submanifold MY at an arbitrary point v = (u!,...,u") on MY N, = (ni,...,nr), where
Na, 1 < a < L, is an orthonormalized basis of the normal space (orthonormalized normals), (nq,r,:) = 0,
1<a<L,1<i<N, (na,ng)=20das, 1 <a,f <L ThenI=ds?® = g;j(u)du'du?, gij(u) = (ryi,ru),
is the first fundamental form, and II, = wq ;j(u)du'du?, wa,ij(u) = (N, Tyivi), 1 < o < L, are the second
fundamental forms of the submanifold M.

3.2 Torsion forms of submanifolds in Euclidean spaces

Since the set of vectors (1 (u),...,ry~(u),n1(u),...,nr(u)) forms a basis in EN*L at each point of the
submanifold M?, we can decompose each of the vectors Ny i (u), 1 <a <L, 1 <i< N, with respect to

this basis, namely,
N L
Mo (1) = D AL j(W)rys (u) + ) sap.i(u)ng(u),
k=1 B=1

where Ail(u) and s,p,;(u) are some coefficients depending on u (the Weingarten decomposition). It is
casy to prove that A% ;(u) = —wq,i;(u)g’"(u), where g7%(u) is the contravariant metric inverse to the first
fundamental form gi;(u), g**(u)gs;(u) = 0% The coefficients sqp.:(u) are called the torsion coefficients of
the submanifold M™, »p;(u) = (n4.i(u),ng(u)). It is also easy to prove that the coefficients s, ;(u)
are skew-symmetric with respect to the indices o and 8, sap,i(u) = —28q,:(u), and form covariant tensors
(1-forms) with respect to the index i on the submanifold M¥. The 1-forms >,z ;(u)du’ are called the torsion
forms of the submanifold MY .

3.3 Fundamental nonlinear equations in the theory of submanifolds in
Euclidean spaces

It is well known that for each submanifold M¥ the forms g;;(u), wa,i;(u) and s, (u) satisfy the Gauss
equations, the Codazzi equations and the Ricci equations, which are the fundamental equations of the theory
of submanifolds. In our case, the Gauss equations have the form

L
Rijr(u Z Wa, j1 (W) Wa, ik (1) = Wajk (W)W it (1)) (3.1)

where Rk (v) is the Riemannian curvature tensor of the first fundamental form g;;(u), the Codazzi equations
have the form

L
Viwa,ij (1) = Vjwa,ik (u Z (5ap,k(Wws,ij(u) — #ap,j(w)ws,in(u)), (3:2)

where Vj, is the covariant differentiation generated by the Levi-Civita connection of the first fundamental
form g;;(u), and the Ricci equations have the form

L
Vi0p,i(1) = Vistag k(1) + > (3ary,i (1) 255,5 (10) = ey () 365,4(w)) +

y=1



N N
+ZZ (ot ()wp i (1) — w1 (W)wg i (1)) = 0. (3.3)

3.4 Bonnet theorem for submanifolds in Euclidean spaces

Theorem (Bonnet). Let KV be an arbitrary smooth N-dimensional Riemannian manifold with a metric
gij(w)du'du’. Let some 2-forms we ij(u)du‘du?, 1 < o < L, and some 1-forms snp ;(u)du’, 1 < o, B < L, be
given in a simply connected domain of the manifold KN . If wa,ij (1) = wa,ji(u), #ap,i(v) = —5ga.i(u), and
the Gauss equations (B1)), the Codazzi equations (3.2) and the Ricci equations [B.3) are satisfied for the forms
Gij (1), Wa,ij(w) and s4p,:(uw), then there exists a unique (up to motions) smooth N-dimensional submanifold
MY in an (N + L)-dimensional Euclidean space ENTE with the first fundamental form ds* = g;j(u)du'du?,
the second fundamental forms wq,i;(u)du'du’ and the torsion forms sap i(u)du’.

Similar fundamental equations and the Bonnet theorem hold for all totally nonisotropic submanifolds in
pseudo-Fuclidean spaces (we recall that if we have a submanifold in an arbitrary pseudo-Euclidean space E*,
then the metric induced on the submanifold from the ambient pseudo-Euclidean space E]" is nondegenerate
if and only if this submanifold is totally nonisotropic, i.e., it is not tangent to isotropic cones of the ambient
pseudo-Euclidean space E!* at its points).

4 Description of flat submanifolds with zero torsion in
pseudo-Euclidean spaces

4.1 Submanifolds with zero torsion in pseudo-Euclidean spaces

Let us consider totally nonisotropic smooth N-dimensional submanifolds with zero torsion in an arbitrary
(N + L)-dimensional pseudo-Euclidean space, i.e., all torsion forms of submanifolds of this class vanish,
#a8,s(u) = 0. In the normal spaces N, we also use the bases nq, 1 < o < L, with arbitrary admissible
constant Gram matrices fag, (Na,ng) = tas, Hag = cOnst, tag = taa, det(tiag) 7 0 (the signature of the
metric pqpg is completely determined by the signature of the first fundamental form of the corresponding
submanifold and the signature of the corresponding ambient pseudo-Euclidean space).

For torsionless N-dimensional submanifolds in an arbitrary (/N + L)-dimensional pseudo-Euclidean space,
we obtain the following system of fundamental equations: the Gauss equations

L L
Rijia(u Z Z # (oo (w)wp gt (1) = wait (W)wp g (w)), (4.1)

where p? is inverse to the matrix fiag, " fiyg = 45, the Codazzi equations
vkwa,ij (’U,) = vjwa,ik(u)a (42)

and the Ricci equations



4.2 Second fundamental forms of flat torsionless submanifolds in
pseudo-Euclidean spaces and Hessians

Now let g;;(u) be a flat metric, i.e., we consider flat torsionless N-dimensional submanifolds M% in an
(N + L)-dimensional pseudo-Euclidean space. Then we can consider that u = (u!,...,u’V) are certain
flat coordinates of the metric g;;(u) on M¥. In flat coordinates, the metric is a constant nondegenerate

symmetric matrix n;;, 7:;; = i, Mi; = const, det(n;;) # 0, and the Codazzi equations ([@2) have the form

Owaij  Owa,ik

ouk  Oud (44)
Therefore, there locally exist some functions xq(u), 1 < a <L, 1 <4< N, such that
aon,i
Wa,ij(u) = ud . (45)
From symmetry of the second fundamental forms wq ;j(u) = wa,ji(u), we have
8Xa,i _ 6Xa,j
oud — Out (46)
Therefore, there locally exist some functions 1, (u), 1 < « < L, such that
M P ta
on,i(u) = Out’ Wa,ij (’U,) = Ouiows (47)

We have thus proved the following important lemma.

Lemma 4.1 [06], [7] All the second fundamental forms of each flat torsionless submanifold in a pseudo-
Euclidean space are Hessians in any flat coordinates in any simply connected domain on the submanifold.

4.3 Fundamental nonlinear equations for flat torsionless submanifolds in
pseudo-Euclidean spaces

It follows from Lemma [A.T] that in any flat coordinates, the Gauss equations (@Il have the form

L L
Sy et (Lt Pen Ove O0s ) (4.8)
a=14=1 Quidur Quiout  duldu! duidu” ’

and the Ricci equations ([@3]) have the form

N N
> > 0 o 0% e 05 \ _, (4.9)
Outouk Ouiou!  Outdu! Ouldu* ’

i=1 j=1
where 1"/ is inverse to the matrix 7;;, 7"*ns; = d;.

Theorem 4.1 [B]-[7] The class of N-dimensional flat torsionless submanifolds in (N + L)-dimensional
pseudo-FEuclidean spaces is described (in flat coordinates) by the system of nonlinear equations (8, ([EI)
for functions q(u), 1 < a < L. Here, n¥ and u®® are arbitrary constant nondegenerate symmetric ma-
trices, n7 = 1t ni = const, det(n”) # 0, u® = const, u*? = Pl det(u™?) # 0; the signature of the
ambient (N + L)-dimensional pseudo-Euclidean space is the sum of the signatures of the metrics n"/ and
po?; 1= ds? = niduldu’ is the first fundamental form, where n;; is inverse to the matriz n', n'*ny; = 6;-,
and 11, = (0% /(0utdu?))duidu?, 1 < a < L, are the second fundamental forms given by the Hessians of
the functions o (u), 1 < a < L, for the corresponding flat torsionless submanifold.
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According to the Bonnet theorem, any solution 1, (u), 1 < a < L, of the nonlinear system (Z3]), (£9)
determines a unique (up to motions) N-dimensional flat torsionless submanifold of the corresponding (N +L)-
dimensional pseudo-Euclidean space with the first fundamental form 7;;du’du’ and the second fundamental
forms wq (u) = (0% /(Outdu?))du’du?, 1 < a < L, given by the Hessians of the functions 1, (u), 1 < a < L.
It is obvious that we can always add arbitrary terms linear in the coordinates (u!,...,u") to any solution of
the system (L38]), (@3], but the set of the second fundamental forms and the corresponding submanifold will
be the same. Moreover, any two sets of the second fundamental forms of the form wq ;;(u) = 821, /(Ou'Ou?),
1 < a < L, coincide if and only if the corresponding functions 9, (u), 1 < a < L, coincide up to terms linear
in the coordinates; hence we must not distinguish solutions of the nonlinear system (8], (£9) up to terms
linear in the coordinates (ul, ..., u®).

5 Integrability of the nonlinear equations for flat torsionless
submanifolds in pseudo-Euclidean spaces

5.1 Linear problem with parameters for the nonlinear equations describing
all flat torsionless submanifolds in pseudo-Euclidean spaces

Consider the following linear problem with parameters for vector functions da(u)/0u’, 1 < i < N, and b, (u),
1<a<L: )
9%a ob , da
_ af B o kj y
Suigw — MM waii(Wbs(w), o5 = piwa,i (W) 5 g (5.1)

where 7%, 1 < 4,57 < N, and u®?, 1 < o, 8 < L, are arbitrary constant nondegenerate symmetric matrices,
N =t nY = const, det(n*) # 0, u®? = const, u*? = pP, det(u*?) # 0; X and p are arbitrary constants
(parameters) [7]. Of course, only one of the parameters is essential (but it is really essential). It is obvious
that the coefficients wq (1), 1 < a < L, here must be symmetric matrix functions, wei; (%) = wa,ji(w).

The consistency conditions for the linear system (G.I]) are equivalent to the nonlinear system (4.8]), (£.9)
describing the class of N-dimensional flat torsionless submanifolds in (N + L)-dimensional pseudo-Euclidean
spaces. Indeed, we have

d3a ow ob
_ af a,ij af . B _
Guowank ~ M gk W) F AN e (W) g
OWa i Oa
_ o8 Wasig aB, Is Oa
A 0 ba(u) + A u*Pwa,ij(w)pn wﬂ’ks(u)aul
0wy i Oa
= ap Paiik af . ls ) el
=Au B bg(u) + A P wairn(w)pn*ws, js(u) Sl (5.2)
whence we obtain 5 @ 5 W
Wa,ij(U)  OWa,ik(U
ouk  Oud (5-3)
and
1P wa i (W)ws ks (1) = P wa ik (u)ws,js(w). (5.4)
Moreover,
02b,, B 3wa” Oa n () 9%a B
Gt = P g gk TP Wi (W) 5 =
8waz Oa
= o 5 o 1w (WA 0 ()b () =
&ua Oa
=7 W” gt P wa i (WA P wn ki(w)bs (), (5.5)
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whence we have
6&)&71']‘ 6&)&71]‘

= - 5.6
oul du? (56)
and ‘ ‘
N we 15 (W)wry g1 (w) = 7w 15 (W)wny ki(u). (5.7)
It follows from (B3] and (56) that there locally exist some functions ¢, (u), 1 < o < L, such that
¢

Then the relations (54 and (5.7) are equivalent to the nonlinear system [L3]), [@3)) for the functions 1) (u),
1<a<L.

Theorem 5.1 [7] The nonlinear system (A8)), [A9) is integrable by the inverse scattering method.

5.2 Integrable invariant description of flat torsionless submanifolds in
pseudo-Euclidean spaces

In arbitrary local coordinates, we obtain the following integrable description of all N-dimensional flat tor-
sionless submanifolds in (N + L)-dimensional pseudo-Euclidean spaces.

Theorem 5.2 [0], [7] For each N-dimensional flat torsionless submanifold in an (N + L)-dimensional
pseudo-Euclidean space with a flat first fundamental form g;;(u), there locally exist functions Yo (u), 1 <
a < L, such that the second fundamental forms have the form

(Wa)ij(u) = ViV;ta, (5.9)

where V; is the covariant differentiation defined by the Levi-Civita connection generated by the metric g;;(u).
The class of N-dimensional flat torsionless submanifolds in (N + L)-dimensional pseudo-Euclidean spaces
is described by the following integrable system of nonlinear equations for the functions ¥ (u), 1 < a < L:

N N
D VitV Vithg = Y V'VithsVuVitda, (5.10)
n=1 n=1
L L L L
Z Z pPVV o Vi Vig = Z Z 1PV VoV Vitg, (5.11)
a=1 =1 a=1 =1

where V; is the covariant differentiation defined by the Levi-Civita connection generated by a flat metric
gij(u), V= g (u)Vs, g*(u)gs;(u) = 5; Moreover, in this case, the systems of hydrodynamic type

up, = (V'Vita)uj, 1<a<l, (5.12)

are commuting integrable bi-Hamiltonian systems of hydrodynamic type.

Any solution s (u), 1 < a < L, of the integrable nonlinear system (&10), (E11) determines a unique (up
to motions) N -dimensional flat torsionless submanifold of the corresponding (N + L)-dimensional pseudo-
Euclidean space with the first fundamental form g;j(u)du‘du? and the second fundamental forms (5.9).
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6 Reduction to the associativity equations of two-dimensional
topological quantum field theories and potential flat
torsionless submanifolds in pseudo-Euclidean spaces

6.1 Special case of flat torsionless submanifolds, when the Gauss and the Ricci
equations coincide, and the associativity equations

We now also find some natural and very important integrable reductions of the nonlinear system (4.8])), (@3]
We show that the class of flat torsionless submanifolds in pseudo-Euclidean spaces is quite rich, and we
describe a nontrivial and very important family of submanifolds of this class. This family is generated by
the associativity equations of two-dimensional topological quantum field theories (the WDVV equations).
First of all, we note that although the Gauss equations (£8)) and the Ricci equations (£9) for flat torsionless
submanifolds in pseudo-Euclidean spaces are essentially different, they are fantastically similar. The case
of a natural reduction under which the Gauss equations (@8] and the Ricci equations (@) merely coincide
is of particular interest. Such a reduction readily leads to the associativity equations of two-dimensional
topological quantum field theories.

Theorem 6.1 [5|-[7] If L = N, u% = en, 1 < i,5 < N, ¢ is an arbitrary nonzero constant, and
Yo(u) = 0®/0u, 1 < a < N, where ® = ®(ul,...,u"), then the Gauss equations [A8) coincide with the
Ricci equations [@3), and each of them coincides with the associativity equations (ZI08) of two-dimensional
topological quantum field theories (the WDV'V equations) for the potential ®(u).

6.2 Potential flat torsionless submanifolds in pseudo-Euclidean spaces and
the associativity equations

Definition 6.1 [7] A flat torsionless N-dimensional submanifold in a 2N-dimensional pseudo-Euclidean
space with a flat first fundamental form g;;(u)du’du? is called potential if there always locally exist a cer-
tain function ®(u) in a neighborhood on the submanifold such that the second fundamental forms of this
submanifold locally in this neighborhood have the form

(wi)jk(u)dujduk = (V,;V,;Vi®(u)) du’duF, 1<i<N, (6.1)

where V; is the covariant differentiation defined by the Levi-Civita connection generated by the flat metric
9ij (w)-

Theorem 6.2 [B]-[7] The associativity equations of two-dimensional topological quantum field theories de-
scribe a special class of N-dimensional flat submanifolds without torsion in 2N -dimensional pseudo-Fuclidean
spaces, namely, exactly the class of potential flat torsionless submanifolds.

According to the Bonnet theorem, any solution ®(u) of the associativity equations (216 (with an arbi-
trary fixed constant metric 7;;) determines a unique (up to motions) N-dimensional potential flat torsionless
submanifold of the corresponding 2/N-dimensional pseudo-Euclidean space with the first fundamental form
nijdu’du’ and the second fundamental forms wy,(u) = (93®/(Ou"Ou'du?))du’du’ given by the third deriva-
tives of the potential ®(u). Here, we do not distinguish solutions of the associativity equations (ZI6]) up to
terms quadratic in the coordinates wu.

Theorem 6.3 [6], [7] On each potential flat torsionless submanifold in a pseudo-FEuclidean space, there is
a structure of a Frobenius algebra given (in flat coordinates) by the flat first fundamental form n;; and the
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Weingarten operators (As)i(u) = —n™ (ws)r; (u):

0
(eirej) =mij,  eioej =cji(u)er, e Ewt
cfj (ut,...,uV) = —(Ai)f(u) = nks(wi)sj (ut, ..., uv). (6.2)
In arbitrary local coordinates, this Frobenius structure has the form
_ _ ok _ 9
(eirej) = gij,  eioej =cij(uler, e =5,
cfj(ul, . ,uN) = —(Al)l;(u) = gks(ul, e uN)(wi)Sj(ul, . ,uN), (6.3)

where ' (u) is the contravariant metric inverse to the first fundamental form gi;(u), g"*(u)gs;(u) = 0%, and
(wi)ij(w)du'du?, 1 < k < N, are the second fundamental forms.

Theorem 6.4 [0], [7] Each N-dimensional Frobenius manifold can be locally represented as a potential flat
torsionless N -dimensional submanifold in a 2N -dimensional pseudo-Euclidean space.

7 Realization of Frobenius manifolds as submanifolds in
pseudo-Euclidean spaces

It is important to note that we have at least two essentially different possibilities for signature of the corre-
sponding ambient 2 N-dimensional pseudo-Euclidean space, namely, we can always consider the ambient 2/N-
dimensional pseudo-Euclidean space of zero signature, and we can also consider the ambient 2 N-dimensional
pseudo-Euclidean space whose signature is equal to doubled signature of the metric n;;. Thus, if the metric n;;
of a Frobenius manifold has a nonzero signature, then according to our construction we have two essentially
different possibilities for realization of the Frobenius manifold as a potential flat torsionless submanifold.
Theorem 7.1 [8] For an arbitrary Frobenius manifold, which is locally given by a solution ®(u',... ,u™)
of the associativity equations [2.10), the corresponding potential flat torsionless submanifold in a 2N-di-
mensional pseudo-Fuclidean space that realizes this Frobenius manifold is given by the 2N -component vector

function r(ut, ..., uN) satisfying the following compatible linear system of second-order partial differential
equations:
ﬂ = cnkl&@, (7.1)
outdud OutOuI Ouk dul
9*n w03 or
duiow " 9uldwouk dul’ (72)
where n(ut, ..., uV) is a 2N-component vector function, c is an arbitrary nonzero constant (a deformation

parameter preserving the corresponding Frobenius structure). In particular, two essentially different cases
c¢=1 and ¢ = —1 correspond to ambient 2N -dimensional pseudo-Euclidean spaces of different signatures (if
the metric n;; has a nonzero signature). The consistency of the linear system (1)), ([2)) is equivalent to the
associativity equations ([2.10)).

8 General nonlocal Hamiltonian operators of hydrodynamic type

Now we consider applications of our construction to the theory of integrable systems, the theory of nonlocal
Hamiltonian operators of hydrodynamic type, the theory of compatible Poisson structures and the theory of
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bi-Hamiltonian integrable hierarchies of hydrodynamic type. Recall that the theory of nonlocal Hamiltonian
operators of hydrodynamic type was invented by the author and Ferapontov in 1990-1991 [11], [12] in
connection with vital necessities of the Hamiltonian theory of systems of hydrodynamic type proposed by
Dubrovin and Novikov [9] and developed by Tsarev [10]. In this paper we give an integrable description of
all nonlocal Hamiltonian operators of hydrodynamic type with flat metrics. This nontrivial special class of
Hamiltonian operators is generated by flat torsionless submanifolds in pseudo-Euclidean spaces and closely
connected with the associativity equations of two-dimensional topological quantum field theories and the
theory of Frobenius manifolds. The Hamiltonian operators of this class are of special interest for many
other reasons too. In particular, any such Hamiltonian operator always determines integrable structural
flows (some systems of hydrodynamic type), always gives a nontrivial pencil of compatible Hamiltonian
operators and generates bi-Hamiltonian integrable hierarchies of hydrodynamic type. The affinors of any
such Hamiltonian operator generate some special integrals in involution. The nonlinear systems describing
integrals in involution are of independent great interest. The equations of associativity of two-dimensional
topological quantum field theories (the WDVV equations) describe an important special class of integrals
in involution, a special class of nonlocal Hamiltonian operators of hydrodynamic type with flat metrics,
a special class of compatible local and nonlocal Poisson structures and important special classes of bi-
Hamiltonian integrable hierarchies of systems of hydrodynamic type. Moreover, we show that each flat
torsionless submanifold in a pseudo-Euclidean space (recall that this class of submanifolds is described in
our paper by an integrable system [7]) gives a set of integrals in involution, nontrivial local and nonlocal
Hamiltonian operators of hydrodynamic type with flat metrics, a pencil of compatible Poisson structures
and generates bi-Hamiltonian integrable hierarchies of systems of hydrodynamic type.

Recall that general nonlocal Hamiltonian operators of hydrodynamic type, namely, Hamiltonian operators
of the form

P9 = g9 (u(a)) - b () +Z€ () oz, (5)

where det(¢¥(u)) # 0, e” = £1,1 < n < L, u!,...,u" are local coordinates, u = (u,...,u"), u'(z)
1 <4 < N, are functions (fields) of one independent variable z, and the coefficients ¢/ (u), b (u), (wn)}(u),
1<4,5,k < N,1<n < L, are smooth functions of local coordmates were studied by Ferapontov in [12]
(see also [9], [11]).

Hamiltonian operators of the general form (8] (local and nonlocal) play a key role in the Hamiltonian
theory of systems of hydrodynamic type [9]-[12]. Recall that an operator M% is said to be Hamiltonian if
the operator defines a Poisson bracket

3

18
(1,7} = / MY s (8.2)

on arbitrary functionals I and J on the space of the fields u’(z), i.e., the bracket (82) is skew-symmetric
and satisfies the Jacobi identity.
It was proved in [12] that the operator (8] is Hamiltonian if and only if g%/ (u) is a symmetric (pseudo-
Riemannian) contravariant metric and the following relations are satisfied for the coefficients of the operator:
1) b7 (u) = —g"(w)I’, (u), where I/, (u) is the Levi-Civita connection generated by the contravariant
metric g”( ),
2) " (w) (wn)} (u) = 9]’“( ) (wn)i (w),

3) Vk(wn) (u) = Vj(wy)i(u), where Vi is the covariant differentiation generated by the Levi-Civita

connection T, (u) of the metric g (u),
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) R = S0 = (wa)i@)wa)h(w) = ()] (@) ()i (@) where

RZJz (u) = gis(U)Rikz (u)

is the Riemannian curvature tensor of the metric g (u),

5) [wn(u), wy (u)] = 0, i.e., the family (wn)}(u), 1 <n < L, of (1, 1)-tensors (affinors) is commutative.

Each Hamiltonian operator of the form (81 exactly corresponds to an N-dimensional submanifold with
flat normal bundle embedded in a pseudo-Euclidean space ENV L. Here, the covariant metric g;;(u) (for which
gis(u)g® (u) = 67) is the first fundamental form, and the affinors w,(u), 1 < n < L, are the Weingarten
operators of this embedded submanifold (g;s(u)(wy);(u) are the corresponding second fundamental forms).
Correspondingly, the relations 2)-4) are the Gauss—Codazzi equations for an N-dimensional submanifold
with zero torsion embedded in a pseudo-Euclidean space EV L [12]. The relations 5) are equivalent to the
Ricci equations for this embedded submanifold.

Having in mind further applications to arbitrary Frobenius manifolds, we prefer to consider general
nonlocal Hamiltonian operators of hydrodynamic type in the form

o d . Lok . d\ ! ,
P =g (o) 4+ )+ Y S bt (1) o lules 63

where det(g¥ (u)) # 0, ™" is an arbitrary nondegenerate symmetric constant matrix. Each operator of the
form (B3) can be reduced to the form (1)) (and conversely, each operator of the form (83]) can be obtained
from some operator of the form (1)) by a linear transformation w, (u) = ¢, @;(u) in the vector space of
affinors wy,(u), 1 < n < L; here ¢!, is an arbitrary nondegenerate constant matrix. Among all the conditions
1)-5) for the Hamiltonian property of the operator (8.1]), these transformations change only the condition 4)

for the Riemannian curvature tensor of the metric. The condition 4) for the operator (B3] takes the form

L L
B (w) = 30 7w ((wn)i0) () (w) = () () (wa)i ()
m=1n=1

and all the other conditions 1)-3) and 5) for the Hamiltonian property remain unchanged.
Consider all the relations for the coefficients of the nonlocal Hamiltonian operator ([83]) in a form conve-
nient for further use.

Lemma 8.1 [6] The operator (83), where det(g%(u)) # 0, is Hamiltonian if and only if its coefficients
satisfy the relations

9" =g¢", (8.4)
9a' g
;k—UJ bl (8.5)

jk jspik
gt = b,

9" (wn )] = ¢7% (wn)%,

(wn)5 (wim)§ = (Wi )5 (wn)3,
io i O(wp)k - s o O(wp)k i .
’ (aus) - gj bsk(wn)r = gJ g (6’11,5) - — g bék (wn)T, (89)
jk Jk . .
is (gbsr %b > +szbsk b;kbij _ Z Zumn is (wn)k (wm)J(wn)k) ) (810)
u us
m=1n=1
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9 Nonlocal Hamiltonian operators of hydrodynamic type with flat
metrics and special pencils of Hamiltonian operators

Let us consider the important special case of the nonlocal Hamiltonian operators of the form (§3]) when
the metric g% (u) is flat. Recall that each flat metric uniquely determines a local Hamiltonian operator of
hydrodynamic type (i.e., a Hamiltonian operator of the form (83]) with zero affinors) known as a Dubrovin—
Novikov Hamiltonian operator [9]. We prove that for each flat metric there also exist a remarkable class of
nonlocal Hamiltonian operators of hydrodynamic type with this flat metric and nontrivial affinors; more-
over, these Hamiltonian operators have important applications in the theory of Frobenius manifolds and
integrable hierarchies. First of all, note the following important property of nonlocal Hamiltonian operators
of hydrodynamic type with flat metrics. Recall that two Hamiltonian operators are said to be compatible if
any linear combination of these Hamiltonian operators is also a Hamiltonian operator [13], i.e., they form a
pencil of Hamiltonian operators and, correspondingly, they form a pencil of Poisson brackets.

Lemma 9.1 [6] The metric g*(u) of a Hamiltonian operator of the form [B3) is flat if and only if this
operator defines the pencil

Pl = A (a9 b ) k) +

L L ) d —1 )
F oY Yt (5) o i, (0.1

m=1n=1

of compatible Hamiltonian operators, where A1 and Ao are arbitrary constants.

Indeed, if the operator (B3] is Hamiltonian, then its coefficients satisfy the relations (84)—(&I0). It is
obvious that in this case the relations [84)—(83) for the operator (A1) are always satisfied for any constants
A1 and A, and the relation (BI0) is satisfied for any constants A1 and Mg if and only if the left- and right-hand
sides of this relation are zero identically.

It follows from the relations ([84)—(8H) for the Hamiltonian operator (83) that the Riemannian curvature
tensor of the metric g%/ (u) has the form

Jk Jk » ) .
R () = g7 ()RS ) = g7 o) G = G ) + 00 b ) A ). (9.2

Consequently, if the metric ¢g*/(u) of a Hamiltonian operator of the form (83) is flat, i.e., R¥*(u) = 0, then
the relation (8I0) becomes

Do D um g ((win)d(w) (wn)E () = (w4 (w) (wn) () = 0.

Thus the metric ¢ (u) of a Hamiltonian operator of the form (B3] is flat if and only if the left- and right-
hand sides of the relation [8.1I0) for the Hamiltonian operator (83]) are zero identically. In this case, the left-
and right-hand sides of the relation (8I0) for the operator (@) are also zero identically for any constants
A1 and Mg, i.e., we obtain a pencil of compatible Hamiltonian operators (@.I]). Note also that for the pencil
of Hamiltonian operators P)Z\]1 A, given by the formula @I it readily follows from the Dubrovin—Novikov

theorem [9] applied to the local operator PfJO that the metric g%/ (u) is flat. Lemma [@.]is proved.

17



Thus if the metric g% (u) of a Hamiltonian operator of the form (8.3) is flat, then the operator

- L L . g\t ‘
R = 30 S i wiutoid () o (wniu(el)es (9.3

m=1n=1

is also a Hamiltonian operator obtained by the degeneration as Ay — 0. Moreover, in this case, this
Hamiltonian operator is always compatible with the local Hamiltonian operator of hydrodynamic type (the
Dubrovin—-Novikov operator)

Pily = g (u(e)) - + b3 (u(a)) . (9.4)

The compatible Hamiltonian operators (@.3) and ([@4]) always generate the corresponding integrable bi-
Hamiltonian hierarchies. We construct these integrable hierarchies further in Section

10 Integrability of structural flows

We recall that systems of hydrodynamic type

n

T (wn); (wyud, 1<n<L, (10.1)
are called structural flows of the nonlocal Hamiltonian operator of hydrodynamic type (83) (see [12], [14]).

Lemma 10.1 [6] All the structural flows (IAT) of any nonlocal Hamiltonian operator of hydrodynamic type
with flat metric are commuting integrable bi- Hamiltonian systems of hydrodynamic type.

Maltsev and Novikov proved in [14] (see also [12]) that the structural flows of any nonlocal Hamiltonian
operator of hydrodynamic type (B3] are always Hamiltonian with respect to this Hamiltonian operator.
Let us consider an arbitrary nonlocal Hamiltonian operator of hydrodynamic type (B3] with a flat metric
g% (u) and the pencil of compatible Hamiltonian operators (@.I)) corresponding to this Hamiltonian operator.
The corresponding structural flows are necessarily Hamiltonian with respect to each of the operators in the
Hamiltonian pencil (@) and, consequently, they are integrable bi-Hamiltonian systems.

11 Integrable description of nonlocal Hamiltonian operators of
hydrodynamic type with flat metrics

Let us describe all the nonlocal Hamiltonian operators of hydrodynamic type with flat metrics. The form
of the Hamiltonian operator (B3)) is invariant with respect to local changes of coordinates, and also all the
coefficients of the operator are transformed as the corresponding differential-geometric objects. Since the
metric is flat, there exist local coordinates in which the metric is reduced to a constant matrix %, % = const,
det(n¥) # 0, n9 = 7%, In these local coordinates, all the coefficients of the Levi-Civita connection are zero,
and the Hamiltonian operator has the form

L L —1
=i Ly 35 @i uteed () o @R (11.1)

Description of nonlocal Hamiltonian operators of hydrodynamic type with flat metrics coincides with de-
scription of flat torsionless submanifolds in pseudo-Fuclidean spaces.
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Theorem 11.1 [5], [6] The operator (ILI), where n¥ and ™" are arbitrary nondegenerate symmetric
constant matrices, is Hamiltonian if and only if there exist functions ¥, (u), 1 <n < L, such that

~ \1 18 62¢"
(@n)j(u) = 1" 525 (11.2)

and the integrable system ([@8)), [@I) of nonlinear equations describing all flat torsionless submanifolds in
pseudo-FEuclidean spaces is satisfied.

The relations ([84)-([®H) for any operator of the form (ITI) are automatically fulfilled, and the relation
[®X3) for any operator of the form (I has the form

O(tn)y _ O(wn)§

= 11.3
ou® our (11.3)
and, consequently, there locally exist functions ¢ (u), 1 <i < N, 1 <n < L, such that
~ \i Il
(Wn)j(u) = 55 (11.4)
Then relation (87) becomes
o j il
18 n — S n 11'5
us T Bus ( )
or, equivalently,
0 is , 0 js .

Oul out
where the matrix 7;; is inverse to the matrix n', n;sn* = 517 . It follows from the relation (TT6) that there
locally exist functions ¢, (u), 1 <n < L, such that

S __ 62/]77,

Thus 5%
. o . "
P =T Gy (@n)j () =n" Ousous”

In this case, the relations (88) and (8I0) become [@9) and (L8] respectively.

The nonlinear equations (@8] and [@9) describing all nonlocal Hamiltonian operators of hydrodynamic
type with flat metrics are exactly equivalent to the conditions that a flat N-dimensional submanifold with
flat normal bundle, with the first fundamental form 7;;du’du? and the second fundamental forms w,, (u) given
by Hessians of L functions ¢, (u), 1 <n < L,

(11.8)

%y,
outoud

is embedded in an (N + L)-dimensional pseudo-Euclidean space.

dutdu?

wp(u) =

12 Integrable description of a special class of pencils of
Hamiltonian operators

Now we give an integrable description of a special class of pencils of Hamiltonian operators and a special
class of integrable bi-Hamiltonian hierarchies of hydrodynamic type.
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Theorem 12.1 [6] If functions ¥y (u), 1 < n < L, are a solution of the integrable nonlinear system (L)),
[@Q), then the systems of hydrodynamic type (the structural flows of the corresponding nonlocal Hamiltonian
operator of hydrodynamic type with flat metric)

2
i s O0%n j

up, =05 g 5l 1<n<IL, (12.1)
are commuting integrable bi-Hamiltonian systems of hydrodynamic type. Moreover, in this case the nonlocal
operator

-1
Pom 4 ( d Py,
” = e — S 12.2
mzlnzl A durdur ' \ dz ° durdus ' (12:2)

is also a Hamiltonian operator, and this nonlocal Hamiltonian operator is compatible with the constant
Hamiltonian operator

y - d

M) =n"—.

2 n dz

In arbitrary local coordinates, we obtain the following integrable description of all nonlocal Hamiltonian
operators of hydrodynamic type with flat metrics and the corresponding pencils of Hamiltonian operators.

(12.3)

Theorem 12.2 [6] The operator B.3) with a flat metric g% (u) is Hamiltonian if and only if sz(u) =
—g" (W), (u), where TY, (u) is the flat connection generated by the flat metric g* (u), and there locally exist
functions ¥, (u), 1 <n < L, such that

(wn)5(u) = V'V 1, (12.4)
and the integrable system (510), (5I1)) of nonlinear equations describing all flat torsionless submanifolds in
pseudo-Euclidean spaces is satisfied. In particular, in this case the operator

i ij d is j
M, = A (o) - g )T ) ) +
L L d —1
mny7i L e 7 s 192.
+ AQW;;H ViV thmu® <d$> o VIV il (12.5)

is a Hamiltonian operator for any constants A1 and Az, and the systems of hydrodynamic type
uj, =V'Vibpul, 1<n<L, (12.6)
are always commuting integrable bi-Hamiltonian systems of hydrodynamic type.

Hence, each flat torsionless submanifold in a pseudo-Euclidean space generates a nonlocal Hamiltonian
operator of hydrodynamic type with flat metric, gives a special class of pencils of Hamiltonian operators and
special integrable bi-Hamiltonian hierarchies of hydrodynamic type. Now we construct an infinite integrable
bi-Hamiltonian hierarchy of hydrodynamic type generated by an arbitrary flat torsionless submanifold in a
pseudo-Euclidean space.

13 Integrable hierarchy generated by an arbitrary flat torsionless
submanifold in pseudo-Euclidean space

Consider the recursion operator

L L 2 . d —1 821/) d -1
mn zp s n s el
Rj = (My(Mo)” Z ZH ('“)upaukum (dw) ® dwous " <d:v> (13.1)

m=1n=1
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corresponding to the compatible Hamiltonian operators (I2.2) and (IZ3)). Let us apply this recursion
operator (I3]) to the system of translations with respect to z,

ul = ul. (13.2)

Each system in the hierarchy .
uy, = (R°)jul, s€, (13.3)

is a multi-Hamiltonian integrable system of hydrodynamic type. In particular, each system of the form

uj, = R;ué, (13.4)
i.e., the system
L L —1
i mn, 1 821/}7?1 k d 82¢" i, .S
o T ;;M " G (E) ° G e (135)
is integrable.
Since 0 0% 03 0% 0 0%
) = — gy o = — g 13.6
ou” (8u18u5u ) oui dusour " * ourdus  Ou® (8u38u’“u ) ’ (13.6)
there locally exist functions F,(u), 1 <n < L, such that
821/)71 . o F,, 31/)71
- J = F, = u’ n- 13.
uidus " ous’ o —¢ (13.7)
Thus the system of hydrodynamic type (I3:5) has the local form
mn, 1 82"/}771 k
utl Z Z/’L p 8 pauk Ug- (138)

m=1n=1

This system of hydrodynamic type is bi-Hamiltonian with respect to the compatible Hamiltonian operators

([[2.2) and [I2.3):

L L —1
] wm k d 821/171 5H1
[— mn, ip “ s
Ut mzzlngl'u ' Bul’aukuw <d:v> (8uT6uSuw6uj(x) ’ (13.9)
1 ) .
H, = /hl(u(x))daj, hi(u(x)) = Emjul(:zr)uj (x), (13.10)
 d oH,
i ij U722 _
G ety e @ (1811

since in our case there always locally exists a function ho(u) such that

L L
mn 62’¢m _ a2h2
2D 1" g (W) = G (13.12)

m=1n=1
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Indeed, we have

0t

P L L 621/% L

ol Z Z H duiour En - Z aulauﬂauk Fudwon W+
, 0%y, OF, . OPUm,
oudduk dut mz_ Z B uiouiouk Fnu) +

L L

t2 2

L L 8 1/}m 821/}77. s < < mn 83¢m

Z: g WOk duiows Z ZH Outoul Ouk Fu(u) +
L L

t2 2

n Pm Pty

u
Ou Out Oukous '

(13.13)

where we have used the relation (£8]). Consequently, by virtue of symmetry with respect to the indices i
and j, we obtain

9 L L 9%y
Oui <Z Z“mnaujaZkF"(“)> - <Z donm uza:k Fn(u )> ’ (13.14)

m=1n=1 m=1n=1

i.e., there locally exist functions ag(u), 1 < k < N, such that

L L
mn 621/]771 _ 60/19
> w Sipr (1) = 52 (13.15)

By virtue of symmetry with respect to the indices j and k, we obtain

Oay  Oa;
— = = 13.16
Oud  Ouk’ ( )
i.e., there locally exists a function hg(u) such that
Ohs
Thus
82¢m 8a’k 82h/2
umr n = =—". 13.18
mZ1 nzl Oul Quk Fn(u) Oud  Quiduk ( )
Consider the next equation in the integrable hierarchy ([I3.3)):
ut, = (R?)ju), =
L L 2 —1 2 -1
:sz"wawmuki o OUn s (A 4 OHy
m:ln:lu T gurdur ' \ dz Ouddus " \ dx T our(x)
L L -1
0% d 0% .. Oh
- mnpip 2 _Tm k(2 Dyt 2 13.19
WZ:M;H T ouraur (dw) ® owous =T ur ( )
Let us prove that in our case there always locally exist functions G, (u), 1 < n < L, such that
0%, .. .O0h oG,
Yo jrOh2 (13.20)

8uj8u577 ur Ous’
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Indeed, we have

i 821/)71 ir ahQ o 831/}71 gr ahQ 821/)71 ir 82h2 o
OuP \ ouI Busn A Busaul’n our Bujausn ourdur

PO P, & it P B
- 8uj6u58u1’77 our + Bujaus ; ; ou’ OuP Fi(u) | =
O%n__ jrOh2

- 8uj8u58upn our +

L
b 0%y 0%y,
kL, jr n _
Z;M " S oul durgur )

831/}77, jrahQ kl, jr Y ¥k 8 1/}]6 321/%

s 20 T
M“

o our | dur = Dutow OuOuP 1(u)
(93’(/1” J ah2 - kl, j 62¢k a2’(/177,
= dwowow’ ' F 13.21
Oud Ous OuP U ou’ + Z weon usou” a’U,J OuP (U), ( 3 )

E
Il
—

l

1

where we have used the relation ([{9) and the symmetry of the matrix 1’". Thus we have proved that the
expression under consideration is symmetric with respect to the indices p and s, i.e.,

d [ n  ;,0hy o ( *n , 0h

Consequently, there locally exist functions G, (u), 1 < n < L, such that the relation (I3.20) is satisfied, and
therefore, we have proved that the second flow in the integrable hierarchy (I3.3)) has the form of a local
system of hydrodynamic type

PG 821/”” y 13.23
utg Z Z 14 aupauk um ( . )

m=1n=1

Repeating the preceding argument word for word, we prove by induction that if the functions v, (u),
1 < n < L, are a solution of the system of equations (4.8), (£9]), then for each s > 1 and for the corresponding
function hs(u(x)) (starting from the function hy(u(z)) = $mi;u’(z)u (z)) there always locally exist functions
Ffls)(u), 1 <n < L, such that
¢, . Ohy R

- = 13.24
duiouwr dur ouP ( )
and there always locally exists a function hgyq(u(z)) such that
L L
821/Jm () 0?hs i1
z_: z_: dwarin W= Guiger (13.25)

Above we have already proved that this statement is true for s = 1 (in this case, in particular, Ffll) =F,,
F7(12) = G,). It can be proved in just the same way that if this statement is true for s = K > 1, then it is

true also for s = K + 1 (see (I313)-([318) and (321, (I3:22])). Thus we have proved that for each s > 1

the corresponding flow of the integrable hierarchy (I3.3)) has the form of a local system of hydrodynamic
type

mn,.t 8 1/)
ui = Z Z“ nP F(*) >aupauk uk. (13.26)

m=1n=1
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All the flows in the hierarchy (I33)) are commuting integrable bi-Hamiltonian systems of hydrodynamic type
with an infinite family of local integrals in involution with respect to both Poisson brackets:

i ij 0Hs
uts :MIJ 6U]( ) - {U( ) H }17 H / €, (1327)
. SH .
i @ s+1 i _
= MY SO — (@) e, Hor = / hor (u(2))d, (13.25)
{Hp, H:}1 =0, {Hp H.}2=0, (13.29)

and the densities hs(u(x)) of the Hamiltonians are related by the recursion relations (I3:24)), (I3:28]), which
are always solvable in our case.

14 Locality and integrability of Hamiltonian systems with
nonlocal Poisson brackets of hydrodynamic type

Let the functions ¢, (u), 1 <n < L, be a solution of the integrable system (.8)), ([L.9) of nonlinear equations
describing all flat torsionless submanifolds in pseudo-Euclidean spaces; in particular, in this case the nonlocal
operator M’ given by the formula (I2:2) is Hamiltonian and compatible with the constant Hamiltonian

operator My? (I2.3)).
Consider the Hamiltonian system

= MY

1 Su J( )_{u( )7H}1 (141)

with an arbitrary Hamiltonian of hydrodynamic type

H:/h(u(z))d:z:. (14.2)

Ferapontov proved in [I2] that a Hamiltonian system with a nonlocal Hamiltonian operator of hydrodynamic
type (81) and with a Hamiltonian of hydrodynamic type (I42) is local if and only if the Hamiltonian is
an integral of all the structural flows of the nonlocal Hamiltonian operator. This statement is also true for
Hamiltonian operators of the form (@.3), and moreover, it is always true for any weakly nonlocal Hamiltonian
operators (see [14]). We prove that for the nonlocal Hamiltonian operators M;? (IZ2) given by solutions of
the integrable system (L8], [£9) this condition on the Hamiltonians is sufficient for integrability, i.e., all the
corresponding local Hamiltonian systems ([4.1l), (I£2) are integrable bi-Hamiltonian systems.

Lemma 14.1 [6] The system [@41), (I&2) is local if and only if the density h(u(z)) of the Hamiltonian
satisfies the linear equations

821/)n j h 821/)71 . 0%h
et/ = " l<n<L. 14.
0uwiow | ourour  dwowr ourous’ SN (14.3)

Consider a system (4], (I4.2):

SH Lo 9%y d P, Ok
ij o mn,_ip m k[ 2 n
=M Sud(z) Z ZN T gurduk e (dx) (77 Ourdus 18u3> (144)
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The system ([44) is local if and only if there locally exist functions P, (u), 1 < n < L, such that

%y ;. Oh 0P,
- " = — 14.
dwouws | dur . ous’ (14.5)
i.e., if and only if the consistency relation
0 0%y, . Oh 0 0%, . Oh
— (= - i 14.
ouP <8u3 dus dur ) ou? <8u3 ur ur ) (14.6)
is satisfied. Then the system (IZ44) takes a local form
0H N~y 9%y
Mz] — mmn,. ip m . k 14

The cousistency relation (I4.0) is equivalent to the linear equations (IZ43]).

Theorem 14.1 [6] If the functions ¥, (u), 1 < n < L, are a solution of the integrable system @8], (L9)
and the corresponding Hamiltonian system (I4T)), ([42) is local, i.e., the density h(u(z)) of the Hamiltonian
satisfies the linear equations (I43), then this Hamiltonian system is integrable and bi-Hamiltonian.

Proof. In this case the system ([[4.1]), (I£2) takes the form (I47T), (IZH). Let us prove that there always
locally exists a function f(u) such that

;é w ﬂgﬁk Py (u) = %. (14.8)
Indeed, we have
8(21' <WZL_:1 nz: p 5(1231221@ (“)> = WZL_:I nz: an%&(u) +
" mzL_:l nz: naizngk 5?2,) : (;ZLT mzl nzl pmn au?ai%uk Py (u) +
' mzL—:l ,,Z: ’ 3(9:]%21' Bij:gzp " (‘;{Zi” ’ (14.9)

where we have used the relation (£8]). Consequently, by virtue of symmetry with respect to the indices i

and j, we obtain

ou’

(3 S

m=1n=1

i.e., there locally exist functions bg(u), 1 < k < N, such that

321/1m
Buﬂ Ouk

>3y

m=1n=1
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Po(u) = %- (14.11)



By virtue of symmetry with respect to the indices j and k, we obtain

oby  Ob;

0wl ouF’ (14.12)
i.e., there locally exists a function f(u) such that
bi () = %' (14.13)
Thus we have
S L P by, o2 f
mzlnzl dwour " = ui = Guioer (14.14)

Consequently, the system (I4.]), (I£2) in the case under consideration can be presented in the form

_nbzigkZZM%J(SJ()_{“()F}% = /f (14.15)

i.e., it is an integrable bi-Hamiltonian system with the compatible Hamiltonian operators ij (22) and
MY (TZ3).

Thus we have an integrable description (@8], ([@9) and [IZ3) of the class of local Hamiltonian systems
of the form ([I41)), (I£2) (we have proved that each of these local Hamiltonian systems is integrable and
bi-Hamiltonian).

15 Systems of integrals in involution generated by arbitrary flat
torsionless submanifolds in pseudo-Euclidean spaces

The nonlinear equations of the form ([@9) and (I43)) are of independent interest. They play an important
role and have a very natural interpretation.

Lemma 15.1 [6] The nonlinear equations (£9) are equivalent to the condition that the integrals
v, = /wn(u(x))dx, 1<n<L, (15.1)

are in involution with respect to the Poisson bracket defined by the constant Hamiltonian operator Méj @23,
i.e., the condition

{U,,,U;,}2=0, 1<nm<L. (15.2)
Proof. Indeed, we have
[ d O[O PPy,
W Wb = [ 5" 050 = | Gui " Burour =0 (15:3)

Consequently, the integrals are in involution, i.e.,
{U,, ¥t =0, (15.4)
if and only if there exists a function Sy, (u) such that

8¢n ij 321/)m _ 8Snm
8uin AuIduF — Ouk

(15.5)
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i.e., if and only if the consistency relation

O (D PUw \ D (00 P 50
9l \ ot dwouk )~ 9uF \dui | duidd '
is satisfied. The consistency relation (I5.6]) is equivalent to the equations (3]).
Likewise, the equations (IZ3) are equivalent to the condition
{V,,H}2=0, H= /h(u(x))daz (15.7)

We note that the equations (5I0) are equivalent to the condition that L integrals are in involution with
respect to an arbitrary Dubrovin—Novikov bracket (a nondegenerate local Poisson bracket of hydrodynamic

type).

Theorem 15.1 If the functions ¥, (u), 1 < n < L, are a solution of the integrable system ([LJ)), [@I) of
nonlinear equations describing all flat torsionless submanifolds in pseudo-Fuclidean spaces, then the integrals
U, = [¢Yn(u x (IEJ) are in involution with respect to both the Poisson brackets given by the nonlo-

cal Hamzltoman opemtor MU [@22) and the constant Hamiltonian operator My ([I23), and therefore the
integrals are in involution wzth respect to the corresponding pencil of Poisson bmckets:

(U, U} =0, {U,,U,}o=0, 1<nm<L. (15.8)

Theorem 15.2 [6] If the functions ¥y (u), 1 < n < L, are a solution of the integrable system (&S], (£9),
then the corresponding Hamiltonian system [[A)), (IZ2]) is local if and only if it is generated by a family of
L+1 integrals in involution with respect to the Poisson bracket defined by the constant Hamiltonian operator

MY @Z3); namely,
n—/T/)n Ndz,1<n<L, H= / Ndx, {¥,,U,,}e=0, {¥,,H}>=0, 1<n,m<L. (15.9)

Moreover, in this case the system (A1), ([42)) is an integrable bi-Hamiltonian system and

(U, U} =0, {U,,H}; =0, 1<n,m<L. (15.10)

16 Systems of integrals in involution generated by the
associativity equations

An important special class of integrals in involution is generated by the associativity equations of two-
dimensional topological quantum field theory (the WDVV equations).

Theorem 16.1 [6], [I5] A function ®(u', ...,u™) generates a family of N integrals in involution with respect
to the Poisson bracket defined by the constant Hamiltonian operator My’ ([{23), namely, integrals whose
densities are the first-order partial derivatives of the function (the potential) ®(u)

I, = %m(m))dx, {In.In}2 =0, 1<n,m<N, (16.1)
u

if and only if the function ®(u) is a solution of the associativity equations (216]) of two-dimensional topological
quantum field theory (the WDV'V equations).

27



Such special families of integrals in involution (whose densities are the first-order partial derivatives
of a potential ®(u) and the potential ®(u) itself) with respect to special nonlocal Poisson brackets and
with respect to pencils of compatible Poisson brackets generated by the associativity equations will be also
considered further in Section I8 Note that we have constructed an infinite family of integrals in involution
with respect to both local and nonlocal Poisson brackets generated by an arbitrary flat torsionless submanifold
in a pseudo-Euclidean space, in particular, by an arbitrary Frobenius manifold, in Section

17 Associativity equations and nonlocal Poisson brackets of
hydrodynamic type

Since the associativity equations (2I6]) are a natural reduction (see Section [B]) of the integrable system
(#3), (@9) of nonlinear equations describing all flat torsionless submanifolds in pseudo-Euclidean spaces and
generating all nonlocal Hamiltonian operators of hydrodynamic type with flat metrics, each solution ®(u) of
the associativity equations (Z.I0]), which are known to be consistent and integrable by the inverse scattering
method and possess a rich set of nontrivial solutions (see [I]), defines a nonlocal Hamiltonian operator of
hydrodynamic type with a flat metric

N N —1
o d o PP d 93P
LY = pii mn,_ip, jr k s 17.1
K + Z Zn T gupgumdut (dx) ° Burdurous T (17.1)

m=1n=1

and even a pencil of compatible Hamiltonian operators

N N -1
. od o foati) d 93P
Lz_] — %] MNP I T R e — T 17.2
N = ALl i " Az Z Z N N <d:v) ® Qurdundus (172)

m=1n=1

where A\; and Ay are arbitrary constants. In particular, if ®(u) is an arbitrary solution of the associativity
equations ([2.10)), then the operator

N N -1
» o 93P d 03

Ly — mnip gr_ Y * k[ = S YL 17.3
0,1 mzzl ngl T S ook <d:v> C Durourous ( )

is a Hamiltonian operator compatible with the constant Hamiltonian operator

d

The converse is also true.

Theorem 17.1 The nonlocal operator Lé{l [@T3) is Hamiltonian if and only if the function ®(u) is a
solution of the associativity equations ([216]).

Therefore, for each solution of the associativity equations (ZI8) (in particular, for each Frobenius manifold)
we obtain the corresponding natural pencil of compatible Poisson structures (local and nonlocal) and the
corresponding natural integrable hierarchies (see Section [I3]).

Thus, for each Frobenius manifold there are a very natural nonlocal Hamiltonian operator of the form
([IT1)), a pencil of compatible Hamiltonian operators (I7.2)) and very natural integrable hierarchies connected
to the Frobenius manifold.

We have considered the nonlocal Hamiltonian operators of the form (83]) with flat metrics and came to
the associativity equations defining the affinors of such operators. A statement that is in some sense the
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converse is also true, namely, if all the affinors w, (u) of a nonlocal Hamiltonian operator (83) with L = N
are defined by an arbitrary solution ®(u) of the associativity equations (ZI6]) by the formula

23

(wn); (U) = Cisfgr‘ urowour’

where (%, §; are arbitrary nondegenerate constant matrices, then the metric of this Hamiltonian operator
must be flat. But, in general, it is not necessarily that this metric will be constant in the local coordinates
under consideration.

The structural flows (see [12], [14]) of the nonlocal Hamiltonian operator (IZ.I) have the form:

i, =" Dusunouk v
These systems are integrable bi-Hamiltonian systems of hydrodynamic type and coincide with the primary

part of the Dubrovin hierarchy constructed by any solution of the associativity equations in [I]. The condition
of commutation for the structural flows (T3] is also equivalent to the associativity equations (2.16)).

(17.5)

Theorem 17.2 For an arbitrary solution ®(u) of the associativity equations [216), each structural flow
{73 generates an integrable hierarchy of hydrodynamic type with the recursion operator given by the com-
patible Hamiltonian operators (IT3) and (IT4) (see the recursion operator (I31)) in a more general case);
each of these integrable hierarchies is local and bi-Hamiltonian with respect to the compatible Hamiltonian

operators (IT3) and (TA).

A great number of concrete examples of Frobenius manifolds and solutions of the associativity equations
is given in Dubrovin’s paper [I]. Consider here only one simple example from [I] as an illustration. Let
N = 3 and the metric n;; be antidiagonal

0 0 1
) =01 0], (17.6)
1 0 0
and the function ®(u) has the form
1 1
O(u) = §(U1)2U3 + §U1(U2)2 + fu®,u?).

In this case e is the unit in the Frobenius algebra ([ZI4]), (2I5), and the associativity equations (ZI8]) for
the function ®(u) are equivalent to the following remarkable integrable Dubrovin equation for the function

fu?,u?):
TR VEA N T i
O(u3)3 d(u?)20u? A(u?)3 u20(u3)?’ '
This equation is connected to quantum cohomology of projective plane and classical problems of enumerative
geometry (see [16]). In particular, all nontrivial polynomial solutions of the equation (I'Z.7)) that satisfy the
requirement of the quasihomogeneity and locally define a structure of Frobenius manifold are described by
Dubrovin in [I]:

1

1 2\2 2 1 o 1 2 1 2\2
f= Z(u )?(u?)? + @(UB)F’, f= g(u )Pu’ + g(u )?(u?)? + —210(U3)77 (17.8)
1 2 2 1 2\2 1 11
f= 6(“ )?(u?)? + 2—O(U )?(u?)® + —3960(U3) : (17.9)
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As is shown by the author in [I7] (see also [I8]), the equation (I7.7) is equivalent to the integrable
nondiagonalizable homogeneous system of hydrodynamic type

a 0 1 O a

b | = o o 1 b |, (17.10)

¢ ) —c 2b —a ¢ ) e

f 3f 3f
=4 R A— = 17.11
“ A(u2)3’ A(u?)20u3’ ¢ Ou20(u?)? ( )

In this case the affinors of the nonlocal Hamiltonian operator (I7I]) have the form:
_ _ _ 0 b c _ 0 ¢ b*—ac
(wi)i(u) =05, (w)j(u)=| 1 a b |, (w3)i(u)=1] 0 b c . (17.12)
0 1 0 1 0 0

For concrete solutions of the associativity equation (I71), in particular, for (IZ8)) and (IZ9), the cor-
responding linear systems (Il), (Z2]) giving explicit realizations of the corresponding Frobenius manifolds
as potential flat torsionless submanifolds in pseudo-Euclidean spaces can be solved in special functions; we
shall give the explicit realizations in a separate paper.

18 Associativity equations and special integrals in involution with
respect to nonlocal Poisson brackets of hydrodynamic type and
Poisson pencils

If the function ®(u',...,u") is an arbitrary solution of the associativity equations (ZI6), then the operator
Llof 1 (T73) is a Hamiltonian operator, and we can consider the corresponding Poisson bracket and integrals
in involution with respect to this Poisson bracket.

Theorem 18.1 [15] If the function ®(u',... , u") satisfies the associativity equations 2.18)), then the func-
tionals I, = [(0®/0u™)dz, n =1,...,N, [{61) are in involution with respect to the Poisson bracket given
by the nonlocal Hamiltonian operator Ly, (IT3), i.e.,

{In,Im}1 =0, n,m=1,...,N, (18.1)

where

, , o 3o d\ " 2P
7 7 __mn,ip, jr k s _
{w' (@), w ()} =00 OuPOumouk Yz (d:z:) (8uﬁ9u”8u5 Uz y)> ' (18.2)

The Poisson brackets {u'(x),u’ (y)}2 = 0¥ (z — y) given by the constant Hamiltonian operator LY, @)
and {u’(z), v’ (y) }1 given by the nonlocal Hamiltonian operator Lg'; (IZ.3) are compatible and form a pencil

M {ui(x), v (y) }1 + Aa{u'(z),u (y)}2 of Poisson brackets, where A; and Ay are arbitrary constants, so that
for any constants A\; and A, the bracket

{w' (@), 0 (1) harne = A{w (@), 07 () 1+ Ao{u' (2), v () }2

is a Poisson bracket.
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Corollary 18.1 [15] If the function ®(ul, ... u™) satisfies the associativity equations (Z.I6), then the func-
tionals I, = [(0®/0u™)dz, n = 1,...,N, [I6J) are in involution with respect to the pencil of Poisson
brackets {u'(x), v (y)}a; 2o = M{u®(2),w? (y)}1+Ao{ul(x),u’ (y)}2, where Ay and A2 are arbitrary constants.

We consider also the functional F' whose density is the potential ®(u!(z),...,uN (z)) itself:
F = /@(ul(aj), ulN(2)de. (18.3)

Theorem 18.2 [15] A function ®(u',...,u’N) generates a family of N +1 integrals in involution with respect
to the constant Poisson bracket {u'(x),u’(y)}2 = 1" (z — y), namely, the functional F ([I83) and the
functionals I,, = [(0®/0u™)dz, n =1,...,N, @61, {I,,In}2=0,1<n,m <N, {I,,F},=0,1<n<
N, if and only if the function ®(u',... u") satisfies the equations

Po . P e . PO
oukouw! Duiouroud | 0ulow! dwourour

(18.4)

The equations (I8.4]) have arised in a different context in the author’s papers [19]-[2I] and play an impor-
tant role in the theory of compatible Poisson brackets of hydrodynamic type, the theory of the associativity
equations and the theory of Frobenius manifolds.

Theorem 18.3 [15] If the function ®(ul, ... uV) satisfies the equations (I84)), then the functional F (I8.3)
and the functionals I, = [(0®/0u™)dz, n = 1,...,N, {61 are in involution with respect to the Poisson

bracket {u'(x),u’ (y)}1 given by the nonlocal Hamiltonian operator Lg{l @3).

Corollary 18.2 [15] If the function ®(u?, ..., u") satisfies the equations (I8.4)), then the functional F (I8.3)
and the functionals I,, = [(8®/0u™)dz, n =1,...,N, [IG.I) are in involution with respect to the pencil of
Poisson brackets {u’(z),u? (y)} .0 = M{ui(z), v (y)}1 + Xo{ui(z),uw (y)}2, where A1 and Xy are arbitrary
constants.
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