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Abstract

A sketch of a recent approach to quantum gravity is presented
which involves several unconventional aspects. The basic ingredi-
ents include: (1) Affine kinematical variables; (2) Affine coherent
states; (3) Projection operator approach for quantum constraints; (4)
Continuous-time regularized functional integral representation with-
out/with constraints; and (5) Hard core picture of nonrenormalizabil-
ity. Emphasis is given to the functional integral expressions.

1 Introduction

This paper offers an introduction to the program of Affine Quantum Gravity
(AQG) and its use of functional integrals. It is important at the outset to
remark that this program is not string theory nor is it loop quantum grav-
ity, the two most commonly studied approaches to quantum gravity at the
present time. Although many aspects of this approach are still to be devel-
oped, AQG seems to the author to be more natural than most traditional
views, and, moreover, it lies closer to classical (Einstein) gravity as well.
Some general references for this paper are [1, 2, 3].
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2 Affine Kinematical Variables

Metric positivity

A fundamental requirement of AQG is the strict positivity of the spatial met-
ric. For the classical metric, this property means that for any nonvanishing
set {ua} of real numbers and any nonvanishing, nonnegative test function,
f(x) ≥ 0, that

∫

f(x)uagab(x)u
bd3x > 0 , (1)

where 1 ≤ a, b ≤ 3. We also insist that this inequality holds when the
classical metric field gab(x) is replaced with the 3 × 3 operator metric field
ĝab(x).

Affine commutation relations

Since the canonical commutation relations are in conflict with the require-
ment of metric positivity, our initial step involves replacing the classical
ADM canonical momentum πab(x) with the classical mixed-index momen-
tum πa

b (x) ≡ πac(x)gcb(x). We refer to πa
b (x) as the “momentric” tensor

being a combination of the canonical momentum and the canonical metric.
Besides the metric being promoted to an operator ĝab(x), we also promote the
classical momentric tensor to an operator field π̂a

b (x); this pair of operators
form the basic kinematical affine operator fields, and all operators of interest
are given as functions of this fundamental pair. The basic kinematical oper-
ators are chosen so that they satisfy the following set of affine commutation

relations (in units where ~ = 1, which are normally used throughout):

[π̂a
b (x), π̂

c
d(y)] =

1
2
i[δcb π̂

a
d(x)− δad π̂

c
b(x)] δ(x, y) ,

[ĝab(x), π̂
c
d(y)] =

1
2
i[δcaĝbd(x) + δcb ĝad(x)] δ(x, y) , (2)

[ĝab(x), ĝcd(y)] = 0 .

These commutation relations arise as the transcription into operators of
equivalent Poisson brackets for the corresponding classical fields, namely,
the spatial metric gab(x) and the momentric field πc

d(x) ≡ πcb(x)gbd(x), along
with the usual Poisson brackets between the canonical metric field gab(x) and
the canonical momentum field πcd(x).
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The virtue of the affine variables and their associated commutation rela-
tions is evident in the relation

ei
∫

γa

b
(y)π̂b

a(y) d
3y ĝcd(x) e

−i
∫

γa

b
(y)π̂b

a(y) d
3y = {eγ(x)/2}ec ĝef(x) {e

γ(x)/2}fd . (3)

This algebraic relation confirms that suitable transformations by the momen-
tric field preserve metric positivity.

3 Affine Coherent States

It is noteworthy that the algebra generated by ĝab and π̂a
b closes. These

operators form the generators of the affine group whose elements may be
defined by

U [π, γ] ≡ ei
∫

πab(y)ĝab(y) d
3y e−i

∫

γa

b
(y)π̂b

a(y) d
3y , (4)

e.g., for all real, smooth c-number functions πab and γab of compact support.
Since we assume that the smeared ĝab and π̂

a
b fields are self-adjoint operators,

it follows that U [π, γ] are unitary operators for all π and γ, and moreover,
these unitary operators are strongly continuous in the label fields π and γ.

To define a representation of the basic operators it suffices to choose a
fiducial vector and thereby to introduce a set of affine coherent states, i.e.,
coherent states formed with the help of the affine group. We choose |η〉 as a
normalized fiducial vector in the original Hilbert space H, and we consider a
set of unit vectors each of which is given by

|π, γ〉 ≡ ei
∫

πab(x) ĝab(x) d
3x e−i

∫

γd
c (x) π̂

c

d
(x) d3x |η〉 . (5)

As π and γ range over the space of smooth functions of compact support, such
vectors form the desired set of coherent states. The specific representation
of the kinematical operators is fixed once the vector |η〉 has been chosen. As
minimum requirements on |η〉 we impose

〈η|π̂a
b (x)|η〉 = 0 , (6)

〈η|ĝab(x)|η〉 = g̃ab(x) , (7)
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where g̃ab(x) is a metric that determines the topology of the underlying space-
like surface. As algebraic consequences of these conditions, it follows that

〈π, γ|ĝab(x)|π, γ〉 = {eγ(x)/2}ca g̃cd(x) {e
γ(x)/2}db ≡ gab(x) , (8)

〈π, γ|π̂a
c (x)|π, γ〉 = πab(x)gbc(x) ≡ πa

c (x) . (9)

These expectations are not gauge invariant since they are taken in the original
Hilbert space where the constraints are not fulfilled.

By definition, the coherent states span the original, or kinematical, Hilbert
space H, and thus we can characterize the coherent states themselves by giv-
ing their overlap with an arbitrary coherent state. In so doing, we choose the
fiducial vector |η〉 so that the overlap is given by

〈π′′, γ′′|π′, γ′〉 = exp
[

− 2

∫

b(x) d3x

× ln
(det{1

2
[g′′ab(x) + g′ab(x)] + 1

2
ib(x)−1[π′′ab(x)− π′ab(x)]}

{det[g′′ab(x)] det[g′ab(x)]}1/2

)]

(10)

where b(x), 0 < b(x) <∞, is a scalar density which is discussed below.
Additionally, we observe that γ′′ and γ′ do not appear in the explicit

functional form given in (10). In particular, the smooth matrix γ has been
replaced by the smooth matrix g which is defined at every point by

g(x) ≡ eγ(x)/2 g̃(x) eγ(x)
T /2 ≡ {gab(x)} , (11)

where T denotes transpose, and the matrix g̃(x) ≡ {g̃ab(x)} is given by
(7). The map γ → g is clearly many-to-one since γ has nine independent
variables at each point while g, which is symmetric, has only six. In view
of this functional dependence we may denote the given functional in (10) by
〈π′′, g′′|π′, g′〉, and henceforth we adopt this notation. In particular, we note
that (8) and (9) become

〈π, g|ĝab(x)|π, g〉 ≡ gab(x) , (12)

〈π, g|π̂a
c (x)|π, g〉 = πab(x)gbc(x) ≡ πa

c (x) , (13)

which show that the meaning of the labels π and g is that of mean values
rather than sharp eigenvalues.

In addition, we observe that the coherent state overlap function (10) is a
continuous function that can serve as a reproducing kernel for a reproducing
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kernel Hilbert space which provides a representation of the original Hilbert
space H by continuous functions of π and g. For details of such spaces, see
[4].

4 Projection Operator Approach for

Quantum Constraints

Classically, constraints are either: (i) first class, for which the Lagrange
multipliers are undetermined and must be chosen to find a solution; or (ii)
second class, for which the Lagrange multipliers are fixed by the equations
of motion.

The Dirac approach to the quantization of constraints requires quantiza-
tion before reduction. Thus the constraints are first promoted to self-adjoint
operators,

φα(p, q) → Φα(P,Q) , (14)

for all α, and then the physical Hilbert space Hphys is defined by those vectors
|ψ〉phys for which

Φα(P,Q)|ψ〉phys = 0 (15)

for all α. This procedure works for a limited set of classical first class con-
straint systems, but it does not work in general and especially not for second
class constraints.

The projection operator approach to quantum constraints involves a slight
relaxation of the Dirac procedure. Instead of insisting that (15) holds exactly,
we introduce a projection operator IE defined by

IE = IE(ΣαΦ
2
α ≤ δ(~)2) , (16)

where δ(~) is a positive regularization parameter and we have assumed that
ΣαΦ

2
α is self adjoint. This relation means that IE projects onto the spectral

range of the self-adjoint operator ΣαΦ
2
α in the interval [0, δ(~)2], and then

Hphys = IEH. As a final step, the parameter δ(~) is reduced as much as
required, and, in particular, when some second-class constraints are involved,
δ(~) ultimately remains strictly positive. This general procedure treats all
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constraints simultaneously and treats them all on an equal basis; for details
see [5].

A few examples illustrate how the projection operator method works. If
ΣαΦ

2
α = J2

1 +J
2
2 +J

2
3 , the Casimir operator of su(2), then 0 ≤ δ(~)2 < 3~2/4

works for this first class example. If ΣαΦ
2
α = P 2 + Q2, where [Q,P ] = i~11,

then ~ ≤ δ(~)2 < 3~ covers this second class example. If the single constraint
Φ = Q, an operator whose zero lies in the continuous spectrum, then it is
convenient to take an appropriate form limit of the projection operator as
δ → 0; see [5]. The projection operator scheme can also deal with irregular
constraints such as Φ = Q3, and even mixed examples with regular and
irregular constraints such as Φ = Q3(1−Q), etc.; see [6].

It is also of interest that the desired projection operator has a general,
time-ordered integral representation (see [7]) given by

IE = IE((ΣαΦ
2
α ≤ δ(~)2)) =

∫

Te−i
∫

λα(t)Φα dt DR(λ) . (17)

The weak measure R depends on the number of Lagrange multipliers, the
time interval, and the regularization parameter δ(~)2. The measure R does
not depend on the constraint operators, and thus this relation is an operator
identity, holding for any set of operators {Φα}. The time-ordered integral
representation for IE given in (17) can be used in path-integral representations
as will become clear below.

5 Continuous-time Regularized

Functional Integral Representation

without/with Constraints

It is pedagocially useful to reexpress the coherent-state overlap function by
means of a functional integral. This process can be aided by the fact that
the expression (10) is analytic in the variable g′′ab(x) + ib(x)−1π′′ab(x) up
to a factor. As a consequence, the coherent-state overlap function satisfies
a complex polarization condition, which leads to a second-order differential
operator that annihilates it. This fact can be used to generate a functional
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integral representation of the form

〈π′′, g′′|π′, g′〉 = exp
[

− 2

∫

b(x) d3x

× ln
(det{1

2
[g′′ab(x) + g′ab(x)] + 1

2
ib(x)−1[π′′ab(x)− π′ab(x)]}

{det[g′′ab(x)] det[g′ab(x)]}1/2

)]

= lim
ν→∞

N ν

∫

exp[−i
∫

gabπ̇
ab d3x dt]

× exp{−(1/2ν)
∫

[b(x)−1gabgcdπ̇
bcπ̇da + b(x)gabgcdġbcġda] d

3x dt}

×[Πx,tΠa≤b dπ
ab(x, t) dgab(x, t)] . (18)

Because of the way the new independent variable t appears in the right-hand
term of this equation, it is natural to interpret t, 0 ≤ t ≤ T , T > 0, as
coordinate “time”. The fields on the right-hand side all depend on space
and time, i.e., gab = gab(x, t), ġab = ∂gab(x, t)/∂t, etc., and, importantly, the
integration domain of the formal measure is strictly limited to the domain
where {gab(x, t)} is a positive-definite matrix for all x and t. For the boundary
conditions, we have π′ab(x) ≡ πab(x, 0), g′ab(x) ≡ gab(x, 0), as well as π

′′ab(x) ≡
πab(x, T ), g′′ab(x) ≡ gab(x, T ) for all x. Observe that the right-hand term holds
for any T , 0 < T <∞, while the left-hand and middle terms are independent
of T altogether.

In like manner, we can incorporate the constraints into a functional in-
tegral by using an appropriate form of the integral representation (17). The
resultant expression has a functional integral representation given by

〈π′′, g′′|IE|π′, g′〉 =

∫

〈π′′, g′′|T e−i
∫

[NaHa+NH] d3x dt|π′, g′〉 DR(Na, N)

= lim
ν→∞

N ν

∫

e−i
∫

[gabπ̇
ab+NaHa+NH] d3x dt

× exp{−(1/2ν)
∫

[b(x)−1gabgcdπ̇
bcπ̇da + b(x)gabgcdġbcġda] d

3x dt}

×[Πx,tΠa≤b dπ
ab(x, t) dgab(x, t)]DR(N

a, N) . (19)

Despite the general appearance of (19), we emphasize once again that this
representation has been based on the affine commutation relations and not

on any canonical commutation relations.
The expression 〈π′′, g′′|IE|π′, g′〉 denotes the coherent-state matrix ele-

ments of the projection operator IE which projects onto a subspace of the
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original Hilbert space on which the quantum constraints are fulfilled in a
regularized fashion. Furthermore, the expression 〈π′′, g′′|IE|π′, g′〉 is another
continuous functional that can be used as a reproducing kernel and thus used
directly to generate the reproducing kernel physical Hilbert space on which
the quantum constraints are fulfilled in a regularized manner. Observe that
Na and N denote Lagrange multiplier fields (classically interpreted as the
shift and lapse), whileHa andH denote phase-space symbols (since ~ 6= 0) as-
sociated with the quantum diffeomorphism and Hamiltonian constraint field
operators, respectively. Up to a surface term, therefore, the phase factor in
the functional integral represents the canonical action for general relativity.

6 Hard-core Picture of Nonrenormalizability

Nonrenormalizable quantum field theories involve an infinite number of dis-
tinct counterterms when approached by a regularized, renormalized pertur-
bation analysis. Focusing on scalar field theories, a qualitative Euclidean
functional integral formulation is given by

Sλ(h) = Nλ

∫

e
∫

hφdnx−Wo(φ)−λV (φ) Dφ , (20)

where Wo(φ) ≥ 0 denotes the free action and V (φ) ≥ 0 the interaction
term. If λ = 0, the support of the integral is determined by Wo(φ); when
λ > 0, the support is determined by Wo(φ) + λV (φ). Formally, as λ → 0,
Sλ(h) → S0(h), the functional integral for the free theory. However, it may
happen that

lim
λ→0

Sλ(h) = S ′
0(h) 6= S0(h) , (21)

where S ′
0(h) defines a so-called pseudofree theory. Such behavior arises for-

mally if V (φ) acts partially as a hard core, projecting out certain fields that
are not restored to the support of the free theory as λ→ 0 [8].

It is noteworthy that there exist highly idealized nonrenormalizable model
quantum field theories with exactly the behavior described; see [9]. Such ex-
amples involve counterterms not suggested by a renormalized perturbation
analysis. It is our belief that these soluble models strongly suggest that non-
renormalizable ϕ4

n, n ≥ 5, models can be understood by the same mechanism,
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and that they too can be properly formulated by the incorporation of a lim-
ited number of counterterms distinct from those suggested by a perturbation
treatment. Although technically more complicated, we see no fundamen-
tal obstacle in dealing with quantum gravity on the basis of an analogous
hard-core interpretation.
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