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Abstract.  It will be argued here that the cosmological constant problem

exists because of the way the vacuum is defined in quantum field theory.

It has been known for some time that for QFT to be gauge invariant

certain terms—such as part of the vacuum polarization tensor—must be

eliminated either explicitly or by some form of regularization followed by

renormalization.  It has recently been shown that lack of gauge invariance

is a result of the way the vacuum is defined, and redefining the vacuum so

that the theory is gauge invariant may also offer a solution to the

cosmological constant problem.
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Introduction.

The cosmological constant problem exists because of a number of key

assumptions.  These will be identified in this introduction.  The second section of the

paper discusses the issue of vacuum instability and negative energy states.  Following this

is a section on the relation between gauge invariance, Schwinger terms, and the definition

of the vacuum.  Given recent observational data from the Supernova Cosmology

Project—showing an acceleration of the expansion of the universe at great distances, it is

attractive to look at definitions of the vacuum that could lead to reasonable, but non-zero

values of the cosmological constant.  The redefinition of the vacuum proposed by

Solomon [1] is one possible approach to achieving this goal.  The final section looks at

the origin of the difficulties in QFT and also serves as a summary.

Perhaps the best introduction to the cosmological constant problem is the review

by Weinberg [2] published over twenty years ago.  Although there have been a variety of

approaches to the issue since then, the article can still serve to frame the problem, at least

in the sense that it is to be addressed here.  To avoid confusion, Weinberg’s notation will

be used in this introduction.

The Einstein field equations, including the cosmological constant λ, are

                                        
Rµν − 1

2
gµνR − λ gµν = − 8πG Tµν.                                            (1)

The right hand side of the equation contains the energy-momentum tensor Tµν, and it is

here that the first assumption that leads to the cosmological constant problem is made.  It

is that the vacuum has a non-zero energy density.  If such a vacuum energy density exists,

Lorentz invariance requires that it have the form*

                                                     Tµν Vac = − ρ gµν.                                                     (2)

This allows one to define an effective cosmological constant and a total effective vacuum

energy density

                                                 

λeff = λ + 8πG ρ

ρV = ρ + λ
8πG

=
λeff

8πG
.
                                              (3)

                                                
* The signature of the metric is +2.
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Observationally, it is known that the total effective vacuum energy density must be

comparable to about
 
ρV ~ 10

−29 g

cm3 .   

The second assumption that leads to the cosmological constant problem is that the

vacuum energy density is due to the zero-point energy of a quantized field or fields.  The

concept of the zero-point energy originated with the quantization of the simple harmonic

oscillations of a particle with non-vanishing mass.  This energy is present for each energy

level including the ground state.  In QFT, at a given instant of time, the field is defined at

each point in space—essentially an independent harmonic oscillation at each point with

amplitude and phase depending on the initial conditions.  By specifying an equation of

motion depending on the amplitude of the field and its partial derivative with respect to

time, one couples these otherwise independent oscillations.  In the Klein-Gordon

equation, for example, this coupling is achieved by the presence of the Laplacian.

The zero point energy is also present in the relativistic QFT of the neutral Klein-

Gordon field and the electromagnetic field.  Of course the zero-point energy of the Klein-

Gordon field is infinite, but when used to formulate the cosmological constant problem it

is generally summed up to a cutoff that determines the magnitude of the vacuum energy

density.  The way this is done is to count the number of normal modes between ν and

ν + dν, multiply by the zero-point energy in each mode, and integrate up to the chosen

cutoff.  There is some question as to whether it makes sense to count the normal modes

for a massive particle when addressing the energy density of the vacuum where no

particles are present.  The usual justification for this is somewhat confused in the

literature, but is generally based on identifying the zero-point energy with vacuum

fluctuations.

The number of normal modes between ν and ν + dν is given by

                                                 
dZ = 4πV

c3 ν 2 dν.
                                                            (4)

Transforming to wave number, setting the volume equal to unity, and using units where

h = c = 1, and integrating up to a wave number cutoff Λ >> 1 results in a vacuum energy

density of
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ρ = 1
2 k

2
+ m2 4π k

2

2π
3 dk

0

Λ

∼ Λ4

16 π 2 .

                                  (5)

As a relativistic wave equation, the Klein-Gordon equation has an energy

spectrum that includes both positive and negative energies, corresponding to either sign

for the radical in Eq. (5).  Note that if the integral were performed for both signs and the

results added, the vacuum energy density would vanish.  In QFT, zero-point energies are

inherent in the canonical field quantization method because the ordering of operators in

the Hamiltonian is not fixed.

In Eq. (5), the vacuum energy density up to a cutoff is calculated for the

cosmological constant problem by using only the positive sign for the radical.  The

reason for this goes back to Dirac’s redefinition of the vacuum where electrons are

assumed to fill the negative-energy states, and they and their infinite vacuum charge

density are presumed to be unobservable—as are the negative-energy state zero-point

energies.  In this way the instability of the vacuum caused by the availability of negative

energy states is eliminated.  The normal ordering procedure of canonical QFT, in addition

to eliminating the zero-point energies, also has the virtue of eliminating the infinite

vacuum charge density of the Dirac vacuum.  QFT does not, however, eliminate the

problem of negative energies as will be seen below.

The value of wave number cutoff to be chosen in Eq. (5) depends on one’s view

of Einstein’s theory of gravitation.  Fields are generally defined in the context of a

background metric for space-time—the Minkowski metric.  General relativity has to do

with the geometry of space-time itself, and while there is no a priori reason (or

experimental evidence) that the gravitational field need be quantized, it is generally

believed that Einstein’s theory of gravitation will no longer hold at very small distances,

and in particular for distances comparable or smaller than the Planck length (Gh/c3)1/2.

At this length scale, quantum fluctuations are thought to be the dominant influence on the

local space-time geometry.  For this reason, the Planck length is generally chosen to

define the cutoff.  Such a cutoff is really an expression of our ignorance of the vacuum

and the structure (if there is one) of space-time itself at these distances.  Unfortunately,

no experimental data exists.
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Evaluating the right hand side of Eq. (5) with Weinberg’s choice of Λ = (8πG)−1/2,

(the units are again such that h = c = 1) results in a value for the vacuum energy density

of

                                                      
ρ = 2 X 10

89 g

cm3 .
                                                  (6)

Comparing this with the observational value of ρV ~ 10−29 g/cm3 tells us that the two

terms in the effective vacuum energy density of Eq. (3) must cancel to some 118 decimal

places.  This fine tuning is the cosmological constant problem as it is currently

understood.

The Casimir effect, which in QFT is thought to be due to the presence of vacuum

fluctuations, is used to argue that the zero-point energies are real.  That is, zero-point

energies and quantum fluctuations are identified.  A key reference for the Casimir effect

is the work of Plunien, Müller, and Greiner [3].  Vacuum fluctuations—which represent

the terms of the perturbation series for the vacuum expectation value  <0|S|0> of the S-

matrix—are generally ignored since they can only produce an overall phase factor.

However, in the presence of external sources or boundaries these fluctuations can no

longer be so casually dismissed.  Although the vacuum state must be invariant under

rotations and translations—and therefore must have zero momentum, angular

momentum, and energy—the presence of external sources or boundaries (as in the

Casimir effect) breaks these fundamental symmetries, allowing vacuum fluctuations to

have effects that are observable.

Moreover, if the energy of the vacuum is defined as the difference of zero-point

energies in the presence of boundaries ∂Γ of a region Γ and without boundaries [3], the

vacuum energy can be negative; that is,

                                                 Evac ∂Γ = E0 ∂Γ − E0 0 ,                                               (7)

where E0[∂Γ] is the zero-point energy in the presence of boundaries and E0[0] is the zero-

point energy in their absence.

Because of the absence of boundaries or external sources, performing the kind of

calculation given in Eq. (5) has raised questions in the literature with regard to the

legitimacy of the approach of simply summing free field modes.  See, for example,
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Lamoreaux [4] where it is argued that we don’t learn much about the properties of the

vacuum of free space through the study of Casimir and related zero-point energy effects.

In the absence of interactions as well as boundaries, one could make the argument

that there appears to be no reason not to allow the vacuum to have a negative energy

spectrum so that both signs of the energy in evaluating Equation (5) should be used,

thereby eliminating the cosmological constant problem.  In the presence of interactions

the issue becomes more complicated, but—as will seen below—the availability of a

negative energy spectrum is one way to restore gauge invariance.

Vacuum Instability and Negative Energy States

At this point it might be useful to examine the origin of the concern about vacuum

instability in the presence of negative energy states.  Consider a free electron in a positive

energy state E subjected to a periodic perturbation of frequency ω.  It is generally agreed

that there is a non-vanishing probability for the electron to make a transition to a state of

energy E + hω or E – hω.  If hω > E + mc2, it is argued that the transition to E – hω

would be to a state of negative energy.  Having set the stage, the argument continues by

considering a bound state electron in a hydrogen atom.  Since the electron is coupled to

the electromagnetic field, such a bound state would rapidly make a radiative transition to

a negative energy state, with the result that the hydrogen atom would have no stable

existence.  Worse yet, since the spectrum has no lower bound, there would be no limit to

the radiated energy.

There is an objection to the above argument that shows that such transitions could

well be forbidden.  Under the usual sign convention, quantum states of positive energy

evolve in time as e−iωt
.  A state of negative energy, −E, then evolves as e+iωt

, which

corresponds to the transformation t → −t.  But there are two possibilities for a time

reversal operator: it can be unitary or anti-unitary—where t → −t and one also takes the

complex conjugate of states and complex numbers.  Under a unitary transformation, used

for all other discrete and continuous symmetries, the time-reversed state corresponds to a

state of negative energy –E.  It was Eugene Wigner who introduced the anti-unitary time

reversal operator so as to eliminate negative energies.
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There are now two arguments that can be given against the transition from a

bound state (as in the above argument) to a negative energy state under the periodic

perturbation.  First, if the Hamiltonian H governing the transition is to be CPT

invariant—as it must if it is to be an acceptable quantum electrodynamics

Hamiltonian—it must satisfy CPT H (x) [CPT]−1 = H (−x). This will only be the case if

the operator CPT is anti-unitary, a consequence of the complex conjugation implicit in

the time reversal operator T.  But since the transformation from e−iωt → e
+iωt

 corresponds

to simply t → −t, we have instead CPT H (x) [CPT]−1 = − H (−x), giving the negative

energy state.  Thus, the Hamiltonian of the transition can not satisfy CPT invariance.

The second argument has to do with the fact that if an electron in an external field

obeys the (quantized) Dirac equation, one cannot rule out the negative energy solutions

needed to make up a complete set of wave functions.  But a wave function representing a

negative energy state can only be non-zero if it has charge +e. [5]  This means the

argument given above for the transition of an electron to a negative energy state will

violate charge conservation.

Thus, a radiative transition of an electron to a negative energy state either violates

CPT invariance or the conservation of charge.  So it would appear that such transitions

are effectively forbidden.  This means there is no reason not to allow negative energies to

be summed over in Eq. (5), yielding a vanishing vacuum energy density.  The

attractiveness of Solomon’s approach to redefining the vacuum, to be described below, is

that it allows for incomplete cancellation of the zero-point energies leading to a small, but

not vanishing vacuum energy density.

QFT and Gauge Invariance.

The issue of the gauge invariance of QFT has been dealt with in a variety of ways

over the years (an extensive discussion is contained in [7]).  In essence, the standard

vacuum of QFT is only gauge invariant if non-gauge invariant terms are removed.  There

are two general approaches to the problem: the first is to simply ignore such terms as

being physically untenable and remove them so as to maintain gauge invarianc; and the

second is to use various regularization techniques to cancel the terms. Pauli-Villars

regularization [6] is discussed below.
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Returning to Eq. (5), another problem with this equation is that the introduction of

a momentum-space cutoff destroys translational invariance and may make it difficult to

maintain gauge and Lorentz invariance.  If, instead of introducing a cutoff, an attempt is

made to deal with this infinite integral by Pauli-Villars regularization, the result is the

introduction of negative masses.  This can be seen as follows.  It can be guaranteed that

the vacuum expectation value of the energy momentum tensor is Lorentz invariant and

hence proportional to ηµν if we use the relativistic formulation

                                             

0 T
µν

0 = 1
2

dp 3

2π
3

pµ pν

p0 .

0

∞

                                       (8)

Here p0 = E(p) = (p2 + m2)1/2.  The domain of integration can be transformed to spherical

coordinates in a space of any dimension by use of the formula

                                              
dp iΠ

i=1

d

= pd−1dk sin
i−1θ iΠ

i=1

d−1

dθ i ,
                                       (9)

resulting in

                                        

0 T
00

0 = 1
2

4π p2dp

2 2π
3 p2 + m2 .

0

∞

                             (10)

The Pauli-Villars regulator masses mi, where m1 = m, and associated coefficients

ci, where c1 = 1, are then introduced as follows:

                                 

0 T
00

0 = 1
2

4π p2dp

2 2π
3 ci p 1 +

m i
2

p2Σ
i

.

0

∞

                  (11)

The number of regulator masses needed depends in general on the integral.  Since

we are interested in the convergence of the integral at the upper limit where mi
2/p2 < 1,

the radical can be expanded in a series to yield

                      

0 T
00

0 = 1
2

4π p2dp

2 2π
3 ci p + 1

2
m i

2

p − m i
4

8p
3 + . . .Σ

i

.

∞

             (12)

This integral will converge at the upper limit provided the following relations are

satisfied as mi → ∞:
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1 + c jΣ

j =2

n

= 0 m2 + c j m j
2Σ

j =2

n

= 0 m4 + c j m j
4Σ

j =2

n

= 0 m j → ∞.
           (13)

Moving p2 in the numerator of Eq. (12) into the series expansion shows that Eqs. (13)

will be satisfied if n = 3.

Because some of the coefficients must be negative, this procedure introduces

negative energies in the form of negative masses that are allowed to become infinite at

the end of the calculation.  The advantage, at least for QFT, is that gauge and Lorentz

invariance are preserved.

If one works in Euclidean space by first performing a Wick rotation, one is left

with essentially the same problem: regulator fields for scalar fields obey Fermi statistics,

and those for spinor fields obey Bose statistics.  This violation of the spin-statistics

theorem means that the Hamiltonian cannot be a positive definite operator, again

implying the existence of negative energy states.

Solomon [7] has argued that for QFT to be gauge invariant the Schwinger term

must vanish, and Schwinger [8] long ago showed that for this to be the case the vacuum

state cannot be the state with the lowest free field energy.  The existence of non-zero

Schwinger terms also impacts Lorentz invariance.  Lev [9] has shown that if the

Schwinger terms do not vanish the usual current operator J
µ

x , where µ = 0, 1, 2, 3 and

x is a point in Minkowski space, is not Lorentz invariant.

To begin with, however, it is important to understand the details of Schwinger’s

argument.  Using Solomon’s notation, the Schwinger term is given by

                                                   
ST y,x = ρ y , J x .

                                               (14)

Taking the divergence of the Schwinger term and using the relation (see [7])

                                                  
i H0, ρ x = − ∇⋅ J x ,

                                               (15)

where H0  is the free-field Hamiltonian when the electromagnetic 4-potential vanishes,

results in

                          
∇ x⋅ ρ y , J x = ρ y , ∇⋅J x = −i ρ y , H0, ρ x .

                   (16)

Expanding the commutator on the right hand side of Eq. (16) yields the vacuum

expectation value
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i∇ x⋅ 0 ρ y , J x 0 = − 0 H0 ρ x ρ y 0 +

0 ρ x H0ρ y 0 + 0 ρ y H0ρ x 0 − 0 ρ y ρ x H0 0 .
          (17)

It is here that one makes the assumption that the vacuum is the lowest energy

state. This done by writing H0 |0> = <0|H0  = 0.  As a result, Eq. (17) may be written as

                                      

i∇ x⋅ 0 ρ y , J x 0 = 0 ρ x H0ρ y 0 +

0 ρ y H0ρ x 0 .
                     (18)

Multiply both sides of the last equation by f(x)f(y) and integrate over x and y.  The right

hand side of Eq. (18) becomes

                 
dx dy 0 f x ρ x H0 f y ρ y 0 + 0 f y ρ y H0 f x ρ x 0 .

          (19)

If Schwinger’s “arbitrary linear functional of the charge density” is defined as

                                     
F = f x ρ x dx = f y ρ y dy ,

                                   (20)

the right hand side of Eq. (18) becomes

                           

2 0 FH0F 0 = 2 0 F m m H0 n n F 0 =Σm,n

2 En 0 F n n F 0 =Σ
n

2 En 0 F n
2Σn > 0.

                           (21)

The left hand side of Eq. (21)—essentially the form used by Schwinger—is here

expanded to explicitly show the non-vanishing matrix elements between the vacuum and

the other states of necessarily positive energy.  This shows that if the vacuum is assumed

to be the lowest energy state, the Schwinger term cannot vanish, and the theory is not

gauge invariant.  Solomon also shows the converse, that if the Schwinger term vanishes,

then the vacuum is not the lowest energy state and the theory is gauge invariant.

For the sake of completeness, it is readily shown that the left side of Eq. (18)

becomes

                    
i ∇ x⋅ 0 ρ y , J x 0 f x f y dxdy = i 0 ∂ tF, F 0 ,

                (22)

so that combining Eqs. (21) and (22) yields a somewhat more explicit form of the result

given by Schwinger,

                                i 0 ∂ tF, F 0 = 2 En 0 F n
2Σ

n
> 0.                                      (23)
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Solomon’s redefinition of the vacuum

In QFT, invariant perturbation theory [10] the leads to the Dyson chronological

operator P(HI(x1) . . . HI(xn)), where HI is the interaction Hamiltonian. The adjective

“invariant” refers to the fact that time ordering in the Dyson series is Lorentz invariant if

the HI(xi) all commute at space-like separations.  The chronological product can be

expressed in a form where the virtual processes are explicitly represented; that is, as a

decomposition into normal products, where a Feynman graph can be used to represent

each of the normal products.  The vacuum state is empty (although vacuum fluctuations

exist) and is the state of lowest energy.  The theory is not, however, gauge invariant and a

process of regularization and renormalization is used to make it so.

The virtue of the vacuum state to be defined in this section is that it allows QFT to

be mathematically consistent in the sense that it becomes gauge invariant without the

need for regularization.  Because the theory is gauge invariant, the Schwinger term

vanishes.  The reason for this is that the definition of the vacuum is such that the usual

vacuum state, |0>, is no longer the state of minimum energy, and there exist states with

negative energy.  In the context of the cosmological constant problem, this means that

even if one believes the summation of zero-point energies given in Eq. (5) is legitimate, it

must be extended to the unoccupied negative energy states, leading to a significant

cancellation in the summation.

Redefining the vacuum state may provide a more elegant means of resolving both

the gauge invariance difficulties of QFT and the cosmological constant problem.  The

specific definition of the vacuum state given below serves, at a minimum, as an heuristic

example of this approach.

Because of its intuitive nature, hole theory will be used to introduce Solomon’s

redefinition of the vacuum in quantum electrodynamics.  He has also implemented this

redefinition in the context of QFT, and that will also be described here.  It may therefore

be useful to recall how the transition to QFT is made.

It terms of positive and negative energy electrons, second quantization gives the

Hamiltonian for a free electron
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H 0 = E pΣ

ps
a ps

† a ps − b ps

†
b ps ,

                                           (24)

where a ps
†

 is the creation operator for positive energy electrons and b ps

†

 creates negative

energy electrons.  In terms of the number operator N,

                                             

H 0 = E p N ps

† − N ps

−Σ
ps

,

                                                  (25)

where Ep > 0 and N ps

−

 is the number of negative energy electrons.

Dirac’s hole theory rescales the energy so that

                                          

H 0
′ = E p N ps

†
+ 1 − N ps

−Σ
ps

.

                                            (26)

If N− (for a given p and s) vanishes—i.e., when a negative-energy electron is missing,

then N+ increases by one and we see a positive energy electron and a hole in the negative

energy continuum, which is interpreted as a positron.

For the hole theory approach to dealing with negative energies to work, it is

essential that the particles filling the negative-energy states obey the Pauli exclusion

principle.  The technique would not work for bosons associated with the Klein-Gordon

equation.  While the particles filling the negative-energy states must not produce an

electric field or contribute to the total charge, energy, or momentum, they nevertheless

must respond to an external field.

The transition to QFT is accomplished by setting

                                              
a ps = cps and b ps = d ps

†
,
                                          (27)

so that destroying a negative energy electron is equivalent to creating a positron.  The

Dirac negative-energy sea vanishes since electrons and positrons are treated as separate

entities.  Provided the b’s satisfy the anti-commutation relations

                                                   
b ps

†
, b p′s′ = δss′ δ pp′,

                                                  (28)

we have that

                                

N ps

positrons
= 1 − N ps

−
= 1 − b ps

†
b ps = b psb ps

†
= d ps

†
d ps

N ps

electrons
= N ps

†
= a ps

† a ps = cps
† cps.

                     (29)
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As a result,

                                              N ps

positrons
0 = N ps

electrons
0 = 0,                                     (30)

since |0> contains neither positrons or electrons.  The free-electron Hamiltonian in terms

of the number operator, now sums over both electrons and positrons and is given by

                                               

H 0 = E p N ps

positrons
+ N ps

electronsΣ
ps

                                  (31)

Thus, one can readily move between hole theory and QFT although, as Solomon

has shown [11], one sometimes obtains differing results because of the way the vacua are

defined.

With reference to Fig. 1, Solomon defines a state vector |0, ∆EW> as the state

where a band of negative energy states extending from –m to –(m + ∆EW) is occupied by

a single particle (the exclusion principle holds); all other single particle states are

unoccupied.

0

m

−m

−(m  + ∆E   )W

E

Positive Energy States 

Occupied Negative Energy States 

  Unoccupied Negative Energy States 

Figure 1. The state vector  |0, ∆EW>.  Only the band of negative energy states

extending from –m to –(m + ∆EW) is occupied.

The vacuum state is defined by Solomon as |0, ∆EW→∞>, where it is important to

understand that the limit ∆EW→∞ means that ∆EW goes to an arbitrarily large but finite

number.  If ∆EW were set equal to infinity one would be reproducing the Dirac vacuum.
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This definition of the vacuum allows transitions from the occupied negative energy states

within the band to those beneath the band, thereby making the Schwinger term vanish,

and the theory is consequently gauge invariant.

The vacuum can be similarly redefined in the context of QFT.  With reference to

Eq. (27), the creation and destruction operators in QFT obey

                                               cps 0 = d ps 0 = 0,                                                    (32)

while new states are created by cps
†

 and d ps

†

 operating on the vacuum state |0>.  Solomon

[12] redefines the vacuum to be |0R>, as R → ∞ with the following restrictions:

                                          

cps 0R = 0, ∀p,

d ps 0R = 0, p < R,

d ps

†
0R = 0, p > R.

                                                      (33)

New states are created by

                                             

cps
† 0R , ∀p

d ps 0R , p > R

d ps

†
0R , p < R.

                                                           (34)

Graphically, these conditions may be displayed as in Fig. 2.

Figure 2.  Solomon’s [12] redefinition of the vacuum in QFT.  Note that dps|0R>,

|p| > R creates states with energy less than |0R>.

As R → ∞ the usual relations of Eq. (32) are recovered.  Solomon shows that the

Schwinger term vanishes using this redefinition of the vacuum so that the theory is gauge

invariant.  Again, to achieve this it was necessary to introduce negative energy states.

Electrons Positrons

0

cps 0R = 0, ∀p

c ps
+ 0R ≠ 0, ∀p

R

d ps 0R ≠ 0

d ps

+
0R = 0, p > R

d ps 0R = 0 , p < R

d ps

+
0R ≠ 0

|p|
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The key question to be addressed, with this or any redefinition of the vacuum that

allows negative-energy states, is stability.  First, can positive energy particles be scattered

into unoccupied negative energy states?  And second, is the vacuum catastrophically

unstable, in the sense that the transition rate from occupied negative energy states within

the band shown in Fig. 1 to those below the band, so great that the band vanishes

essentially instantaneously?

With regard to the first question, the idea here is to make ∆EW large enough to

make the probability of such transitions negligibly small.  The answer to the second

question is still open, but Solomon [12] has determined that for a field theory of non-

interacting zero-mass fermions in the presence of a classical electromagnetic field in a

2-dimensional space-time, the vacuum is stable.  It remains to show that this remains the

case for 4-dimensional space-time.

Origin of the inconsistencies in QFT and Summary

The problem of maintaining gauge invariance in QFT when interactions are

present, and the difficulties with Schwinger terms discussed above, stem from the now

well known fact that the underlying assumptions of QFT are inconsistent.  The essence is

contained in Haag’s theorem [13], which is concerned with the interaction picture that

forms the basis for perturbation theory.  Haag’s theorem is important not least for the fact

that it identifies the reason regularization and renormalization are needed in QFT; that is,

the underlying assumptions of relativistic QFT are inconsistent in the context of

interacting systems.

In QFT, relativistic transformations between states are governed by the

continuous unitary representations of the inhomogeneous group SL(2,C)—essentially the

complex Poincaré group.  One might anticipate that when interactions are present the

unitarity condition might be violated.  Indeed, Haag’s theorem states, in essence, that if

φ0 and φ are field operators defined respectively in Hilbert spaces H0 and H, with vacua

|0>0 and |0>, and if φ0 is a free field of mass m, then a unitary transformation between φ0

and φ exists only if φ is also a free field of mass m.  Another way of putting this is that if

the interaction picture is well defined, it necessarily describes a free field.
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The assumption that the vacuum state is the minimum energy state, invariant

under a unitary transformation, is one of the fundamental assumptions of QFT.  But it is

now known that the physical vacuum state is not simple and must allow for spontaneous

symmetry breaking and a host of other properties, so that the real vacuum bears little

relation to the vacuum state of axiomatic QFT.  Nevertheless, even if the latter type of

vacuum is assumed, the violation of the unitarity condition in the presence of interactions

opens up the possibility that the spectral condition, which limits momenta to being within

or on the forward light cone, may also be violated thereby allowing negative energy

states.

Of course, the way QFT gets around the formal weakness of using the interaction

picture is to regularize the singular field functions that appear in the perturbation series

followed by renormalization.  There is nothing wrong with this approach from a

pragmatic point of view, and it works exceptionally well in practice.  The reason one may

want to look at other approaches, such as redefining the vacuum state and the role of

negative energies, is that it may lead to insights into the nature of the vacuum itself, and

help resolve the outstanding cosmological constant problem, and could offer a new

approach and possibly an alternative to the process of regularization and renormalization.

If it is indeed possible to use the negative energy spectrum to cancel much of the

vacuum energy density of Eq. (5), there is now observational evidence pointing to what

the residual vacuum energy density must be.  This comes from the observational data of

the Supernova Cosmology Project [14].
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