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Abstract
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the instantaneous (non-tail) contributions evaluateddorapanion paper, it provides crucial inputs for the
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I. INTRODUCTION

The gravitational-wave (GW) energy flux from a system of tvainp masses in elliptic mo-
tion in the leading quadrupolar approximation (Newtoniatken) was first obtained by Peters &
Mathews [ﬂL,DZ]. Using the first post-Newtonian (1PN) ordeagjtKeplerian representation of
the binary’s orbit|IB], Blanchet & Schafel! [4] computed theN corrections to the above result
(confirming earlier work by Wagoner & Will [5]}. Using the generalized quasi-Keplerian rep-
resentation of the 2PN motioH?@, 7, 8], Gopakumar and ly¢ef@ended these results to 2PN
order and computed the ‘secular’ evolution of orbital elatseinder 2PN gravitational radiation-
reaction (4.5PN terms in the equations of motion). Thesestttoite one of the basic inputs for
gravitational wave phasing of binaries in quasi-eccerurluts in the adiabatic approximation.
All these works above relate to tivestantaneougerms in the phasing of gravitational waves.

The multipole moments describing GWs emitted by an isolayestiem do not evolve indepen-
dently. They couple to each other and with themselves, gikise to non-linear physicaliects.
Consequently, starting at relative 1.5PN order, the abest&antaneous terms in the flux must be
supplemented by the contributions arising from these nmoeatl multipole interactions. The lead-
ing multipole interaction is between the mass quadrupolmentl;; and the mass monopold
or Arnowitt, Deser and Misner (ADM) mass. It is associatethwine non-linear fect of tails at
order 1.5PN, and is physically due to the backscatter oalineaves from the space-time curva-
ture generated by the total mags Tails imply a non-locality in time since they are descrilasd
integrals depending on the history of the source from theoterpast to the current retarded time.
They are thus appropriately referred tcdhaseditarycontributions by Blanchet & Damour [10,/11]
—terms non-local in time depending on the dynamics of theegy# its entire pasml]. The most
detailed study of tails in this conte 13] is based anrthultipolar post-Minkowskian formal-
ism ,]. Up to 3PN order the hereditary terms comprigedbminant quadratic-order tails,
the quadratic-order memory integral [11] 16,(17,[18, 19]thectubic-order tails. The latteubic
“monopole-monopole-quadrupole” interaction can be caltails of tails” of GWs (see@ﬂfﬂ]
for earlier references to the general topic of tails). Irsthaper we set up a general theoretical
framework to compute the hereditary contributions for bigg moving in elliptical orbits and
apply it to evaluatall the tail contributions contained in the 3PN accurate GWgn#ux.

For the instantaneous terms in the energy flux, explicitedderm analytical expressions can
be given in terms of dynamical variables related to relat®ecity and relative separation. Con-
sequently, these expressions can be conveniently averagfeel time domain over an orbit using
their quasi-Keplerian representation. For the hereditantributions on the other hand one can
only write down formal analytical expressions as integoaisr the past. More explicit expressions
in terms of the dynamical variablespriori require a model of the binary’s orbital evolution in
the past to implement the integration. In general, one cawsﬂﬂ] that the past-influence of tails
decreases with some kernell/(t — t")? wheret is the current time ant the integration time in
the past. Thus the “remote-past” contribution to the taiégmals is negligible. More precisely,
it was shown ] that the contribution due to the past of dikimtegral iSO(&aqIn &aq) Where
&ad = w/w? is the adiabatic parameter associated with the binaryjsirnaisdue to radiation re-
action, which is of order 2.5PN. Consequently, the tailgné¢s may be evaluated using standard
integrals for dixednon-decaying circular orbit and errors due to inspiral bgvgation radiation
reaction are at least 4PN order|[20].

1 As usual thenPN order refers to the post-Newtonian terms of orad¢c)?” wherev denotes the typical binary’s
orbital velocity anct is the speed of light.



In the circular orbit case, with the above simplified modebofary inspiral one can work
directly in the time domain. For instance, the hereditaryntein the flux were computed up to
3.5PN EZEB] while those in the GW polarisations could b&awoted up to 2.5P @1]. In
the elliptic orbit case on the other hand the situation isemivolved. Even after using the quasi-
Keplerian parametrization, one cannot perform the integnethe time domain (as for the circular
orbit case), since the multipole moments have a more coatplicdependence on time and the
integrals are not analytically solvable in simple closeaifs. By working in the Fourier domain
Ref. [Zi)] computed the hereditary tail terms at 1.5PN fap#tal orbits using the lowest order
Keplerian representation.

In the present investigation we tackle the terms at ord&BX.and 3PN and we need to go
beyond the (Newtonian) Keplerian representation of thé twka 1PN quasi-Keplerian represen-
tation. Here we encounter two further complications. Birghe 1PN parametrization of the
binary B] involves three kinds of eccentricities (e ande,). More seriously, at 1PN order the
periastron precessioifect appears in the problem and one has to contend with twe cedes:
the orbital time scale and the periastron precession timke sthese new features are to be prop-
erly accounted for in the calculations to extend the Foumethod of Ref. @0]. This strategy
has been proposed and used earlier in computing the insemta terms in the GW polarizations
from binaries on elliptical orbits [22, 2B, 24]. We shall atithese features here to treat the more
involved hereditary contribution to the total energy flux.

Following Ref. [20], we express all the multipole momenteadhed for the hereditary compu-
tation at Newtonian order as discrete Fourier series in ttamanomaly of motios. However,
for the quadrupole momeiit needed beyond the lowest Newtonian order, the “doubly perio
nature of the motion needs to be crucially incorporated. &dauation of the Fourier céigcients
is done numerically based on a series of combinations ofédBé&ssctions. All tail terms at 2.5PN
and 3PN are computed to provide the “enhancement factaugt{ions of eccentricity playing
a role similar to the classic Peters & Mathews [1] enhancerfaartor) for binaries in elliptical
orbits at the 2.5PN and 3PN orders. The present work extesddts for hereditary contributions
at 1.5PN Eb] for elliptical orbits to 2.5PN and 3PN ordersheT3PN hereditary contributions
comprise the tail-of-tail terms and are also extension@m] for circular orbits to the elliptical
casé?

Combining thehereditarycontributions computed in this paper with timstantaneousontri-
butions computed in the companion paper [29] will yield toenplete 3PN energy flux, general-
izing the circular orbit results at 2.5PE[§_)'I] and 3PN [@,] to the elliptical orbit case. The
final expressions represent GWSs from a binary evolving adiedlly under gravitational radiation
reaction, including precisely up to 3PN order tHEeets of eccentricity and periastron precession
during epochs of inspiral when the orbital parameters aserdgmlly constant over a few orbital
revolutions. It thus represents the first input to go towadhdsfull quasi-ellipticalcase, namely
the evolution of the binary in an elliptical orbit under gtational radiation reaction.

Recently, Damour, Gopakumar & Iyéﬂ24] proposed an analyethod based on an improved
“method of variation of constants” to construct high accyreemplates for the GW signals from
the inspiral phase of compact binaries moving in quasp#tial orbits. The three time scales, re-
spectively related to orbital motion, orbital precessiad aadiation reaction, are handled without
the usual approximation of assuming adiabaticity relativihe radiation reaction time scale. The
explicit results of the above treatment|[24] relate to “Newan” radiation reaction (2.5PN terms

2 Recall that tails are not just mathematical curiositieséneyal relativity but facets that should show up in the GW
signals of inspiraling compact binaries and be decoded dylétectors VirgthIGO and LISA 8].



in the equations of motion). It leads to post-adiabatictffascillations resulting in amplitude cor-
rections at order 2.5PN beyond the secular terms. More tigdérs work has been extendéﬂ%]
to 1PN radiation reaction (3.5PN terms in the equations dfonp3

The paper is organized as follows: In Sectidn Il we review gbkition of the equations of
motion of compact binaries and discuss its important prigserelevant for this present work.
Section ] provides the Fourier decomposition of multpohoments and its use in averaging
the energy flux. Sectidn 1V provides the computations oftal tiail contributions whose numer-
ical implementation is elaborated in Sectioh V. The comg&RN contributions are exhibited in
Section V] together with relevant checks. The paper ends arnit Appendix listing the Fourier
codficients of the required Newtonian moments in terms of the &daactions.

II. SOLUTION OF THE EQUATIONS OF MOTION OF COMPACT BINARIES
A. Doubly-periodic structure of the solution

In this work and the next onéf[lZQ], we shall often need to useetkplicit solution for the
motion of non-spinning compact binary systems in the pastAdnian (PN) approximation. We
review here the relevant material we need, which includeg#neral “doubly-periodic” structure
of the PN solution, and the quasi-Keplerian representatiadhe 1PN binary motion by means of
different types of eccentricities. We closely follow the WO@@,@].

The equations of motion of a compact binary system up to tiN@Ber admit, when neglect-
ing the radiation reaction term at the 2.5PN order, ten fitstgrals of the motion corresponding to
the conservation of energy, angular and linear momentgyasition of the center of ma&[@ 37].
When restricted to the frame of the center of mass, the eapsasidmit four first integrals associ-
ated with the energlg and the angular momentum vecfhigiven at 3PN order by Egs. (4.8)—(4.9)
of Ref. [38].

The motion takes place in the plane orthogonal.t®enoting byr = |x| the binary’s orbital
separation in that plane, and by v,-V, the relative velocity, we find th& andJ are functions of
r, 12, v? andx x v (we are employing for definiteness the harmonic coordingttes of [381), and
depend on the total mass= m, +m, and reduced mags= mym,/m. We adopt polar coordinates
r, ¢ in the orbital plane, and expre&sand the normJ = |J|, thanks ta® = 2 + r?¢? as some
explicit functions ofr, 2 and¢. The latter functions can be inverted (by means of strasgivdrd
PN iteration) to give? andg in terms ofr and the constants of motidhandJ. Hence,

i? = R[r;E, J], (2.1a)
¢ = GIr, E,J], (2.1b)

where the function® andG denote certain polynomials iryd, the degree of which depends on
the PN approximation in question (it is seventh degree foin BoandG at 3PN 0rder9]). The
various coéicients of the powers of /t are themselves polynomials B and J, and also, of
course, depend om and the dimensionless reduced mass ratiou/m. In the case of bounded

3 For circular orbitssecularevolution of the phase, computed in the adiabatic appratiamzs known up to 3.5PN

order ].

4 All calculations in this paper will be done at the relativeNL&¥der, and at that order there is ndfdience between
the harmonic and ADM coordinates.



elliptic-like motion, one can provHiZZ] that the functi®admits two real roots,p andr, such
thatrp < ra, which admit some non-zero finite Newtonian limits wher-» o, and represent
respectively the radii of the orbit's periastron and agastrThe other roots tend to zero when
C — o0,

We are considering a given binary’s orbital configuratialyfspecified by some given values
of the integrals of motiore andJ. We no longer indicate the dependencetband J which is
always implicit in what follows. The binary’s orbital pedpor time of return to the periastron, is
obtained by integrating the radial motion as

A dr
P=2 . 2.2

We introduce the fractional angled. the angle divided by ) of the advance of the periastron
per orbital revolution,

1™ G
= ) dr o (2.3)

which is such that the precession of the periastron per gpesigiven byA¢ = 22(K — 1). As
K tends to one in the limit — o (as is easily checked from the Newtonian limit), it is often
convenient to posk = K — 1, which will then entirely describe thelativistic precession

Let us define the mean anomdlyand the mean motiomby

¢ = n(t-tp), (2.4a)
h = % (2.4b)

Heretp denotes the instant of passage to the periastron. For a gihea of the mean anomaly
the orbital separationis obtained by inversion of the integral equation

r dr/
£=n f T 2.5)

This defines the function(¢) which is a periodic function i with period 2. The orbital phase
is then obtained in terms of the mean anonfaby integrating the angular motion as

s=vo+7 [ AGIO, 26)

wheregp denotes the value of the phase at the insanih the particular case of a circular orbit,
r = const, the phase evolves linearly with tinges G [r] = w, wherew is the orbital frequency of
the circular orbit given by

w=Kn=@Q+Kk)n. (2.7)

In the general case of a non-circular orbit it is convenieritgep the definition ab = Kn (which
will notably be very useful in the next work [29]) and to exgilly introduce the linearly growing
part of the orbital phas€(2.6) by writing it in the form

¢ = ¢p+ w(t—tp) + W(£)
= ¢p+ KL+ W(0). (2.8)



HereW(¢) denotes a certain function which is periodictithence, periodic in time with period
P). According to[(2.6) this function is given in terms of the aneanomaly’ by

W(0) = % fo de 1GIr()] - w). (2.9)

Finally, the decompositioil (2.8) exhibits clearly the “@buperiodic” nature of the binary motion,
in terms of the mean anomafywith period 2r, and in terms of the periastron advari€é with
period 27 K.> It may be noted that in Rest:[IZEM] the notatidns used; it corresponds to
A = K ¢ and will also occasionally be used here.

B. Quasi-Keplerian representation of the motion of compacbinaries

In the following we shall also use the explicit solution oétmotion at 1PN order, in the form
due to Damour & Deruellé:[B]. The solution is given in pararnodiorm in terms of the eccentric
anomalyu. Then the radius and mean anomal§/are expressed as

r =a (1- e cosu), (2.10a)
{ =U-egsinu. (2.10b)

The phase anglg is given by (the additive constan is for convenience set equal to zero)

¢ =KV, (2.11)
where the true anomal is defined b$
1 1/2
V=2 arcta+( i e¢) tang]. (2.12)
1-¢ 2

In the aboveK is the periastron advance given in general terms by[Eqg.,(@)a, is the semi-
major axis of the orbit. Note that there are, in this parain&tion at 1PN order, three kinds of
eccentricitiess,, g ande; (labelled after the coordinatest andg). All these eccentricities fier
from one another by 1PN terms, while the advance of the gesiaper orbital revolution appears
also starting at the 1PN order. Due to these features, ghiesentation is referred to as the “quasi-
Keplerian” (QK) parametrization for the 1PN orbital motiohthe binary. The periodic function
W of Eq. (2.9) now reads

W=K(NV-20). (2.13)

To close the above solution we need to know the explicit dépece of the orbital elements in
terms of the 1PN conserved enei§and angular momentuthin the center-of-mass frame (taken

5 Recall, that though standard, the term “doubly periodicyrmaslead a bit in that the motion in physical space is
not periodic in general. The radial motio(t) is periodic with period® while the angular motiog(t) is periodic
[modulo 2r] with period P/k wherek = K — 1. Only when the two period are commensurab&,whenk = 1/N

whereN is a natural integer, is the motion periodic in physical gp@edth periodN P).
6 We have denoted the true anomaly Byather than by the symbolof earlier papers to avoid conflict with the

relative speed.



as usual per unit of the reduced ma$sThis is given in Ref.|__[|3]. Note that the semi-major axis
a, and mean motion depend at 1PN order only on the constant of energy through

Gm 7 v\E
L {1 R (5 - 5) g} (2.142)
 (-2E)¥2 15 v\ E

Posingh = J/(Gm), the 1PN periastron precession simply réads

K=1+ W’ (215)
while the three dierent eccentricities are given by
' 15 5\E -6+v||"?
er:{1+2Eh2 1+ —?+§v)§+w} , (2.16a)
[ (17 7T\E 2-2v\"?
Q:{l-l'ZEhz 1+ E—EV)?'FW]} s (216b)
‘ 15 v\E 6 "7
e¢:{l+2Eh2 1+ _?+§)§_W:|} . (216C)
Notice the following simple ratios (valid at 1PN order)
E
g = 1+(8-3) 5. (2.17a)
E
% - 1+8-2) 3, (2.17b)
E
g = 1+vs, (2.17¢)
¢

In the following paper@Q] we shall need and use the expoiution of the generalized QK
binary motion up to 3PN order.

[ll. FOURIER DECOMPOSITION OF THE BINARY'S MULTIPOLE MOMEN TS
A. Peters & Mathews derivation of the Newtonian energy flux
The method we shall use in this paper is exemplified by the coatipn of the averaged en-

ergy flux of compact binaries at Newtonian order using a Feswlecomposition of the Keplerian
motion ﬂ]. The GW energy flux, say

d8 GW d8 GW
?z(a) E(fdgm) , (3.1)

" Thus it is sometimes useful to defike= k/3 which reduces to/{c?h?) at 1PN order.




where§ is the energy carried in the gravitational waves, reducBieatonian order to the standard

Einstein quadrupole formula

1
N _ 2
F 5

where (N) means the Newtonian limit, the superscnptéfers to diferentiation w.r.t timen times,
and!{” is the symmetric-trace-free (STF) quadrupole moment attbigian order given by

(3 (3
;M@ 1M @), (3.2)

1Y = pxx” (3.3)

HerexX is the binary’s orbital separation, and the angular bracketund indices indicate the STF
projection:x' x> = x'xI — 25'r%. Peters & Mathews [1] obtained the expression of the (awethg
Newtonian flux for compact binaries on eccentric orbits by tmethods. The first method was to
take directly the average in time of EQ. (3.2) using the ession [3.8) computed for the Keplerian
ellipse; the second method was to decompose the comporfetite quadrupole moment into
discrete Fourier series using the known Fourier decompasitf the Keplerian motion (the two
methods, as expected, agreed on the result).

In the second method the quadrupole moment, which is a perfiodction of time at Newto-
nian order, is thus decomposed into the Fourier series

+00

1w = > 1M (3.4a)
)
21
d¢ -
with 7, = e 3.4b
o= )y e @
where( is the mean anomaly of the binary motion, Hq.2.4). Sillﬁ'f?eis real the Fourier discrete
codficients satisfy 7’ = (pZ0"" (+ denotes the complex conjugate). Inserting EGSI (3.4)
into (3.2) we obtain
1 +00 +00 )
FO=2 ), > (pnign? ({)”.(N’ @}N) P, (3.5)
p=—00 g=—00

Next we perform an average over one perbathich means the average ovet n(t — tp) which
is easily performed with the formula

. ZE VA
(&P = fo > ePl=6p0. (3.6)

This immediately yields the averaged energy flux in the fofrtihe Fourier series

2 =
) =2 ) (P’ 7§ (3.7)
p=1

8 From now on we sat = 1 andG = 1.



Using dimensional analysis (and the known circular orhiit) this flux is necessarily of the form

32 m\°
(N)\ _ 2 [
(F y.sv(a)ma (3.8)

wherev = u/m anda is the semi-major axis of the Newtonian orbit, and the fuorcti () is
a dimensionless function depending only on the binary'®ettity e. The codicient in front
of (3.8) is chosen in such a way thi(e) reduces to one for circular orbitse. whene = 0. Thus
we have

1 X 6,
f(e) = 16ﬂ2a4;p Z0F (3.9

The Fourier cofficients of the quadrupole moment are explicitly given by HAS) in the Ap-
pendiX A below. Remarkably this function admits an algetaby closed-form expression, crucial
for the timing of the binary pulsar PSR 19486 @], and given by

3 3
1+ 2e? + e
1-e)72

f(e) = (3.10)

The functionf(e) is the Peters & Mathew£|[1] “enhancement” function, so glesied because

in the case of the binary pulsar, which has eccentrieity 0.617-- -, it enhances thefiect of

the orbitalP by a factor~ 11.843. The proof that the serids {8.9) can be summed up to yield
the closed-form expression (3]10) is given in the Appendifdp Of course Eq.[3.20) is in full
agreement with the direct computation of the average padrin the time domaiﬂﬂ[l],e.

3

f(e) = 1 (iisj)(N) ;™). (3.11)

32u?a*né

The method of decomposing the Newtonian moment of compaetrieis as discrete Fourier

series was used in ReﬂZO] to compute the tail at the domib&®PN order. To extend this result

we need to be more systematic about the Fourier decomposittbe (not necessarily Newtonian)
source multipole moments.

B. General structure of the Fourier decomposition

The two sets of source-type multipole moments of the comipiaetry system are denoted by
[.(t) and Jy (t) following Ref. [41]. Here the multi-index notation meahs= isi; - - -ij, wherel is
the number of indices or multipolarity (which is not to be fied with the mean anomaty. In
this Section we investigate the structure of the mass aneémumoments, and sayJ, _; (where
L—1=i4i,---ij_1 Ischosen in the current moment for convenience ratherltheat any PN order
and for a compact binary system moving on a general nondaircubif®. Their general structure

9 However the intrinsic spins of the compact objects are gtk so the motion takes place in a fixed orbital plane.



can be written as

|

IL(t) = Zﬁ[r,f,vz] xSl (3.12a)
k=0

Jia(t) = ng[r,hvz] X1kl iz gii-1>abyay b (3.12b)
k=0

wheres?" is the Levi-Civita symbol (such that? = 1), wherex' = y| -y}, andv' = dX/dt = v} -},
denote the relative position and ordinary velocity of the@ taodies (in a harmonic coordinate
system). In[(3.12) we pose for instanke’x = X -..xk and the angular brackets surrounding
indices refer to the usual symmetric-trace-free (STF)qmtopn with respect to those indices.
Using polar coordinates ¢ in the orbital plane (as in Selc. TIA), the above introduceetito
cients#, andG, depend on the masses androm andv?® = ? + r?¢2. For quasi-elliptic motion
we can explicitly factorize out the dependence on the drpitase¢ by insertingx = r cosg,
y = rsing, andv, = F COS¢ — I ¢ Sing, v, = fFsing + r ¢ cosp. Furthermore, using the explicit
solution of the motion (SeE_1IIB) we can express andv?, and hence th&,'s andG,’s, as peri-
odic functions of the mean anomaly= n(t — tp), wheren = 27/P. We then find that the above
general structure of the multipole moments can be exprasdedns of the phase angfe as the
following finite sum over some “magnetic-type” indexranging from-I to +l,

|
HOEY %L({’)eim"’, (3.13a)
m=—|
|
Ial®) = ), Ba@e™, (3.13b)
m=-|

involving some cofiicients A, and B, -1 depending on the mean anomdland which are
complex € C). (Some of these cdigcients could be vanishing in particular cases.) The point fo
our purpose is that these dheients argeriodicfunctions off with period 2r. As we can see, the
structure of the mass and current momentandJ,__; is basically the same, but their deients
mAL and mB_1 will have a diferent parity, because of the Levi-Civita symbol entering th
current momend, _;.

To proceed further, let us exploit the doubly periodic natfrthe dynamics in the two variables
A = K¢ and? (as reviewed in Se€. IIIA). The phase is given in full gengydly Eq. [2.8) where
we recall thatW(?) is periodic in¢. In the following it will be more convenient to single out in
the expression of the phase the purely relativistic precesd the periastron, namely— ¢ = k¢
wherek = K—1. Inserting the expression of the phase variable into BgE3J yields many factors
which do modify the coicients of [[3.1B), but in such a way that they remain periaait Hence
we can write

|
I = > (g)L(f)émk", (3.14a)

m=—|

I
Ia® = ), TaOem™, (3.14b)
m=— (M

10



where the cogiicients 7' (£) andm) J-1(¢) are 2r-periodic. Finally, this makes it possible to use
a discrete Fourier series expansion in the intef\a[0, 2x] for each of these cdicients, namely

+00

7.0 = 7. e (3.15a)

(m) pm—co (P
() = Z T 1€ (3.15b)

(m) . (p.m)

with inverse relations given by
— 7.()e'P 3.16a
(pm) f 27 (m )L( ) ( )
2 df —i pt’
J L1 = — JL-1(0) € (3.16b)
(pm) 0o 27 (m

This leads then to the following final decompositions of thdtipole moments,

IL(®) = Z Z (én)Lé‘p+m@f, (3.17a)
Jia(t) = Z Z T _, dPmBe (3.17b)
—co m—] PM

Obviously, since the momenksandJ,_; are real, their Fourier céigcients must satisfy, )7 =
p-mZ andpmTi-1 = (p-mI| 4

The previous decompositions were general, but it is stéfuigo introduce a special notation
for the particular case of the Newtonian (N) order, for whilsé relativistic precessioktends to
zero. In this case we recover the usual periodic Fouriermdeosition of the moments [generaliz-
ing Egs. [3.1)], with only one Fourier summation over thesixg, so that

+00

1N() = rMere (3.18a)
p—co (P

N = Z gﬁN)épf (3.18D)
p——oo

The Newtonian Fourier cdigcients are equal to the sums oveiof the doubly-periodic Fourier
codficients in Eqs.[(3.17) when taken in the Newtonian limit, ngme

|
) )
I = , 3.19a
(n" ,;l ()" (3.192)
|
® = M. (3.19b)
® r; (pm

11



IV. TAIL CONTRIBUTIONS IN THE FLUX OF COMPACT BINARIES

The technique of the previous Section is applied to the caatiom of the tail integrals in the
energy flux of compact binaries. Although the computatiarsefectively done up to the 3PN
level, the method we propose could in principle be implereéiat any PN order.

A. Expression of the tail integrals in the 3PN energy flux

As reviewed in the Introduction, the first hereditary ternthie energy fluxF occurs at the
1.5PN order and is due to GW tails caused by interaction eivtlee mass quadrupole moment
and the total ADM mass. At the 3PN order, three kinds of héaegiterms appear: (1) The
tails caused by quadratic non-linear interaction betweghdr-order multipole moments with the
mass; (2) the “tails of tails” due to the cubic non-lineaenatction between the tail itself and the
mass; (3) a particular “tail-squared” term arising fronf-geferaction of the taiP.

In the equations to follow, we list the expressions for allgh hereditary tail terms. They are
given as non-local integrals over the source multipole nmamef the systen;(t), lix(t), ... and
Jij(t), ..., where we use the specific definition of the PN source emasgiven in Ref. [41]. Thus
the energy fluxF defined by Eq.[{3]1) can be split at 3PN order into

T(SPN) = Finst + Fhered (4-1)

where the “instantaneous” part, which depends on the sonoreents at the same instant ($ay
reduces at the Newtonian order to the Einstein quadrupolaenoflux#™ given by Eq.[(3.R).
On the other hand, the “hereditary” part reads

Fhered = Frail + Frailtail) + F tai2> (4.2)

where the quadratic-order tail integrals are explicitlyeg by (see Ref@l]}

-0 [ -l 2]

I(4)(t) f dTII(J?()(t—T) |n(27) 23]

189 i
7
|n(2 0) ; 6]’ (4.3)

64M
IR f dr JO(t - 7)
10 Recall that the hereditary character of the non-linear mgrindegral ,Hﬂﬂg] is that of a time anti-

derivative in the waveformi.g. the radiative moments). Thus the non-linear memory becanstantaneous in
the energy flux, which is made out of time derivatives of théiadve moments, and will be included into the

instantaneous terms computedm [29].
1 For convenience we do not indicate the neglected PN tegrgs)(c™"). All equations are valid through the aimed

3PN precision. In the companion pad& [29] we shall restthygosvers of /¢ (andG).
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while the cubic-order tails (proportional ¥?) are

4M? e T 57 T 12462
Fraittiainy = ——v 1 ®)t _ 2l ) —In|— |+ ——
tail(tail) 5 II] (t) jo\ dT II] (t T) |n (2[’0) + 70 In (2[’0) + 44100 . (448.)

AMZ ([ ) T\ 1)
F e = ?(fo drif (t—T)[|n(2—ro)+ 1—2]) . (4.4b)

In these expressions recall thislt is the conservedmass monopole or total ADM mass of the
source. The first term in_(4.3) is the dominant tail at ord&PN while the second and third
represent the sub-dominant tails both appearing at or&N2. The higher-order tails are not
given since they are at least at 3.5PN order (@e [12] for gxgiressions). The two cubic-order
tails given in Eqs.[(4]4) are both at 3PN order.

The constanty scaling the logarithms in the above tail integrals has besdimeld to match
with the choice made in the computation of tails-of-tailsRef. [12]. This is the length scale
appearing within the regularization factay'(y)® used in the multipolar moment formalism valid
for general sourceﬂhl]. Note thatis a freely specifiable constant entering the relation betwe
the retarded time in radiative coordinates [used in Eq8){@L.4)] and the corresponding time in
harmonic coordinates. Hencg merely relates the origins of time in the two coordinate eyt
and is unobservable.

We shall compute all the tail and tail-of-tail terris {4.8)4) [i.e. up to the 3PN order] averaged
over the mean anomalyy Together with the instantaneous terms reported in the pmxdar]
we shall obtain the complete expression of the 3PN energy ftug clear from Eqs.[(4]13)E(4.4)
that all the terms necessitate an evaluation at the relbvetonian ordeexceptthe mass-type
guadrupolar tail term — first term if_(4.3) — which must crilgiaclude the 1PN corrections. We
start with all the terms required at relative Newtonian oatel then tackle the morefticult 1PN
guadrupolar tail term.

B. Tails at relative Newtonian order

As a warm up, we consider the mass-type quadrupolar tailitethe energy flux, the first term
in Eq. (4.3), but given simply at the relative Newtonian ardemely?

—+00

<?~(N)

4M ) (5) T 11

et = 5 V0 | dr |ij(N)(t—T)[|n(2—rO)+ 1—2]>, (4.5)
where the bracket§ refer to the average over the mean anonfadg defined by Eq[(3.6). The
term [4.5) was already computed using a Fourier series atdwawn order in Ref.@O]; note that
the method of@O] is valid only for periodic motion and thesapplicable only at the Newtonian
level. In this Section we recover the Newtonian resuIEQi].[ZO

The Fourier decomposition of the Newtonian quadrupole ndmwas already given in general
form by Egs. [(3.4). We insert that decomposition into the @) and we evaluate the tail
integral by using the fact that #f(t) = n(t — tp) corresponds to the current tinhethen clearly

{(t — 1) = {(t) — nT corresponds to the retarded time 7. Next we perform the average over the

12 We shall compute this term at 1PN relative order in §ec. IV D.
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current value/(t) with the help of the formuld (316). The resultis
. ) 11
N T
<¢( mass qua&tall p;oo(p n)8 l(Ip)'(J )|2 f dTG'pn In( ) 12] (4_6)

It remains to handle the last factor in_(4.6) which is the itatiégral in the Fourier domain, and
which is computed using the closed-form formula

f dre"”ln( ) 1[ S|gn(o-)+(ln(2|o-|ro)+C)] 4.7)

whereo = pn, signg) = +£1 andC = 0.577--- denotes the Euler constant. Inserting E£q.1(4.7)
into (4.6), we check that the imaginary parts cancel out,thadesult reduces to

ArM
<T( mass quagta” 5 Z(p n)7 |(_Z-p)l(:\l)|2 (48)
p=1

Observe that the range pfs corresponds to positive frequencies only. Eq.1(4.8) egeith the
result of E(b] and can interestingly be compared with thereggion of the Newtonian part of
the averaged flux (quadrupole formula) as given by Eql (3Adhough Eq. [4.8) is expressed
in terms of the relatively simple Fourier seri¢s {4.8) [kalfor the case of the 1PN quadrupole
tail in Sec.[IVD which will turn out to be substantially monetiicate], it has to be left in this
form since no analytic closed-form expression can be foondhe infinite sum of these Fourier
componentéﬂO] This is in contrast with the quadrupolavtéaian flux [3.7) which does admit a
closed-form expression [recall EG.(3.10)]. In 9et. V welldhaher proceed following Ref. [20]
by expressing Eq[(4.8) in terms of a new “enhancement” fat#pending on the eccentricity and
which will be computed numerically.

Let us stress that the result_ (1.8) and all similar resultsvelé below are “exact” only in a
PN sense. Indeed we have formally replaced inside the taijial the orbit of the binary at any
earlier timet — 7 by its orbit at the current timg thereby neglecting theffect of the binary’s
adiabatic evolution by radiation reaction in the past. Assult there should be a remainder term
in @.8), given by the order of magnitude of the adiabati@peeters . = w/w? associated with
the binary’s inspiral by radiation reaction. Indeed, we Wk .] that the replacement of the
current motion inside the tail integral is valid only modiome remainde® (&,49) OF, rather,

O (&adIné&ag). In terms of a PN expansion such remainder brings a correcfioelative 2.5PN
order which is always negligible here (indeed the tails hesrtselves at 1.5PN order so the total
error due the neglect of the influence of the past in the taid?iN).

The other tail integrals, given by the second and third temksy. (4.3), are evaluated in exactly
the same way. With the PN accuracy of the present calcul#iEse integrals are truly Newtonian
so the mass octupole momdyt and current quadrupole momedt are required at Newtonian
order only. For simplicity, we do not add a superscript (Ninidicate this because there can be no
confusion with other results. We thus need to evaluate the-averaged fluxes

4|V| 97
(Fmass octtail = 189 ||(JA|1()(t) f dr ||(J?()(t —7){In (27' ) 60]> (4.9a)
Pt = (g 3100 [ e 80 ofin( )+ £ (4.9b)
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Inserting the Fourier decomposition of the moments, pariog the average using Ed. (B.6) and
using the integration formul@{4.7) immediately results in

o EMS e o
<Tmass oc)tan = 189 Z(p n) |(-€)Ijk| ) (4-103-)
64 M
<ﬁurr quac}tail = - Z( n)7 |«7IJ . (4-10b)

In Sec[V we shall have to provide some numerical plots foreteentricity-dependent enhance-
ment factors associated with Eds. (4.10), since they cammobmputed analytically.

C. Tails-of-tails and tails squared

We have seen that at the 3PN ordee.(1.5PN beyond the dominant tail) the first cubic non-
linear interaction, between the quadrupole monigind two mass monopole factdvs appears.
Following Egs.[(4.4) we thus have to compute the “tail-af-tzontribution,

In2 (ZT )+57| ( T )+ 12462 , (4.11)

<7—~ta||(ta|l)> = <_ I(S)(t) f dr I (6) - 1)

70 \2ro 44100

and the so-called “tail squared” one,

AM2 T\ 117\
(Fan?) = (5 ( f dr19(t—1) |n(2) 12])> (4.12)

Both contributions are evaluated at relative Newtoniaregrishserting the Fourier decompaosition
of the Newtonian quadrupole momeht (3.4) [suppressing dtetion (N) for simplicity]. The new
feature with respect to the previous computation is the weage of a logarithnsquaredin the
tail-of-tail integral [4.11). The integration formula ngiced to deal with this term is [compare with

Eq. (4.7)]

f dr e’ In? (2ro) ;{62 [5|gn((f)+|(ln(2|a|r0)+C)]} (4.13)

and with this formula, together with.(4.7), we obtain theutes

M2 £ 2 57 12462
(Faigaiy) = Z(p n)® |I(N)| { ~2(In(2pnro) + C) + S—S(In(Zp nro) +C) - 220507} :

(4.14)
On the other hand the tail squared term is readily computéd{di7) and found to be
AM? S (N) 2 11\
(Fan?) = ?;(pn)i*u- | { +2(In@pnrg) + C - ) } (4.15)
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Summing up the two results (4]14) and (4.15) we finally obtain

|v|2+oo(pn)8 I.(N’Iz 22 214 214 116761
105 105~ 29400

<7jtalI(ta||)+(ta|I)2> - g Z 3 - —1In(2pnrp) — } . (4.16)

As we can see the contribution from logarithmguaredhas cancelled out between the two
terms [4.I4)-H4.15). Such cancellation is in fact known ¢oun for general sources [12]. We
observe also that the result (4.16) still depends on thérarpilength scale,. It will be important

to trace out the fate of this constant and check that the catephergy flux we obtain at the end
(including all the instantaneous contributions compute@]) is independent af.

D. The mass quadrupole tail at 1PN order

Let us now tackle the computation of the mass quadrupolattttile relative 1PN order, namely

4M T 11
Frsssbes = 190 [ ar1P-nfin[ ) + ). @17
At the 1PN order (and similarly at any higher PN orders), wettake care of the doubly-periodic
structure of the solution of the motion [S€c.I A], and degmse the multipole moments accord-
ing to the general formulaE(3]17). So the 1PN mass quadzupoment;; entering Eq.[(4.17) is
decomposed as

TR Z Lie®m, (4.18)

p=—co m=-2

with doubly-indexed Fourier cdiécients,mZi; which are valid through order 1PN. We can be
more precise and notice that the harmonics for winich +1 are zero at the 1PN order, so that

+0o

1 (t) = Z {(p{z)i,-é(p—z'()f GePly T é“’*z'()f} (4.19)

e (0.0 (p.2)

but in the following it is more convenient to work with the gaal decompositiori (4.18), keeping
in mind that the terms witln = +1 are absent. As before we inséri (4.18) ita (4.17) to obtain
[after neglecting 2.5PN radiation reaction ter@&,q)]

<Tmassqua>1tail = = Z 8(p+mk)3(p +rﬁk) IIJ I ij

p.pmm (prm)

i(P+p +HmnT)K) -i(pmine o [T 1_1]
x (¢ >f dre [ln(2r0)+12’ (4.20)

where the summations range fromo to +co for p and p’, and from-2 to 2 form and nt.
Evidently the factorsi§ + mK)® and @ + n7k)® come from the time-derivatives of the quadrupole
moment. We have explicitly left the last two factors[in (4.28 they are, namely the average over
¢ of an elementary “doubly-periodic” complex exponentialddahe Fourier transform of the tail
integral.

The expressior (4.20) is to be worked out at the 1PN ordeiceSime relativistic advance of
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the periastroik is already a small 1PN quantity, the first thing to do is to eatd [4.2D) alinear
order ink [i.e., neglectingO(k?) which is at least 2PN]. Afterwards we shall insert the eoipli
expressions for the 1PN quadrupole moment and ADM mass. Wéda here the necessary
formulas for performing the linear-order expansionkiof the last two factors in[(4.20). The
average we perform is over the orbital period (time to retartie periastron) and so is defined by

. Za VA
(d(PrmR ey — —~ dp+mRe (4.21)
0 21
Using the fact thamk < 1 since we are in the limit where — 0 (hencep + mkis never an
integer unles& = 0), we readily find
| Dy if p+0
(dPrmiey ) P +O(K?). (4.22)
l+izmk if p=0

This result depends only on whetheiis zero or not, and is true for any integay except that
whenm = 0 the result[{4.22) becomes “exact” as there is no remaireder®(k?) in this case.

On the other hand, to compute the tail integral given by teefictor in Eq.[(4.20), we expand
it at first order ink, obtaining thereby

+00 +00
j(prmRnT o (T ) _ _m_k jpn [ _.m_k 2
fo dré ln(Zro) = (1 5 ) ) dré ln(Zro) [ o + O0(k%), (4.23)
and we apply for the remaining integral [0 (4.23) the form@al).

With Egs. [4.22) and (4.23) in hand we can explicitly work the tail expression (4.20) at first
order ink (the extension to higher order kawould in principle be straightforward). The result
will be left in the form of the multiple Fourier seriels (412Mto which the resultd (4.22)—(4123)
have been inserted (we do not try to give a more explicit foontlis result which is given by a
complicated Mathematica expression). In the next Sectieshall re-express this series in terms
of some elementary enhancement functions which will fine#yevaluated numerically.

V. NUMERICAL CALCULATION OF THE TAIL INTEGRALS
A. Definition of the eccentricity enhancement factors

We define here some functions of the eccentricity by certainrier series of the components
of theNewtoniarmultipole moments™ andJ®, for a Keplerian ellipse with eccentriciy semi-
major axisa, frequencyn = 2r/P (such that Kepler’s lam?a® = m holds at Newtonian order). In
the frame of the center of mass we ha{/8 = us(v)x*"> andJ", = us(v)x<L-2-1>20xP where

p = mmy/m = ym. Here we pose(v) = X, * + (=)' X[, where X; = & = %(1+ \/1—41/) ,

and X, = % = %(1 - Vi1- 4v). Let us rescale the latter Newtonian moments in order to make
them dimensionless by posing

()
I L

(N)
Ji

H al S(V) IAL b (51&)
wans . (5.1b)
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Our first “enhancement” function is of course the Peters & héats |EL] function which we have
already expressed in EQ. (B.9) as a Fourier series [and whiak out to admit the analytically
closed form[(3.10)]. In terms of the Fourier components efriscaled quadrupole moment
this series reads

15 67 12
f@—E;p%m (5.2)
and is such that the averaged energy flux of compact bindrtee &lewtonian order reads

<¢M:%%ﬂ@, (5.3)

where we have defined for future convenience the frequesieyed PN parameter = (mw)?3
wherew is the binary’s orbital frequency defined for general orlbbysEq. [2.7). Note that in
Eq. (5.3) which is Newtonian we can approximai®y n (hencex reduces tan/a).

Next, we define several other “enhancement” functions oétleentricity which will permit to
usefully parametrize the tail terms at Newtonian ordeistiire pose

1O 7,0
== T2 5.4
0(e 32;; | (5.4)

Like for f(e) this function is defined in such a way that it tends to one éndincular orbit limit,
whene — 0. However, unlike forf (), it does not admit a closed-form expression, and will have
to be left in the form of a Fourier series. The functipf@) parametrizes the mass quadrupole tail
at Newtonian order, in the sense that we have, from[Eq. (4.8),

<9L~(N)

32
mass quaa = E Ve X [47T X2 QD(G)]- (5.5)
For circular orbitsg(0) = 1 and we recognize the cieient 4r of the 1.5PN tail termof x3/2)
as computed numerically in Ref. [42] and analytically in R¢R0,[43]. The functionp(€) has
already been computed numerically from its Fourier sefe$) (in Ref. Eb]. Here we show the
plot of ¢(€) in Fig.[d (see Se€_VIB for details on the numerical compatgt?.
We next proceed similarly for the 2.5PN mass octupole angeatiquadrupole tails. We pose

— 20 < 91 7. |2
BE) = 49209;:;;) |2l (5.62)
Y© =4 1Tyl (5.6b)
e )

Again these functions tend to one wher» 0 (as will be checked later) and most probably do not

13 Note that our notation is ffierent from the one irﬂO]; the functiapss(e) there is related to our definition by
ves(€) = ¢(e)/f(e). In the present work it is better not to divide the variousdiions by the Peters & Mathews
function f(€) entering the Newtonian approximation.
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FIG. 1: Variation ofp(e) with the eccentricitye. The functiony(e) agrees with the numerical calculation of
Ref. [20] modulo a trivial rescaling witli(e). The inset graph is a zoom of the function (which looks like a
straight horizontal line in the main graph) at a smalleresc@he dots represent the numerical computation
and the solid line is a fit to the numerical points. In the dacwrbit limit we havep(0) = 1.

admit any closed-form expressions. With their help theégians (< x*?) of Egs. [4.9) read

o 3_2 5 16403 B /2
(Fmass octail = 5 14 XS[ 2016 n(1 4V)X5 ﬁ(e)]’ (5.7)
32
<ﬁurrquac}tail = €V2X5[118 (1-4v) X5/27(e)]- (5.8)

The numerical graphs of the functiof&) andy(e) are shown in Fid.12.

Two further enhancement factors are then introduced tonpetr&ze the tail-of-tail and tail
squared integrals (which are Newtonian with the presenteqamation). The first of these func-
tions looks very much like the Peters & Mathews functif(@), Eq. (5.2), in the sense that its
Fourier series involvesvenpowers of the modeg. Namely we define

1 +0o0 R
F(e) = — MV :
© 64; o° | (5.9

Thanks to this even power p® we find thatF (€) can also be computed as an average performed
in the time domain similar to the one of EQ. (3.11) fqe). Namely we easily verify that

_ 1 core
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FIG. 2: Variation of3(e) (left panel) andy/(e) (right panel) with the eccentricitg. In the circular orbit limit
we haveB(0) = y(0) = 1.

which can straightforwardly be computed in the time domaith the result thafE (e) admits like
for f(e) an analytic closed form which is readily obtained as

1+ 8¢? 4 3Lty 1016 297
6 192 192 1024° (5.11)

(1 _ e2)13/2

Fe) =

On the other hand we shall need to introduce a function whoseét¥ transform dfers from the
one ofF(e) by the presence of tHegarithmof modes, namely

15 E) s 2
(e = 64;p In(2 2y (5.12)

One can be convinced that very likelye) does not admit any analytic form [hence we name it
using the Greek alphabet — in contrastfi@) andF(e)]. Note thaty(e) has been exceptionally
defined in such a way that vanishesvhene — 0. This is easily checked since in the circular
orbit limit (and at Newtonian order) the quadrupole moméj'ﬁ’t possesses only one harmonic
corresponding t@ = 2 which due to the log term reducgée) to zero in this case. In Figl 3 we
show the numerical plot of the functigr{e) [and also the one fdF(e)].

With those definitions we find that the sum of tail-of-tail aad squared contributions obtained

in Eq. (4.16) reads

32 2)(8{[_116761 Eﬂz 1712 . 1712 ] 1712

Faiainsain?) = 5V 3675 * 37 105C 105 " “4wro)|F(&) - 55X (e)}'
(5.13)

The circular-orbit limit can be immediately readf &rom this expression and seen to agree with
Eq. (5.9) in Ref.[[12] or Eq. (12.7) in Ref. [31].

Finally we provide the result in the case of the mass quadeupd at 1PN order. We have seen
in Sec[1VD that the calculation in this case is much more ved, as the Fourier seriels (4120)
contains several summations, and depend on the interreedmatlts[(4.22) and (4.23). In addition
the computation must take into account the 1PN relativisbizection in the mass quadrupole
moment and ADM mass; these are provided in Egs. (5.16)afid)below. We find that probably
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FIG. 3: Variation ofy(e) (left panel) andF(e) (right panel) with the eccentricitg. In the right panel,
the exact expression &f(e) given by Eq.[(5.11) is used. In the circular orbit limit wevha/(0) = 0 and
F(0) = 1.

there is no simple way.p. no simple-looking Fourier series like for instance (5. ¥@jJexpressing
the new enhancement functions of eccentricity which appetire 1PN order. However one can
check beforehand that the 1PN term is a linear function okymemetric mass ratio, hence we
must introduce two enhancement functions, denoted belandd. As before we normalize these
functions so tha(0) = 1 andd(0) = 1. We have [extending Ed. (5.5) at the 1PN order]

32
(Fmass quakitail = E % X13/2{47T o(&) + X

_%aa(et) + %av 9(&)]}. (5.14)

This equation provides the definition of the two enhanceremttionsa andd, and we resort to
the Mathematica computation to obtain them as complicatedti€ decompositions, which will
then be directly computed numerically using the methodimed! in SecCVB. Notice that since
we are at the 1PN level we must use a specific definition for ¢herdricity, and we adopted here
the “time” eccentricityg, entering the Kepler equatioh (2.10b) in Sec.1ll B. At the 1Rteo the
other eccentricities are related to it by Eqs. (2.17). Onatner hand, the frequency-related PN
parameter, given by

X = (Mw)?3, (5.15)

crucially includes the 1PN relativistic correction comiingm the periastron advand¢é = 1 + k,
through the definitionn = nK of Sec.[ITA. All the 1PN corrections arising from the formu-
las (4.22) and{4.23), the multipole momeMsandl;;, the use of the time eccentricigy and the
specific PN variable, are incorporated in a Mathematica program dealing withdég@mposi-
tion (4.20) and used to obtainh (5]14). The behaviour of tHeaanement functions(e) andd(e)
are given in Figl 4.

B. Numerical evaluation of the Fourier codficients
We now describe the numerical implementation of the proeedflor the computation of the

Fourier codicients of the multipole moments that lead to the numericatspbf the previous
Section. We focus the discussion on the computation of theiarcoeficients, ) 7/;; at 1PN
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FIG. 4: Variation ofa(€) (left panel) and)(e) (right panel) with the eccentricitg. In the circular orbit limit
we havea(0) = 6(0) = 1.

order which are the moreftiicult to obtain. The mass quadrupole moment with 1PN accugacy
given by [compare with the general structure (3112a)]

lj = ,u{1+ [vz (%— gv)+ ?m (—; + gv)] XixD

11 11 o 4 12 . i
a5 o) 549

wherex andv' = dX/dtare the relative position and velocity in harmonic coortiisaand = |X|
(like in Sec.[11B). Equation[(5.16) is valid for non-spingitompact binaries on an arbitrary
guasi-Keplerian orbit in the center-of-mass frame (@€g[44]). Since we investigate tails with
1PN relative accuracy we need also the relation of the ADMsivaio the total masen = m;+m,

at 1PN order, ,
v m
1 ———1]. A7
+ v( 5T )] (5.17)

Using the quasi-Keplerian representation of the motiorc[8EB], the dependence df; on
X, v, r, v” andr can be parametrized in terms of the eccentric anomaljowever, as explained
previously we requiré;;(¢) in the time domain to proceed. The steps of our numericalémpn-
tation scheme can be summarised as follows:

M=m

1. To begin with, each component of the 1PN mass quadrupodxpsessed in terms of
the quasi-Keplerian parameters using Egs. (2.L0)J(2.12)e components of the mass
quadrupole are now functions of the eccentric anomagnd are parametrized by the mean
motionn and by one of the eccentricities which is chosen t@bethe “time” eccentricity

in Kepler's equation(2.10b}*

2. We next invert, numerically, the equation for the meamaaly £ = u— e sinu to obtain the
functionu(¢). This can be done either by using the series representatienms of Bessel

14 The semi-major axig, and the other eccentricities ande, are deduced from ande; using Eqs.[(Z14)E(Z17).
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functions,

+00
u=(+2) }Js(s Q) sin(s?), (5.18)
s=1 S

or numerically by finding the root of = u — g sinu. The latter is a moreficient and
more accurate method and we employed it in this work (we used-indRoot routine in
Mathematica). In this case we generated a table of 20 00Gsofru and ¢ between 0
and Zr (for each value o). The above inversion enables us to re-express all furetbn
the eccentric anomaly as functions of the mean anomaly If required, a more accurate
implementation for solving Kepler's equation along theebnof [45] can be used in the
future.

. One needs to be careful in dealing with theependence o¥ in Eq. (Z.12) to avoid the
discontinuity there. To this end it is best to use

V(u) = u+ 2 arcta

By sinu ) (5.19)

1-p, cosu

whereg, = [1-(1-€7)"?]/e,. By this process, we thus have in hand the Fourieffiments
mZij(¢) defined in Eq.[(3.144a) as explicit (numerical) functiong.of

. Recall that these functions also have a dependence oreteratior and the PN parameter
x defined by hw)?® wherew = n K. To avoid assuming numerical values foandx and
hence to preserve the full generality of the result, we $ipditftunction;, Z;; into

Tij(t.e.v,x) = 10(¢.@) + x | 11t @) +v 13(t. @)|. (5.20)
(m) (m) (m) (m)

Notice that we have neglected the terms higher than 1PN itingrihe above expression.
Now the various(m)Ii?b are only functions of ande,. We evaluate the Fourier cieients
of these terms separately in the next step of the procedure.

. For afixed value of;, we can straightforwardly get the plot @f 7 fj’o versug. Equivalently,
one can also write the Fourier decomposition,pf i‘j’o(t’) as

+00
00 00 4 pt
00y = 0Pt 5.21

al ) pZ‘m o) &2
Now we seek a numerical fit to Eq.(5120), in powers8f, to extract out the cdgcients
(wmZ;;°- We do the same for fierent values o& and for,m 7 andpm 7™

. The fitting procedure mentioned above can be implemeritedrestarting with the STF
momentl;; or the non-STF projected one. The expressions will itkedint in these two
cases as for the first case ttcomponent of the moment is not equal to zero by definition
[sincel,, = —(Ix + 1,,)] whereas for the latter case taecomponent is zero due to planar
motion. This provides a simple algebraic check on the nurakcalculation.

. Instead of using the basic multipole moment as the staftinction €.g. |;), we find that
using the leading time derivatived. Ii(f‘)) improves the numerical convergence of the results
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because one deals with lower derivatives of the basic fanciihis is very helpful for higher
values of eccentricity.

8. Substituting the Fourier cicients into Eq.[(4.20) one can generate the numerical values
the averaged energy flymass quad fOr the different values o, and hence get the numerical
values of the enhancement functions, and most importahtlyeolPN ones(g) andé(e,)
defined by[(5.14). The plots of these functions reported m[B&\ readily follow.

We have just described the procedure for the masicdit 1PN quadrupole tail yielding the
computation ofa(e) and6(e). This procedure is quite general, and provides a methodtwhi
could be extended to higher PN orders. However, at the Nearnarder it is in fact much more
efficient to make use of the well-known Fourier decompositiothef Keplerian motion. Using
this we can derive the components of the multipole momentsléatonian order) as a series of
combinations of Bessel functions. Then it is a very simpldtengdo compute numerically the
associated “Newtonian” enhancement functions [namelyfuhetionsy(e), B(e), y(e) and y(e)
defined in Sed._VA]. For the convenience of the reader we givipipendiXA all the expressions
for each of the components of the required Newtonian monfefits 11 and "] as a series of
Bessel functions. We have used them to compute numeridalyhhancement functiogge),

B(€), y(e) andx(e)™.

VI. THE HEREDITARY CONTRIBUTION TO THE 3PN ENERGY FLUX

A. Final expression of the tail terms

Based on the treatment outlined above of a numerical schentleef computation of the orbital
average of the hereditary part of the energy flux up to 3PN, malyi provide the complete results
for the numerical plots of the dimensionless enhancemembria It is convenient for the final
presentation to redefine in a minor way the “elementary” anbment functions of SeC. VA,
which were directly given by simple Fourier decompositidnst us choose

13696 16403 112

y(e) = 8101 a(e) - WS,B(G) - my(e), (6.1a)

l(e) = —%gie(e) + %ﬁﬁ(e) + %y(e), (6.1b)
59920

k(e) = F(e) + 11676f((e). (6.1c)

Considering thus the 1.5PN and 2.5PN terms, composed sf éaitl the 3PN terms, composed of
the tail-of-tail and the tail-squared terms, the total déeey contribution to the energy fluk (4.2)
when averaged oveér(and normalized to the Newtonian value for circular orbiitsally reads

8191 583

2
(Frered = % % >Cr’{47T X% p(&) + m X/ = y(e) - >4 (&)

15 On the other hand, for the Newtonian tail terms, we could @edcexactly in the same way as for the 1PN term,
following the steps 1 - 8. We have verified that both methodsawell.

24



-2x10*4

v(e)
-4x10"

-6x10° 1

o

0.0

0.2

0.4

0.6

0.0

0.2

0.4

06

0.8

1.0

6x10*

4x10° -

&(e)

2x10° 1

T
150

100

0.8

1.0
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dots represent the numerical computation and the solidiliite¢o the numerical points. In the circular orbit
limit we havey(0) = £(0) = 1.
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In (4w ro)] F(et)]}. (6.2)

In this result all the enhancement functions reduce to orledrtircular case, whes = 0, so the
circular-limit is immediately deduced from inspection af.H6.2), and is seen to be in complete
agreement with Rest_LIl 1]. The functiéife) is known analytically, and we recall here its

expression,

85 5171 1751 297
1+ € + Yl + Tor€ + 1om

Fe) = o

However the other enhancement functigitg), v (&), (&) and«(g) in Eq. (6.2) (very likely) do
not admit any analytic closed-form expressions. We havéagxgd in Sed_VB the details of the
numerical calculation of these functions. We now presemniimerical plots of the final functions
w(&), (e) andk(g) in Figs.[B£6 as functions of the eccentricéyrecall that the functionp(e,)
has already been given in Fig. ¥f]

As seen from Eq.[(6l2) the final result depends on the consgaattthe 3PN order. Let us
understand in bit more detail the occurrence of this constafe first recall from Ref.@Z] that
the dependence on the constenbf the radiative quadrupole moment at infinity, sa¥;, arises
precisely at the 3PN order, and comes exclusively from tméribution of tails-of-tails (.e. the
cubic multipole interactioM? x 1;;). It is explicitly given by

(6.3)

214
(1) = 1@ ey M2 1@
Uij®) = 157 + - + 105M 157 Inro+ -+,
in which we have indicated that;; simply reduces to the second time derivativelpfat the
Newtonian order, and where we show the only term which dependhe constam; such a term
appears at 3PN order and turns out to be proportional to théhftime derivative of;;. The dots
in Eq. (6.4) denote many terms which do not dependqorirrom [6.4) it is then trivial to deduce

(6.4)

16 The numerical results used for the figures 1-6 are availattlesi form of Tables on request from the authors.
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FIG. 6: Variation ofx(€) with the eccentricitye. In the circular orbit limit we have(0) = 1.

that the corresponding dependence @af the averaged energy flux at 3PN order must be
1
F@PN)y OOy o ..
< > - §<Uij Uij >+

28 (5

+ e MAAPIP) Inro + (6.5)
Now we can take advantage of the fact that inside the operafiaveraging ovef [denoted by)
and defined by[(4.21)] one can freely operate by parts the diengatives. Hence, we can write
that(11®) = (111 and so we arrive at the result

1
= §<|i(13)|i(13)>+"'

1 42

(FEPN) = §<'i(13)'i(13)> o 5—£M2<|§f)|i(f)> Inro+---. (6.6)
The factor of Irg in Eq. (6.6) looks like a “quadrupole formula” but where thad time derivative
of the moment would be replaced by the fourth one. Notice t@iabove expression has been
computed for general radiative-type moments and is truefgr PN source, in particular for a
binary system moving on an eccentric orbit. Therefore theeddence on In, found in (6.6)
should perfectly match with the one we have obtained in [EQ)(6Thus, comparing with (8.2),
one readily infers that the functiof(e) in the case of an eccentric binary must necessarily be
given by the components of the quadrupole moment in the tioneash as

F(e) . (6.7)

T 12828

This prediction is perfectly in agreement with our finding the functionF(e) in Eq. (5.10)
(indeed, since we are at leading ordkr,reduces tan, g agrees withe, w equalsn). We have
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therefore confirmed the correctness of the dependencergmdiiq. ).

We already know from the study of the circular-orbit cask [31]) that the dependence on
ro is cancelled out with a similar term contained in the expoessf the source-type quadrupole
momentl;; at 3PN order. This cancellation must in fact be true for gainsources, and has
been proved on general grounds in REef] [12]. It will therefgive an interesting check of our
calculations when we show in the companion pa@ [29] thaxtcincellation ofy occurs for
general eccentric orbits.

To finish let us provide here the expressions of our final eoéigent functions at the first order
in € whene — 0. These expansions will be useful in the following pa@h,[%en we compare
the perturbative limit of the complete energy flux at 3PN oKgecluding all instantaneous terms)
with the result of black-hole perturbations. Note that thegpansions are obtained analytically.
For the functions which are Newtonian we can either use thei€ocodticients in the Appendix/A
and expand them at first orderéf or follow the general procedure explained in $ec.]V B for the
relevant moments but expanding Eq.(5.18) to only first oilef, namely,

u:€+etsin£+§sin2£+0(et3). (6.8)
Concerning the two 1PN functiong(e) and(e)], on the other hand, we obtain them directly

using the latter procedure. We find

p@) = 1+ %’efm(ef), (6.9a)
v(e) = 1—2821;2818e3+0(e;‘), (6.9b)
{(@) = 1+ %Se? +0(e), (6.9¢)
0 =12, BT o), oo
and of course [since this is immediately deduced from E&)]6.
Fle)=1+ > & +0(e). (6.10)

We have checked that the numerical results of Eigs.1, 9 argteéeavell with Eqs.[(619) in the
limit of small eccentricities.

B. Conclusion and future directions

The far-zone flux of energy contains hereditary contrimgithat depend on the entire past
history of the source. Using the GW generation formalismsezimg of a multipolar post-
Minkowskian expansion with matching to a PN source, we haepgsed and implemented a
semi-analytical method to compute the hereditary contiobg from the inspiral phase of a bi-
nary system of compact objects moving on quasi-elliptichlte up to 3PN order. The method
explicitly uses the 1PN quasi-Keplerian representatioellybtical orbits and exploits the dou-
bly periodic nature of the motion to average the fluxes ovetinary’s orbit. Together with the
instantaneous contributions evaluated in the next p@rip’provides crucial inputs for the con-
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struction of ready-to-use templates for binaries moving@ocentric orbits, an interesting class of
sources for the ground based gravitational wave detect@®L/irgo and especially space based
detectors like LISA.

The extension of these methods to compute the hereditangtarthe 3PN angular momentum
flux and 2PN linear momentum flux is the next step required tcged towards the above goal
and is currently under investigation. The extension to ast@fhe 3.5PN terms for elliptical orbits
is currently not possible due to some as yet uncalculateaster the generation formalism at this
order for general orbits. It would also require the use of 2R& generalised quasi-Keplerian
representation for some of the leading multipole moments.
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APPENDIX A: FOURIER COEFFICIENTS OF THE MULTIPOLE MOMENTS

In this Appendix we provide the expressions of the Fourieffaments of theNewtonianmul-
tipole moments in terms of combinations of Bessel functidfe decompose the components of
the moments as Fourier series,

+00

1Mty = 7 Ner (Ala)
p=—co (P
+00

I = > VL (A1b)
pP=—c0

where the Fourier cdicients can be obtained by evaluating the following integral

1 (= .
(Ip)L(N) = o fo de 1Mty e, (A2a)

1 (= .
(p)g_Ng = > fo de I, (1) e (A2D)

For the mass quadrupole moment at Newtonian order we*have
1 3
N _ (=4 =

. (—get _ geg) (351 (p&) + 511 (pQ))

17 Note that the Fourier cdigcients we provide are farormalizedmultipole moments as defined in EGs (5.18)=(b5.1b).
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+ (:ZL, + %6‘3) (Jp—z (p&) + Jp:2 (pQ))

7N = —j1-¢& {get (~Jp-1(p&) + Jp.1 (pa))
(-3 3¢) 0n2 0 - 352 p0)

8
(5-¢)% e

+ (ga + %qg) (Jp—l (p&) + Jpi1 (IOQ))

+}et (Jp+3 (pe:) - 'Jp—3 (pa))}’

N
z
Il

—% (Jp_z (pe) + Jpi2 (IOQ))

N (%Q . 1izets)(Jp_3(|oq) + Jpia (pa)).

1 1
70 = (_5 _ Eef) 3y (pe)
+[La 6] 00 (0 + 3 o)
29[ 8et p-1 (P& p+1 (P&
-3 (352 (p8) + 3p2 (pe))
+2_14ef (Jp_g (p&) + Jps3 (pa))

For the mass octupole moment we find

3 11
N = _32a + ==&3|J
EZ-p)XXX {(8e£+ 8et) p(pa)

3 21 11
+ _% — Z)etz — %e?) (\]p_l (pa) + Jp+l (pQ))
11 3
+ Z—OQ + 2—0e?) (\]p—Z (pa) + Jp+2 (pa))
1 3 3
-5~ —Oet2 + 4—08[4) ('Jp—3 (p&) + Jpis (pa))

[ 2300}

1 = ii-@{( 5+ 50%) (b pe) - 304 (pe)
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(A3a)

(A3b)

(A3c)

(A3d)
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+ (——q - 406‘) p+2 (p&) - 'JD—Z (pa))

. (% R 4_eg) (3p:3 (p@) =~ 3y (pe))

+( 1i6 ) Jp+4(pQ) Jp—4(pa))}
1
{(8 )J (pe)

+ _4_0 4_06‘2 + 5et)(Jp_1(IOG) + Jp1 (&)

5

1 3 1
+ 8 + %ef - F)e?) (Jp—S (p&) + Jpi3 (pet))

+ _ge[ + Z:)et)(‘.]p_z (pe) + Jpi2 (DG))

+ (_%GQ 21063) (Jp 4 (pQ) + Jp+4 (pe))}

i-¢ {(% - 26)(-35-1(pR) + 3y (po)

Jp_z (pa) + 'Jp+2 (DG))

+|—-—=—& - get)(Jp_g(pa) + Jp+2(pa))

N Ee‘z + %e;*)(Jp_g (P&) + Jp.3 (Pe))

—%)ef’ (Jp_4 (pa) + Jp+4 (DQ))},

= i41-¢ {(—% - %e?) (—Jp-1 (P) + Jpi1 (pe))

(2306( + —et)( Jp-2 (p&) + Jpi2 (pa))

joetz( Jp_3 (pa) + 'Jp+3 (pa))
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(Adc)

(A4d)

(Ade)



+8i0e? (~3p-2 (P&) + Jp:a (pa))}-. (A4)

Finally, for the current quadrupole moment,

1
T = N1 € {3a.3, (pe)

_%1 (1+ ) (Ip-1.(P&) + Jpiz (PQ))

+%et (Jp—z (p&) + Jpi2 (pQ))}, (A5a)

T = % (1 &) {(Ipns (0&) ~ Jps (p)

38 (32 (p) - I (pe). (ASD)
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