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The functional Schrodinger equation is used to study the quantum collapse of a gravitating, spherical
domain wall and a massless scalar field coupled to the metric. The approach includes backreaction
of pre-Hawking radiation on the gravitational collapse. Truncating the degrees of freedom to a
minisuperspace leads to an integro-differential Schrodinger equation. We define a “black hole”
operator and find its eigenstates. The black hole operator does not commute with the Hamiltonian,
leading to an energy-black holeness uncertainty relation. We discuss energy eigenstates and also
obtain a partial differential equation for the time-dependent gravitational collapse problem.

I. INTRODUCTION

Gravitational collapse is expected to result in the for-
mation of a black hole, which then evaporates by Hawk-
ing radiation [1]. During this process, any information
contained in the initial state is lost, since black hole evap-
oration leads to thermal radiation which is uncorrelated
with the initial state. If the initial state is chosen to be
a pure quantum state, the final state would be described
by a density matrix and would not be a pure state. The
evolution of a pure quantum state into a mixed state vi-
olates the tenets of quantum mechanics (e.g. [2]). These
problems of black hole formation, evaporation and infor-
mation loss have been central to discussions of combining
general relativity and quantum mechanics over the last
several decades.

A number of approaches have been made to resolve the
issues that arise in combining black holes and quantum
field theory, including more sophisticated calculations of
the emitted radiation, modifications of quantum mechan-
ics, modifications of quantum field theory, lower dimen-
sional calculations, loop gravity, and string theory (e.g.
for some reviews see [2, 3, 4, 5, 6]). Depending on the
approach and the new ingredient in the calculation, the
conclusions have varied, and no concensus has emerged
so far. The issues have become ever more pressing with
discussion of black hole formation in highly energetic col-
lisions in LHC [7, 8, 9] and by ultra-high energy cosmic
rays colliding with the atmosphere [10].

In contrast to earlier studies in which a black hole
spacetime is adopted as an arena for quantum field the-
ory, we wish to study the temporal development of an
initial state that does not contain a black hole. From the
laws of quantum mechanics, the initial state will evolve
unitarily in time. If unitary evolution leads to black hole
formation then, as has been described by Hawking and
others [1, 2], unitarity will be lost.

The 3+1 dimensional analysis in Ref. [11] used the
functional Schrodinger formalism to study the tempo-
ral evolution of a scalar field in the classical background
of a gravitating, collapsing, spherical domain wall. It
was found that the collapse was accompanied by quan-
tum radiation of scalar particles, called “pre-Hawking”
radiation, with a non-thermal spectrum. The analyses in
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FIG. 1: A picture of the system under consideration. A
spherical domain wall with radius R(t) collapses towards its
Schwarzschild radius, RS, and emits scalar radiation in the
process. Due to the emission, RS also decreases.

Refs. [11, 12] were clearly limited by their use of the semi-
classical approximation, in which the backreaction of the
scalar radiation on the gravitational collapse spacetime
is ignored. The purpose of the present work is to at-
tempt to remedy this shortcoming within the functional
Schrodinger formalism. The aim of the present work is
to provide a framework to study quantum gravitational
collapse beyond the semiclassical approximation. The
framework includes backreaction of the scalar radiation
on the collapse dynamics (see Fig. 1).

The specifics of the domain wall plus scalar field system
are not expected to be very important for the questions
we are interested in. For example, the Hamiltonian for
a collapsing wall that is close to forming a black hole re-
duces to the form for an ultra-relativistic particle [11],
which is expected to be true for any form of matter.
So the choice of a collapsing domain wall does not af-
fect the near-horizon dynamics. The scalar field can also
be thought of as representing one degree of freedom of
a photon or a graviton. One assumed property that is
special though, is the assumed masslessness of the scalar
field. If the scalar field has a mass and/or carries a global
or gauge charge, we do expect some differences that we
discuss briefly in Sec. VIII.
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In general, the Schrodinger formulation yields a
functional differential equation for the wavefunctional,
Ψ[gµν , X

µ,Φ, t], where gµν is the metric, Xµ the domain
wall position, and Φ the scalar field. We will truncate
this problem to minisuperspace, considering only spher-
ical domain walls described by a radial function, R(t),
the metric fixed to the Schwarzschild form though with
variable Schwarzschild radius, RS , and Φ decomposed
into modes with mode coefficients {ak}. Then the wave-
functional gets replaced by an ordinary wavefunction,
Ψ(R, {ak}, t). We are interested in finding the time evo-
lution of this minisuperspace wavefunction, starting from
black hole free initial conditions, and in determining if
there is a breakdown of the evolution at some time.

In any treatment of the gravitational collapse prob-
lem, it is necessary to choose a time coordinate since
the collapse, by its very definition, is an evolution prob-
lem. In the current analysis, we have chosen to work
with the Schwarzschild time coordinate. However, there
is the possibility that we may miss some portion of space-
time due to this choice of slicing. If this were the case,
we would expect some sickness (e.g. geodesic incom-
pleteness) to show up in the temporal evolution of the
wavefunction. If the temporal evolution remains well-
behaved at all times, the evolution is no different from
that of an ordinary star for which Schwarzschild coordi-
nates are valid and commonly used. In other words, the
Schrodinger formulation simply evolves the system for-
ward in time, without assuming the presence or absence
of an event horizon in the future. This is different from
other approaches where quantum field theory is used on a
spacetime background, where the entire spacetime must
be assumed at the onset and then sliced using some co-
ordinate system. However, it would be worthwhile to re-
work gravitational collapse in the Schrodinger formalism
with a different choice of time coordinate.

The backreaction problem, even for classical point
charges, is notorious for its non-local nature, since the
trajectory depends on the radiative losses over the entire
past. However, this problem only occurs in a perturba-
tive treatment of a point charge, since there is then a
zeroth order trajectory due to which there is radiation,
and then backreaction to first order in some coupling
constant, then a first order correction to the trajectory,
then radiation and backreaction to second order, ad in-

finitum. Instead, if the classical point charge is replaced
by a regular solution to some field theory, as in a ’t Hooft-
Polyakov magnetic monopole, a classical solution of the
field theory will include the full dynamics and radiation of
the point (magnetic) charge. Similarly, the wavefunction
for the spherical wall and radiation in the Schrodinger
formalism, includes the full dynamics of the wall and the
radiation and non-locality is absent for this reason. How-
ever, there are two other reasons that make the analy-
sis difficult and lead to non-locality. The first is that
the pre-Hawking scalar radiation not only affects the dy-
namics of the collapse but also contributes to the precise
form of the metric. In the minisuperspace approach we

have adopted, a form of the metric needs to be specified.
This is chosen to be of the Schwarzschild form and thus
amounts to the assumption that the energy-momentum
tensor in the pre-Hawking radiation only causes negligi-
ble departures from the minisuperspace. We expect this
approximation to be justified for large collapsing mass
where we know that the energy-momentum density of the
radiation is comparitively small. This has also been ex-
plicitly verified in the semiclassical calculation [13]. Also,
the present approach is similar to that taken in calculat-
ing radiation backreaction on an accelerating charge in
electrodynamics where the backreaction is taken to af-
fect the dynamics of the charge but the effects on the
Coulomb electric field of the charge is not considered.
The second factor that complicates the analysis is the
non-linear nature of gravity. In particular, the minisuper-
space Hamiltonian depends on the mass of the collapsing
object, and this is itself related to the Hamiltonian. In or-
der to isolate the Hamiltonian, we need to invert the mo-
mentum operator and this leads to an integro-differential
form for the Hamiltonian. Solutions of the corresponding
integro-differential Schrodinger equation are hard to find
in general but we are able to transform the problem to a
purely differential equation in the “incipient limit” where
the collapse approaches black hole formation. We discuss
energy eigenstates in Sec. VI and the time-dependent
gravitational collapse problem in Sec. VII.

In order to solve the gravitational collapse problem, we
need to solve the Schrodinger equation to obtain a wave-
function that describes the collapsing wall and radiation.
The first task, however, is to specify an initial value for
the wavefunction, such that the initial state itself does
not contain a black hole. This means that we need to
specify a criterion for deciding if a given wavefunction is
black hole free. To answer this question, we propose a
“black hole operator” in Sec. V. Eigenvalues of the black
hole operator signify the “black holeness” of the state.
Interestingly we find that the black hole operator does
not commute with the Hamiltonian, implying an uncer-
tainty relation between energy and black holeness.

We start by discussing the classical Hamiltonian
(Sec. II), which is then promoted to a quantum Hamilto-
nian in Sec. III. We then discuss explicit representations
of an important operator in Sec. IV and use it to define
a black hole free state in Sec. V. We then discuss en-
ergy eigenstates in Sec. VI and the gravitational collapse
problem in Sec. VII. We discuss our results and con-
clude in Sec. VIII. A discussion of Hermiticity of certain
operators can be found in Appendix A.
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II. CLASSICAL HAMILTONIAN

The action contains the Einstein-Hilbert, massless
scalar field, and Nambu-Goto terms

S =

∫

d4x
√−g

[

− R
16πG

+
1

2
(∂µΦ)

2

]

− σ

∫

d3ξ
√−γ

(1)
where σ is the wall tension and the domain wall world-
volume metric is given by

γab = gµν∂aX
µ∂bX

ν (2)

We will restrict our attention to spherical symmetry, in
which case the form of the line element for the domain
wall alone is [14]

ds2 = −(1−RS

r
)dt2+(1−RS

r
)−1dr2+r2dΩ2 , r > R(t)

(3)
where, RS = 2GM is the Schwarzschild radius in terms of
the mass,M , of the wall, and dΩ2 is the usual angular line
element. In the interior of the spherical domain wall, the
line element is flat, as expected by Birkhoff’s theorem,

ds2 = −dT 2+dr2+ r2dθ2+ r2 sin2 θdφ2 , r < R(t) (4)

dT

dτ
=

[

1 +

(

dR

dτ

)2
]1/2

,
dt

dτ
=

1

B

[

B +

(

dR

dτ

)2
]1/2

(5)

B ≡ 1− RS

R
(6)

We will consider the case when the mass of the do-
main wall is large compared to the energy-momentum
contribution of the scalar field and so it is a good ap-
proximation to ignore the scalar field when writing the
metric.
Our next goal is to find the Hamiltonian for the wall-

scalar field system. In Ref. [11] we have found that the
mass of the wall can be written as

M = 4πσR2

[

1
√

1−R2
T

− 2πGσR

]

(7)

or more suggestively

M =
M̃

√

1−R2
T

− GM̃2

2R
(8)

where M̃ ≡ σ4πR2. The first term is the Lorentz boosted
energy contribution while the second is the gravitational
binding energy. Using this expression for the mass and
the relation between T and t in Eq. (5) we find

Hwall = 4πσB3/2R2





1
√

B2 − Ṙ2
− 2πGσR

√

B2 − (1−B)Ṙ2





(9)

where overdots denote derivatives with respect to t.
The form of the wall Hamiltonian simplifies in the in-

cipient limit (B → 0). Then the canonical momentum is
given by

Π ≈ 4πµR2Ṙ
√
B
√

B2 − Ṙ2
(10)

where µ ≡ σ(1− 2πGσRS), leading to

Hwall ≈ 4πµB3/2R2

√

B2 − Ṙ2
(11)

=
[

(BΠ)2 +B(4πµR2)2
]1/2

(12)

which has the form of the energy of a relativistic particle,
√

p2 +m2, with a position dependent mass. In the limit
B → 0, the mass term can be neglected – the wall is
ultra-relativistic – and hence

Hwall ≈ −BΠ (13)

where we have chosen the negative sign appropriate for
describing a collapsing wall.
Next we introduce the scalar field Φ. Even when we

include the scalar field, we will continue to use the metric
in the Ipser-Sikivie form described above. This assumes
that the dominant effect of backreaction on the metric
is to change the wall energy which enters the metric via
RS . This is not rigorously true since the scalar field also
contributes a non-vanishing energy-momentum density.
However, we assume that this contribution is small com-
pared to the energy in the wall. In the conventional case
of evaporation from an existing black hole, this corre-
sponds to the assumption that Hawking radiation causes
the black hole to evaporate and lose mass, but the black
hole metric remains Schwarzschild to a very good approx-
imation.
The scalar field, Φ, is decomposed into a complete set

of basis functions denoted by {fk(r)}

Φ =
∑

k

ak(t)fk(r) (14)

The exact form of the functions fk(r) will not be impor-
tant for us. We will be interested in the wavefunction for
the mode coefficients {ak}.
The Hamiltonian for the scalar field modes is found

by inserting the scalar field mode decomposition and the
background metric into the action

SΦ =

∫

d4x
√−g 1

2
gµν∂µΦ∂νΦ (15)

The Hamiltonian for the scalar field modes takes
the form of coupled simple harmonic oscillators with
R−dependent masses and couplings due to the non-
trivial metric. In the regime R ∼ RS , for a normal mode
denoted by b, the Hamiltonian is [11]

Hb =

(

1− RS

R

)

π2

2m
+
K

2
b2 (16)
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where π is the momentum conjugate to b, and m and K
are approximate constants whose precise values are not
important for us. The reason m and K are only approxi-
mately constant is because they depend on RS and, with
backreaction included, RS changes (slowly) with time.
By treating m and K as constant, we are assuming that
the dominant coupling between b and R is due to the
(1−RS/R) factor.
Hence the total Hamiltonian for the wall and the nor-

mal modes of the scalar field in the incipient limit is

H = Hwall +
∑

modes

Hb = −BΠ+
∑

modes

{

B
π2

2m
+
Kb2

2

}

(17)

III. QUANTUM HAMILTONIAN

The wall Hamiltonian given by Eq. (9) is especially
complicated because Hwall also enters the right-hand side
through B. In the incipient limit, however, Hwall simpli-
fies to the form Eq. (13) and is amenable to analysis.
Now, in Eq. (13), we replace

RS → 2GHwall

to get

Hwall = −
(

1− 2GHwall

R

)

Π

and therefore

Hwall = −
(

1− 2GΠ

R

)−1

Π

allowing us to identify

B =
1

1− 2GΠ/R
(18)

To quantize, we promote classical quantities to quan-
tum operators. For the momentum operators we take
[19]

Π̂ = −i ∂
∂R

, π̂ = −i ∂
∂b

(19)

The classical Hamiltonian gets promoted to an operator
and is obtained by replacing classical variables by quan-
tum operators and making sure that the end result is
Hermitian. From the form of the classical Hamiltonian
in Eq. (17), Hermiticity can be obtained if we choose the
quantum operators corresponding to BΠ and B to be
Hermitian. This is achieved by using

B̂−1 = 1−G

(

1

R
Π̂ + Π̂

1

R

)

(20)

and

B̂ =

{

1−G

(

1

R
Π̂ + Π̂

1

R

)}−1

=
∞
∑

n=0

{

G

(

1

R
Π̂ + Π̂

1

R

)}n

(21)

where Π̂ is defined in Eq. (19). The Hamiltonian operator
is

Ĥ = −1

2
(B̂Π̂ + Π̂B̂) +

∑

modes

{

B̂
π̂2

2m
+
K

2
b2
}

(22)

The Hermiticity of the Hamiltonian depends crucially on
the Hermiticity of B̂ and we discuss this further in Ap-
pendix A.
Note that B̂ contains the inverse of the derivative op-

erator and hence is really an integral operator. In Sec. IV
we will explicitly find the integral representation of B̂.
With the Hamiltonian in Eq. (22), we need to solve the

Schrodinger equation

ĤΨ = i
∂Ψ

∂t
(23)

where the minisuperspace wavefunction depends on b, R
and t: Ψ = Ψ(b, R, t).
We are mostly interested in the time evolution prob-

lem, where the initial wavefunction describes a collaps-
ing wavepacket for the wall and the scalar field is in its
ground state. Alternately we could study the stationary
problem and seek eigenstates of the Hamiltonian

Ψ = e−iEtψ(b, R) (24)

This leads to the eigenvalue problem

Ĥψ = Eψ (25)

We shall discuss the stationary problem further in Sec. VI
but before doing that we find explicit expressions for the
operators B̂ and B̂−1, and discuss the interpretation of
the wavefunction in terms of a black hole free state.

IV. B̂ AND B̂
−1

Using

[R,Π] = i (26)

we find

B̂−1 = 1− i
G

R2
− 2G

R
Π̂ (27)

Let us define χ by

Ψ = B̂−1χ (28)
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Then it is simple to find Ψ in terms of χ using Eq. (27)

Ψ =

(

1− i
G

R2

)

χ+ i
2G

R
∂Rχ (29)

We can also solve this differential equation to find χ in
terms of Ψ

χ = B̂Ψ = − i
√
R

2G
eiR

2/4G

∫ R

dR′
√
R′e−iR′2/4GΨ(R′)

(30)
where the integral operator is indefinite. In other words,
this gives us an explicit integral form for the B̂ operator

B̂(·) = − i
√
R

2G
eiR

2/4G

∫ R

dR′
√
R′e−iR′2/4G(·) (31)

The inverse operator can similarly be written as a differ-
ential operator

B̂−1(·) = +i
2G√
R
e+iR2/4G∂R

[

e−iR2/4G

√
R

(·)
]

(32)

For notational convenience, we define

α(R) ≡ e−iR2/4G

√
R

(33)

and then

B̂(·) = − i

2G
α−1(R)

∫ R

dR′ R′ α(R′)(·) (34)

and

B̂−1(·) = +i
2G

R
α−1(R)∂R[α(R)(·)] (35)

It can be checked explicitly that B̂−1B̂ = 1 = B̂B̂−1.

V. BLACK HOLE FREE STATE

Since we wish to study the formation of a black hole
starting with a state that does not contain a black hole,
it is important for us to define what we mean by a state
that is “black hole free”. At the classical level we can
define a black hole free state by the condition B > 0 or
B−1 > 0. We can lift these conditions to the quantum
level by defining the operator

B = 1− G

R
Ĥwall −GĤwall

1

R
(36)

A “no black hole” or “black hole free” state would only
have overlap with eigenfunctions of B whose eigenvalues
lie in the interval (0,∞). This choice of a black hole op-

erator is not unique. Another possibility is R− 2GĤwall.
In the incipient limit, we replace B by B̂. We will only

be able to find eigenstates in this limit. Let us now find
these states by solving the eigenvalue problem

B̂ξβ = βξβ (37)

or, equivalently,

B̂−1ξβ =
1

β
ξβ (38)

This corresponds to the differential equation (see
Eq. (29))

(

1− i
G

R2

)

ξβ + i
2G

R
∂Rξβ =

1

β
ξβ (39)

The equation is solved to find the eigenfunctions

ξβ = A
√
Rei(1−β−1)R2/4G (40)

and the solution holds for a continuum of β. Eigenstates
with β > 0 are black hole free.
The overlap of the wavefunction with an eigenstate of

B̂−1 is given by the coefficient

aβ ≡ 〈ξβ |ψ〉 (41)

If aβ = 0 for all β ≤ 0, then the state ψ is black hole
free. The eigenvalue β can be said to quantify the “black
holeness” of a state.
A problem with using B̂ as the black hole operator is

that the eigenstates ξβ are not orthonormal because R
lies in the semi-infinite interval (0,∞). This is a familiar

problem: B̂−1 contains the operator Π̂ which is like the
radial momentum operator in quantum mechanics, and
hence has no self-adjoint extension [15]. The problem

may be traced back to our approximation, B → B̂, or
equivalently in Eq. (13).
We now consider if there are simultaneous eigenstates

of the black hole operator and the Hamiltonian. Using
the expressions for B̂−1 (Eq. (32)) and the Hamiltonian
(Eq. (22)) one easily sees that

[B̂−1, Ĥ] 6= 0 (42)

This observation implies an uncertainty relation between
energy and black holeness – if we know the energy of a
state precisely then there is uncertainty in its black hole-
ness and if we know that an object is a black hole, its
energy must not be precisely known. This ties in nicely
with the usual understanding of a black hole not as a
pure state but as a thermal state. While the value of the
black holeness is uncertain for an energy eigenstate, it
may still be possible to say if a particular energy eigen-
state is black hole free because such a state is defined
not by a single value of β but by the semi-infinite inter-
val (0,∞). In other words, the state of being black hole
free is considerably weaker than a state of definite black
holeness, and an energy eigenstate may be black hole free
even if its black holeness is uncertain.
The commutator in Eq. (42) can be evaluated explicitly

[B̂−1, Ĥ ] = GB̂

(

1

R3
− i

R2
Π̂

)

+G

(

1

R3
− i

R2
Π̂

)

B̂
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The right-hand side is a complicated operator but can be
roughly estimated in the incipient limit using −B̂Π̂ ∼M ,
the mass of the collapsing object. Then

[B̂−1, Ĥ ] ∼ i

RS
(43)

as may also be expected on dimensional grounds.
In the next section, we will discuss eigenstates of the

Hamiltonian. These are stationary states and hence can-
not resolve the gravitational collapse problem, which re-
quires solving the time-dependent problem in which the
initial state is black hole free. We will consider the grav-
itational collapse problem in further detail in Sec. VII.

VI. STATIONARY STATES

We now consider the Schrodinger equation, Eq. (25),
for a single eigenmode of the scalar field [11, 12],

[

−1

2
(B̂Π̂ + Π̂B̂) +

{

B̂
π̂2

2m
+
K

2
b2
}]

ψ = Eψ (44)

This is an integro-differential operator since B̂ is an in-
tegral operator.
We first act on Eq. (44) by B̂−1 on the left and use

[B̂−1, Π̂] = −2G

R3
+ i

2G

R2
Π̂ (45)

This brings Eq. (44) to the form

[

1− 2G

R

(

E − Kb2

2

)]

Π̂ψ =

[

π̂2

2m
+

(

Kb2

2
− E

)(

1− i
G

R2

)]

ψ

−2G

R3

[

1− iR Π̂

]

B̂ψ (46)

To simplify the last term we use Eq. (27) in the form

Π̂ =
R

2G

[

−B̂−1 + 1− i
G

R2

]

(47)

Hence

2G

R3

[

1− iR Π̂

]

B̂ψ =
i

R
ψ − i

R

(

1 +
iG

R2

)

B̂ψ (48)

Therefore the Schrodinger equation becomes

[

1− 2G

R

(

E − Kb2

2

)]

Π̂ψ =

[

π̂2

2m
+

(

Kb2

2
− E

)(

1− i
G

R2

)

− i

R

+
i

R

(

1 + i
G

R2

)

B̂

]

ψ (49)

In the incipient limit (B → 0) we expect the last term
to be small, say compared to the second last term (−i/R)
and we drop it. Thus we obtain the following differential
equation

[

1− 2G

R

(

E − Kb2

2

)]

∂Rψ =

− i

2m
∂2bψ + i

(

Kb2

2
− E

)(

1− i
G

R2

)

ψ +
ψ

R
(50)

The right-hand side of Eq. (50) contains the G/R2 and
1/R terms arising due to the commutators of operators.
The equation becomes intuitively obvious under approx-
imations that allow us to ignore these terms. The first
of these terms is small if the size of the spherical wall is
assumed to be much larger than the Planck scale. The
second term, 1/R, is much smaller than E since we have
assumed that the mass is much larger than the Planck
mass. With these approximations, the equation reduces
to

[

1− 2G

R

(

E − Kb2

2

)]

i∂Rψ =

[

E −
(

− 1

2m
∂2b +

Kb2

2

)]

ψ (51)

Now the right-hand side is simply the total energy minus
the simple harmonic oscillator Hamiltonian for b, and the
left-hand side is the usual time evolution operator if R is
viewed as a time coordinate. Also, as expected, the equa-
tion has a singularity. However, somewhat unexpectedly,
the singularity occurs at

R = 2G

(

E − Kb2

2

)

and not at 2G(E − Eb) where the total energy in mode
b, Eb, includes both kinetic and potential terms. The
reason that only the potential term enters the location
of the singularity can be traced back to Eq. (44), where
it is clear that b interacts with the metric only via the
kinetic term. Multiplying that equation by B̂−1 transfers
the interaction to be only between the Kb2/2 term and

the wall momentum, Π̂, since B̂−1 includes a term with
Π̂ (Eq. (27)).
In the limit

R→ 2G

(

E − Kb2

2

)

the leading order behavior can be found by equating the
right-hand side of Eq. (50) to zero. An example of a non-
singular function that satisfies the differential equation to
leading order in the above limit is

ψ ∼ exp

[

±i
√

mR

G

(

1 + i
G

R2

)

b

]

(52)

A more complete solution would require the wavefunc-
tion to extend away from the singular curve in the (R, b)
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plane. We cannot exclude that the wavefunction could be
badly behaved in a solution which is required to satisfy
certain boundary conditions.

VII. GRAVITATIONAL COLLAPSE

The gravitational collapse problem can now be defined.
We want to solve the time-dependent integro-differential
equation

[

−1

2
(B̂Π̂ + Π̂B̂) +

{

B̂
π̂2

2m
+
K

2
b2
}]

Ψ = i
∂Ψ

∂t
(53)

This integro-differential problem can be converted to a
differential problem exactly as for the stationary states
in the previous section, except that E must be replaced
by i∂t. The differential equation analogous to Eq. (50) is

[

1− 2G

R

(

i∂t −
Kb2

2

)]

∂RΨ =

− i

2m
∂2bΨ+ i

(

Kb2

2
− i∂t

)(

1− i
G

R2

)

Ψ+
Ψ

R
(54)

Under assumptions similar to those discussed in the pre-
vious section, we get an equation analogous to Eq. (51)

[

1− 2G

R

(

i∂t −
Kb2

2

)]

i∂RΨ =

[

i∂t −
(

− 1

2m
∂2b +

Kb2

2

)]

Ψ (55)

Any solution of the time-dependent simple harmonic os-
cillator problem will make the right-hand side vanish
and will be an R−independent solution of this equa-
tion. However, since the equation was derived assum-
ing a large collapsing mass, such a solution, in which
all the energy resides in the scalar radiation, cannot be
taken too literally. Also, the solution does not resolve
the time-dependent gravitational collapse problem. For
that, we need to choose the initial Ψ such that it rep-
resents a gravitationally collapsing object which is black
hole free i.e. aβ = 0 for all β ≤ 0 (see Eq. (41)). With
evolution, the coefficients aβ will change and we are in-
terested in finding out if the system remains black hole
free. The solution to this problem will also allow us to
track the evolution of the harmonic oscillator and hence
the transfer of energy via radiation from the wall to the
scalar field during quantum collapse.

Eq. (55) (or (54)) is a partial differential equation in
three variables and contains mixed t and R derivatives.
It can also be singular at certain points. These features
make it hard to analyze. We hope to return to Eq. (55)
in future, perhaps using numerical techniques. An al-
ternative would be to consider a linear superposition of
stationary states that match the initial conditions.

VIII. DISCUSSION

We have set up a minisuperspace version of the
Schrodinger formalism for studying quantum gravita-
tional collapse of a spherical domain wall in the pres-
ence of a massless scalar field coupled to the metric.
The description automatically includes backreaction of
the quantum radiation on the quantum dynamics of the
domain wall. Although the passage to minisuperspace in-
volves a drastic truncation of the system degrees of free-
dom, it still retains those that are relevant to describe
black hole formation and evaporation. A clear advantage
of the present approach is that the action for the system
greatly simplifies in the interesting limit of an incipient
black hole and raises the hope that a solution, even to the
notorious back-reaction problem, may be within reach.
In the incipient limit and in the approximation that the

collapsing mass is large (see the discussion in Sec. I), the
Hamiltonian is given by Eq. (22). A striking feature of

the Hamiltonian is that it involves the operator B̂ which
is an integral operator, for which we are also able to find
an explicit representation (Eq. (34)).
Our analysis in the incipient limit should be suffi-

cient to study the problem of quantum collapse and pre-
Hawking radiation. However, unlike in the semiclassical
approximation where the wall radius takes on a definite
value, the wavefunction is defined over the entire range of
possible wall radii, including very large radii. In a fuller
treatment of the problem, it may become necessary to
extend the Hamiltonian that we have found in the in-
cipient limit to large values of the radius. The precise
extension is not expected to be important, as long as the
incipient limit of the extended Hamiltonian matches the
Hamiltonian found here.
Once we have the minisuperspace Schrodinger equa-

tion, we need the relevant solutions to it that represent
a solution to the gravitational collapse problem. Such a
solution would contain the fate of matter that is collaps-
ing towards forming a black hole. However, the initial
conditions have to be chosen to be “black hole free” and
some measure of “black holeness” has to be defined. We
have discussed some possible black hole operators, an ex-
ample of which is the operator B that coincides with B̂
in the incipient limit. We find eigenstates of B̂ and the
eigenvalue β may be used as a measure of black hole-
ness. States with β > 0 can be said to be black hole free.
However, the black hole operator does not commute with
the Hamiltonian, thus implying an energy-black holeness
uncertainty relation.
It is interesting to note that the eigenfunction ξβ of the

operator B̂ oscillates infinitely fast as β → 0 which cor-
responds to the domain wall tending to the event horizon
(see Eq. (40)). Naively, if we start with a wavefunction
that overlaps only with states with some finite range with
β > 0, to get an overlap with states with β < 0, it would
seem that we would need to go through the infinitely os-
cillating state at β = 0. Quantum mechanically, though,
this is not clear. An analogy might help clarify this situ-
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ation. In the case of a non-realativistic Schrodinger par-
ticle, our initial state may be a wavepacket having over-
lap with only positive momentum eigenstates eikx with
k > 0. Suppose at some later time, we find that there is
non-zero overlap with a negative momentum eigenstate,
eipx with p < 0. Classically this would mean that the
particle’s momentum has reversed and so, at some point
in time, the particle had to pass through zero momen-
tum. In quantum mechanics, however, this is not essen-
tial since the particle need not even have a well-defined
momentum at intermediate times. So it seems that the
singular state at β = 0 cannot be used to argue, at least
straightforwardly, that there is an obstruction to the for-
mation of a black hole.
While we have limited ourselves in this paper to a

massless scalar field, it is interesting to consider how
the analysis might change if the scalar field has a non-
vanishing mass. In that case, the spectrum of eigenmodes
of the scalar field would contain bound states in addition
to scattering states. Gravitational collapse of the domain
wall would then populate both the scattering and bound
states, transferring energy from the wall to pre-Hawking
radiation and also to an atmosphere of self-gravitating
scalar particles. Presumably, the bound states will result
in a boson star, though the details are not clear since
boson stars as solutions of free or interacting scalar field
theory are themselves known to have instabilities if their
mass is large [16, 17, 18].
In Sec. VI we have discussed eigenstates of the Hamil-

tonian and in Sec. VII we have set up a differential equa-
tion that describes the gravitational collapse problem.
The differential equation contains mixed t and R deriva-
tives, and it may also become singular along curves in
the (R, b) plane. These characteristics make the equa-
tion hard enough that we have postponed attempts at its
solution for future work. In its solution, though, might
lie answers to some of the questions we have raised in
the introduction, and we may be able to see if the uni-
tary evolution contained in the Schrodinger equation is
self-limiting. On the other hand, it may be that the
Schrodinger equation always yields unitary evolution,
and since it is expected that black holes violate unitar-
ity, it may be impossible to get to the black hole state as
suggested by the semiclassical calculation.
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APPENDIX A: HERMITICITY

The Hamiltonian in the incipient limit contains the mo-
mentum operator but the variable R lies in the interval
(0,∞). Thus Π̂ resembles the radial momentum opera-
tor which is known to have problems with self-adjointness
[15]. For us, however, Π̂ only arises in the incipient ap-
proximation and there are issues if we blindly use this
Hamiltonian over the entire range of variables. Here we
consider the Hermiticity of Π̂ and B̂, listing the bound-
ary conditions on the wavefunctions necessary to ensure
Hermiticity.

For the momentum operator we have

∫ ∞

0

dRf †Π̂g =

∫ ∞

0

dR(Π̂f)†g − i[f †g]∞0 (A1)

The boundary term vanishes if the functions f(R) and

g(R) vanish at R = 0 and as R → ∞. So Π̂† = Π̂ when
acting (only) on this set of functions.

Next we find (B̂−1)† = B̂−1 by using the Hermiticity

of 1/R and Π̂. This gives

∫ ∞

0

dRf †B̂−1g =

∫ ∞

0

dRf †

(

1− G

R
Π̂−GΠ̂

1

R

)

g

=

∫ ∞

0

dR(B̂−1f)†g + i2G[f †g/R]∞0

and so B̂−1 is also Hermitian provided f and g vanish
sufficiently rapidly at the origin and do not grow at in-
finity.

Next we find B̂†.

∫ ∞

0

dRf †B̂g =

∫ ∞

0

dR(B̂−1B̂f)†B̂g

=

∫ ∞

0

dR(B̂f)†B̂−1B̂g − i2G[(B̂f)†(B̂g)/R]∞0

=

∫ ∞

0

dR(B̂f)†g − i2G[(B̂f)†(B̂g)/R]∞0

Therefore B̂† = B̂ on functions for which the boundary
term vanishes.

If acting on a space of wavefunctions such that the
boundary terms are not zero, the operator B̂ will not be
Hermitian. This need not invalidate the formalism we
have developed since the explicit expression for B̂ is only
really valid in the incipient limit, and does not remain
valid at R = 0 and R → ∞. The Hamiltonian we have
found would also need to be extended beyond the domain
of an incipient black hole.

[1] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975)
[Erratum-ibid. 46, 206 (1976)].

[2] “Black Holes, Information and the String Theory Rev-



9

olution”, L. Susskind and J. Lindsay, World Scientific
Publishing (2005).

[3] “Black Hole Physics”, V.P. Frolov and I.D. Novikov
(Kluwer Academic Publishers, Dordrecht, 1998).

[4] A. Strominger, “Les Houches lectures on black holes,”
arXiv:hep-th/9501071.

[5] R. M. Wald, “Black holes and relativistic stars,” Chicago,
USA: Univ. Pr. (1998) 278 p

[6] A. Ashtekar and J. Lewandowski, Class. Quant. Grav.
21, R53 (2004) [arXiv:gr-qc/0404018].

[7] T. Banks and W. Fischler, arXiv:hep-th/9906038.
[8] S. B. Giddings and S. D. Thomas, Phys. Rev. D 65,

056010 (2002) [arXiv:hep-ph/0106219].
[9] S. Dimopoulos and G. L. Landsberg, Phys. Rev. Lett.

87, 161602 (2001) [arXiv:hep-ph/0106295].
[10] L. A. Anchordoqui, J. L. Feng, H. Goldberg and

A. D. Shapere, Phys. Rev. D 65, 124027 (2002)
[arXiv:hep-ph/0112247].

[11] T. Vachaspati, D. Stojkovic and L. M. Krauss, Phys. Rev.

D 76, 024005 (2007) [arXiv:gr-qc/0609024].
[12] T. Vachaspati and D. Stojkovic, Phys. Lett. B 663, 107

(2008) [arXiv:gr-qc/0701096].
[13] P. C. W. Davies, S. A. Fulling and W. G. Unruh, Phys.

Rev. D 13, 2720 (1976).
[14] J. Ipser and P. Sikivie, Phys. Rev. D 30, 712 (1984).
[15] G. Paz, J. Phys. A 35, 3727 (2002).
[16] R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767

(1969).
[17] M. Colpi, S. L. Shapiro and I. Wasserman, Phys. Rev.

Lett. 57, 2485 (1986).
[18] P. Jetzer, Phys. Rept. 220, 163 (1992).

[19] As is well-known, there are other choices for Π̂, differing
by the one in Eq. (19) by functions of R. These other
choices will make some quantitative differences in the so-
lutions given below but qualitatively the discussion does
not change.

http://arxiv.org/abs/hep-th/9501071
http://arxiv.org/abs/gr-qc/0404018
http://arxiv.org/abs/hep-th/9906038
http://arxiv.org/abs/hep-ph/0106219
http://arxiv.org/abs/hep-ph/0106295
http://arxiv.org/abs/hep-ph/0112247
http://arxiv.org/abs/gr-qc/0609024
http://arxiv.org/abs/gr-qc/0701096

